code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import math class lowerCamelCase_ : def lowercase_ ( self : Optional[Any] , _A : list[list[float]] , _A : list[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = 0.0 UpperCAmelCase__ : Union[str, Any] = 0.0 for i in range(len(_A ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase_ ( self : Dict , _A : list[list[int | float]] , _A : list[int] , _A : int , _A : float ): '''simple docstring''' for i in range(len(_A ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def a__ ( ) -> None: # Training Examples ( m, n ) UpperCAmelCase__ : Optional[Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCAmelCase__ : str = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCAmelCase__ : Optional[Any] = SelfOrganizingMap() UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Dict = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample UpperCAmelCase__ : Optional[int] = training_samples[j] # Compute the winning vector UpperCAmelCase__ : str = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector UpperCAmelCase__ : int = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample UpperCAmelCase__ : str = [0, 0, 0, 1] UpperCAmelCase__ : int = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
181
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def lowercase_ ( self : int ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ : Any = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def lowercase_ ( self : Optional[int] , **_A : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , _A : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ : int = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Any = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''A long paragraph for summarization.'''] UpperCAmelCase__ : List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(_A , return_tensors='''pt''' ) UpperCAmelCase__ : int = tokenizer(text_target=_A , return_tensors='''pt''' ) UpperCAmelCase__ : str = inputs['''input_ids'''] UpperCAmelCase__ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = ['''Summary of the text.''', '''Another summary.'''] UpperCAmelCase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A ) UpperCAmelCase__ : str = [[0] * len(_A ) for x in encoded_output['''input_ids''']] UpperCAmelCase__ : Any = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Any = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase__ : Dict = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
181
1
"""simple docstring""" import numpy as np class _lowerCamelCase : def __init__(self ) -> List[str]: UpperCamelCase = (0, 0) UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def __eq__(self , __a ) -> str: return self.position == cell.position def snake_case_ (self ) -> Optional[Any]: print(self.position ) class _lowerCamelCase : def __init__(self , __a=(5, 5) ) -> Any: UpperCamelCase = np.zeros(UpperCamelCase__ ) UpperCamelCase = world_size[0] UpperCamelCase = world_size[1] def snake_case_ (self ) -> Union[str, Any]: print(self.w ) def snake_case_ (self , __a ) -> Tuple: UpperCamelCase = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCamelCase = cell.position[0] UpperCamelCase = cell.position[1] UpperCamelCase = [] for n in neughbour_cord: UpperCamelCase = current_x + n[0] UpperCamelCase = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCamelCase = Cell() UpperCamelCase = (x, y) UpperCamelCase = cell neighbours.append(UpperCamelCase__ ) return neighbours def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: UpperCamelCase = np.argmin([n.f for n in _open] ) UpperCamelCase = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue UpperCamelCase = current.g + 1 UpperCamelCase = n.position UpperCamelCase = goal.position UpperCamelCase = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCamelCase = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = [] while current.parent is not None: path.append(current.position ) UpperCamelCase = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCAmelCase__ = Gridworld() # Start position and goal lowerCAmelCase__ = Cell() lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = Cell() lowerCAmelCase__ = (4, 4) print(f'''path from {start.position} to {goal.position}''') lowerCAmelCase__ = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCAmelCase__ = 1 print(world.w)
367
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1e-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride def snake_case_ (self ) -> List[str]: UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case_ (self ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case_ (self , __a , __a , __a ) -> Dict: UpperCamelCase = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case_ (self , __a , __a , __a ) -> Any: UpperCamelCase = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ (self , __a , __a , __a ) -> int: UpperCamelCase = self.type_sequence_label_size UpperCamelCase = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ (self ) -> List[Any]: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( _lowercase , _lowercase , unittest.TestCase ): UpperCAmelCase_ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCAmelCase_ = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = SwinvaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__a , embed_dim=37 ) def snake_case_ (self ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ (self ) -> List[Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def snake_case_ (self ) -> Optional[int]: pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def snake_case_ (self ) -> Union[str, Any]: pass def snake_case_ (self ) -> Optional[int]: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(__a ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case_ (self ) -> int: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(__a , __a ) ) UpperCamelCase = outputs.attentions UpperCamelCase = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = config.window_size**2 UpperCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(__a , __a ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCamelCase = len(__a ) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): UpperCamelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCamelCase = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def snake_case_ (self , __a , __a , __a , __a ) -> int: UpperCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(__a , __a ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = reshaped_hidden_states[0].shape UpperCamelCase = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case_ (self ) -> str: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a ) def snake_case_ (self ) -> Tuple: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def snake_case_ (self ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ (self ) -> List[Any]: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class _lowerCamelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def snake_case_ (self ) -> str: UpperCamelCase = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __a ) UpperCamelCase = self.default_image_processor UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): UpperCamelCase = model(**__a ) # verify the logits UpperCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) UpperCamelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
244
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :int = IFImgaImgSuperResolutionPipeline _UpperCAmelCase :List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _UpperCAmelCase :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _UpperCAmelCase :Dict = PipelineTesterMixin.required_optional_params - {'latents'} def __UpperCamelCase( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith("mps" ): UpperCamelCase : Dict = torch.manual_seed(A_ ) else: UpperCamelCase : Any = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __UpperCamelCase( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __UpperCamelCase( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase( self ): '''simple docstring''' self._test_save_load_local() def __UpperCamelCase( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
52
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : int , a_ : Optional[int]=13 , a_ : Optional[Any]=7 , a_ : Tuple=True , a_ : Optional[int]=True , a_ : List[str]=True , a_ : Union[str, Any]=True , a_ : List[Any]=99 , a_ : List[Any]=32 , a_ : Dict=5 , a_ : Tuple=4 , a_ : Any=37 , a_ : int="gelu" , a_ : Any=0.1 , a_ : Union[str, Any]=0.1 , a_ : Dict=5_12 , a_ : Union[str, Any]=16 , a_ : Optional[int]=2 , a_ : Dict=0.02 , a_ : List[str]=False , a_ : str=True , a_ : Any="None" , a_ : Dict=3 , a_ : List[str]=4 , a_ : Optional[Any]=None , ): lowerCAmelCase_ : str = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : Any = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : List[Any] = use_input_mask lowerCAmelCase_ : str = use_token_type_ids lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[Any] = num_labels lowerCAmelCase_ : List[Any] = num_choices lowerCAmelCase_ : Optional[Any] = relative_attention lowerCAmelCase_ : Optional[int] = position_biased_input lowerCAmelCase_ : Union[str, Any] = pos_att_type lowerCAmelCase_ : Tuple = scope def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ : int = None if self.use_token_type_ids: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : int ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.get_config() lowerCAmelCase_ : Tuple = 3_00 return config def lowerCamelCase ( self : List[Any] , a_ : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : Union[str, Any] , a_ : Dict , a_ : str , a_ : int , a_ : Any , a_ : Tuple ): lowerCAmelCase_ : Union[str, Any] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] lowerCAmelCase_ : List[str] = model(a_ , token_type_ids=a_ )[0] lowerCAmelCase_ : Optional[Any] = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase ( self : Optional[Any] , a_ : Optional[int] , a_ : int , a_ : List[str] , a_ : int , a_ : Tuple , a_ : int , a_ : List[Any] ): lowerCAmelCase_ : List[Any] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Dict = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : str , a_ : List[str] , a_ : Tuple , a_ : Any , a_ : str , a_ : List[Any] , a_ : Tuple , a_ : Union[str, Any] ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : List[str] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def lowerCamelCase ( self : Any , a_ : Union[str, Any] , a_ : Any , a_ : str , a_ : int , a_ : Dict , a_ : int , a_ : Tuple ): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Any = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Dict , a_ : Dict , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : List[Any] , a_ : int , a_ : str ): lowerCAmelCase_ : Optional[int] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[Any] = config_and_inputs lowerCAmelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) a_ : Dict = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) a_ : List[Any] = True a_ : Dict = False a_ : int = False a_ : str = False a_ : List[Any] = False def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = DebertaModelTester(self ) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def lowerCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def lowerCamelCase ( self : Union[str, Any] ): pass @slow def lowerCamelCase ( self : str ): lowerCAmelCase_ : int = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCAmelCase_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. lowerCAmelCase_ : Optional[Any] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
241
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class snake_case__ ( unittest.TestCase ): def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Any = 'hf-internal-testing/tiny-random-t5' __snake_case : List[Any] = AutoTokenizer.from_pretrained(__a ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained(__a ) __snake_case : str = tokenizer('This is me' , return_tensors='pt' ) __snake_case : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __snake_case : Optional[int] = model.generate(**__a ) __snake_case : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__a ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __snake_case : int = model_reloaded.generate(**__a ) self.assertTrue(torch.allclose(__a , __a ) ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' __snake_case : Any = 'hf-internal-testing/tiny-random-t5' __snake_case : int = AutoModelForSeqaSeqLM.from_pretrained(__a ) __snake_case : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__a ): model.save_pretrained(__a ) __snake_case : List[str] = model.reverse_bettertransformer() model.save_pretrained(__a )
0
'''simple docstring''' import math def a_ ( _UpperCAmelCase : int ) -> list: __snake_case : Optional[Any] = [True] * n __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): __snake_case : Optional[int] = i * 2 while index < n: __snake_case : Union[str, Any] = False __snake_case : int = index + i __snake_case : Dict = [2] for i in range(3 ,_UpperCAmelCase ,2 ): if is_prime[i]: primes.append(_UpperCAmelCase ) return primes def a_ ( _UpperCAmelCase : int = 99_99_66_66_33_33 ) -> int: __snake_case : List[Any] = math.floor(math.sqrt(_UpperCAmelCase ) ) + 1_00 __snake_case : Tuple = prime_sieve(_UpperCAmelCase ) __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 __snake_case : Optional[int] = primes[prime_index] while (last_prime**2) <= limit: __snake_case : Optional[int] = primes[prime_index + 1] __snake_case : Union[str, Any] = last_prime**2 __snake_case : Dict = next_prime**2 # Get numbers divisible by lps(current) __snake_case : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : Dict = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : def __init__( self , lowercase , lowercase=2 , lowercase=3 , lowercase=4 , lowercase=2 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=9_9 , lowercase=3_6 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=1_6 , lowercase=2 , lowercase=0.02 , lowercase=6 , lowercase=6 , lowercase=3 , lowercase=4 , lowercase=None , lowercase=1_0_0_0 , ) -> Tuple: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = coordinate_size __UpperCamelCase = shape_size __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope __UpperCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase = text_seq_length __UpperCamelCase = (image_size // patch_size) ** 2 + 1 __UpperCamelCase = self.text_seq_length + self.image_seq_length def __lowerCamelCase ( self ) -> str: __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __UpperCamelCase = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase = bbox[i, j, 3] __UpperCamelCase = bbox[i, j, 1] __UpperCamelCase = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase = bbox[i, j, 2] __UpperCamelCase = bbox[i, j, 0] __UpperCamelCase = tmp_coordinate __UpperCamelCase = tf.constant(lowercase ) __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFLayoutLMvaModel(config=lowercase ) # text + image __UpperCamelCase = model(lowercase , pixel_values=lowercase , training=lowercase ) __UpperCamelCase = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , training=lowercase , ) __UpperCamelCase = model(lowercase , bbox=lowercase , pixel_values=lowercase , training=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase = model(lowercase , training=lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase = model({"""pixel_values""": pixel_values} , training=lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = self.num_labels __UpperCamelCase = TFLayoutLMvaForSequenceClassification(config=lowercase ) __UpperCamelCase = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , training=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = self.num_labels __UpperCamelCase = TFLayoutLMvaForTokenClassification(config=lowercase ) __UpperCamelCase = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , training=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 2 __UpperCamelCase = TFLayoutLMvaForQuestionAnswering(config=lowercase ) __UpperCamelCase = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , training=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: return True def __lowerCamelCase ( self , lowercase , lowercase , lowercase=False ) -> dict: __UpperCamelCase = copy.deepcopy(lowercase ) if model_class in get_values(lowercase ): __UpperCamelCase = { k: tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowercase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase ): __UpperCamelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase ): __UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase ): __UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase ): __UpperCamelCase = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = TFLayoutLMvaModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , hidden_size=3_7 ) def __lowerCamelCase ( self ) -> int: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(lowercase ) if getattr(lowercase , """hf_compute_loss""" , lowercase ): # The number of elements in the loss should be the same as the number of elements in the label __UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) __UpperCamelCase = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowercase )[0] ] __UpperCamelCase = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) __UpperCamelCase = prepared_for_class.pop("""input_ids""" ) __UpperCamelCase = model(lowercase , **lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) __UpperCamelCase = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __UpperCamelCase = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __UpperCamelCase = -1_0_0 __UpperCamelCase = tf.convert_to_tensor(lowercase ) __UpperCamelCase = model(lowercase , **lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) __UpperCamelCase = model(lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) # Get keys that were added with the _prepare_for_class function __UpperCamelCase = prepared_for_class.keys() - inputs_dict.keys() __UpperCamelCase = inspect.signature(model.call ).parameters __UpperCamelCase = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __UpperCamelCase = {0: """input_ids"""} for label_key in label_keys: __UpperCamelCase = signature_names.index(lowercase ) __UpperCamelCase = label_key __UpperCamelCase = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __UpperCamelCase = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __UpperCamelCase = prepared_for_class[value] __UpperCamelCase = tuple(lowercase ) # Send to model __UpperCamelCase = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowerCamelCase ( self ) -> Any: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> str: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase = type self.model_tester.create_and_check_model(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[Any]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> int: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> str: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) @slow def __lowerCamelCase ( self ) -> Any: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFLayoutLMvaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class UpperCAmelCase__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=lowercase ) if is_vision_available() else None @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=lowercase , return_tensors="""tf""" ).pixel_values __UpperCamelCase = tf.constant([[1, 2]] ) __UpperCamelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __UpperCamelCase = model(input_ids=lowercase , bbox=lowercase , pixel_values=lowercase , training=lowercase ) # verify the logits __UpperCamelCase = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , lowercase ) __UpperCamelCase = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ) )
349
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase : Optional[int] = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase) a__ : List[Any] = size if size is not None else {'shortest_edge': 256} a__ : int = get_size_dict(lowercase , default_to_square=lowercase) a__ : List[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ : Optional[int] = get_size_dict(lowercase , param_name='crop_size') a__ : str = do_resize a__ : List[str] = size a__ : List[Any] = resample a__ : List[str] = do_center_crop a__ : Optional[int] = crop_size a__ : str = do_rescale a__ : int = rescale_factor a__ : Optional[Any] = do_normalize a__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__ : Dict = get_size_dict(lowercase , default_to_square=lowercase) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') a__ : Optional[int] = get_resize_output_image_size(lowercase , size=size['shortest_edge'] , default_to_square=lowercase) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__ : Optional[int] = get_size_dict(lowercase) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}') return center_crop(lowercase , size=(size['height'], size['width']) , data_format=lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase , lowercase = None , **lowercase) -> np.ndarray: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = do_resize if do_resize is not None else self.do_resize a__ : str = size if size is not None else self.size a__ : Union[str, Any] = get_size_dict(lowercase , default_to_square=lowercase) a__ : Any = resample if resample is not None else self.resample a__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop a__ : int = crop_size if crop_size is not None else self.crop_size a__ : Any = get_size_dict(lowercase , param_name='crop_size') a__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor a__ : Dict = do_normalize if do_normalize is not None else self.do_normalize a__ : int = image_mean if image_mean is not None else self.image_mean a__ : Tuple = image_std if image_std is not None else self.image_std a__ : Dict = make_list_of_images(lowercase) if not valid_images(lowercase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ : Dict = [to_numpy_array(lowercase) for image in images] if do_resize: a__ : str = [self.resize(image=lowercase , size=lowercase , resample=lowercase) for image in images] if do_center_crop: a__ : int = [self.center_crop(image=lowercase , size=lowercase) for image in images] if do_rescale: a__ : List[Any] = [self.rescale(image=lowercase , scale=lowercase) for image in images] if do_normalize: a__ : Optional[Any] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase) for image in images] a__ : List[Any] = [to_channel_dimension_format(lowercase , lowercase) for image in images] a__ : str = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple: '''simple docstring''' a__ : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase) != len(lowercase): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase): a__ : Tuple = target_sizes.numpy() a__ : List[str] = [] for idx in range(len(lowercase)): a__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase) a__ : List[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase) else: a__ : List[Any] = logits.argmax(dim=1) a__ : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
225
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase : Optional[int] = 1_6 lowercase : Optional[int] = 3_2 def A_ ( A__ ) -> Tuple: return int(x / 2**20 ) class A__ : """simple docstring""" def __enter__( self) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero a__ : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self , *lowercase) -> List[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() a__ : Optional[int] = torch.cuda.memory_allocated() a__ : int = torch.cuda.max_memory_allocated() a__ : Optional[int] = bamb(self.end - self.begin) a__ : int = bamb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A_ ( A__ , A__ = 16 , A__ = "bert-base-cased" , A__ = 320 , A__ = 160 , ) -> Dict: a__ : int = AutoTokenizer.from_pretrained(A__ ) a__ : str = load_dataset( 'glue' , 'mrpc' , split={'train': F'train[:{n_train}]', 'validation': F'validation[:{n_val}]'} ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) a__ : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : List[str] = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. a__ : Dict = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) a__ : Optional[int] = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def A_ ( A__ , A__ ) -> Any: # Initialize accelerator a__ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Union[str, Any] = config['lr'] a__ : List[Any] = int(config['num_epochs'] ) a__ : Union[str, Any] = int(config['seed'] ) a__ : Tuple = int(config['batch_size'] ) a__ : int = args.model_name_or_path set_seed(A__ ) a__ , a__ : Any = get_dataloaders(A__ , A__ , A__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer a__ : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : Any = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: a__ : str = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: a__ : str = 1 a__ : Optional[int] = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : List[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: a__ : Any = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : Optional[int] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over a__ : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly a__ : Union[str, Any] = 0 # Now we train the model a__ : List[str] = {} for epoch in range(A__ , A__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(A__ ): a__ : Optional[Any] = model(**A__ ) a__ : List[Any] = outputs.loss a__ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) a__ : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(A__ , A__ ) def A_ ( ) -> int: a__ : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=A__ , default=A__ , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=A__ , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=A__ , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=1 , help='Number of train epochs.' , ) a__ : Dict = parser.parse_args() a__ : List[str] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
225
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): for attribute in key.split('.' ): _lowerCamelCase : Optional[int] = getattr(lowercase__ , lowercase__ ) if weight_type is not None: _lowerCamelCase : Dict = getattr(lowercase__ , lowercase__ ).shape else: _lowerCamelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : List[str] = value elif weight_type == "weight_g": _lowerCamelCase : List[Any] = value elif weight_type == "weight_v": _lowerCamelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCamelCase : Tuple = value else: _lowerCamelCase : List[Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = [] _lowerCamelCase : Optional[int] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Any = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowerCamelCase : Tuple = True if "*" in mapped_key: _lowerCamelCase : Optional[int] = name.split(lowercase__ )[0].split('.' )[-2] _lowerCamelCase : Union[str, Any] = mapped_key.replace('*' , lowercase__ ) if "weight_g" in name: _lowerCamelCase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowerCamelCase : Tuple = 'weight_v' elif "weight" in name: _lowerCamelCase : str = 'weight' elif "bias" in name: _lowerCamelCase : Any = 'bias' else: _lowerCamelCase : Tuple = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = full_name.split('conv_layers.' )[-1] _lowerCamelCase : List[str] = name.split('.' ) _lowerCamelCase : Tuple = int(items[0] ) _lowerCamelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowerCamelCase : Optional[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ): if config_path is not None: _lowerCamelCase : Dict = HubertConfig.from_pretrained(lowercase__ ) else: _lowerCamelCase : Dict = HubertConfig() if is_finetuned: if dict_path: _lowerCamelCase : Any = Dictionary.load(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Any = target_dict.pad_index _lowerCamelCase : int = target_dict.bos_index _lowerCamelCase : int = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : str = os.path.join(lowercase__ , 'vocab.json' ) if not os.path.isdir(lowercase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) with open(lowercase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , lowercase__ ) _lowerCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase__ , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == 'layer' else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) _lowerCamelCase : Tuple = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) _lowerCamelCase : str = HubertForCTC(lowercase__ ) else: _lowerCamelCase : Optional[int] = HubertModel(lowercase__ ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase : Any = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
96
"""simple docstring""" def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(lowercase__ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(lowercase__ ) == 1: return True _lowerCamelCase : List[Any] = series[1] - series[0] for index in range(len(lowercase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(lowercase__ ) == 0: raise ValueError('Input list must be a non empty list' ) _lowerCamelCase : Optional[int] = 0 for val in series: answer += val return answer / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
96
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase: Dict = True except ImportError: _lowercase: Dict = False _lowercase: Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a( A : Namespace ) -> Dict: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _lowercase ( lowerCAmelCase ): """simple docstring""" @staticmethod def UpperCamelCase_ (lowerCamelCase_ ): """simple docstring""" a = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowerCamelCase_ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowerCamelCase_ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowerCamelCase_ ) def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , *lowerCamelCase_ ): """simple docstring""" a = testing a = testing_file a = path def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory a = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowerCamelCase_ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) a = ( Path(lowerCamelCase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) a = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase_ ) ) else: with open(self._testing_file , "r" ) as configuration_file: a = json.load(lowerCamelCase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase_ , extra_context=lowerCamelCase_ , ) a = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: a = json.load(lowerCamelCase_ ) a = configuration["lowercase_modelname"] a = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'''{directory}/configuration.json''' ) a = "PyTorch" in generate_tensorflow_pytorch_and_flax a = "TensorFlow" in generate_tensorflow_pytorch_and_flax a = "Flax" in generate_tensorflow_pytorch_and_flax a = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowerCamelCase_ ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowerCamelCase_ ): with open(lowerCamelCase_ , "r" ) as f: a = f.readlines() with open(lowerCamelCase_ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): # Create temp file a , a = mkstemp() a = False with fdopen(lowerCamelCase_ , "w" ) as new_file: with open(lowerCamelCase_ ) as old_file: for line in old_file: new_file.write(lowerCamelCase_ ) if line_to_copy_below in line: a = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase_ ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase_ , lowerCamelCase_ ) # Remove original file remove(lowerCamelCase_ ) # Move new file move(lowerCamelCase_ , lowerCamelCase_ ) def skip_units(lowerCamelCase_ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase_ ): with open(lowerCamelCase_ ) as datafile: a = [] a = False a = False for line in datafile: if "# To replace in: " in line and "##" not in line: a = line.split("\"" )[1] a = skip_units(lowerCamelCase_ ) elif "# Below: " in line and "##" not in line: a = line.split("\"" )[1] a = skip_units(lowerCamelCase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = [] elif "# Replace with" in line and "##" not in line: a = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase_ ) remove(lowerCamelCase_ ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowerCamelCase_ )
71
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowercase: Any = None _lowercase: Optional[int] = logging.get_logger(__name__) _lowercase: str = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _lowercase: Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _lowercase: List[Any] = { "google/rembert": 256, } _lowercase: Dict = "▁" class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = RemBertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<unk>" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<pad>" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = False if not self.vocab_file else True def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCamelCase_ ) ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
71
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) _UpperCamelCase : List[str] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = "fnet" def __init__( self , a=3_2_0_0_0 , a=7_6_8 , a=1_2 , a=3_0_7_2 , a="gelu_new" , a=0.1 , a=5_1_2 , a=4 , a=0.02 , a=1e-12 , a=False , a=5_1_2 , a=3 , a=1 , a=2 , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : Any = vocab_size lowercase__ : Optional[int] = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : str = intermediate_size lowercase__ : str = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[Any] = type_vocab_size lowercase__ : str = layer_norm_eps lowercase__ : str = use_tpu_fourier_optimizations lowercase__ : Optional[int] = tpu_short_seq_length
77
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase_ = data_utils.TransfoXLTokenizer lowerCamelCase_ = data_utils.TransfoXLCorpus lowerCamelCase_ = data_utils lowerCamelCase_ = data_utils def __magic_name__ ( __a : List[Any] , __a : str , __a : Optional[Any] , __a : List[str] ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__a , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f"Save vocabulary to {pytorch_vocab_dump_path}" ) UpperCamelCase__ = corpus.vocab.__dict__ torch.save(__a , __a ) UpperCamelCase__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , __a ) UpperCamelCase__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(__a , __a ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase__ = os.path.abspath(__a ) UpperCamelCase__ = os.path.abspath(__a ) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase__ = TransfoXLConfig() else: UpperCamelCase__ = TransfoXLConfig.from_json_file(__a ) print(f"Building PyTorch model from configuration: {config}" ) UpperCamelCase__ = TransfoXLLMHeadModel(__a ) UpperCamelCase__ = load_tf_weights_in_transfo_xl(__a , __a , __a ) # Save pytorch-model UpperCamelCase__ = os.path.join(__a , __a ) UpperCamelCase__ = os.path.join(__a , __a ) print(f"Save PyTorch model to {os.path.abspath(__a )}" ) torch.save(model.state_dict() , __a ) print(f"Save configuration file to {os.path.abspath(__a )}" ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) lowerCamelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
244
0
lowerCAmelCase_ = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCAmelCase_ = frozenset(["""prompt""", """negative_prompt"""]) lowerCAmelCase_ = frozenset([]) lowerCAmelCase_ = frozenset(["""image"""]) lowerCAmelCase_ = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase_ = frozenset(["""image"""]) lowerCAmelCase_ = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCAmelCase_ = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowerCAmelCase_ = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCAmelCase_ = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowerCAmelCase_ = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase_ = frozenset(["""image""", """mask_image"""]) lowerCAmelCase_ = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase_ = frozenset(["""example_image""", """image""", """mask_image"""]) lowerCAmelCase_ = frozenset(["""class_labels"""]) lowerCAmelCase_ = frozenset(["""class_labels"""]) lowerCAmelCase_ = frozenset(["""batch_size"""]) lowerCAmelCase_ = frozenset([]) lowerCAmelCase_ = frozenset(["""batch_size"""]) lowerCAmelCase_ = frozenset([]) lowerCAmelCase_ = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCAmelCase_ = frozenset(["""prompt""", """negative_prompt"""]) lowerCAmelCase_ = frozenset(["""input_tokens"""]) lowerCAmelCase_ = frozenset(["""input_tokens"""])
365
def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
260
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" a = '''hf-internal-testing/tiny-random-t5''' a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) a = tokenizer('''This is me''' , return_tensors='''pt''' ) a = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) a = model.generate(**__UpperCAmelCase ) a = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) a = model_reloaded.generate(**__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" a = '''hf-internal-testing/tiny-random-t5''' a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__UpperCAmelCase ): model.save_pretrained(__UpperCAmelCase ) a = model.reverse_bettertransformer() model.save_pretrained(__UpperCAmelCase )
0
import math def _a ( a :int ) -> list: a = [True] * n a = False a = False a = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a = i * 2 while index < n: a = False a = index + i a = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def _a ( a :int = 999_966_663_333 ) -> int: a = math.floor(math.sqrt(a ) ) + 100 a = prime_sieve(a ) a = 0 a = 0 a = primes[prime_index] while (last_prime**2) <= limit: a = primes[prime_index + 1] a = last_prime**2 a = next_prime**2 # Get numbers divisible by lps(current) a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict ): '''simple docstring''' return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: np.ndarray ): '''simple docstring''' lowercase_ = XGBClassifier() classifier.fit(A__ , A__ ) return classifier def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = load_iris() lowercase_ = data_handling(A__ ) lowercase_ = train_test_split( A__ , A__ , test_size=0.25 ) lowercase_ = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowercase_ = xgboost(A__ , A__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A__ , A__ , A__ , display_labels=A__ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertAlmostEqual(_lowerCAmelCase , _lowerCAmelCase , delta=_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowerCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = None ops.enable_eager_execution_internal() SCREAMING_SNAKE_CASE_ = tf.config.list_physical_devices('CPU' ) if len(_lowerCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) SCREAMING_SNAKE_CASE_ = tf.config.list_logical_devices(device_type='CPU' ) SCREAMING_SNAKE_CASE_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): SCREAMING_SNAKE_CASE_ = GradientAccumulator() SCREAMING_SNAKE_CASE_ = tf.Variable([4.0, 3.0] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = create_optimizer(5E-5 , 10 , 5 ) SCREAMING_SNAKE_CASE_ = tf.Variable([0.0, 0.0] , trainable=_lowerCAmelCase ) def accumulate_on_replica(_lowerCAmelCase : Tuple ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_lowerCAmelCase : Any , _lowerCAmelCase : Dict ): with strategy.scope(): SCREAMING_SNAKE_CASE_ = strategy.experimental_local_results(_lowerCAmelCase ) local_variables[0].assign(_lowerCAmelCase ) local_variables[1].assign(_lowerCAmelCase ) strategy.run(_lowerCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowerCAmelCase ) def _check_local_values(_lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowerCAmelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _lowerCAmelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
225
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase__ : str = 'pytorch_model.bin' lowerCamelCase__ : int = 'pytorch_model.bin.index.json' lowerCamelCase__ : List[Any] = 'adapter_config.json' lowerCamelCase__ : Optional[int] = 'adapter_model.bin' lowerCamelCase__ : Dict = 'adapter_model.safetensors' lowerCamelCase__ : List[str] = 'tf_model.h5' lowerCamelCase__ : Tuple = 'tf_model.h5.index.json' lowerCamelCase__ : Optional[int] = 'model.ckpt' lowerCamelCase__ : Any = 'flax_model.msgpack' lowerCamelCase__ : List[Any] = 'flax_model.msgpack.index.json' lowerCamelCase__ : int = 'model.safetensors' lowerCamelCase__ : str = 'model.safetensors.index.json' lowerCamelCase__ : Union[str, Any] = 'config.json' lowerCamelCase__ : List[Any] = 'preprocessor_config.json' lowerCamelCase__ : Optional[int] = FEATURE_EXTRACTOR_NAME lowerCamelCase__ : Any = 'generation_config.json' lowerCamelCase__ : Any = 'modelcard.json' lowerCamelCase__ : List[str] = '▁' lowerCamelCase__ : Union[str, Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase__ : Optional[int] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase__ : str = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase__ : Dict = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> int: if version.parse(__UpperCAmelCase ) < version.parse(__UpperCAmelCase ): if "dev" in min_version: SCREAMING_SNAKE_CASE_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: SCREAMING_SNAKE_CASE_ = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
225
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser SCREAMING_SNAKE_CASE :Tuple = logging.getLogger(__name__) torch.set_grad_enabled(False) SCREAMING_SNAKE_CASE :List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1_0_0 , SCREAMING_SNAKE_CASE_=" " )-> List[str]: """simple docstring""" UpperCamelCase_ = text.split(SCREAMING_SNAKE_CASE_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> dict: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE_ ): titles.append(title if title is not None else "" ) texts.append(SCREAMING_SNAKE_CASE_ ) return {"title": titles, "text": texts} def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> dict: """simple docstring""" UpperCamelCase_ = ctx_tokenizer( documents["title"] , documents["text"] , truncation=SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" )["input_ids"] UpperCamelCase_ = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> List[str]: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCamelCase_ = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCamelCase_ = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCamelCase_ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCamelCase_ = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space UpperCamelCase_ = dataset.map( partial(SCREAMING_SNAKE_CASE_ , ctx_encoder=SCREAMING_SNAKE_CASE_ , ctx_tokenizer=SCREAMING_SNAKE_CASE_ ) , batched=SCREAMING_SNAKE_CASE_ , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE_ , ) # And finally save your dataset UpperCamelCase_ = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(SCREAMING_SNAKE_CASE_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCamelCase_ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=SCREAMING_SNAKE_CASE_ ) # And save the index UpperCamelCase_ = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(SCREAMING_SNAKE_CASE_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __magic_name__ : UpperCamelCase_ :str = field( default=str(Path(snake_case ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) UpperCamelCase_ :Optional[str] = field( default=snake_case , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) UpperCamelCase_ :str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) UpperCamelCase_ :str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) UpperCamelCase_ :Optional[str] = field( default=str(Path(snake_case ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class __magic_name__ : UpperCamelCase_ :Optional[int] = field( default=snake_case , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) UpperCamelCase_ :int = field( default=1_6 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class __magic_name__ : UpperCamelCase_ :int = field( default=7_6_8 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) UpperCamelCase_ :int = field( default=1_2_8 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) SCREAMING_SNAKE_CASE :Union[str, Any] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[str] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE :List[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
60
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :int = KandinskyVaaImgaImgPipeline UpperCamelCase_ :Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase_ :Dict = [ """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase_ :Tuple = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ :int = False @property def UpperCAmelCase_ ( self )-> List[str]: return 32 @property def UpperCAmelCase_ ( self )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self )-> Tuple: return self.time_input_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self )-> Any: return 100 @property def UpperCAmelCase_ ( self )-> Tuple: torch.manual_seed(0 ) UpperCamelCase_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase_ = UNetaDConditionModel(**_lowercase ) return model @property def UpperCAmelCase_ ( self )-> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self )-> Any: torch.manual_seed(0 ) UpperCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.dummy_unet UpperCamelCase_ = self.dummy_movq UpperCamelCase_ = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCamelCase_ = DDIMScheduler(**_lowercase ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Tuple: UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ = Image.fromarray(np.uinta(_lowercase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_lowercase ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_lowercase ) ) UpperCamelCase_ = output.images UpperCamelCase_ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase_ = "A red cartoon frog, 4k" UpperCamelCase_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) UpperCamelCase_ = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase_ , UpperCamelCase_ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase_ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
60
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ :str = logging.get_logger(__name__) A_ :Optional[int] = {'''vocab_file''': '''spiece.model'''} A_ :str = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<eop>", "<eod>"] , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[int] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token __UpperCamelCase : str ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) __UpperCamelCase : Optional[int] =3 __UpperCamelCase : Dict =do_lower_case __UpperCamelCase : Dict =remove_space __UpperCamelCase : Optional[Any] =keep_accents __UpperCamelCase : Tuple =vocab_file __UpperCamelCase : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) __UpperCamelCase : Tuple =jieba __UpperCamelCase : Any =str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowercase ( self ): """simple docstring""" return len(self.sp_model ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ={self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.__dict__.copy() __UpperCamelCase : Any =None return state def __setstate__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase : List[Any] ={} __UpperCamelCase : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.remove_space: __UpperCamelCase : List[Any] =' '.join(inputs.strip().split() ) else: __UpperCamelCase : Any =inputs __UpperCamelCase : Optional[Any] =outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __UpperCamelCase : List[str] =unicodedata.normalize('NFKD' , lowerCamelCase__ ) __UpperCamelCase : List[Any] =''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: __UpperCamelCase : List[Any] =outputs.lower() return outputs def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.preprocess_text(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =[] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __UpperCamelCase : Union[str, Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : Optional[int] =cur_pieces[1:] else: __UpperCamelCase : List[str] =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.sp_model.PieceToId(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.sp_model.IdToPiece(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =''.join(lowerCamelCase__ ).replace(lowerCamelCase__ , ' ' ).strip() return out_string def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Optional[Any] =[self.sep_token_id] __UpperCamelCase : List[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =[self.sep_token_id] __UpperCamelCase : Any =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Optional[Any] =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , 'wb' ) as fi: __UpperCamelCase : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =super()._decode(*lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[int] =text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
71
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A_ :Optional[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def A ( a_ ) -> List[Any]: __UpperCamelCase : Any =['layers', 'blocks'] for k in ignore_keys: state_dict.pop(a_ ,a_ ) A_ :int = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def A ( a_ ) -> Union[str, Any]: __UpperCamelCase : str =list(s_dict.keys() ) for key in keys: __UpperCamelCase : str =key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCamelCase : Optional[Any] =new_key.replace(a_ ,a_ ) print(F'{key} -> {new_key}' ) __UpperCamelCase : Dict =s_dict.pop(a_ ) return s_dict def A ( a_ ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase : Tuple =emb.weight.shape __UpperCamelCase : Tuple =nn.Linear(a_ ,a_ ,bias=a_ ) __UpperCamelCase : List[Any] =emb.weight.data return lin_layer def A ( a_ ,a_ ) -> bytes: os.makedirs(a_ ,exist_ok=a_ ) __UpperCamelCase : Optional[int] =os.path.basename(a_ ) __UpperCamelCase : Union[str, Any] =url.split('/' )[-2] __UpperCamelCase : Union[str, Any] =os.path.join(a_ ,a_ ) if os.path.exists(a_ ) and not os.path.isfile(a_ ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(a_ ): __UpperCamelCase : str =open(a_ ,'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(a_ ) as source, open(a_ ,'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) ,ncols=80 ,unit='iB' ,unit_scale=a_ ,unit_divisor=1_024 ) as loop: while True: __UpperCamelCase : Optional[Any] =source.read(8_192 ) if not buffer: break output.write(a_ ) loop.update(len(a_ ) ) __UpperCamelCase : List[Any] =open(a_ ,'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def A ( a_ ,a_ ) -> Optional[Any]: if ".pt" not in checkpoint_path: __UpperCamelCase : int =_download(_MODELS[checkpoint_path] ) else: __UpperCamelCase : List[str] =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : Union[str, Any] =original_checkpoint['dims'] __UpperCamelCase : List[Any] =original_checkpoint['model_state_dict'] __UpperCamelCase : Dict =state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(a_ ) rename_keys(a_ ) __UpperCamelCase : List[str] =True __UpperCamelCase : str =state_dict['decoder.layers.0.fc1.weight'].shape[0] __UpperCamelCase : Optional[int] =WhisperConfig( vocab_size=dimensions['n_vocab'] ,encoder_ffn_dim=a_ ,decoder_ffn_dim=a_ ,num_mel_bins=dimensions['n_mels'] ,d_model=dimensions['n_audio_state'] ,max_target_positions=dimensions['n_text_ctx'] ,encoder_layers=dimensions['n_audio_layer'] ,encoder_attention_heads=dimensions['n_audio_head'] ,decoder_layers=dimensions['n_text_layer'] ,decoder_attention_heads=dimensions['n_text_state'] ,max_source_positions=dimensions['n_audio_ctx'] ,) __UpperCamelCase : List[str] =WhisperForConditionalGeneration(a_ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =model.model.load_state_dict(a_ ,strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: __UpperCamelCase : Optional[int] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCamelCase : List[str] =proj_out_weights model.save_pretrained(a_ ) if __name__ == "__main__": A_ :List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A_ :List[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
71
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Dict , a : int , a : int ): """simple docstring""" __lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = 20 __lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=a ) # tweak scores to not be uniform anymore __lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowerCamelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowerCamelCase = jax.nn.softmax(a , axis=-1 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(a , scores.copy() , cur_len=a ) , axis=-1 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(a , scores.copy() , cur_len=a ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create ramp distribution __lowerCamelCase = np.broadcast_to(np.arange(a )[None, :] , (batch_size, vocab_size) ).copy() __lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = top_k_warp(a , a , cur_len=a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowerCamelCase = 5 __lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowerCamelCase = np.broadcast_to(np.arange(a )[None, :] , (batch_size, length) ).copy() __lowerCamelCase = top_k_warp_safety_check(a , a , cur_len=a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) __lowerCamelCase = np.exp(top_p_warp(a , a , cur_len=a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(a , a , atol=1e-3 ) ) # check edge cases with negative and extreme logits __lowerCamelCase = np.broadcast_to(np.arange(a )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowerCamelCase = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowerCamelCase = top_p_warp(a , a , cur_len=a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a ) # check that min length is applied at length 5 __lowerCamelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowerCamelCase = 5 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = min_dist_processor(a , a , cur_len=a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = 15 __lowerCamelCase = min_dist_processor(a , a , cur_len=a ) self.assertFalse(jnp.isinf(a ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a ) # check that all scores are -inf except the bos_token_id score __lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowerCamelCase = 1 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertFalse(jnp.isinf(a ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = 5 __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=a , eos_token_id=a ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowerCamelCase = 4 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertFalse(jnp.isinf(a ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , a ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=a , eos_token_id=a ) __lowerCamelCase = 10 # no processor list __lowerCamelCase = temp_dist_warp(a , a , cur_len=a ) __lowerCamelCase = top_k_warp(a , a , cur_len=a ) __lowerCamelCase = top_p_warp(a , a , cur_len=a ) __lowerCamelCase = min_dist_proc(a , a , cur_len=a ) __lowerCamelCase = bos_dist_proc(a , a , cur_len=a ) __lowerCamelCase = eos_dist_proc(a , a , cur_len=a ) # with processor list __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(a , a , cur_len=a ) # scores should be equal self.assertTrue(jnp.allclose(a , a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , a ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=a , eos_token_id=a ) __lowerCamelCase = 10 # no processor list def run_no_processor_list(a : List[Any] , a : List[str] , a : List[str] ): __lowerCamelCase = temp_dist_warp(a , a , cur_len=a ) __lowerCamelCase = top_k_warp(a , a , cur_len=a ) __lowerCamelCase = top_p_warp(a , a , cur_len=a ) __lowerCamelCase = min_dist_proc(a , a , cur_len=a ) __lowerCamelCase = bos_dist_proc(a , a , cur_len=a ) __lowerCamelCase = eos_dist_proc(a , a , cur_len=a ) return scores # with processor list def run_processor_list(a : Any , a : Dict , a : Optional[int] ): __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(a , a , cur_len=a ) return scores __lowerCamelCase = jax.jit(a ) __lowerCamelCase = jax.jit(a ) __lowerCamelCase = jitted_run_no_processor_list(a , a , a ) __lowerCamelCase = jitted_run_processor_list(a , a , a ) # scores should be equal self.assertTrue(jnp.allclose(a , a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
351
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> str: return "".join(chr(ord(UpperCamelCase__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
237
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' __snake_case : Tuple = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
172
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A : str = sys.version_info >= (3, 10) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = BasicEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[1, 2, 3]) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field() UpperCamelCase__ = field() UpperCamelCase__ = field() def lowercase__ ( self : int )->str: _UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field() UpperCamelCase__ = None UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int , __UpperCamelCase : argparse.ArgumentParser , __UpperCamelCase : argparse.ArgumentParser )->Dict: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __UpperCamelCase ) and yy.get('''choices''' , __UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__UpperCamelCase ) , yy['''type'''](__UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--bar''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--baz''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--flag''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(__UpperCamelCase , look_for_args_file=__UpperCamelCase ) self.assertFalse(example.flag ) def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) _UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase__ ( self : List[str] )->List[str]: @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def lowercase__ ( self : int )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual( __UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--bar''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) _UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , bar=__UpperCamelCase , baz=__UpperCamelCase , ces=[] , des=[] ) ) _UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo=1_2 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowercase__ ( self : Any )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--required_str''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : str )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } _UpperCAmelCase = parser.parse_dict(__UpperCamelCase )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(__UpperCamelCase , parser.parse_dict , __UpperCamelCase , allow_extra_keys=__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_json''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_yaml''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
260
0
def lowerCAmelCase_ ( UpperCamelCase_ = 1000000 ) -> int: UpperCamelCase_ = set(range(3 , UpperCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase_ , UpperCamelCase_ ) ) ) UpperCamelCase_ = [float(UpperCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
A__ = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ A__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] A__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
82
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase: Dict = logging.get_logger(__name__) lowerCAmelCase: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase: List[Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase: str = { 'allenai/led-base-16384': 1_6_3_8_4, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Tuple=None , __snake_case : Dict="replace" , __snake_case : int="<s>" , __snake_case : Any="</s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[Any]="<unk>" , __snake_case : List[str]="<pad>" , __snake_case : int="<mask>" , __snake_case : int=False , __snake_case : str=True , **__snake_case : Tuple , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : List[Any] = getattr(__snake_case , pre_tok_state.pop('type' ) ) a : Optional[Any] = add_prefix_space a : Optional[Any] = pre_tok_class(**__snake_case ) a : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a : Dict = 'post_processor' a : int = getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: a : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a : Any = tuple(state['sep'] ) if "cls" in state: a : Any = tuple(state['cls'] ) a : Optional[Any] = False if state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : Any = add_prefix_space a : Optional[Any] = True if state.get('trim_offsets' , __snake_case ) != trim_offsets: a : List[Any] = trim_offsets a : Union[str, Any] = True if changes_to_apply: a : int = getattr(__snake_case , state.pop('type' ) ) a : List[Any] = component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase_ ( self : Dict ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self : Dict , __snake_case : List[str] ): a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value a : Optional[int] = value def lowercase_ ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Union[str, Any] ): a : Dict = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : List[str] ): a : Optional[int] = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : int=None ): a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : int = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : List[str] , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): a : Optional[Any] = super()._pad( encoded_inputs=__snake_case , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) # Load from model defaults if return_attention_mask is None: a : str = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a : Union[str, Any] = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: a : str = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
297
0
'''simple docstring''' _snake_case = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _snake_case = [{'type': 'code', 'content': INSTALL_CONTENT}] _snake_case = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
199
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = IFImgaImgSuperResolutionPipeline _SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _SCREAMING_SNAKE_CASE : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def _lowerCamelCase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): _lowercase : Tuple = torch.manual_seed(_UpperCamelCase ) else: _lowercase : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
199
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case__ : Dict = datasets.utils.logging.get_logger(__name__) class snake_case_( folder_based_builder.FolderBasedBuilderConfig ): __UpperCamelCase = None __UpperCamelCase = None class snake_case_( folder_based_builder.FolderBasedBuilder ): __UpperCamelCase = datasets.Audio() __UpperCamelCase = '''audio''' __UpperCamelCase = AudioFolderConfig __UpperCamelCase = 42 # definition at the bottom of the script __UpperCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) snake_case__ : Dict = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] snake_case__ : List[Any] = AUDIO_EXTENSIONS
60
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowerCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCAmelCase : List[str] = jax.device_count() lowerCAmelCase : Optional[int] = num_samples * [prompt] lowerCAmelCase : Any = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = replicate(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = shard(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[Any] = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowerCAmelCase : str = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=2_5 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase : List[str] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = '''stabilityai/stable-diffusion-2''' lowerCAmelCase, lowerCAmelCase : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) lowerCAmelCase, lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) lowerCAmelCase : List[Any] = scheduler_params lowerCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' lowerCAmelCase : Any = jax.device_count() lowerCAmelCase : int = num_samples * [prompt] lowerCAmelCase : int = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : Dict = replicate(UpperCamelCase_ ) lowerCAmelCase : Tuple = shard(UpperCamelCase_ ) lowerCAmelCase : int = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[int] = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowerCAmelCase : Tuple = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=2_5 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase : str = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase : Tuple = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
60
1
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self , _lowerCamelCase ) -> float: return 0.0 def UpperCAmelCase ( a_ , a_ ) -> tuple[int | float, int | float]: """simple docstring""" A_ : str = min([-2_0, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A_ : int = max([2_0, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCAmelCase ( a_ , a_ ) -> None: """simple docstring""" A_ : int = 5_1_2 A_ : Union[str, Any] = [1] + [0] * (size - 1) A_ : Optional[Any] = [filter_type.process(a_ ) for item in inputs] A_ : Any = [0] * (samplerate - size) # zero-padding outputs += filler A_ : str = np.abs(np.fft.fft(a_ ) ) A_ : int = 2_0 * np.logaa(a_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A_ : Optional[Any] = get_bounds(a_ , a_ ) plt.ylim(max([-8_0, bounds[0]] ) , min([8_0, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(a_ ) plt.show() def UpperCAmelCase ( a_ , a_ ) -> None: """simple docstring""" A_ : str = 5_1_2 A_ : Tuple = [1] + [0] * (size - 1) A_ : str = [filter_type.process(a_ ) for item in inputs] A_ : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler A_ : List[Any] = np.angle(np.fft.fft(a_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(a_ , -2 * pi ) ) plt.show()
359
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = 'T5Config' class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''mt5''' lowerCamelCase = MTaConfig class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''mt5''' lowerCamelCase = MTaConfig class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''mt5''' lowerCamelCase = MTaConfig
164
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=lowercase_ , ) assert hasattr(self , 'env' ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Tuple ): """simple docstring""" lowerCamelCase__ : Any =f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowerCamelCase__ : Tuple ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase_ , instance_count=lowercase_ , instance_type=self.instance_type , debugger_hook_config=lowercase_ , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase_ , py_version='py36' , ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :int ): """simple docstring""" TrainingJobAnalytics(lowercase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self.create_estimator(lowercase_ ) # run training estimator.fit() # result dataframe lowerCamelCase__ : Union[str, Any] =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase__ : List[Any] =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) lowerCamelCase__ : Dict =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase__ : Tuple =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowercase_ )
126
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=False ): A__ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = "" else: A__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _lowerCamelCase : int ): A__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=False ): A__ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCamelCase , ) A__ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_84 , num_labels=10_00 ) A__ = False # load original model from timm A__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) A__ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "huggingface/label-files" A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(_lowerCamelCase ).eval() else: A__ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) A__ = transform.transforms A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(_lowerCamelCase ).unsqueeze(0 ) A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
237
0
'''simple docstring''' import math def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str = 0 , __lowerCAmelCase : int = 0 ) -> List[Any]: snake_case = end or len(_lowercase ) for i in range(_lowercase , _lowercase ): snake_case = i snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: snake_case = array[temp_index - 1] temp_index -= 1 snake_case = temp_index_value return array def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> Union[str, Any]: # Max Heap snake_case = index snake_case = 2 * index + 1 # Left Node snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: snake_case = right_index if largest != index: snake_case , snake_case = array[largest], array[index] heapify(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: snake_case = len(_lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(_lowercase , _lowercase , _lowercase ) for i in range(n - 1 , 0 , -1 ): snake_case , snake_case = array[0], array[i] heapify(_lowercase , 0 , _lowercase ) return array def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> Tuple: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = low snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i snake_case , snake_case = array[j], array[i] i += 1 def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Optional[Any]: if len(_lowercase ) == 0: return array snake_case = 2 * math.ceil(math.loga(len(_lowercase ) ) ) snake_case = 16 return intro_sort(_lowercase , 0 , len(_lowercase ) , _lowercase , _lowercase ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ) -> Optional[int]: while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowercase ) max_depth -= 1 snake_case = median_of_a(_lowercase , _lowercase , start + ((end - start) // 2) + 1 , end - 1 ) snake_case = partition(_lowercase , _lowercase , _lowercase , _lowercase ) intro_sort(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) snake_case = p return insertion_sort(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma : ").strip() _SCREAMING_SNAKE_CASE = [float(item) for item in user_input.split(",")] print(sort(unsorted))
358
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase__ : int = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : bool , _lowerCAmelCase : str = None , _lowerCAmelCase : list = None ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) SCREAMING_SNAKE_CASE_ = os.path.abspath('examples' ) for item in os.listdir(_A ): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE_ = os.path.join(_A , _A ) if os.path.isfile(_A ) and ".py" in item_path: with self.subTest( tested_script=_A , feature_script=_A , tested_section='main()' if parser_only else 'training_function()' , ): SCREAMING_SNAKE_CASE_ = compare_against_test( os.path.join(_A , _A ) , _A , _A , _A ) SCREAMING_SNAKE_CASE_ = '\n'.join(_A ) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE_ = diff.replace(_A , '' ) self.assertEqual(_A , '' ) def lowerCAmelCase_ ( self : Tuple ): self.one_complete_example('complete_nlp_example.py' , _A ) self.one_complete_example('complete_nlp_example.py' , _A ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) SCREAMING_SNAKE_CASE_ = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , _A , _A , _A ) self.one_complete_example('complete_cv_example.py' , _A , _A , _A ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' lowercase_ = False @classmethod def lowerCAmelCase_ ( cls : Any ): super().setUpClass() SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowerCAmelCase_ ( cls : int ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs , return_stdout=_A ) self.assertNotIn('epoch 0:' , _A ) self.assertIn('epoch 1:' , _A ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs , return_stdout=_A ) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , _A ) self.assertIn('epoch 1:' , _A ) else: self.assertIn('epoch 0:' , _A ) self.assertIn('epoch 1:' , _A ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs , return_stdout=_A ) SCREAMING_SNAKE_CASE_ = re.findall('({.+})' , _A ) SCREAMING_SNAKE_CASE_ = [r for r in results if 'accuracy' in r][-1] SCREAMING_SNAKE_CASE_ = ast.literal_eval(_A ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_A , 'tracking' ) ) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
225
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Any = super().to_dict() for k, v in d.items(): if isinstance(snake_case , snake_case ): A__ : Tuple = v.to_dict() return d
362
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class A ( unittest.TestCase ): def __init__( self : Optional[int] , lowercase_ : Dict , lowercase_ : Optional[int]=13 , lowercase_ : Any=7 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : int=True , lowercase_ : Optional[int]=True , lowercase_ : List[str]=99 , lowercase_ : Optional[Any]=32 , lowercase_ : str=5 , lowercase_ : List[Any]=4 , lowercase_ : Optional[int]=37 , lowercase_ : Any="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : str=512 , lowercase_ : Any=16 , lowercase_ : Dict=2 , lowercase_ : Tuple=0.02 , lowercase_ : Union[str, Any]=4 , ) -> List[str]: """simple docstring""" _lowerCamelCase : Any =parent _lowerCamelCase : Optional[int] =batch_size _lowerCamelCase : List[Any] =seq_length _lowerCamelCase : Union[str, Any] =is_training _lowerCamelCase : Tuple =use_attention_mask _lowerCamelCase : Optional[Any] =use_token_type_ids _lowerCamelCase : Tuple =use_labels _lowerCamelCase : Union[str, Any] =vocab_size _lowerCamelCase : Union[str, Any] =hidden_size _lowerCamelCase : List[str] =num_hidden_layers _lowerCamelCase : str =num_attention_heads _lowerCamelCase : Optional[int] =intermediate_size _lowerCamelCase : List[Any] =hidden_act _lowerCamelCase : Dict =hidden_dropout_prob _lowerCamelCase : int =attention_probs_dropout_prob _lowerCamelCase : int =max_position_embeddings _lowerCamelCase : List[Any] =type_vocab_size _lowerCamelCase : List[Any] =type_sequence_label_size _lowerCamelCase : List[str] =initializer_range _lowerCamelCase : Dict =num_choices def lowerCamelCase ( self : Any ) -> str: """simple docstring""" _lowerCamelCase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[str] =None if self.use_attention_mask: _lowerCamelCase : str =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict =None if self.use_token_type_ids: _lowerCamelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Union[str, Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple =self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] =config_and_inputs _lowerCamelCase : Tuple ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : Tuple =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" _lowerCamelCase : str =FlaxRoFormerModelTester(self ) @slow def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase : int =model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=lowercase_ ) _lowerCamelCase : Union[str, Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ ) @require_flax class A ( unittest.TestCase ): @slow def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowerCamelCase : Union[str, Any] =jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : int =model(lowercase_ )[0] _lowerCamelCase : List[str] =5_0000 _lowerCamelCase : str =(1, 6, vocab_size) self.assertEqual(output.shape , lowercase_ ) _lowerCamelCase : Tuple =jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
199
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class A ( UpperCamelCase_ ): UpperCamelCase__ : Dict ='transfo-xl' UpperCamelCase__ : int =['mems'] UpperCamelCase__ : List[str] ={ 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , lowercase_ : List[Any]=26_7735 , lowercase_ : List[Any]=[2_0000, 4_0000, 20_0000] , lowercase_ : Tuple=1024 , lowercase_ : Optional[int]=1024 , lowercase_ : str=16 , lowercase_ : int=64 , lowercase_ : Any=4096 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=False , lowercase_ : List[str]=18 , lowercase_ : Tuple=1600 , lowercase_ : List[str]=1000 , lowercase_ : Any=True , lowercase_ : str=True , lowercase_ : Optional[int]=0 , lowercase_ : List[Any]=-1 , lowercase_ : Optional[int]=True , lowercase_ : Any=0.1 , lowercase_ : Tuple=0.0 , lowercase_ : str=True , lowercase_ : Union[str, Any]="normal" , lowercase_ : Dict=0.01 , lowercase_ : Optional[Any]=0.01 , lowercase_ : List[Any]=0.02 , lowercase_ : List[Any]=1E-5 , lowercase_ : Tuple=0 , **lowercase_ : Tuple , ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[Any] =vocab_size _lowerCamelCase : Optional[Any] =[] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: _lowerCamelCase : List[str] =[False] + [True] * len(self.cutoffs ) else: _lowerCamelCase : str =[False] + [False] * len(self.cutoffs ) _lowerCamelCase : str =d_model _lowerCamelCase : str =d_embed _lowerCamelCase : str =d_head _lowerCamelCase : Dict =d_inner _lowerCamelCase : Union[str, Any] =div_val _lowerCamelCase : Dict =pre_lnorm _lowerCamelCase : Tuple =n_layer _lowerCamelCase : Optional[Any] =n_head _lowerCamelCase : List[Any] =mem_len _lowerCamelCase : List[Any] =same_length _lowerCamelCase : Optional[int] =attn_type _lowerCamelCase : List[str] =clamp_len _lowerCamelCase : int =sample_softmax _lowerCamelCase : List[Any] =adaptive _lowerCamelCase : List[str] =dropout _lowerCamelCase : Any =dropatt _lowerCamelCase : Dict =untie_r _lowerCamelCase : List[Any] =init _lowerCamelCase : List[str] =init_range _lowerCamelCase : int =proj_init_std _lowerCamelCase : Optional[int] =init_std _lowerCamelCase : Tuple =layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCamelCase ( self : int , lowercase_ : int ) -> List[str]: """simple docstring""" raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
199
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['MobileViTFeatureExtractor'] _snake_case = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __lowerCAmelCase ( __UpperCAmelCase ): snake_case_ : Optional[Any] = (DPMSolverSDEScheduler,) snake_case_ : str = 10 def UpperCamelCase ( self : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = { "num_train_timesteps": 1_100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowerCamelCase__ ) return config def UpperCamelCase ( self : List[str] ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def UpperCamelCase ( self : int ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCAmelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**lowerCamelCase__ , use_karras_sigmas=lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(lowerCamelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) _UpperCAmelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
133
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class A ( __UpperCAmelCase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : str = RetriBertTokenizer lowerCamelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase__ ) lowercase__ = do_lower_case def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Dict: '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
164
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : int ): snake_case__ : List[str] = """hf-internal-testing/tiny-random-t5""" snake_case__ : Any = AutoTokenizer.from_pretrained(snake_case_ ) snake_case__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer("""This is me""" , return_tensors="""pt""" ) snake_case__ : str = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case__ : Optional[int] = model.generate(**snake_case_ ) snake_case__ : Any = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case__ : Optional[Any] = model_reloaded.generate(**snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = """hf-internal-testing/tiny-random-t5""" snake_case__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) snake_case__ : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(snake_case_ ): model.save_pretrained(snake_case_ ) snake_case__ : int = model.reverse_bettertransformer() model.save_pretrained(snake_case_ )
43
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(), encoding='''utf-8''', check=lowerCAmelCase, ) assert hasattr(self, '''env''' ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings lowerCamelCase_ ={'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=lowerCAmelCase, instance_count=lowerCAmelCase, instance_type=self.instance_type, debugger_hook_config=lowerCAmelCase, hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path}, metric_definitions=self.env.metric_definitions, distribution=lowerCAmelCase, py_version='''py36''', ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" TrainingJobAnalytics(lowerCAmelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.create_estimator(lowerCAmelCase ) # run training estimator.fit() # result dataframe lowerCamelCase_ =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase_ =list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCamelCase_ =list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase_ =( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''', 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''', '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss}, lowerCAmelCase )
75
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase : Dict = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Optional[Any] = [1] for i in range(2 , lowerCamelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase__: Tuple = [] lowercase__: List[str] = list(range(lowerCamelCase_ ) ) # Find permutation while factorials: lowercase__: List[Any] = factorials.pop() lowercase__: List[str] = divmod(lowerCamelCase_ , lowerCamelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase_ ( __snake_case , __snake_case=1 ) -> Any: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def UpperCAmelCase_ ( __snake_case , __snake_case=0 ) -> str: """simple docstring""" _lowercase =[] for old_item in old_list: _lowercase =old_item.replace('''in_layers.0''' , '''norm1''' ) _lowercase =new_item.replace('''in_layers.2''' , '''conv1''' ) _lowercase =new_item.replace('''out_layers.0''' , '''norm2''' ) _lowercase =new_item.replace('''out_layers.3''' , '''conv2''' ) _lowercase =new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) _lowercase =new_item.replace('''skip_connection''' , '''conv_shortcut''' ) _lowercase =shave_segments(__snake_case , n_shave_prefix_segments=__snake_case ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def UpperCAmelCase_ ( __snake_case , __snake_case=0 ) -> Tuple: """simple docstring""" _lowercase =[] for old_item in old_list: _lowercase =old_item _lowercase =new_item.replace('''norm.weight''' , '''group_norm.weight''' ) _lowercase =new_item.replace('''norm.bias''' , '''group_norm.bias''' ) _lowercase =new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) _lowercase =new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) _lowercase =shave_segments(__snake_case , n_shave_prefix_segments=__snake_case ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None ) -> Any: """simple docstring""" assert isinstance(__snake_case , __snake_case ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowercase =old_checkpoint[path] _lowercase =old_tensor.shape[0] // 3 _lowercase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowercase =old_tensor.shape[0] // config['''num_head_channels'''] // 3 _lowercase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowercase , _lowercase , _lowercase =old_tensor.split(channels // num_heads , dim=1 ) _lowercase =query.reshape(__snake_case ) _lowercase =key.reshape(__snake_case ) _lowercase =value.reshape(__snake_case ) for path in paths: _lowercase =path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowercase =new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) _lowercase =new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) _lowercase =new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: _lowercase =new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowercase =old_checkpoint[path['''old''']][:, :, 0] else: _lowercase =old_checkpoint[path['''old''']] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase ={} _lowercase =checkpoint['''time_embed.0.weight'''] _lowercase =checkpoint['''time_embed.0.bias'''] _lowercase =checkpoint['''time_embed.2.weight'''] _lowercase =checkpoint['''time_embed.2.bias'''] _lowercase =checkpoint['''input_blocks.0.0.weight'''] _lowercase =checkpoint['''input_blocks.0.0.bias'''] _lowercase =checkpoint['''out.0.weight'''] _lowercase =checkpoint['''out.0.bias'''] _lowercase =checkpoint['''out.2.weight'''] _lowercase =checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only _lowercase =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) _lowercase ={ layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the middle blocks only _lowercase =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) _lowercase ={ layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the output blocks only _lowercase =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) _lowercase ={ layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__snake_case ) } for i in range(1 , __snake_case ): _lowercase =(i - 1) // (config['''num_res_blocks'''] + 1) _lowercase =(i - 1) % (config['''num_res_blocks'''] + 1) _lowercase =[key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _lowercase =[key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _lowercase =checkpoint[ F"input_blocks.{i}.0.op.weight" ] _lowercase =checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _lowercase =renew_resnet_paths(__snake_case ) _lowercase ={'''old''': F"input_blocks.{i}.0", '''new''': F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _lowercase ={'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __snake_case , __snake_case , __snake_case , additional_replacements=[meta_path, resnet_op] , config=__snake_case ) if len(__snake_case ): _lowercase =renew_attention_paths(__snake_case ) _lowercase ={ '''old''': F"input_blocks.{i}.1", '''new''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _lowercase ={ F"input_blocks.{i}.1.qkv.bias": { '''key''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", '''query''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", '''value''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { '''key''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", '''query''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", '''value''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , attention_paths_to_split=__snake_case , config=__snake_case , ) _lowercase =middle_blocks[0] _lowercase =middle_blocks[1] _lowercase =middle_blocks[2] _lowercase =renew_resnet_paths(__snake_case ) assign_to_checkpoint(__snake_case , __snake_case , __snake_case , config=__snake_case ) _lowercase =renew_resnet_paths(__snake_case ) assign_to_checkpoint(__snake_case , __snake_case , __snake_case , config=__snake_case ) _lowercase =renew_attention_paths(__snake_case ) _lowercase ={ '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __snake_case , __snake_case , __snake_case , attention_paths_to_split=__snake_case , config=__snake_case ) for i in range(__snake_case ): _lowercase =i // (config['''num_res_blocks'''] + 1) _lowercase =i % (config['''num_res_blocks'''] + 1) _lowercase =[shave_segments(__snake_case , 2 ) for name in output_blocks[i]] _lowercase ={} for layer in output_block_layers: _lowercase , _lowercase =layer.split('''.''' )[0], shave_segments(__snake_case , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__snake_case ) else: _lowercase =[layer_name] if len(__snake_case ) > 1: _lowercase =[key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _lowercase =[key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _lowercase =renew_resnet_paths(__snake_case ) _lowercase =renew_resnet_paths(__snake_case ) _lowercase ={'''old''': F"output_blocks.{i}.0", '''new''': F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowercase =list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) _lowercase =checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _lowercase =checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__snake_case ) == 2: _lowercase =[] if len(__snake_case ): _lowercase =renew_attention_paths(__snake_case ) _lowercase ={ '''old''': F"output_blocks.{i}.1", '''new''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _lowercase ={ F"output_blocks.{i}.1.qkv.bias": { '''key''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", '''query''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", '''value''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { '''key''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", '''query''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", '''value''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=__snake_case , ) else: _lowercase =renew_resnet_paths(__snake_case , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowercase ='''.'''.join(['''output_blocks''', str(__snake_case ), path['''old''']] ) _lowercase ='''.'''.join(['''up_blocks''', str(__snake_case ), '''resnets''', str(__snake_case ), path['''new''']] ) _lowercase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCAmelCase__ = json.loads(f.read()) UpperCAmelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCAmelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCAmelCase__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) UpperCAmelCase__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) UpperCAmelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
5
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE = global_rng SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Optional[Any]=400 ,lowerCamelCase__ : List[str]=2000 ,lowerCamelCase__ : List[str]=2048 ,lowerCamelCase__ : Any=128 ,lowerCamelCase__ : List[str]=1 ,lowerCamelCase__ : str=512 ,lowerCamelCase__ : Optional[Any]=30 ,lowerCamelCase__ : Tuple=44100 ,) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = min_seq_length SCREAMING_SNAKE_CASE = max_seq_length SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE = spectrogram_length SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = num_audio_channels SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = chunk_length SCREAMING_SNAKE_CASE = sampling_rate def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Union[str, Any]=False ) -> str: '''simple docstring''' def _flatten(lowerCamelCase__ : List[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[Any] = TvltFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""sampling_rate""" ) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE = feature_extractor( lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ,mask_audio=lowerCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE = np.asarray(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE = TvltFeatureExtractor() SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCamelCase__ ,atol=1e-4 ) )
296
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = (32, 32) SCREAMING_SNAKE_CASE_ : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(a_) return image @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=a_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(a_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : str = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE_ : Dict = DDPMScheduler() SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : int = self.dummy_vae SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_ : List[str] = Image.fromarray(np.uinta(a_)).convert('''RGB''').resize((64, 64)) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionUpscalePipeline( unet=a_ , low_res_scheduler=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE_ : Dict = sd_pipe.to(a_) sd_pipe.set_progress_bar_config(disable=a_) SCREAMING_SNAKE_CASE_ : Dict = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ : str = torch.Generator(device=a_).manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = sd_pipe( [prompt] , image=a_ , generator=a_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Tuple = output.images SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=a_).manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe( [prompt] , image=a_ , generator=a_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=a_ , )[0] SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDPMScheduler() SCREAMING_SNAKE_CASE_ : Optional[int] = DDIMScheduler(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_vae SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') SCREAMING_SNAKE_CASE_ : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_ : List[str] = Image.fromarray(np.uinta(a_)).convert('''RGB''').resize((64, 64)) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionUpscalePipeline( unet=a_ , low_res_scheduler=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE_ : int = sd_pipe.to(a_) sd_pipe.set_progress_bar_config(disable=a_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ : int = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device=a_).manual_seed(0) SCREAMING_SNAKE_CASE_ : Dict = sd_pipe( [prompt] , image=a_ , generator=a_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : List[str] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE_ : str = DDPMScheduler() SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : int = self.dummy_vae SCREAMING_SNAKE_CASE_ : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') SCREAMING_SNAKE_CASE_ : int = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_ : List[str] = Image.fromarray(np.uinta(a_)).convert('''RGB''').resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE_ : int = unet.half() SCREAMING_SNAKE_CASE_ : Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionUpscalePipeline( unet=a_ , low_res_scheduler=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE_ : int = sd_pipe.to(a_) sd_pipe.set_progress_bar_config(disable=a_) SCREAMING_SNAKE_CASE_ : List[Any] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe( [prompt] , image=a_ , generator=a_ , num_inference_steps=2 , output_type='''np''' , ).images SCREAMING_SNAKE_CASE_ : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''') SCREAMING_SNAKE_CASE_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''') SCREAMING_SNAKE_CASE_ : int = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE_ : Tuple = StableDiffusionUpscalePipeline.from_pretrained(a_) pipe.to(a_) pipe.set_progress_bar_config(disable=a_) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : int = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe( prompt=a_ , image=a_ , generator=a_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''') SCREAMING_SNAKE_CASE_ : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE_ : Any = StableDiffusionUpscalePipeline.from_pretrained( a_ , torch_dtype=torch.floataa , ) pipe.to(a_) pipe.set_progress_bar_config(disable=a_) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Optional[Any] = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=a_ , image=a_ , generator=a_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''') SCREAMING_SNAKE_CASE_ : Optional[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE_ : str = StableDiffusionUpscalePipeline.from_pretrained( a_ , torch_dtype=torch.floataa , ) pipe.to(a_) pipe.set_progress_bar_config(disable=a_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : int = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=a_ , image=a_ , generator=a_ , num_inference_steps=5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
352
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) SCREAMING_SNAKE_CASE_ : Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_slow.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_) SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_fast.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase_) self.assertIsInstance(processor_fast.tokenizer , lowercase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase_) self.assertIsInstance(processor_fast.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
318
0
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : Dict=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Any=None , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 1 def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase = ViTMSNModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTMSNForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = ViTMSNForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _snake_case : List[Any] = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) _snake_case : Optional[int] = False _snake_case : Optional[Any] = False _snake_case : Tuple = False _snake_case : List[str] = False def snake_case__ ( self : List[str] ) -> str: '''simple docstring''' _UpperCamelCase = ViTMSNModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTMSNModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(2 ) _UpperCamelCase = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(lowerCAmelCase__ ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
324
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase__ : str = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 256} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] _UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]: '''simple docstring''' _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase__ ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
324
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : str = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCAmelCase : str = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple=False ): '''simple docstring''' lowerCamelCase , lowerCamelCase = create_model( """HTSAT-tiny""" , """roberta""" , lowerCamelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCamelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = {} lowerCamelCase = R""".*sequential.(\d+).*""" lowerCamelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase = key.replace(lowerCamelCase__ , lowerCamelCase__ ) if re.match(lowerCamelCase__ , lowerCamelCase__ ): # replace sequential layers with list lowerCamelCase = re.match(lowerCamelCase__ , lowerCamelCase__ ).group(1 ) lowerCamelCase = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(lowerCamelCase__ )//3}.linear.' ) elif re.match(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = int(re.match(lowerCamelCase__ , lowerCamelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCamelCase = 1 if projecton_layer == 0 else 2 lowerCamelCase = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCamelCase = value lowerCamelCase = mixed_qkv.size(0 ) // 3 lowerCamelCase = mixed_qkv[:qkv_dim] lowerCamelCase = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCamelCase = mixed_qkv[qkv_dim * 2 :] lowerCamelCase = query_layer lowerCamelCase = key_layer lowerCamelCase = value_layer else: lowerCamelCase = value return model_state_dict def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any=False ): '''simple docstring''' lowerCamelCase , lowerCamelCase = init_clap(lowerCamelCase__ , enable_fusion=lowerCamelCase__ ) clap_model.eval() lowerCamelCase = clap_model.state_dict() lowerCamelCase = rename_state_dict(lowerCamelCase__ ) lowerCamelCase = ClapConfig() lowerCamelCase = enable_fusion lowerCamelCase = ClapModel(lowerCamelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) transformers_config.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") UpperCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
66
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE = (("""num_inference_steps""", 25),) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**__lowercase ) return config def UpperCamelCase ( self,__lowerCamelCase=0,**__lowerCamelCase ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowercase ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**__lowercase ) A__ = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) A__ = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = sample, sample for t in range(__lowercase,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(__lowercase,__lowercase,__lowercase,**__lowercase ).prev_sample A__ = new_scheduler.step(__lowercase,__lowercase,__lowercase,**__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self,__lowerCamelCase=0,**__lowerCamelCase ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowercase ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) A__ = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(__lowercase,__lowercase,__lowercase,**__lowercase ).prev_sample A__ = new_scheduler.step(__lowercase,__lowercase,__lowercase,**__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self,__lowerCamelCase=None,**__lowerCamelCase ): if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowercase ) A__ = scheduler_class(**__lowercase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowercase ) A__ = scheduler_class(**__lowercase ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__lowercase,__lowercase ) A__ = scheduler.step(__lowercase,__lowercase,__lowercase ).prev_sample return sample def UpperCamelCase ( self ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowercase ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowercase ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase,'''set_timesteps''' ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase,'''set_timesteps''' ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.15, residual + 0.10] A__ = dummy_past_residuals[: scheduler.config.solver_order] A__ = scheduler.timesteps[5] A__ = scheduler.timesteps[6] A__ = scheduler.step(__lowercase,__lowercase,__lowercase,**__lowercase ).prev_sample A__ = scheduler.step(__lowercase,__lowercase,__lowercase,**__lowercase ).prev_sample self.assertEqual(output_a.shape,sample.shape ) self.assertEqual(output_a.shape,output_a.shape ) def UpperCamelCase ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults A__ = UniPCMultistepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=__lowercase ) A__ = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=__lowercase ) A__ = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCamelCase ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowercase ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowercase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowercase,prediction_type=__lowercase,sample_max_value=__lowercase,solver_order=__lowercase,solver_type=__lowercase,) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def UpperCamelCase ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowercase,solver_type=__lowercase,prediction_type=__lowercase,) A__ = self.full_loop( solver_order=__lowercase,solver_type=__lowercase,prediction_type=__lowercase,) assert not torch.isnan(__lowercase ).any(), "Samples have nan numbers" def UpperCamelCase ( self ): self.check_over_configs(lower_order_final=__lowercase ) self.check_over_configs(lower_order_final=__lowercase ) def UpperCamelCase ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowercase,time_step=0 ) def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=__lowercase,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**__lowercase ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__lowercase,__lowercase ) A__ = scheduler.step(__lowercase,__lowercase,__lowercase ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase ( self,**__lowerCamelCase ): for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**__lowercase ) A__ = scheduler_class(**__lowercase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
193
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = """facebook/bart-large-mnli""" a__ : int = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) a__ : Optional[Any] = """text_classifier""" a__ : Any = AutoTokenizer a__ : str = AutoModelForSequenceClassification a__ : str = ["""text""", ["""text"""]] a__ : Optional[int] = ["""text"""] def UpperCamelCase__ ( self) -> Union[str, Any]: super().setup() __UpperCamelCase :int = self.model.config __UpperCamelCase :Optional[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail'''): __UpperCamelCase :List[Any] = int(__lowercase) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''') def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :Any = labels return self.pre_processor( [text] * len(__lowercase) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: __UpperCamelCase :List[Any] = outputs.logits __UpperCamelCase :Any = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
43
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCamelCase ( _lowerCamelCase : str ): A__, A__ = analyze_text(_lowerCamelCase ) A__ = list(" " + ascii_lowercase ) # what is our total sum of probabilities. A__ = sum(single_char_strings.values() ) # one length string A__ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: A__ = single_char_strings[ch] A__ = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string A__ = sum(two_char_strings.values() ) A__ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: A__ = cha + cha if sequence in two_char_strings: A__ = two_char_strings[sequence] A__ = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def UpperCamelCase ( _lowerCamelCase : str ): A__ = Counter() # type: ignore A__ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCamelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
354
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : def __init__( self :Optional[Any] , lowercase_ :int , lowercase_ :Union[str, Any]=13 , lowercase_ :Union[str, Any]=10 , lowercase_ :Any=3 , lowercase_ :Tuple=2 , lowercase_ :List[Any]=2 , lowercase_ :int=True , lowercase_ :int=True , lowercase_ :List[str]=32 , lowercase_ :Dict=5 , lowercase_ :List[Any]=4 , lowercase_ :List[Any]=37 , lowercase_ :List[Any]="gelu" , lowercase_ :int=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=10 , lowercase_ :int=0.0_2 , lowercase_ :Union[str, Any]="divided_space_time" , lowercase_ :Tuple=None , )-> Tuple: A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = attention_type A__ = initializer_range A__ = scope A__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ = (image_size // patch_size) ** 2 A__ = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase_ ( self :str )-> str: A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ = self.num_labels return config def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :List[Any] , lowercase_ :Tuple )-> Optional[int]: A__ = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Tuple , lowercase_ :Tuple , lowercase_ :Dict )-> Tuple: A__ = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) # verify the logits shape A__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = self.prepare_config_and_inputs() A__, A__, A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __lowercase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowercase = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = TimesformerModelTester(self ) A__ = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int , lowercase_ :Dict , lowercase_ :int=False )-> str: A__ = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCAmelCase_ ( self :Union[str, Any] )-> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Dict: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self :Any )-> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: if not self.has_attentions: pass else: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length A__ = self.model_tester.num_frames A__ = True A__ = False A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ = len(lowercase_ ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: def check_hidden_states_output(lowercase_ :Dict , lowercase_ :int , lowercase_ :List[Any] ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( ): A__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A__ = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :Optional[Any] )-> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase_ ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(video[:8] , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): A__ = model(**lowercase_ ) # verify the logits A__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) A__ = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
123
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCamelCase ( ): """simple docstring""" print('''Making key files...''' ) make_key_files('''rsa''' , 1024 ) print('''Key files generation successful.''' ) def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" print('''Generating prime p...''' ) a :Dict = rabinMiller.generate_large_prime(UpperCAmelCase_ ) print('''Generating prime q...''' ) a :Optional[Any] = rabinMiller.generate_large_prime(UpperCAmelCase_ ) a :int = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: a :Optional[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(UpperCAmelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) a :Union[str, Any] = cryptoMath.find_mod_inverse(UpperCAmelCase_ , (p - 1) * (q - 1) ) a :Tuple = (n, e) a :Optional[int] = (n, d) return (public_key, private_key) def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() a , a :List[str] = generate_key(UpperCAmelCase_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
94
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """megatron-bert""" def __init__(self : Tuple , UpperCamelCase : Optional[int]=29056 , UpperCamelCase : Optional[Any]=1024 , UpperCamelCase : Any=24 , UpperCamelCase : int=16 , UpperCamelCase : Optional[int]=4096 , UpperCamelCase : int="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1E-12 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Optional[int]="absolute" , UpperCamelCase : List[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
2
0
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = credit_card_number lowercase__ : List[str] = 0 lowercase__ : Union[str, Any] = len(lowerCamelCase__ ) - 2 for i in range(lowerCamelCase__ , -1 , -2 ): # double the value of every second digit lowercase__ : List[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ : List[str] = cc_number[:i] + str(lowerCamelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCamelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(lowerCamelCase__ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(lowerCamelCase__ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(lowerCamelCase__ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
121
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class snake_case__(Generic[KEY, VAL] ): """simple docstring""" lowercase_ = 42 lowercase_ = 42 class snake_case__(_Item ): """simple docstring""" def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __bool__( self : Tuple ): return False lowerCAmelCase__ = _DeletedItem() class snake_case__(MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : float = 0.75 ): lowercase__ : Any = initial_block_size lowercase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ : Dict = capacity_factor lowercase__ : Optional[int] = 0 def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : KEY ): return hash(SCREAMING_SNAKE_CASE ) % len(self._buckets ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): return (ind + 1) % len(self._buckets ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): lowercase__ : Tuple = self._buckets[ind] if not stored: lowercase__ : int = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: lowercase__ : str = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return True else: return False def snake_case ( self : str ): lowercase__ : str = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): if len(self._buckets ) <= self._initial_block_size: return False lowercase__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : Tuple = self._buckets lowercase__ : Optional[int] = [None] * new_size lowercase__ : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self : int ): self._resize(len(self._buckets ) * 2 ) def snake_case ( self : Optional[Any] ): self._resize(len(self._buckets ) // 2 ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : KEY ): lowercase__ : Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind lowercase__ : Union[str, Any] = self._get_next_ind(SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): if self._try_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): break def __setitem__( self : List[str] , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __delitem__( self : int , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: lowercase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE ) def __len__( self : Optional[Any] ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowercase__ : int = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
121
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) lowercase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : List[Any] = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ,_snake_case : Any=0 ) -> Any: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[Any] = 2 lowercase__ : Optional[int] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,) lowercase__ : str = floats_tensor(control_image.shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(_snake_case : Optional[int] ): if isinstance(_snake_case ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Dict = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : int = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : int = MultiControlNetModel([controlneta, controlneta] ) lowercase__ : Optional[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_snake_case ) else: lowercase__ : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : int = 2 lowercase__ : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), ] lowercase__ : Dict = floats_tensor(control_image[0].shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[int] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowercase__ : Optional[Any] = 10.0 lowercase__ : Tuple = 4 lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = steps lowercase__ : Any = scale lowercase__ : Optional[Any] = pipe(**_snake_case )[0] lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : int = scale lowercase__ : List[str] = pipe(**_snake_case ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] lowercase__ : int = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : Dict = scale lowercase__ : Dict = pipe(**_snake_case ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : List[Any] = steps lowercase__ : Optional[int] = scale lowercase__ : List[Any] = pipe(**_snake_case ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ,controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : List[str] = '''evil space-punk bird''' lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ : Tuple = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ : List[Any] = pipe( _snake_case ,_snake_case ,control_image=_snake_case ,generator=_snake_case ,output_type='''np''' ,num_inference_steps=50 ,strength=0.6 ,) lowercase__ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) lowercase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
16
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
from collections import defaultdict from math import ceil, sqrt def _lowerCamelCase ( lowercase : int = 100_0000 , lowercase : int = 10 ) -> int: _a = defaultdict(_UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _a = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _a = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
368
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _lowerCamelCase ( lowercase : str ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> str: from transformers.testing_utils import pytest_terminal_summary_main _a = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase )
346
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __a = logging.getLogger(__name__) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : str = """summarization""" _A : Union[str, Any] = ["""loss"""] _A : Dict = ROUGE_KEYS _A : Tuple = """rouge2""" def __init__( self: List[Any] , snake_case: List[str] , **snake_case: Tuple ) -> str: if hparams.sortish_sampler and hparams.gpus > 1: snake_case_ :List[str] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(snake_case , num_labels=snake_case , mode=self.mode , **snake_case ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) snake_case_ :Dict = Path(self.output_dir ) / """metrics.json""" snake_case_ :Dict = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) snake_case_ :Dict = 0 snake_case_ :List[Any] = defaultdict(snake_case ) snake_case_ :List[str] = self.config.model_type snake_case_ :Any = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size snake_case_ :dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } snake_case_ :List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } snake_case_ :Tuple = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} snake_case_ :int = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) snake_case_ :Dict = get_git_info()["""repo_sha"""] snake_case_ :Optional[int] = hparams.num_workers snake_case_ :Dict = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , snake_case ): snake_case_ :Optional[Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] snake_case_ :Any = self.decoder_start_token_id snake_case_ :Optional[Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) snake_case_ :Any = False snake_case_ :Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: snake_case_ :Union[str, Any] = self.hparams.eval_max_gen_length else: snake_case_ :Optional[Any] = self.model.config.max_length snake_case_ :Tuple = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCAmelCase_ ( self: str , snake_case: Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: snake_case_ :List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(snake_case , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) snake_case_ :int = True return readable_batch def lowerCAmelCase_ ( self: str , snake_case: Dict , **snake_case: List[Any] ) -> List[Any]: return self.model(snake_case , **snake_case ) def lowerCAmelCase_ ( self: List[str] , snake_case: List[int] ) -> Dict: snake_case_ :Tuple = self.tokenizer.batch_decode( snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) return lmap(str.strip , snake_case ) def lowerCAmelCase_ ( self: str , snake_case: dict ) -> Tuple: snake_case_ :Tuple = self.tokenizer.pad_token_id snake_case_, snake_case_ :List[str] = batch["""input_ids"""], batch["""attention_mask"""] snake_case_ :List[Any] = batch["""labels"""] if isinstance(self.model , snake_case ): snake_case_ :Dict = self.model._shift_right(snake_case ) else: snake_case_ :List[Any] = shift_tokens_right(snake_case , snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero snake_case_ :Optional[Any] = decoder_input_ids self.save_readable_batch(snake_case ) snake_case_ :List[Any] = self(snake_case , attention_mask=snake_case , decoder_input_ids=snake_case , use_cache=snake_case ) snake_case_ :Dict = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id snake_case_ :Optional[int] = nn.CrossEntropyLoss(ignore_index=snake_case ) assert lm_logits.shape[-1] == self.vocab_size snake_case_ :Optional[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: snake_case_ :Dict = nn.functional.log_softmax(snake_case , dim=-1 ) snake_case_, snake_case_ :Dict = label_smoothed_nll_loss( snake_case , snake_case , self.hparams.label_smoothing , ignore_index=snake_case ) return (loss,) @property def lowerCAmelCase_ ( self: List[Any] ) -> int: return self.tokenizer.pad_token_id def lowerCAmelCase_ ( self: Any , snake_case: Union[str, Any] , snake_case: int ) -> Dict: snake_case_ :Optional[Any] = self._step(snake_case ) snake_case_ :Optional[Any] = dict(zip(self.loss_names , snake_case ) ) # tokens per batch snake_case_ :List[Any] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() snake_case_ :List[Any] = batch["""input_ids"""].shape[0] snake_case_ :str = batch["""input_ids"""].eq(self.pad ).sum() snake_case_ :Optional[Any] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: str , snake_case: int ) -> Dict: return self._generative_step(snake_case ) def lowerCAmelCase_ ( self: Tuple , snake_case: str , snake_case: List[Any]="val" ) -> Dict: self.step_count += 1 snake_case_ :int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} snake_case_ :List[Any] = losses["""loss"""] snake_case_ :Tuple = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } snake_case_ :Optional[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) snake_case_ :torch.FloatTensor = torch.tensor(snake_case ).type_as(snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(snake_case ) snake_case_ :List[str] = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} snake_case_ :Optional[int] = self.step_count self.metrics[prefix].append(snake_case ) # callback writes this to self.metrics_save_path snake_case_ :Any = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def lowerCAmelCase_ ( self: int , snake_case: str , snake_case: Optional[int] ) -> Dict: return calculate_rouge(snake_case , snake_case ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: dict ) -> dict: snake_case_ :str = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') snake_case_ :Tuple = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=snake_case , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) snake_case_ :List[str] = (time.time() - ta) / batch["""input_ids"""].shape[0] snake_case_ :List[str] = self.ids_to_clean_text(snake_case ) snake_case_ :List[str] = self.ids_to_clean_text(batch["""labels"""] ) snake_case_ :Dict = self._step(snake_case ) snake_case_ :Optional[int] = dict(zip(self.loss_names , snake_case ) ) snake_case_ :Dict = self.calc_generative_metrics(snake_case , snake_case ) snake_case_ :Any = np.mean(lmap(snake_case , snake_case ) ) base_metrics.update(gen_time=snake_case , gen_len=snake_case , preds=snake_case , target=snake_case , **snake_case ) return base_metrics def lowerCAmelCase_ ( self: Optional[Any] , snake_case: str , snake_case: List[Any] ) -> Optional[Any]: return self._generative_step(snake_case ) def lowerCAmelCase_ ( self: str , snake_case: Optional[int] ) -> List[Any]: return self.validation_epoch_end(snake_case , prefix="""test""" ) def lowerCAmelCase_ ( self: Any , snake_case: Optional[int] ) -> SeqaSeqDataset: snake_case_ :Optional[Any] = self.n_obs[type_path] snake_case_ :Optional[int] = self.target_lens[type_path] snake_case_ :List[str] = self.dataset_class( self.tokenizer , type_path=snake_case , n_obs=snake_case , max_target_length=snake_case , **self.dataset_kwargs , ) return dataset def lowerCAmelCase_ ( self: List[Any] , snake_case: str , snake_case: int , snake_case: bool = False ) -> DataLoader: snake_case_ :Any = self.get_dataset(snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": snake_case_ :Optional[int] = dataset.make_sortish_sampler(snake_case , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case , batch_size=snake_case , collate_fn=dataset.collate_fn , shuffle=snake_case , num_workers=self.num_workers , sampler=snake_case , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": snake_case_ :Union[str, Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case , batch_sampler=snake_case , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( snake_case , batch_size=snake_case , collate_fn=dataset.collate_fn , shuffle=snake_case , num_workers=self.num_workers , sampler=snake_case , ) def lowerCAmelCase_ ( self: List[Any] ) -> DataLoader: snake_case_ :Any = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=snake_case ) return dataloader def lowerCAmelCase_ ( self: Union[str, Any] ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def lowerCAmelCase_ ( self: Dict ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowerCAmelCase_ ( snake_case: List[Any] , snake_case: List[str] ) -> List[Any]: BaseTransformer.add_model_specific_args(snake_case , snake_case ) add_generic_args(snake_case , snake_case ) parser.add_argument( """--max_source_length""" , default=1_024 , type=snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=snake_case ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=snake_case ) parser.add_argument("""--max_tokens_per_batch""" , type=snake_case , default=snake_case ) parser.add_argument("""--logger_name""" , type=snake_case , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=snake_case , default=-1 , required=snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=snake_case , default=500 , required=snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=snake_case , default=-1 , required=snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=snake_case , default="""summarization""" , required=snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=snake_case , default=0.0 , required=snake_case ) parser.add_argument("""--src_lang""" , type=snake_case , default="""""" , required=snake_case ) parser.add_argument("""--tgt_lang""" , type=snake_case , default="""""" , required=snake_case ) parser.add_argument("""--eval_beams""" , type=snake_case , default=snake_case , required=snake_case ) parser.add_argument( """--val_metric""" , type=snake_case , default=snake_case , required=snake_case , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=snake_case , default=snake_case , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=snake_case , default=1 , required=snake_case , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=snake_case , default=-1 , required=snake_case , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Any = """translation""" _A : Tuple = ["""loss"""] _A : List[Any] = ["""bleu"""] _A : Tuple = """bleu""" def __init__( self: str , snake_case: Tuple , **snake_case: int ) -> List[Any]: super().__init__(snake_case , **snake_case ) snake_case_ :Dict = hparams.src_lang snake_case_ :List[Any] = hparams.tgt_lang def lowerCAmelCase_ ( self: Any , snake_case: Dict , snake_case: Optional[int] ) -> dict: return calculate_bleu(snake_case , snake_case ) def A_ ( _lowercase, _lowercase=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=_lowercase ) check_output_dir(_lowercase, expected_items=3 ) if model is None: if "summarization" in args.task: snake_case_ :SummarizationModule = SummarizationModule(_lowercase ) else: snake_case_ :SummarizationModule = TranslationModule(_lowercase ) snake_case_ :Tuple = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): snake_case_ :List[str] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger snake_case_ :List[Any] = os.environ.get("""WANDB_PROJECT""", _lowercase ) snake_case_ :Optional[int] = WandbLogger(name=model.output_dir.name, project=_lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger snake_case_ :Union[str, Any] = WandbLogger(name=model.output_dir.name, project=f"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: snake_case_ :Any = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: snake_case_ :List[Any] = False snake_case_ :int = args.val_metric == """loss""" snake_case_ :pl.Trainer = generic_train( _lowercase, _lowercase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, _lowercase ), early_stopping_callback=_lowercase, logger=_lowercase, ) pickle_save(model.hparams, model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model snake_case_ :Tuple = """""" snake_case_ :Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, """*.ckpt""" ), recursive=_lowercase ) ) if checkpoints: snake_case_ :Any = checkpoints[-1] snake_case_ :int = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __a = argparse.ArgumentParser() __a = pl.Trainer.add_argparse_args(parser) __a = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __a = parser.parse_args() main(args)
66
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __a = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __a = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __a = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __a = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __a = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", _lowercase ) return [m.group(0 ) for m in matches] def A_ ( ): '''simple docstring''' snake_case_ :int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case_ :Dict = { config.replace("""Config""", """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. snake_case_ :Optional[Any] = collections.defaultdict(_lowercase ) snake_case_ :int = collections.defaultdict(_lowercase ) snake_case_ :List[str] = collections.defaultdict(_lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowercase ): snake_case_ :int = None if _re_tf_models.match(_lowercase ) is not None: snake_case_ :int = tf_models snake_case_ :List[str] = _re_tf_models.match(_lowercase ).groups()[0] elif _re_flax_models.match(_lowercase ) is not None: snake_case_ :List[Any] = flax_models snake_case_ :Any = _re_flax_models.match(_lowercase ).groups()[0] elif _re_pt_models.match(_lowercase ) is not None: snake_case_ :Optional[Any] = pt_models snake_case_ :int = _re_pt_models.match(_lowercase ).groups()[0] if lookup_dict is not None: while len(_lowercase ) > 0: if attr_name in model_prefix_to_model_type: snake_case_ :Optional[int] = True break # Try again after removing the last word in the name snake_case_ :Optional[Any] = """""".join(camel_case_split(_lowercase )[:-1] ) snake_case_ :Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) snake_case_ :Optional[Any] = list(_lowercase ) all_models.sort() snake_case_ :Optional[int] = {"""model_type""": all_models} snake_case_ :Optional[int] = [pt_models[t] for t in all_models] snake_case_ :Any = [tf_models[t] for t in all_models] snake_case_ :Dict = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure snake_case_ :Dict = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: snake_case_ :Optional[Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: snake_case_ :Tuple = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: snake_case_ :Tuple = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. snake_case_ :str = """AutoTokenizer""" snake_case_ :int = [processors[t] for t in all_models] return pd.DataFrame(_lowercase ) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: snake_case_ :Optional[int] = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] snake_case_ :List[str] = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(_lowercase, _lowercase, _lowercase ): # The type of pipeline may not exist in this framework if not hasattr(_lowercase, _lowercase ): continue # First extract all model_names snake_case_ :Tuple = [] for name in getattr(_lowercase, _lowercase ).values(): if isinstance(_lowercase, _lowercase ): model_names.append(_lowercase ) else: model_names.extend(list(_lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[Any] = get_frameworks_table() snake_case_ :str = Dataset.from_pandas(_lowercase ) snake_case_ :List[Any] = hf_hub_download( """huggingface/transformers-metadata""", """pipeline_tags.json""", repo_type="""dataset""", token=_lowercase ) snake_case_ :List[str] = Dataset.from_json(_lowercase ) snake_case_ :int = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_lowercase ) ) } snake_case_ :Optional[int] = update_pipeline_and_auto_class_table(_lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. snake_case_ :Tuple = sorted(table.keys() ) snake_case_ :Tuple = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) snake_case_ :Union[str, Any] = Dataset.from_pandas(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowercase, """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_lowercase, """pipeline_tags.json""" ) ) if commit_sha is not None: snake_case_ :Union[str, Any] = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: snake_case_ :List[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""", folder_path=_lowercase, repo_type="""dataset""", token=_lowercase, commit_message=_lowercase, ) def A_ ( ): '''simple docstring''' snake_case_ :List[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} snake_case_ :Dict = transformers_module.pipelines.SUPPORTED_TASKS snake_case_ :List[str] = [] for key in pipeline_tasks: if key not in in_table: snake_case_ :int = pipeline_tasks[key]["""pt"""] if isinstance(_lowercase, (list, tuple) ): snake_case_ :Any = model[0] snake_case_ :str = model.__name__ if model not in in_table.values(): missing.append(_lowercase ) if len(_lowercase ) > 0: snake_case_ :Optional[int] = """, """.join(_lowercase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __a = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
66
1
from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Tuple: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case_ : List[str] = cst_fwd.get(_lowercase , np.inf ) snake_case_ : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case_ : List[str] = new_cost_f snake_case_ : int = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case_ : List[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = -1 snake_case_ : Tuple = set() snake_case_ : List[Any] = set() snake_case_ : Union[str, Any] = {source: 0} snake_case_ : Dict = {destination: 0} snake_case_ : Tuple = {source: None} snake_case_ : int = {destination: None} snake_case_ : Optional[int] = PriorityQueue() snake_case_ : Union[str, Any] = PriorityQueue() snake_case_ : str = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case_ , snake_case_ : Optional[int] = queue_forward.get() visited_forward.add(_lowercase ) snake_case_ , snake_case_ : int = queue_backward.get() visited_backward.add(_lowercase ) snake_case_ : str = pass_and_relaxation( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) snake_case_ : Tuple = pass_and_relaxation( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case_ : List[Any] = shortest_distance return shortest_path_distance lowerCAmelCase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowerCAmelCase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
359
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''KEY''') lowerCAmelCase_ = TypeVar('''VAL''') @dataclass(frozen=_a, slots=_a ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowerCamelCase_ : KEY lowerCamelCase_ : VAL class __lowerCAmelCase ( _Item ): def __init__(self ) -> None: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) def __bool__(self ) -> bool: '''simple docstring''' return False lowerCAmelCase_ = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__(self , __magic_name__ = 8 , __magic_name__ = 0.75 ) -> None: '''simple docstring''' snake_case_ : List[Any] = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : List[str] = capacity_factor snake_case_ : int = 0 def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return hash(__magic_name__ ) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : Optional[Any] = _Item(__magic_name__ , __magic_name__ ) self._len += 1 return True elif stored.key == key: snake_case_ : List[Any] = _Item(__magic_name__ , __magic_name__ ) return True else: return False def lowerCamelCase (self ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__magic_name__ ) def lowerCamelCase (self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : int = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase (self , __magic_name__ ) -> None: '''simple docstring''' snake_case_ : List[str] = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Optional[int] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowerCamelCase (self , __magic_name__ ) -> Iterator[int]: '''simple docstring''' snake_case_ : Dict = self._get_bucket_index(__magic_name__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : Tuple = self._get_next_ind(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): if self._try_set(__magic_name__ , __magic_name__ , __magic_name__ ): break def __setitem__(self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__magic_name__ , __magic_name__ ) def __delitem__(self , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: raise KeyError(__magic_name__ ) if item is _deleted: continue if item.key == key: snake_case_ : Union[str, Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , __magic_name__ ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__magic_name__ ) def __len__(self ) -> int: '''simple docstring''' return self._len def __iter__(self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ) -> str: '''simple docstring''' snake_case_ : List[str] = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
279
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : List[str] = logging.get_logger(__name__) __a : Optional[int] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class _UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" __a : str = "switch_transformers" __a : int = ["past_key_values"] __a : Optional[int] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , lowerCAmelCase__=3_21_28 , lowerCAmelCase__=7_68 , lowerCAmelCase__=64 , lowerCAmelCase__=20_48 , lowerCAmelCase__=64 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=12 , lowerCAmelCase__=8 , lowerCAmelCase__=False , lowerCAmelCase__=0.01 , lowerCAmelCase__="float32" , lowerCAmelCase__=False , lowerCAmelCase__=32 , lowerCAmelCase__=1_28 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=0.001 , lowerCAmelCase__=0.001 , lowerCAmelCase__=1.0 , lowerCAmelCase__="relu" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_sparse_encoder_layers __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowercase = self.num_layers // self.num_sparse_encoder_layers else: __lowercase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowercase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowercase = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowercase = num_heads __lowercase = num_experts __lowercase = expert_capacity __lowercase = router_bias __lowercase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}" ) __lowercase = router_dtype __lowercase = router_ignore_padding_tokens __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = add_router_probs __lowercase = router_z_loss_coef __lowercase = router_aux_loss_coef __lowercase = self.feed_forward_proj.split('''-''' ) __lowercase = act_info[-1] __lowercase = act_info[0] == "gated" if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowercase = "gelu_new" super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
210
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Union[str, Any] = "▁" _snake_case : Any = {"vocab_file": "prophetnet.tokenizer"} _snake_case : Tuple = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } _snake_case : Any = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } _snake_case : Any = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: __snake_case : Dict = reader.readlines() for index, token in enumerate(__lowerCamelCase ): __snake_case : Optional[int] = token.rstrip("\n" ) __snake_case : Union[str, Any] = index return vocab class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = ["input_ids", "attention_mask"] def __init__( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[Any]="[SEP]" , lowerCamelCase : List[str]="[SEP]" , lowerCamelCase : Dict="[SEP]" , lowerCamelCase : Optional[int]="[UNK]" , lowerCamelCase : Dict="[PAD]" , lowerCamelCase : str="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : int , ) -> None: __snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) __snake_case : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __snake_case : List[str] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): __snake_case : List[str] = F'[unused{i}]' __snake_case : int = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __snake_case : Any = 12 __snake_case : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase ) def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: __snake_case : Union[str, Any] = self.__dict__.copy() __snake_case : int = None return state def __setstate__( self : Tuple , lowerCamelCase : List[str] ) -> Tuple: __snake_case : Tuple = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : Tuple = {} __snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def __snake_case ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: __snake_case : str = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case ( self : str ) -> str: return len(self.sp_model ) + self.fairseq_offset def __snake_case ( self : Any ) -> int: __snake_case : Dict = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self : str , lowerCamelCase : str ) -> str: return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def __snake_case ( self : List[str] , lowerCamelCase : Dict ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : List[Any] = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case ( self : Dict , lowerCamelCase : Optional[int] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case ( self : int , lowerCamelCase : Union[str, Any] ) -> Optional[Any]: __snake_case : str = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip() return out_string def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case : List[str] = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , "wb" ) as fi: __snake_case : Any = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] __snake_case : List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
123
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A_ ( _lowerCamelCase ): @slow @require_torch def _lowerCAmelCase (self :List[str] )-> Tuple: __A = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __A = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __A = bertabert.config.encoder.vocab_size __A = tokenizer.sep_token_id __A = tokenizer.cls_token_id __A = 128 __A = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __A = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __A = train_dataset.select(range(32 ) ) __A = val_dataset.select(range(16 ) ) __A = 4 def _map_to_encoder_decoder_inputs(_UpperCamelCase :Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] __A = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_UpperCamelCase , max_length=512 ) __A = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_UpperCamelCase , max_length=128 ) __A = inputs.input_ids __A = inputs.attention_mask __A = outputs.input_ids __A = outputs.input_ids.copy() __A = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __A = outputs.attention_mask assert all(len(_UpperCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCamelCase :Union[str, Any] ): __A = pred.label_ids __A = pred.predictions # all unnecessary tokens are removed __A = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) __A = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) __A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCamelCase ) )] ) / len(_UpperCamelCase ) return {"accuracy": accuracy} # map train dataset __A = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCamelCase , batch_size=_UpperCamelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __A = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCamelCase , batch_size=_UpperCamelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __A = self.get_auto_remove_tmp_dir() __A = SeqaSeqTrainingArguments( output_dir=_UpperCamelCase , per_device_train_batch_size=_UpperCamelCase , per_device_eval_batch_size=_UpperCamelCase , predict_with_generate=_UpperCamelCase , evaluation_strategy='''steps''' , do_train=_UpperCamelCase , do_eval=_UpperCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __A = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # start training trainer.train()
250
from __future__ import annotations from math import pi, sqrt def _a ( lowerCamelCase: float , lowerCamelCase: float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
250
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[str] = 1_0 def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = [1, 2, 3, 4] _A: Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] _A: Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] _A: Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' _A , _A: List[str] = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: str = '''''' _A , _A: Tuple = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) self.assertEqual(lowerCAmelCase_ , [] ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) _A , _A: Tuple = process_story(lowerCAmelCase_ ) _A: Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Tuple = ['''It was the best of times.'''] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[int] = torch.tensor([1, 2, 3, 4] ) _A: List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) _A: Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: int = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _A: str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() ) def __magic_name__ ( self : int ): """simple docstring""" _A: Union[str, Any] = 1_0_1 _A: Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) _A: Dict = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _A: Tuple = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ ) np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
121
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''maskformer-swin''' __UpperCamelCase : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Dict=9_6 , lowerCAmelCase_ : Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase_ : Optional[Any]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Optional[Any]=4.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[Any] = image_size _A: Optional[int] = patch_size _A: Optional[Any] = num_channels _A: str = embed_dim _A: Any = depths _A: str = len(lowerCAmelCase_ ) _A: Any = num_heads _A: int = window_size _A: Dict = mlp_ratio _A: str = qkv_bias _A: List[str] = hidden_dropout_prob _A: List[Any] = attention_probs_dropout_prob _A: Dict = drop_path_rate _A: List[Any] = hidden_act _A: Optional[int] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A: Any = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) _A: Tuple = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _A , _A: str = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
121
1
'''simple docstring''' import copy import re class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase_ :Optional[int] = '''hp''' lowerCamelCase_ :Optional[int] = {} lowerCamelCase_ :str = None @classmethod def _UpperCamelCase ( cls , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = prefix UpperCAmelCase_ : int = defaults cls.build_naming_info() @staticmethod def _UpperCamelCase ( snake_case_ , snake_case_ ): '''simple docstring''' if len(snake_case_ ) == 0: return "" UpperCAmelCase_ : Any = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(snake_case_ ) + 1 ): UpperCAmelCase_ : str = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCAmelCase_ : Dict = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(snake_case_ ): UpperCAmelCase_ : Any = '' while integer != 0: UpperCAmelCase_ : str = chr(ord('A' ) + integer % 1_0 ) + s integer //= 1_0 return s UpperCAmelCase_ : Optional[int] = 0 while True: UpperCAmelCase_ : Tuple = word + '#' + int_to_alphabetic(snake_case_ ) if sword in info["reverse_short_word"]: continue else: UpperCAmelCase_ : Optional[Any] = sword break UpperCAmelCase_ : Union[str, Any] = short_word UpperCAmelCase_ : str = word return short_word @staticmethod def _UpperCamelCase ( snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = param_name.split('_' ) UpperCAmelCase_ : Tuple = [TrialShortNamer.shortname_for_word(snake_case_ , snake_case_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCAmelCase_ : List[str] = ['', '_'] for separator in separators: UpperCAmelCase_ : str = separator.join(snake_case_ ) if shortname not in info["reverse_short_param"]: UpperCAmelCase_ : Dict = shortname UpperCAmelCase_ : str = param_name return shortname return param_name @staticmethod def _UpperCamelCase ( snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = TrialShortNamer.shortname_for_key(snake_case_ , snake_case_ ) UpperCAmelCase_ : Optional[int] = short_name UpperCAmelCase_ : List[str] = param_name @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' if cls.NAMING_INFO is not None: return UpperCAmelCase_ : Any = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } UpperCAmelCase_ : Union[str, Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(snake_case_ , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = info @classmethod def _UpperCamelCase ( cls , snake_case_ ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None UpperCAmelCase_ : Any = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCAmelCase_ : Dict = cls.NAMING_INFO['short_param'][k] if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Tuple = 1 if v else 0 UpperCAmelCase_ : Dict = '' if isinstance(snake_case_ , (int, float) ) else '-' UpperCAmelCase_ : str = F'''{key}{sep}{v}''' name.append(snake_case_ ) return "_".join(snake_case_ ) @classmethod def _UpperCamelCase ( cls , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCAmelCase_ : List[Any] = [] else: UpperCAmelCase_ : List[Any] = repr.split('_' ) UpperCAmelCase_ : Optional[Any] = {} for value in values: if "-" in value: UpperCAmelCase_ , UpperCAmelCase_ : Dict = value.split('-' ) else: UpperCAmelCase_ : Union[str, Any] = re.sub('[0-9.]' , '' , snake_case_ ) UpperCAmelCase_ : List[Any] = float(re.sub('[^0-9.]' , '' , snake_case_ ) ) UpperCAmelCase_ : Optional[int] = cls.NAMING_INFO['reverse_short_param'][p_k] UpperCAmelCase_ : Tuple = p_v for k in cls.DEFAULTS: if k not in parameters: UpperCAmelCase_ : Optional[Any] = cls.DEFAULTS[k] return parameters
274
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[str, Any] = 1 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = None ): '''simple docstring''' self.set_timesteps(snake_case_ ) # standard deviation of the initial noise distribution UpperCAmelCase_ : Union[str, Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase_ : int = 4 # running values UpperCAmelCase_ : str = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = num_inference_steps UpperCAmelCase_ : int = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase_ : Tuple = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase_ : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase_ : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase_ : Dict = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase_ : str = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase_ : str = timesteps.to(snake_case_ ) UpperCAmelCase_ : Any = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCAmelCase_ : Any = (self.timesteps == timestep).nonzero().item() UpperCAmelCase_ : Optional[Any] = timestep_index + 1 UpperCAmelCase_ : Dict = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case_ ) if len(self.ets ) == 1: UpperCAmelCase_ : Tuple = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase_ : List[str] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCAmelCase_ : Union[str, Any] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase_ : Union[str, Any] = self._get_prev_sample(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def _UpperCamelCase ( self , snake_case_ , *snake_case_ , **snake_case_ ): '''simple docstring''' return sample def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = self.alphas[timestep_index] UpperCAmelCase_ : Union[str, Any] = self.betas[timestep_index] UpperCAmelCase_ : Any = self.alphas[prev_timestep_index] UpperCAmelCase_ : Dict = self.betas[prev_timestep_index] UpperCAmelCase_ : List[Any] = (sample - sigma * ets) / max(snake_case_ , 1E-8 ) UpperCAmelCase_ : Tuple = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
274
1
from math import pow, sqrt def _snake_case ( *lowerCAmelCase : float ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
18
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" ) UpperCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
346
0
def UpperCamelCase( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if not (isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) snake_case_ = len(lowercase_ ) snake_case_ = len(lowercase_ ) snake_case_ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] snake_case_ = 0 snake_case_ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: snake_case_ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: snake_case_ = i snake_case_ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
354
import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase_ = logging.getLogger(__name__) class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Optional[int] = 'masked_bert' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase="topK" , lowerCamelCase="constant" , lowerCamelCase=0.0 , **lowerCamelCase , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = pruning_method snake_case_ = mask_init snake_case_ = mask_scale
34
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = [[1, 2, 4], [1, 2, 3, 4]] A__ = DisjunctiveConstraint(lowercase ) self.assertTrue(isinstance(dc.token_ids , lowercase ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase ): DisjunctiveConstraint(lowercase ) # fails here def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = [[1, 2, 3], [1, 2, 4]] A__ = DisjunctiveConstraint(lowercase ) A__ , A__ , A__ = dc.update(1 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) A__ = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(3 ) A__ = stepped is True and completed is True and reset is False self.assertTrue(lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A__ = DisjunctiveConstraint(lowercase ) A__ , A__ , A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A__ , A__ , A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A__ , A__ , A__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A__ , A__ , A__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A__ , A__ , A__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : Dict = list(range(len(_UpperCamelCase ) ) ) snake_case_ : Dict = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Dict = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
0
from __future__ import annotations def lowerCamelCase_ ( _a ): """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
363
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
211
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = KandinskyInpaintPipeline _SCREAMING_SNAKE_CASE : int = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _SCREAMING_SNAKE_CASE : List[Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _SCREAMING_SNAKE_CASE : List[str] = False @property def _lowerCamelCase ( self ): """simple docstring""" return 32 @property def _lowerCamelCase ( self ): """simple docstring""" return 32 @property def _lowerCamelCase ( self ): """simple docstring""" return self.time_input_dim @property def _lowerCamelCase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self ): """simple docstring""" return 100 @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowercase : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _lowercase : Dict = MultilingualCLIP(_UpperCamelCase ) _lowercase : str = text_encoder.eval() return text_encoder @property def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowercase : int = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _lowercase : Optional[int] = UNetaDConditionModel(**_UpperCamelCase ) return model @property def _lowerCamelCase ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowercase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.dummy_text_encoder _lowercase : Dict = self.dummy_tokenizer _lowercase : List[str] = self.dummy_unet _lowercase : Tuple = self.dummy_movq _lowercase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCamelCase , ) _lowercase : Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" _lowercase : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image _lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Optional[int] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask _lowercase : Optional[int] = np.ones((64, 64) , dtype=np.floataa ) _lowercase : Optional[Any] = 0 if str(_UpperCamelCase ).startswith("mps" ): _lowercase : Optional[int] = torch.manual_seed(_UpperCamelCase ) else: _lowercase : List[str] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : List[str] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = "cpu" _lowercase : Any = self.get_dummy_components() _lowercase : Tuple = self.pipeline_class(**_UpperCamelCase ) _lowercase : int = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : List[Any] = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) _lowercase : str = output.images _lowercase : Optional[int] = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] _lowercase : Dict = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _lowercase : Union[str, Any] = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) _lowercase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _lowercase : Optional[Any] = np.ones((768, 768) , dtype=np.floataa ) _lowercase : Dict = 0 _lowercase : Dict = "a hat" _lowercase : Any = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) _lowercase : List[str] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) _lowercase : int = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) _lowercase , _lowercase : List[str] = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _lowercase : str = pipeline( _UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) _lowercase : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
250
'''simple docstring''' def _A ( snake_case , snake_case ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
250
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowerCamelCase_ = TypeVar('''T''') lowerCamelCase_ = Union[List[T], Tuple[T, ...]] lowerCamelCase_ = Union[T, List[T], Dict[str, T]] lowerCamelCase_ = Union[str, bytes, os.PathLike]
367
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } lowerCamelCase_ = {'''bert_for_seq_generation''': 512} class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Tuple="<::::>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : List[str] = vocab_file UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : List[Any] = None return state def __setstate__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
253
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A : '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : str = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" A__ = device A__ = CLIPTokenizerFast.from_pretrained(__lowerCAmelCase ) A__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] A__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] A__ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A__ = torchvision.transforms.Resize(2_24 ) A__ = torchvision.transforms.CenterCrop(2_24 ) def a_ ( self : Dict , __lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = self.resize(__lowerCAmelCase ) A__ = self.center_crop(__lowerCAmelCase ) A__ = self.normalize(__lowerCAmelCase ) return images def __call__( self : Dict , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Any=None , **__lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" A__ = self.tokenizer(text=__lowerCAmelCase , **__lowerCAmelCase ) A__ = self.preprocess_img(__lowerCAmelCase ) A__ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A (nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : Any=10 , __lowerCAmelCase : Union[str, Any]=0.0_1 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : int=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : str=False , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[Any]="image" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : int=False , __lowerCAmelCase : int=False , ) -> None: """simple docstring""" super().__init__() A__ = None A__ = device if device else get_device() if vqgan: A__ = vqgan else: A__ = load_vqgan(self.device , conf_path=__lowerCAmelCase , ckpt_path=__lowerCAmelCase ) self.vqgan.eval() if clip: A__ = clip else: A__ = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) A__ = ProcessorGradientFlow(device=self.device ) A__ = iterations A__ = lr A__ = log A__ = make_grid A__ = return_val A__ = quantize A__ = self.vqgan.decoder.z_shape def a_ ( self : List[Any] , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[Any]=5 , __lowerCAmelCase : Optional[int]=True ) -> Optional[int]: """simple docstring""" A__ = [] if output_path is None: A__ = """./animation.gif""" if input_path is None: A__ = self.save_path A__ = sorted(glob(input_path + """/*""" ) ) if not len(__lowerCAmelCase ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(__lowerCAmelCase ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) A__ = total_duration / len(__lowerCAmelCase ) A__ = [frame_duration] * len(__lowerCAmelCase ) if extend_frames: A__ = 1.5 A__ = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(__lowerCAmelCase ) ) imageio.mimsave(__lowerCAmelCase , __lowerCAmelCase , duration=__lowerCAmelCase ) print(f'gif saved to {output_path}' ) def a_ ( self : int , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Any=None ) -> List[Any]: """simple docstring""" if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError A__ = preprocess(Image.open(__lowerCAmelCase ) , target_image_size=2_56 ).to(self.device ) A__ = preprocess_vqgan(__lowerCAmelCase ) A__ , *A__ = self.vqgan.encode(__lowerCAmelCase ) return z def a_ ( self : Optional[Any] , __lowerCAmelCase : Any ) -> Tuple: """simple docstring""" A__ = self.latent.detach().requires_grad_() A__ = base_latent + transform_vector if self.quantize: A__ , *A__ = self.vqgan.quantize(__lowerCAmelCase ) else: A__ = trans_latent return self.vqgan.decode(__lowerCAmelCase ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" A__ = self.clip_preprocessor(text=__lowerCAmelCase , images=__lowerCAmelCase , return_tensors="""pt""" , padding=__lowerCAmelCase ) A__ = self.clip(**__lowerCAmelCase ) A__ = clip_outputs.logits_per_image if weights is not None: A__ = similarity_logits * weights return similarity_logits.sum() def a_ ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self._get_clip_similarity(pos_prompts["""prompts"""] , __lowerCAmelCase , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: A__ = self._get_clip_similarity(neg_prompts["""prompts"""] , __lowerCAmelCase , weights=neg_prompts["""weights"""] ) else: A__ = torch.tensor([1] , device=self.device ) A__ = -torch.log(__lowerCAmelCase ) + torch.log(__lowerCAmelCase ) return loss def a_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str: """simple docstring""" A__ = torch.randn_like(self.latent , requires_grad=__lowerCAmelCase , device=self.device ) A__ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A__ = self._add_vector(__lowerCAmelCase ) A__ = loop_post_process(__lowerCAmelCase ) A__ = self._get_CLIP_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print("""CLIP loss""" , __lowerCAmelCase ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=__lowerCAmelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ) -> Dict: """simple docstring""" wandb.init(reinit=__lowerCAmelCase , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: A__ = Image.open(__lowerCAmelCase ) A__ = image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(__lowerCAmelCase ) ) def a_ ( self : List[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if not prompts: return [] A__ = [] A__ = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(__lowerCAmelCase , (tuple, list) ): A__ = prompt[0] A__ = float(prompt[1] ) elif ":" in prompt: A__ , A__ = prompt.split(""":""" ) A__ = float(__lowerCAmelCase ) else: A__ = prompt A__ = 1.0 processed_prompts.append(__lowerCAmelCase ) weights.append(__lowerCAmelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCAmelCase , device=self.device ), } def a_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=None , ) -> Dict: """simple docstring""" if image_path: A__ = self._get_latent(__lowerCAmelCase ) else: A__ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert pos_prompts, "You must provide at least one positive prompt." A__ = self.process_prompts(__lowerCAmelCase ) A__ = self.process_prompts(__lowerCAmelCase ) if save_final and save_path is None: A__ = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) else: A__ = save_path + """_""" + get_timestamp() os.makedirs(__lowerCAmelCase ) A__ = save_path A__ = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(__lowerCAmelCase ) ) A__ = loop_post_process(__lowerCAmelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ): if show_intermediate: show_pil(__lowerCAmelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(__lowerCAmelCase )} ) if show_final: show_pil(__lowerCAmelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}_final.png' ) )
274
def __lowerCamelCase ( __a :str ) -> list: """simple docstring""" A__ = [0] * len(__a ) for i in range(1 , len(__a ) ): # use last results for better performance - dynamic programming A__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: A__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 A__ = j return prefix_result def __lowerCamelCase ( __a :str ) -> int: """simple docstring""" return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
274
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): lowercase = time.time() locka.acquire(lowerCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> Dict: '''simple docstring''' lowercase = """a""" * 1_0_0_0 + """.lock""" lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): locka.acquire(0 )
32
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
70
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase__ : List[str] = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" if args.student_type == "roberta": a = False elif args.student_type == "gpt2": a = False def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if args.student_type == "roberta": a = False def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" a = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''', action='''store_true''', help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''', type=lowerCamelCase__, required=lowerCamelCase__, help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''', type=lowerCamelCase__, required=lowerCamelCase__, help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''', ) parser.add_argument( '''--student_type''', type=lowerCamelCase__, choices=['''distilbert''', '''roberta''', '''gpt2'''], required=lowerCamelCase__, help='''The student type (DistilBERT, RoBERTa).''', ) parser.add_argument('''--student_config''', type=lowerCamelCase__, required=lowerCamelCase__, help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''', default=lowerCamelCase__, type=lowerCamelCase__, help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''', choices=['''bert''', '''roberta''', '''gpt2'''], required=lowerCamelCase__, help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''', type=lowerCamelCase__, required=lowerCamelCase__, help='''The teacher model.''' ) parser.add_argument('''--temperature''', default=2.0, type=lowerCamelCase__, help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''', default=0.5, type=lowerCamelCase__, help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''', default=0.0, type=lowerCamelCase__, help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''', ) parser.add_argument('''--alpha_clm''', default=0.5, type=lowerCamelCase__, help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''', default=0.0, type=lowerCamelCase__, help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''', default=0.0, type=lowerCamelCase__, help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''', action='''store_true''', help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''', default=0.15, type=lowerCamelCase__, help='''Proportion of tokens for which we need to make a prediction.''', ) parser.add_argument('''--word_mask''', default=0.8, type=lowerCamelCase__, help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''', default=0.1, type=lowerCamelCase__, help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''', default=0.1, type=lowerCamelCase__, help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''', default=0.7, type=lowerCamelCase__, help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''', ) parser.add_argument('''--token_counts''', type=lowerCamelCase__, help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''', action='''store_true''', help='''If true, compute the distillation loss only the [MLM] prediction distribution.''', ) parser.add_argument( '''--freeze_pos_embs''', action='''store_true''', help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''', ) parser.add_argument( '''--freeze_token_type_embds''', action='''store_true''', help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''', ) parser.add_argument('''--n_epoch''', type=lowerCamelCase__, default=3, help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''', type=lowerCamelCase__, default=5, help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''', action='''store_false''', help='''If true, group sequences that have similar length into the same batch. Default is true.''', ) parser.add_argument( '''--gradient_accumulation_steps''', type=lowerCamelCase__, default=5_0, help='''Gradient accumulation for larger training batches.''', ) parser.add_argument('''--warmup_prop''', default=0.05, type=lowerCamelCase__, help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''', default=0.0, type=lowerCamelCase__, help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''', default=5e-4, type=lowerCamelCase__, help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''', default=1e-6, type=lowerCamelCase__, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''', default=5.0, type=lowerCamelCase__, help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''', default=0.02, type=lowerCamelCase__, help='''Random initialization range.''' ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=lowerCamelCase__, default='''O1''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_gpu''', type=lowerCamelCase__, default=1, help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''', type=lowerCamelCase__, default=-1, help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''', type=lowerCamelCase__, default=5_6, help='''Random seed''' ) parser.add_argument('''--log_interval''', type=lowerCamelCase__, default=5_0_0, help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''', type=lowerCamelCase__, default=4_0_0_0, help='''Checkpoint interval.''' ) a = parser.parse_args() sanity_checks(lowerCamelCase__ ) # ARGS # init_gpu_params(lowerCamelCase__ ) set_seed(lowerCamelCase__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path, '''parameters.json''' ), '''w''' ) as f: json.dump(vars(lowerCamelCase__ ), lowerCamelCase__, indent=4 ) git_log(args.dump_path ) a , a , a = MODEL_CLASSES[args.student_type] a , a , a = MODEL_CLASSES[args.teacher_type] # TOKENIZER # a = teacher_tokenizer_class.from_pretrained(args.teacher_name ) a = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): a = tokenizer.all_special_tokens.index(lowerCamelCase__ ) a = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) a = special_tok_ids a = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file, '''rb''' ) as fp: a = pickle.load(lowerCamelCase__ ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts, '''rb''' ) as fp: a = pickle.load(lowerCamelCase__ ) a = np.maximum(lowerCamelCase__, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): a = 0.0 # do not predict special tokens a = torch.from_numpy(lowerCamelCase__ ) else: a = None a = LmSeqsDataset(params=lowerCamelCase__, data=lowerCamelCase__ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) a = student_config_class.from_pretrained(args.student_config ) a = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) a = student_model_class.from_pretrained(args.student_pretrained_weights, config=lowerCamelCase__ ) else: a = student_model_class(lowerCamelCase__ ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # a = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=lowerCamelCase__ ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCamelCase__, lowerCamelCase__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCamelCase__, lowerCamelCase__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() a = Distiller( params=lowerCamelCase__, dataset=lowerCamelCase__, token_probs=lowerCamelCase__, student=lowerCamelCase__, teacher=lowerCamelCase__ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
350
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ) -> str: lowercase_ = tempfile.mkdtemp() # fmt: off lowercase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase_ = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase_ = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowercase_ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Dict ) -> Optional[int]: lowercase_ = self.get_tokenizer() lowercase_ = self.get_image_processor() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowercase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase_ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) lowercase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.prepare_image_inputs() lowercase_ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) lowercase_ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : List[str] ) -> Optional[int]: lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''lower newer''' lowercase_ = processor(text=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''lower newer''' lowercase_ = self.prepare_image_inputs() lowercase_ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(SCREAMING_SNAKE_CASE_ ): processor() def _lowercase ( self : Tuple ) -> Optional[Any]: lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''lower newer''' lowercase_ = self.prepare_image_inputs() lowercase_ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
30
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A): """simple docstring""" _a = u for i in range(1 , __A): _a = temp * (u - i) return temp def lowerCAmelCase (): """simple docstring""" _a = int(input('''enter the numbers of values: ''')) _a = [] for _ in range(__A): y.append([]) for i in range(__A): for j in range(__A): y[i].append(__A) _a = 0 print('''enter the values of parameters in a list: ''') _a = list(map(__A , input().split())) print('''enter the values of corresponding parameters: ''') for i in range(__A): _a = float(input()) _a = int(input('''enter the value to interpolate: ''')) _a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A): for j in range(n - i): _a = y[j + 1][i - 1] - y[j][i - 1] _a = y[0][0] for i in range(1 , __A): summ += (ucal(__A , __A) * y[0][i]) / math.factorial(__A) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
211
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True ) -> Optional[int]: model.train() UpperCamelCase_ = model(UpperCamelCase_ ) UpperCamelCase_ = F.mse_loss(UpperCamelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=False ) -> int: set_seed(42 ) UpperCamelCase_ = RegressionModel() UpperCamelCase_ = deepcopy(UpperCamelCase_ ) UpperCamelCase_ = RegressionDataset(length=80 ) UpperCamelCase_ = DataLoader(UpperCamelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCamelCase_ = AdamW(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCamelCase_ = LambdaLR(UpperCamelCase_ , lr_lambda=lambda UpperCamelCase_ : epoch**0.65 ) UpperCamelCase_ = LambdaLR(UpperCamelCase_ , lr_lambda=lambda UpperCamelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ ) # Use a single batch UpperCamelCase_ , UpperCamelCase_ = next(iter(UpperCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: # Sync grads step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase_ = ddp_input[torch.randperm(len(UpperCamelCase_ ) )] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: # Test on distributed setup that context manager behaves properly UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ ) # Use a single batch UpperCamelCase_ , UpperCamelCase_ = next(iter(UpperCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: # Sync grads step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase_ = ddp_input[torch.randperm(len(UpperCamelCase_ ) )] def lowerCAmelCase_ ( UpperCamelCase_=False , UpperCamelCase_=False ) -> Tuple: UpperCamelCase_ = Accelerator( split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ ) for iteration, batch in enumerate(UpperCamelCase_ ): UpperCamelCase_ , UpperCamelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase_ = ddp_input[torch.randperm(len(UpperCamelCase_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( UpperCamelCase_=False , UpperCamelCase_=False ) -> List[str]: UpperCamelCase_ = Accelerator( split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ , UpperCamelCase_ ) for iteration, batch in enumerate(UpperCamelCase_ ): UpperCamelCase_ , UpperCamelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' UpperCamelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase_ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = Accelerator() UpperCamelCase_ = RegressionDataset(length=80 ) UpperCamelCase_ = DataLoader(UpperCamelCase_ , batch_size=16 ) UpperCamelCase_ = RegressionDataset(length=96 ) UpperCamelCase_ = DataLoader(UpperCamelCase_ , batch_size=16 ) UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase_ ) if iteration < len(UpperCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase_ ) if batch_num < len(UpperCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> Any: UpperCamelCase_ = Accelerator() UpperCamelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(UpperCamelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(UpperCamelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase_ , UpperCamelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if number > 0: raise ValueError('''input must be a negative integer''' ) A : Dict = len(bin(snake_case__ )[3:] ) A : List[Any] = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] A : List[Any] = ( ( '1' + '0' * (binary_number_length - len(snake_case__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
3
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__) class _A ( __magic_name__): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True}) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'''text''': Value('''string''')}) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'''labels''': ClassLabel}) SCREAMING_SNAKE_CASE : str = "text" SCREAMING_SNAKE_CASE : str = "labels" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) SCREAMING_SNAKE_CASE_ : List[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.label_schema.copy() SCREAMING_SNAKE_CASE_ : List[Any] = features[self.label_column] SCREAMING_SNAKE_CASE_ : List[Any] = label_schema return task_template @property def UpperCAmelCase ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
253
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports A: Any = "\nimport os\n" A: Optional[Any] = "\ndef foo():\n import os\n return False\n" A: str = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" A: Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" A: List[Any] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" A: Union[str, Any] = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" A: Dict = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" A: Union[str, Any] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" A: Dict = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" A: Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" A: str = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , __lowerCAmelCase ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ): UpperCAmelCase : Any = os.path.join(__lowerCAmelCase , """test_file.py""" ) with open(__lowerCAmelCase , """w""" ) as _tmp_file: _tmp_file.write(__lowerCAmelCase ) UpperCAmelCase : Any = get_imports(__lowerCAmelCase ) assert parsed_imports == ["os"]
350
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @slow @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : Tuple = bertabert.config.encoder.vocab_size UpperCAmelCase : int = tokenizer.sep_token_id UpperCAmelCase : Dict = tokenizer.cls_token_id UpperCAmelCase : int = 128 UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase : Optional[int] = train_dataset.select(range(32 ) ) UpperCAmelCase : int = val_dataset.select(range(16 ) ) UpperCAmelCase : List[str] = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : str = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) UpperCAmelCase : Optional[Any] = inputs.input_ids UpperCAmelCase : Union[str, Any] = inputs.attention_mask UpperCAmelCase : Union[str, Any] = outputs.input_ids UpperCAmelCase : Any = outputs.input_ids.copy() UpperCAmelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCAmelCase : List[Any] = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = pred.label_ids UpperCAmelCase : Tuple = pred.predictions # all unnecessary tokens are removed UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : Dict = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy="""steps""" , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : List[str] = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
76
0
def SCREAMING_SNAKE_CASE_ ( __A : list , __A : list ) -> float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__A , __A ) ) ) def SCREAMING_SNAKE_CASE_ ( __A : list[float] ) -> None: """simple docstring""" if point: if isinstance(__A , __A ): for item in point: if not isinstance(__A , (int, float) ): a_ : Tuple = ( 'Expected a list of numbers as input, found ' F"""{type(__A ).__name__}""" ) raise TypeError(__A ) else: a_ : Union[str, Any] = F"""Expected a list of numbers as input, found {type(__A ).__name__}""" raise TypeError(__A ) else: raise ValueError('Missing an input' ) def SCREAMING_SNAKE_CASE_ ( __A : list , __A : list ) -> float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__A , __A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = ['''pixel_values'''] def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : str = size if size is not None else {'shortest_edge': 2_5_6} a_ : Any = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = do_resize a_ : Dict = size a_ : Optional[Any] = resample a_ : Optional[int] = do_center_crop a_ : Dict = crop_size a_ : int = do_rescale a_ : int = rescale_factor a_ : Tuple = do_normalize a_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a_ : Tuple = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Union[str, Any]: a_ : List[str] = do_resize if do_resize is not None else self.do_resize a_ : Dict = size if size is not None else self.size a_ : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = resample if resample is not None else self.resample a_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : int = crop_size if crop_size is not None else self.crop_size a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ) a_ : Dict = do_rescale if do_rescale is not None else self.do_rescale a_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Any = do_normalize if do_normalize is not None else self.do_normalize a_ : str = image_mean if image_mean is not None else self.image_mean a_ : Dict = image_std if image_std is not None else self.image_std a_ : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a_ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: a_ : str = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: a_ : int = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: a_ : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: a_ : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] a_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] a_ : Tuple = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
32
1
from typing import List import numpy as np def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : int = {key: len(SCREAMING_SNAKE_CASE ) for key, value in gen_kwargs.items() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) A_ : int = max(lists_lengths.values() , default=0 ) return max(1 , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = [] for group_idx in range(SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break A_ : Union[str, Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 A_ : List[Any] = range(SCREAMING_SNAKE_CASE , start + num_shards_to_add ) shards_indices_per_group.append(SCREAMING_SNAKE_CASE ) return shards_indices_per_group def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[int] = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) if num_shards == 1: return [dict(SCREAMING_SNAKE_CASE )] else: A_ : Any = _distribute_shards(num_shards=SCREAMING_SNAKE_CASE , max_num_jobs=SCREAMING_SNAKE_CASE ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(SCREAMING_SNAKE_CASE ) ) ] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , SCREAMING_SNAKE_CASE ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = {len(SCREAMING_SNAKE_CASE ) for value in gen_kwargs.values() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} A_ : List[Any] = {} for size in list_sizes: A_ : List[Any] = list(range(SCREAMING_SNAKE_CASE ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes A_ : Tuple = dict(SCREAMING_SNAKE_CASE ) for key, value in shuffled_kwargs.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = [value[i] for i in indices_per_size[len(SCREAMING_SNAKE_CASE )]] return shuffled_kwargs
65
from collections import deque from .hash_table import HashTable class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : List[str] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.values[key] def _snake_case ( self )->List[Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )->Any: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
65
1
"""simple docstring""" from math import isqrt, loga def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Tuple = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, _lowercase, _lowercase ): snake_case_ :Dict = False return [i for i in range(2, _lowercase ) if is_prime[i]] def A_ ( _lowercase = 800800, _lowercase = 800800 ): '''simple docstring''' snake_case_ :Union[str, Any] = degree * loga(_lowercase ) snake_case_ :Tuple = int(_lowercase ) snake_case_ :List[str] = calculate_prime_numbers(_lowercase ) snake_case_ :Union[str, Any] = 0 snake_case_ :List[str] = 0 snake_case_ :Optional[Any] = len(_lowercase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
66
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
'''simple docstring''' __a = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
360
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __a = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , ) -> List[Any]: output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ) -> int: snake_case__ : str = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case__ : List[Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: snake_case__ : Tuple = """cpu""" snake_case__ : int = Path(_lowerCAmelCase ) # VAE DECODER snake_case__ : List[str] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) snake_case__ : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part snake_case__ : Dict = vae_decoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , 25 , 25 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
43
0
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
1
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: random.seed(__A ) np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # ^^ safe to call this function even if cuda is not available class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 0.9999 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = False , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = 2 / 3 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" if isinstance(lowerCAmelCase_ , torch.nn.Module ): _snake_case = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) _snake_case = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _snake_case = True if kwargs.get('max_value' , lowerCAmelCase_ ) is not None: _snake_case = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _snake_case = kwargs['max_value'] if kwargs.get('min_value' , lowerCAmelCase_ ) is not None: _snake_case = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _snake_case = kwargs['min_value'] _snake_case = list(lowerCAmelCase_ ) _snake_case = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowerCAmelCase_ ) is not None: _snake_case = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs['device'] ) _snake_case = None _snake_case = decay _snake_case = min_decay _snake_case = update_after_step _snake_case = use_ema_warmup _snake_case = inv_gamma _snake_case = power _snake_case = 0 _snake_case = None # set in `step()` _snake_case = model_cls _snake_case = model_config @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) _snake_case = model_cls.from_pretrained(lowerCAmelCase_ ) _snake_case = cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _snake_case = self.model_cls.from_config(self.model_config ) _snake_case = self.state_dict() state_dict.pop('shadow_params' , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _snake_case = 1 - (1 + step / self.inv_gamma) ** -self.power else: _snake_case = (1 + step) / (10 + step) _snake_case = min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay _snake_case = max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if isinstance(lowerCAmelCase_ , torch.nn.Module ): _snake_case = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) _snake_case = parameters.parameters() _snake_case = list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _snake_case = self.get_decay(self.optimization_step ) _snake_case = decay _snake_case = 1 - decay _snake_case = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _snake_case = deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" _snake_case = [ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowerCamelCase ( self ): """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = copy.deepcopy(lowerCAmelCase_ ) _snake_case = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _snake_case = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError('Invalid min_decay' ) _snake_case = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError('Invalid optimization_step' ) _snake_case = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError('Invalid update_after_step' ) _snake_case = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError('Invalid use_ema_warmup' ) _snake_case = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _snake_case = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _snake_case = state_dict.get('shadow_params' , lowerCAmelCase_ ) if shadow_params is not None: _snake_case = shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
42
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , a : int , a : Optional[int]=13 , a : Optional[int]=3 , a : int=224 , a : Optional[int]=30 , a : int=400 , a : Union[str, Any]=True , a : int=None , a : Tuple=True , a : Tuple=[0.5, 0.5, 0.5] , a : Optional[int]=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : str = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : int = do_normalize SCREAMING_SNAKE_CASE : Tuple = image_mean SCREAMING_SNAKE_CASE : Tuple = image_std def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ViTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = EfficientFormerImageProcessorTester(self ) @property def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : str = image_processor(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processor(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
76
0
def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 while i * i <= n: SCREAMING_SNAKE_CASE__ : Any = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : Tuple = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
191
def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("String lengths must match!" ) SCREAMING_SNAKE_CASE__ : Dict = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
191
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCamelCase__ = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCAmelCase_ ( __A = "dhaka", __A = 5 ) -> int: '''simple docstring''' UpperCAmelCase__ = min(__A, 50 ) # Prevent abuse! UpperCAmelCase__ = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } UpperCAmelCase__ = requests.get("https://www.google.com/search", params=__A, headers=__A ) UpperCAmelCase__ = BeautifulSoup(html.text, "html.parser" ) UpperCAmelCase__ = "".join( re.findall(r"AF_initDataCallback\(([^<]+)\);", str(soup.select("script" ) ) ) ) UpperCAmelCase__ = json.dumps(__A ) UpperCAmelCase__ = json.loads(__A ) UpperCAmelCase__ = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",", __A, ) if not matched_google_image_data: return 0 UpperCAmelCase__ = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]", "", str(__A ), ) UpperCAmelCase__ = re.findall( r"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]", __A, ) for index, fixed_full_res_image in enumerate(__A ): if index >= max_images: return index UpperCAmelCase__ = bytes(__A, "ascii" ).decode( "unicode-escape" ) UpperCAmelCase__ = bytes(__A, "ascii" ).decode( "unicode-escape" ) UpperCAmelCase__ = urllib.request.build_opener() UpperCAmelCase__ = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__A ) UpperCAmelCase__ = f"""query_{query.replace(" ", "_" )}""" if not os.path.exists(__A ): os.makedirs(__A ) urllib.request.urlretrieve( # noqa: S310 __A, f"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: UpperCamelCase__ = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
65
import math def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = n while left <= right: UpperCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ = mid - 1 else: UpperCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
1
from collections import deque class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> None: """simple docstring""" UpperCAmelCase = process_name # process name UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase = arrival_time UpperCAmelCase = burst_time # remaining burst time UpperCAmelCase = 0 # total time of the process wait in ready queue UpperCAmelCase = 0 # time from arrival time to completion time class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , ) -> None: """simple docstring""" # total number of mlfq's queues UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase = time_slices # unfinished process is in this ready_queue UpperCAmelCase = queue # current time UpperCAmelCase = current_time # finished process is in this sequence queue UpperCAmelCase = deque() def snake_case_ ( self ) -> list[str]: """simple docstring""" UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case_ ( self , _snake_case ) -> list[int]: """simple docstring""" UpperCAmelCase = [] for i in range(len(_snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case_ ( self , _snake_case ) -> list[int]: """simple docstring""" UpperCAmelCase = [] for i in range(len(_snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case_ ( self , _snake_case ) -> list[int]: """simple docstring""" UpperCAmelCase = [] for i in range(len(_snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case_ ( self , _snake_case ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case_ ( self , _snake_case ) -> deque[Process]: """simple docstring""" UpperCAmelCase = deque() # sequence deque of finished process while len(_snake_case ) != 0: UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase = 0 # set the process's turnaround time because it is finished UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case_ ( self , _snake_case , _snake_case ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case ) ): UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase = 0 # set the finish time UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case_ ( self ) -> deque[Process]: """simple docstring""" # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): UpperCAmelCase , UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __magic_name__ = Process("P1", 0, 53) __magic_name__ = Process("P2", 0, 17) __magic_name__ = Process("P3", 0, 68) __magic_name__ = Process("P4", 0, 24) __magic_name__ = 3 __magic_name__ = [17, 25] __magic_name__ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) __magic_name__ = Process("P1", 0, 53) __magic_name__ = Process("P2", 0, 17) __magic_name__ = Process("P3", 0, 68) __magic_name__ = Process("P4", 0, 24) __magic_name__ = 3 __magic_name__ = [17, 25] __magic_name__ = deque([Pa, Pa, Pa, Pa]) __magic_name__ = MLFQ(number_of_queues, time_slices, queue, 0) __magic_name__ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
152
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCAmelCase ( A__: List[Any] , A__: Tuple ): '''simple docstring''' UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' UpperCAmelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('''RGB''' ) UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase = transform(A__ ).unsqueeze(0 ).to(A__ ) return image def _lowerCAmelCase ( A__: Optional[int] ): '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , A__ ) if "blocks" in key: UpperCAmelCase = re.sub(r'''blocks''' , '''layers''' , A__ ) if "attn" in key: UpperCAmelCase = re.sub(r'''attn''' , '''self_attn''' , A__ ) if "norm1" in key: UpperCAmelCase = re.sub(r'''norm1''' , '''layer_norm1''' , A__ ) if "norm2" in key: UpperCAmelCase = re.sub(r'''norm2''' , '''layer_norm2''' , A__ ) if "encoder.norm" in key: UpperCAmelCase = re.sub(r'''encoder.norm''' , '''post_layernorm''' , A__ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , A__ ) if "encoder.pos_embed" in key: UpperCAmelCase = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , A__ ) if "encoder.cls_token" in key: UpperCAmelCase = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , A__ ) if "self_attn" in key: UpperCAmelCase = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , A__ ) return key @torch.no_grad() def _lowerCAmelCase ( A__: List[Any] , A__: Any=None ): '''simple docstring''' if config_path is not None: UpperCAmelCase = BlipConfig.from_pretrained(A__ ) else: UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCAmelCase = BlipForConditionalGeneration(A__ ).eval() UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' UpperCAmelCase = blip_decoder(pretrained=A__ , image_size=384 , vit='''base''' ) UpperCAmelCase = pt_model.eval() UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value hf_model.load_state_dict(A__ ) UpperCAmelCase = 384 UpperCAmelCase = load_demo_image(image_size=A__ , device='''cpu''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids UpperCAmelCase = hf_model.generate(A__ , A__ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCAmelCase = hf_model.generate(A__ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(A__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) UpperCAmelCase = blip_vqa(pretrained=A__ , image_size=A__ , vit='''base''' ) vqa_model.eval() UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value UpperCAmelCase = BlipForQuestionAnswering(A__ ) hf_vqa_model.load_state_dict(A__ ) UpperCAmelCase = ['''How many dogs are in this image?'''] UpperCAmelCase = tokenizer(A__ , return_tensors='''pt''' ).input_ids UpperCAmelCase = hf_vqa_model.generate(A__ , A__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' UpperCAmelCase = blip_itm(pretrained=A__ , image_size=A__ , vit='''base''' ) itm_model.eval() UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(A__ ) UpperCAmelCase = rename_key(A__ ) UpperCAmelCase = value UpperCAmelCase = BlipForImageTextRetrieval(A__ ) UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] UpperCAmelCase = tokenizer( A__ , return_tensors='''pt''' , padding='''max_length''' , truncation=A__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(A__ ) hf_itm_model.eval() UpperCAmelCase = hf_itm_model(A__ , A__ , use_itm_head=A__ ) UpperCAmelCase = hf_itm_model(A__ , A__ , use_itm_head=A__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __magic_name__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
152
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CycleDiffusionPipeline snake_case__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } snake_case__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"}) snake_case__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=0 ) -> Any: __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase__ , "half" ): __SCREAMING_SNAKE_CASE = module.half() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase_ ( self : int ) -> Tuple: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : Dict ) -> List[Any]: return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self : int ) -> str: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) __SCREAMING_SNAKE_CASE = init_image.resize((5_1_2, 5_1_2) ) __SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = "A black colored car" __SCREAMING_SNAKE_CASE = "A blue colored car" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type="np" , ) __SCREAMING_SNAKE_CASE = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) __SCREAMING_SNAKE_CASE = init_image.resize((5_1_2, 5_1_2) ) __SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = "A black colored car" __SCREAMING_SNAKE_CASE = "A blue colored car" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type="np" , ) __SCREAMING_SNAKE_CASE = output.images assert np.abs(image - expected_image ).max() < 2E-2
54
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCamelCase :List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
43
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = ReformerTokenizer UpperCamelCase : int = ReformerTokenizerFast UpperCamelCase : Dict = True UpperCamelCase : Dict = False UpperCamelCase : str = True def _lowercase ( self : Any ) -> str: super().setUp() _a : int = ReformerTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Optional[int] ) -> List[Any]: _a : Any = """<s>""" _a : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: _a : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1000 ) def _lowercase ( self : List[str] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowercase ( self : Dict ) -> str: if not self.test_rust_tokenizer: return _a : Dict = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : Dict = """I was born in 92000, and this is falsé.""" _a : Dict = tokenizer.tokenize(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Any = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) # Simple input _a : Optional[Any] = """This is a simple input""" _a : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] _a : Union[str, Any] = ("""This is a simple input""", """This is a pair""") _a : List[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="""max_length""" , ) def _lowercase ( self : Any ) -> List[Any]: pass def _lowercase ( self : str ) -> str: _a : List[Any] = ReformerTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) _a : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] , ) _a : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _a : str = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _lowercase ( self : str ) -> Dict: return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def _lowercase ( self : List[str] ) -> List[Any]: _a : int = """Hello World!""" _a : Optional[int] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def _lowercase ( self : Optional[int] ) -> Union[str, Any]: _a : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _a : Tuple = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @require_torch @slow def _lowercase ( self : int ) -> Dict: import torch from transformers import ReformerConfig, ReformerModel # Build sequence _a : int = list(self.big_tokenizer.get_vocab().keys() )[:10] _a : Any = """ """.join(UpperCAmelCase__ ) _a : Tuple = self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors="""pt""" ) _a : List[str] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) _a : int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _a : int = encoded_sequence["""input_ids"""].shape _a : int = ReformerModel(UpperCAmelCase__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase__ ) model(**UpperCAmelCase__ ) @slow def _lowercase ( self : str ) -> int: # fmt: off _a : List[Any] = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _a : str = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=UpperCAmelCase__ , sequences=UpperCAmelCase__ , )
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = (KDPMaDiscreteScheduler,) _SCREAMING_SNAKE_CASE = 10 def A ( self : Optional[Any] , **UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def A ( self : Union[str, Any] ): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def A ( self : int ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def A ( self : str ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def A ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.prev_sample UpperCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1E-3 def A ( self : int ): """simple docstring""" if torch_device == "mps": return UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.prev_sample UpperCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 def A ( self : Optional[Any] ): """simple docstring""" if torch_device == "mps": return UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.prev_sample UpperCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if str(SCREAMING_SNAKE_CASE_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
28
'''simple docstring''' import heapq import sys import numpy as np UpperCamelCase = tuple[int, int] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> str: '''simple docstring''' A: Any = [] A: int = set() def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) A: Optional[int] = [] ((A) , (A)): str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((A) , (A)): int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) A: str = [] ((A) , (A)): List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((A) , (A)): Any = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.elements[0][1] def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' ((A) , (A)): Dict = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: # euclidean distance A: List[str] = np.array(__lowercase ) A: Optional[int] = np.array(__lowercase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: # integer division by time variable return consistent_heuristic(__lowercase , __lowercase ) // t def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase ) return ans def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]: A: Union[str, Any] = np.chararray((n, n) ) for i in range(__lowercase ): for j in range(__lowercase ): A: Union[str, Any] = '''*''' for i in range(__lowercase ): for j in range(__lowercase ): if (j, (n - 1) - i) in blocks: A: Optional[Any] = '''#''' A: Tuple = '''-''' A: List[str] = back_pointer[goal] while x != start: ((A) , (A)): Tuple = x # print(x) A: List[str] = '''-''' A: str = back_pointer[x] A: Dict = '''-''' for i in range(__lowercase ): for j in range(__lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A: List[str] = back_pointer[goal] while x != start: print(__lowercase , end=''' ''' ) A: Optional[int] = back_pointer[x] print(__lowercase ) sys.exit() def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: for itera in range(__lowercase ): open_list[itera].remove_element(__lowercase ) # print("s", s) # print("j", j) ((A) , (A)): Tuple = s A: Optional[Any] = (x - 1, y) A: str = (x + 1, y) A: List[Any] = (x, y + 1) A: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowercase ) A: int = -1 A: int = float('''inf''' ) if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1: A: List[str] = g_function[s] + 1 A: List[str] = s if neighbours not in close_list_anchor: open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowercase ): if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key( __lowercase , 0 , __lowercase , __lowercase ): open_list[j].put( __lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( ) -> Tuple: A: str = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase = make_common_ground() UpperCamelCase = blocks_blk # hyper parameters UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 20 UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase = (0, 0) UpperCamelCase = (n - 1, n - 1) UpperCamelCase = 1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: int = {start: 0, goal: float('''inf''' )} A: Union[str, Any] = {start: -1, goal: -1} A: List[Any] = [] A: Union[str, Any] = set() for i in range(__lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) A: list[int] = [] A: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A , A: Union[str, Any] = open_list[i].top_show() visited.add(__lowercase ) expand_state( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_inad.append(__lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A: Union[str, Any] = open_list[0].top_show() visited.add(__lowercase ) expand_state( __lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_anchor.append(__lowercase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowercase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : int =logging.get_logger(__name__) __snake_case : Optional[Any] ='▁' __snake_case : int ={'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __snake_case : List[Any] ={ 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __snake_case : Tuple ={'vinai/bartpho-syllable': 1_0_2_4} class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =["""input_ids""", """attention_mask"""] def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="<s>" ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase="<mask>" ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token lowerCAmelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) lowerCAmelCase__ : Dict = vocab_file lowerCAmelCase__ : Dict = monolingual_vocab_file lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : Dict = cnt cnt += 1 with open(__lowerCamelCase ,'''r''' ,encoding='''utf-8''' ) as f: for line in f.readlines(): lowerCAmelCase__ : Dict = line.strip().split()[0] lowerCAmelCase__ : Any = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : str = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.__dict__.copy() lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] lowerCAmelCase__ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Tuple = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Tuple: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase ,''' ''' ).strip() return out_string def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Tuple = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,'''wb''' ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(__lowerCamelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
94
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=7 ,__lowerCamelCase=3 ,__lowerCamelCase=18 ,__lowerCamelCase=30 ,__lowerCamelCase=4_00 ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase=False ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=[0.5, 0.5, 0.5] ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : List[Any] = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Union[str, Any] = do_resize lowerCAmelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} lowerCAmelCase__ : List[str] = do_thumbnail lowerCAmelCase__ : str = do_align_axis lowerCAmelCase__ : Optional[Any] = do_pad lowerCAmelCase__ : Tuple = do_normalize lowerCAmelCase__ : List[Any] = image_mean lowerCAmelCase__ : List[str] = image_std def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =DonutImageProcessor if is_vision_available() else None def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = DonutImageProcessingTester(self ) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : int = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Dict = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
94
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _SCREAMING_SNAKE_CASE: def __init__( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = {} def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1 ) -> List[str]: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __SCREAMING_SNAKE_CASE :int = [[w, v]] if not self.graph.get(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = [] def _UpperCamelCase ( self ) -> str: """simple docstring""" return list(self.graph ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ,SCREAMING_SNAKE_CASE__=-1 ) -> str: """simple docstring""" if s == d: return [] __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :Any = [] if s == -2: __SCREAMING_SNAKE_CASE :Any = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :str = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :Any = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-1 ) -> int: """simple docstring""" if c == -1: __SCREAMING_SNAKE_CASE :Any = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __SCREAMING_SNAKE_CASE :List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1 ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = deque() __SCREAMING_SNAKE_CASE :List[str] = [] if s == -2: __SCREAMING_SNAKE_CASE :str = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: __SCREAMING_SNAKE_CASE :Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" return len(self.graph[u] ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :str = [] if s == -2: __SCREAMING_SNAKE_CASE :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = s __SCREAMING_SNAKE_CASE :Union[str, Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :Any = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :Optional[int] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :List[str] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return sorted_nodes def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = [] __SCREAMING_SNAKE_CASE :Dict = [] __SCREAMING_SNAKE_CASE :Optional[Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = -2 __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :int = s __SCREAMING_SNAKE_CASE :str = False __SCREAMING_SNAKE_CASE :int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE :Dict = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :Any = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE :Optional[int] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :List[str] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :str = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = s __SCREAMING_SNAKE_CASE :Any = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = -2 __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :Dict = s __SCREAMING_SNAKE_CASE :Optional[int] = False __SCREAMING_SNAKE_CASE :int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE :Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE :Any = True if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :List[str] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :Union[str, Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = s __SCREAMING_SNAKE_CASE :Optional[int] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ,SCREAMING_SNAKE_CASE__=-1 ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = time() self.dfs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = time() return end - begin def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = time() self.bfs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = time() return end - begin class _SCREAMING_SNAKE_CASE: def __init__( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = {} def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1 ) -> Union[str, Any]: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __SCREAMING_SNAKE_CASE :Dict = [[w, v]] # add the other way if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __SCREAMING_SNAKE_CASE :Optional[int] = [[w, u]] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) # the other way round if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ,SCREAMING_SNAKE_CASE__=-1 ) -> Tuple: """simple docstring""" if s == d: return [] __SCREAMING_SNAKE_CASE :List[Any] = [] __SCREAMING_SNAKE_CASE :str = [] if s == -2: __SCREAMING_SNAKE_CASE :str = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :List[Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :Union[str, Any] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-1 ) -> Dict: """simple docstring""" if c == -1: __SCREAMING_SNAKE_CASE :Union[str, Any] = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __SCREAMING_SNAKE_CASE :List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1 ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = deque() __SCREAMING_SNAKE_CASE :int = [] if s == -2: __SCREAMING_SNAKE_CASE :Any = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: __SCREAMING_SNAKE_CASE :Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return len(self.graph[u] ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = [] __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = -2 __SCREAMING_SNAKE_CASE :Optional[Any] = [] __SCREAMING_SNAKE_CASE :Dict = s __SCREAMING_SNAKE_CASE :int = False __SCREAMING_SNAKE_CASE :str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE :str = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE :int = True if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :Any = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :Union[str, Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = s __SCREAMING_SNAKE_CASE :str = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = [] __SCREAMING_SNAKE_CASE :Dict = [] __SCREAMING_SNAKE_CASE :Tuple = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = -2 __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :List[Any] = s __SCREAMING_SNAKE_CASE :Tuple = False __SCREAMING_SNAKE_CASE :Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __SCREAMING_SNAKE_CASE :int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __SCREAMING_SNAKE_CASE :Optional[int] = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __SCREAMING_SNAKE_CASE :Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() __SCREAMING_SNAKE_CASE :Dict = True if len(SCREAMING_SNAKE_CASE__ ) != 0: __SCREAMING_SNAKE_CASE :Union[str, Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: __SCREAMING_SNAKE_CASE :List[Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = s __SCREAMING_SNAKE_CASE :Any = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def _UpperCamelCase ( self ) -> int: """simple docstring""" return list(self.graph ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ,SCREAMING_SNAKE_CASE__=-1 ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = time() self.dfs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = time() return end - begin def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=-2 ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = time() self.bfs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = time() return end - begin
191
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None class _SCREAMING_SNAKE_CASE( A , A ): SCREAMING_SNAKE_CASE_ : Any = 2 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 1.0_0_7 ,SCREAMING_SNAKE_CASE__ = 80 ,SCREAMING_SNAKE_CASE__ = 0.0_5 ,SCREAMING_SNAKE_CASE__ = 50 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sigma_max # setable values __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :np.IntTensor = None __SCREAMING_SNAKE_CASE :torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = num_inference_steps __SCREAMING_SNAKE_CASE :int = np.arange(0 ,self.num_inference_steps )[::-1].copy() __SCREAMING_SNAKE_CASE :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.floataa ,device=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE :List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE :Optional[int] = self.config.s_noise * randn_tensor(sample.shape ,generator=SCREAMING_SNAKE_CASE__ ).to(sample.device ) __SCREAMING_SNAKE_CASE :List[str] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE :str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE :Tuple = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE :List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE :List[Any] = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE :Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError()
191
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'Salesforce/blip-image-captioning-base' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) SCREAMING_SNAKE_CASE__ = 'image_captioner' SCREAMING_SNAKE_CASE__ = AutoModelForVisionaSeq SCREAMING_SNAKE_CASE__ = ['image'] SCREAMING_SNAKE_CASE__ = ['text'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.pre_processor(images=_lowerCamelCase , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.model.generate(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.pre_processor.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase )[0].strip()
360
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _snake_case : def __init__( self , _lowerCamelCase , ): a :List[str] = parent a :Dict = 13 a :Optional[int] = 7 a :Optional[Any] = 30 a :Optional[Any] = self.seq_length + self.mem_len a :Tuple = 15 a :List[str] = True a :List[Any] = True a :List[Any] = 99 a :Optional[Any] = [10, 50, 80] a :Optional[int] = 32 a :List[Any] = 32 a :Dict = 4 a :List[Any] = 8 a :Optional[Any] = 128 a :Dict = 2 a :List[Any] = 2 a :str = None a :str = 1 a :List[Any] = 0 a :List[str] = 3 a :str = self.vocab_size - 1 a :Optional[Any] = 0.01 def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Tuple = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def SCREAMING_SNAKE_CASE__ ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = TFTransfoXLModel(_lowerCamelCase ) a , a :List[Any] = model(_lowerCamelCase ).to_tuple() a :List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a} a , a :Optional[int] = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = TFTransfoXLLMHeadModel(_lowerCamelCase ) a , a :Tuple = model(_lowerCamelCase ).to_tuple() a :Any = {'''input_ids''': input_ids_a, '''labels''': lm_labels} a , a :Dict = model(_lowerCamelCase ).to_tuple() a , a :Dict = model([input_ids_a, mems_a] ).to_tuple() a :str = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} a , a :Any = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = TFTransfoXLForSequenceClassification(_lowerCamelCase ) a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a)) :Optional[int] = config_and_inputs a :Union[str, Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = () if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self ): a :str = TFTransfoXLModelTester(self ) a :str = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :Any = self.model_tester.prepare_config_and_inputs_for_common() a :int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a :Any = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a :Dict = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) a :Dict = model.get_bias() assert name is None else: a :int = model.get_output_embeddings() assert x is None a :Optional[int] = model.get_bias() assert name is None def SCREAMING_SNAKE_CASE__ ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :List[Any] = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off a :Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a :Optional[Any] = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
281
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''a''', '''b''', '''c'''] # Defaults to last layer if both are None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =get_aligned_output_features_output_indices(__lowercase , __lowercase , __lowercase ) self.assertEqual(__lowercase , ['''c'''] ) self.assertEqual(__lowercase , [2] ) # Out indices set to match out features SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_aligned_output_features_output_indices(['''a''', '''c'''] , __lowercase , __lowercase ) self.assertEqual(__lowercase , ['''a''', '''c'''] ) self.assertEqual(__lowercase , [0, 2] ) # Out features set to match out indices SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =get_aligned_output_features_output_indices(__lowercase , [0, 2] , __lowercase ) self.assertEqual(__lowercase , ['''a''', '''c'''] ) self.assertEqual(__lowercase , [0, 2] ) # Out features selected from negative indices SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =get_aligned_output_features_output_indices(__lowercase , [-3, -1] , __lowercase ) self.assertEqual(__lowercase , ['''a''', '''c'''] ) self.assertEqual(__lowercase , [-3, -1] ) def __magic_name__ ( self : List[str] ) -> Union[str, Any]: # Stage names must be set with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , __lowercase ) # Out features must be a list with self.assertRaises(__lowercase ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(__lowercase ): verify_out_features_out_indices(__lowercase , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(__lowercase ): verify_out_features_out_indices(__lowercase , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __magic_name__ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : str =BackboneMixin() SCREAMING_SNAKE_CASE__ : Optional[int] =['''a''', '''b''', '''c'''] SCREAMING_SNAKE_CASE__ : int =['''a''', '''c'''] SCREAMING_SNAKE_CASE__ : str =[0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly SCREAMING_SNAKE_CASE__ : str =['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
152
'''simple docstring''' from __future__ import annotations import math a_ = '2020.9.26' a_ = 'xcodz-dot, cclaus, dhruvmanila' def _a( UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float ): '''simple docstring''' if not all(isinstance(UpperCamelCase__, (float, int) ) for val in locals().values() ): SCREAMING_SNAKE_CASE__ : int =f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =((x * distance) / (z + distance)) * scale SCREAMING_SNAKE_CASE__ : Tuple =((y * distance) / (z + distance)) * scale return projected_x, projected_y def _a( UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : float, UpperCamelCase__ : str, UpperCamelCase__ : float ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Axis must be a str''' ) SCREAMING_SNAKE_CASE__ : List[Any] =locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase__, (float, int) ) for val in input_variables.values() ): SCREAMING_SNAKE_CASE__ : List[str] =( '''Input values except axis must either be float or int: ''' f"{list(input_variables.values() )}" ) raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =(angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": SCREAMING_SNAKE_CASE__ : str =x * math.cos(UpperCamelCase__ ) - y * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =y * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =z elif axis == "x": SCREAMING_SNAKE_CASE__ : Dict =y * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =z * math.cos(UpperCamelCase__ ) + y * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =x elif axis == "y": SCREAMING_SNAKE_CASE__ : Tuple =x * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =z * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
152
1
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ = 2048 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 42 UpperCAmelCase_ = os.environ.pop("""PROCESS_TRAIN""", """false""") UpperCAmelCase_ = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] ) -> Dict: '''simple docstring''' def choose_first(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=False ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: _snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a _snake_case = {'id': example['id']} _snake_case = example['annotations'] _snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: _snake_case = ['yes'] if 1 in yes_no_answer else ['no'] _snake_case = _snake_case = [] _snake_case = _snake_case = [] _snake_case = ['<cls>'] else: _snake_case = ['short'] _snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available _snake_case = ['long'] _snake_case = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ ) _snake_case = [] answer.update(UpperCamelCase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: _snake_case = True else: _snake_case = False _snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=False ) -> Any: '''simple docstring''' _snake_case = _get_single_answer(UpperCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _snake_case = example['document']['tokens'] _snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _snake_case = example['document']['tokens'] _snake_case = answer['start_token'] _snake_case = answer['end_token'] _snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: _snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] _snake_case = doc['token'][answer['start_token'] : answer['end_token']] _snake_case = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , UpperCamelCase__ , end='\n' ) print('Old:' , UpperCamelCase__ , end='\n\n' ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=2_048 , UpperCamelCase__ : Dict=4_096 , UpperCamelCase__ : Dict=True ) -> Tuple: '''simple docstring''' _snake_case = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ ) _snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids _snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _snake_case = [] _snake_case = [] _snake_case = input_ids[:q_len] _snake_case = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: _snake_case = i + max_length - q_len _snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase__ ), "end_token": [-100] * len(UpperCamelCase__ ), "category": category, }, } _snake_case = out['context'].split() _snake_case = splitted_context[answer['end_token']] _snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids ) _snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _snake_case = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive _snake_case = answer['start_token'] _snake_case = answer['end_token'] if assertion: _snake_case = tokenizer.decode(UpperCamelCase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , UpperCamelCase__ , end='\n\n' ) if len(UpperCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _snake_case = input_ids[:q_len] _snake_case = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] # null, yes, no, long, short for i in doc_start_indices: _snake_case = i + max_length - q_len _snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _snake_case = start_token - i + q_len _snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: _snake_case = -100 _snake_case = -100 answers_category.append('null' ) _snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase__ ) answers_end_token.append(UpperCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(UpperCamelCase__ ) ) print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=2_048 , UpperCamelCase__ : int=4_096 , UpperCamelCase__ : List[str]=False ) -> List[str]: '''simple docstring''' _snake_case = get_strided_contexts_and_ans( UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , ) return example def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ) -> Tuple: '''simple docstring''' with jsonlines.open(UpperCamelCase__ , 'a' ) as writer: for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ): _snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ = load_dataset("""natural_questions""") UpperCAmelCase_ = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") UpperCAmelCase_ = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] UpperCAmelCase_ = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } UpperCAmelCase_ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) UpperCAmelCase_ = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
295
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase__ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase__ : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( lowercase : Vector, lowercase : Vector ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase ) - np.asarray(lowercase )) ** 2 ) ) def a__ ( lowercase : Vector, lowercase : Vector ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase, lowercase ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''', number=10000, globals=globals(), ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''', number=10000, globals=globals(), ) ) benchmark()
324
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : jnp.ndarray @flax_register_to_config class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : int = 3_2 _snake_case : int = 4 _snake_case : int = 4 _snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _snake_case : Union[bool, Tuple[bool]] = False _snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _snake_case : int = 2 _snake_case : Union[int, Tuple[int]] = 8 _snake_case : Optional[Union[int, Tuple[int]]] = None _snake_case : int = 1_2_8_0 _snake_case : float = 0.0 _snake_case : bool = False _snake_case : jnp.dtype = jnp.floataa _snake_case : bool = True _snake_case : int = 0 _snake_case : bool = False def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"] def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype ) _UpperCamelCase = self.only_cross_attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = down_blocks # mid _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCamelCase = [] _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = output_channel _UpperCamelCase = up_blocks # out _UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 ) _UpperCamelCase = self.time_proj(lowerCAmelCase__ ) _UpperCamelCase = self.time_embedding(lowerCAmelCase__ ) # 2. pre-process _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(lowerCAmelCase__ ) # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( lowerCAmelCase__ , lowerCAmelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = new_down_block_res_samples # 4. mid _UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = up_block( lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , ) else: _UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train ) # 6. post-process _UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ ) _UpperCamelCase = nn.silu(lowerCAmelCase__ ) _UpperCamelCase = self.conv_out(lowerCAmelCase__ ) _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
324
1
"""simple docstring""" from PIL import Image def __UpperCamelCase ( _A : Image , _A : int ) ->Image: """simple docstring""" lowerCamelCase_ =(259 * (level + 255)) / (255 * (259 - level)) def contrast(_A : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 __A : str = change_contrast(img, 1_70) cont_img.save('image_data/lena_high_contrast.png', format='png')
370
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_A ) if colsa != 1: lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase_ =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase_ =( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_A )} and {rowsa}' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ =table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase_ =[] for row in range(_A ): lowerCamelCase_ =0 for col in range(_A ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(_A ) lowerCamelCase_ =new_val return [float(_A ) for i in new_val] def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , _A ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
49
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case : Any = logging.get_logger(__name__) snake_case : Optional[int] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) snake_case : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: a :Tuple = model_type_to_module_name(UpperCAmelCase_ ) a :Tuple = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCAmelCase_ , '''__name__''' , UpperCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a :Optional[int] = importlib.import_module('''transformers''' ) if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) return None def __lowerCamelCase ( UpperCAmelCase_ : Union[str, os.PathLike] , UpperCAmelCase_ : Optional[Union[str, os.PathLike]] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[Dict[str, str]] = None , UpperCAmelCase_ : Optional[Union[bool, str]] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a :Any = get_file_from_repo( UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(UpperCAmelCase_ , encoding='''utf-8''' ) as reader: return json.load(UpperCAmelCase_ ) class _snake_case : def __init__( self ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , **_lowerCamelCase ): a :str = kwargs.pop('''config''' , _lowerCamelCase ) a :Optional[Any] = kwargs.pop('''trust_remote_code''' , _lowerCamelCase ) a :Any = True a , a :Optional[int] = ImageProcessingMixin.get_image_processor_dict(_lowerCamelCase , **_lowerCamelCase ) a :List[Any] = config_dict.get('''image_processor_type''' , _lowerCamelCase ) a :Dict = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): a :Union[str, Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: a :Union[str, Any] = config_dict.pop('''feature_extractor_type''' , _lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) a :Union[str, Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a :Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] a :str = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): a :Optional[int] = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # It could be in `config.image_processor_type`` a :List[str] = getattr(_lowerCamelCase , '''image_processor_type''' , _lowerCamelCase ) if hasattr(_lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: a :List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: a :Optional[int] = image_processor_class_from_name(_lowerCamelCase ) a :str = image_processor_auto_map is not None a :Dict = image_processor_class is not None or type(_lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING a :Optional[Any] = resolve_trust_remote_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if has_remote_code and trust_remote_code: a :int = get_class_from_dynamic_module( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) a :Any = kwargs.pop('''code_revision''' , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: a :Tuple = IMAGE_PROCESSOR_MAPPING[type(_lowerCamelCase )] return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , _lowerCamelCase ): IMAGE_PROCESSOR_MAPPING.register(_lowerCamelCase , _lowerCamelCase )
94
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'ClapFeatureExtractor' SCREAMING_SNAKE_CASE__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): a :Dict = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: a :Optional[int] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if audios is not None: a :Tuple = self.feature_extractor( _lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and audios is not None: a :Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.tokenizer.model_input_names a :str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
94
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , A = 1_0_1 ) -> List[Any]: _UpperCAmelCase : int = length def __len__( self ) -> Dict: return self.length def __getitem__( self , A ) -> int: return i class _UpperCAmelCase : '''simple docstring''' def __call__( self , A ) -> List[str]: return {"input_ids": torch.tensor(A ), "labels": torch.tensor(A )} class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[int]: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase : Optional[Any] = nn.Linear(1_2_0 , 8_0 ) def __lowerCAmelCase ( self , A , A=None ) -> Optional[int]: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _UpperCAmelCase ( a ): '''simple docstring''' @require_torch_neuroncore def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Optional[int] = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Optional[Any] = f'--output_dir {output_dir}'.split() _UpperCAmelCase : Optional[int] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _UpperCAmelCase ( a ): '''simple docstring''' @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Dict = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : str = f'--output_dir {output_dir}'.split() _UpperCAmelCase : str = ['''torchrun'''] + distributed_args + args execute_subprocess_async(A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _lowerCAmelCase :int = HfArgumentParser((TrainingArguments,)) _lowerCAmelCase :str = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _lowerCAmelCase :Any = DummyDataset(dataset_length) def lowerCamelCase_ (UpperCamelCase__ : EvalPrediction ): _UpperCAmelCase : List[Any] = list(range(len(UpperCamelCase__ ) ) ) _UpperCAmelCase : int = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} _lowerCAmelCase :Dict = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _lowerCAmelCase :Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _lowerCAmelCase :Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _lowerCAmelCase :List[str] = 2 _lowerCAmelCase :Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _lowerCAmelCase :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _lowerCAmelCase :Union[str, Any] = None
68
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =TransfoXLTokenizer a__ =False a__ =False def __lowerCAmelCase ( self ) -> List[str]: super().setUp() _UpperCAmelCase : Dict = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **A ) -> Dict: _UpperCAmelCase : Union[str, Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A ) def __lowerCAmelCase ( self , A ) -> str: _UpperCAmelCase : str = '''<unk> UNwanted , running''' _UpperCAmelCase : Union[str, Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(A , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : str = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) _UpperCAmelCase : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' _UpperCAmelCase : Optional[Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(A ) , A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) , A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : List[Any] = len(A ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
68
1
"""simple docstring""" # flake8: noqa # Lint as: python3 A: Optional[Any] = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
109
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=False ) -> List[str]: '''simple docstring''' __magic_name__ : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Any , _snake_case : Dict=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : int = "" else: __magic_name__ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __magic_name__ : int = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Dict = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : List[str] = in_proj_bias[: config.hidden_size] __magic_name__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = dct.pop(_snake_case ) __magic_name__ : List[Any] = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Any , _snake_case : int=False ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_snake_case , ) __magic_name__ : List[str] = ViTHybridConfig(backbone_config=_snake_case , image_size=384 , num_labels=1000 ) __magic_name__ : str = False # load original model from timm __magic_name__ : Union[str, Any] = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys __magic_name__ : List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) __magic_name__ : Tuple = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) __magic_name__ : List[str] = "huggingface/label-files" __magic_name__ : int = "imagenet-1k-id2label.json" __magic_name__ : Optional[int] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __magic_name__ : int = {int(_snake_case ): v for k, v in idalabel.items()} __magic_name__ : List[str] = idalabel __magic_name__ : List[str] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __magic_name__ : List[str] = ViTHybridModel(_snake_case ).eval() else: __magic_name__ : str = ViTHybridForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # create image processor __magic_name__ : List[Any] = create_transform(**resolve_data_config({} , model=_snake_case ) ) __magic_name__ : int = transform.transforms __magic_name__ : List[str] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } __magic_name__ : int = ViTHybridImageProcessor( do_resize=_snake_case , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __magic_name__ : List[Any] = prepare_img() __magic_name__ : Any = transform(_snake_case ).unsqueeze(0 ) __magic_name__ : Tuple = processor(_snake_case , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_snake_case , _snake_case ) # verify logits with torch.no_grad(): __magic_name__ : Optional[int] = model(_snake_case ) __magic_name__ : List[str] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: __magic_name__ : List[str] = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: __magic_name__ : Any = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_snake_case ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=__SCREAMING_SNAKE_CASE , ) assert hasattr(self , '''env''') def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=__SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=__SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' TrainingJobAnalytics(__SCREAMING_SNAKE_CASE).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv') def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.create_estimator() # run training estimator.fit() # result dataframe __a = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) __a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999_999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __SCREAMING_SNAKE_CASE)
131
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) __a = np.array(_UpperCAmelCase ) __a = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = (1, 2, 1) __a = (1, 1, 0, 7) __a = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) __a = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='''nm''' ) __a = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) __a = regressor.predict(_UpperCAmelCase ) return y_pred[0] def __snake_case ( _UpperCAmelCase ): train_user.sort() __a = np.percentile(_UpperCAmelCase , 25 ) __a = np.percentile(_UpperCAmelCase , 75 ) __a = qa - qa __a = qa - (iqr * 0.1) return low_lim def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = 0 __a = 0 for i in list_vote: if i > actual_result: __a = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case :Any = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __snake_case :List[Any] = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __snake_case :Dict = Normalizer().fit_transform(data_input_df.values) # split data __snake_case :Any = normalize_df[:, 2].tolist() __snake_case :Tuple = normalize_df[:, 0].tolist() __snake_case :Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case :Tuple = normalize_df[:, [1, 2]].tolist() __snake_case :List[str] = x[: len(x) - 1] __snake_case :int = x[len(x) - 1 :] # for linear regression & sarimax __snake_case :int = total_date[: len(total_date) - 1] __snake_case :Dict = total_user[: len(total_user) - 1] __snake_case :int = total_match[: len(total_match) - 1] __snake_case :List[Any] = total_date[len(total_date) - 1 :] __snake_case :Tuple = total_user[len(total_user) - 1 :] __snake_case :List[str] = total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case :Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case :Union[str, Any] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
131
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A ( A_ ): UpperCamelCase_ : List[Any] ='''deit''' def __init__(self , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_2 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=2_2_4 , lowerCAmelCase=1_6 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=1_6 , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= image_size __lowercase= patch_size __lowercase= num_channels __lowercase= qkv_bias __lowercase= encoder_stride class A ( A_ ): UpperCamelCase_ : Dict =version.parse('''1.11''' ) @property def _A (self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _A (self ): return 1E-4
295
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
295
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' __snake_case : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' __snake_case : Any = emb.weight.shape __snake_case : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None ): '''simple docstring''' __snake_case : List[str] = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Optional[int] = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : List[str] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Optional[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Dict = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : List[str] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : Tuple = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : List[str] = state_dict[old_key] return new_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = WEIGHTS_NAME ): '''simple docstring''' __snake_case : int = [] __snake_case : Any = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : List[Any] = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Any = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : Dict = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : str = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Optional[int] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : Tuple = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : int = shard_file # Add the metadata __snake_case : int = {"""total_size""": total_size} __snake_case : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : str = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) lowercase_ = parser.parse_args() lowercase_ , lowercase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) lowercase_ = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) lowercase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
363
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
0
'''simple docstring''' from __future__ import annotations from typing import Any def _UpperCamelCase ( UpperCamelCase__ ): if not postfix_notation: return 0 UpperCAmelCase__ : Optional[int] = {"""+""", """-""", """*""", """/"""} UpperCAmelCase__ : List[str] = [] for token in postfix_notation: if token in operations: UpperCAmelCase__ , UpperCAmelCase__ : str = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_UpperCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
163
from collections import defaultdict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = first_str.lower().strip() __a = second_str.lower().strip() # Remove whitespace __a = first_str.replace(''' ''' , '''''' ) __a = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False # Default values for count should be 0 __a = defaultdict(_UpperCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_UpperCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __snake_case :Any = input('''Enter the first string ''').strip() __snake_case :int = input('''Enter the second string ''').strip() __snake_case :int = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
49
0
import argparse import os import re import packaging.version _SCREAMING_SNAKE_CASE = 'examples/' _SCREAMING_SNAKE_CASE = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _SCREAMING_SNAKE_CASE = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } _SCREAMING_SNAKE_CASE = 'README.md' def snake_case ( snake_case__ :str , snake_case__ :Optional[Any] , snake_case__ :Optional[Any]) -> List[str]: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.read() _A , _A = REPLACE_PATTERNS[pattern] _A = replace.replace("""VERSION""" , snake_case__) _A = re_pattern.sub(snake_case__ , snake_case__) with open(snake_case__ , """w""" , encoding="""utf-8""" , newline="""\n""") as f: f.write(snake_case__) def snake_case ( snake_case__ :Union[str, Any]) -> Optional[int]: for folder, directories, fnames in os.walk(snake_case__): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""") if "legacy" in directories: directories.remove("""legacy""") for fname in fnames: if fname.endswith(""".py"""): update_version_in_file(os.path.join(snake_case__ , snake_case__) , snake_case__ , pattern="""examples""") def snake_case ( snake_case__ :int , snake_case__ :Union[str, Any]=False) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case__ , snake_case__ , snake_case__) if not patch: update_version_in_examples(snake_case__) def snake_case ( ) -> Optional[int]: _A = """🤗 Transformers currently provides the following architectures""" _A = """1. Want to contribute a new model?""" with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.readlines() # Find the start of the list. _A = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 _A = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith("""1."""): _A = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(snake_case__ , """w""" , encoding="""utf-8""" , newline="""\n""") as f: f.writelines(snake_case__) def snake_case ( ) -> List[str]: with open(REPLACE_FILES["""init"""] , """r""") as f: _A = f.read() _A = REPLACE_PATTERNS["""init"""][0].search(snake_case__).groups()[0] return packaging.version.parse(snake_case__) def snake_case ( snake_case__ :str=False) -> Optional[Any]: _A = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""") if default_version.is_devrelease: _A = default_version.base_version elif patch: _A = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _A = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _A = input(F'''Which version are you releasing? [{default_version}]''') if len(snake_case__) == 0: _A = default_version print(F'''Updating version to {version}.''') global_version_update(snake_case__ , patch=snake_case__) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""") clean_main_ref_in_model_list() def snake_case ( ) -> str: _A = get_version() _A = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _A = current_version.base_version # Check with the user we got that right. _A = input(F'''Which version are we developing now? [{dev_version}]''') if len(snake_case__) == 0: _A = dev_version print(F'''Updating version to {version}.''') global_version_update(snake_case__) print("""Cleaning main README, don't forget to run `make fix-copies`.""") clean_main_ref_in_model_list() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _SCREAMING_SNAKE_CASE = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
371
def snake_case ( ) -> Any: for n in range(1 , 1_000_000): yield n * (n + 1) // 2 def snake_case ( snake_case__ :Dict) -> Optional[Any]: _A = 1 _A = 2 while i * i <= n: _A = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case ( ) -> Optional[Any]: return next(i for i in triangle_number_generator() if count_divisors(snake_case__) > 500) if __name__ == "__main__": print(solution())
81
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) class a__ ( enum.Enum ): """simple docstring""" __lowerCamelCase = 'all_checks' __lowerCamelCase = 'basic_checks' __lowerCamelCase = 'no_checks' class a__ ( snake_case ): """simple docstring""" class a__ ( snake_case ): """simple docstring""" class a__ ( snake_case ): """simple docstring""" class a__ ( snake_case ): """simple docstring""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[dict] , SCREAMING_SNAKE_CASE_: dict , SCREAMING_SNAKE_CASE_: Tuple=None ) -> Union[str, Any]: '''simple docstring''' if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) A__ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] A__ = " for " + verification_name if verification_name is not None else "" if len(SCREAMING_SNAKE_CASE_ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class a__ ( snake_case ): """simple docstring""" class a__ ( snake_case ): """simple docstring""" class a__ ( snake_case ): """simple docstring""" class a__ ( snake_case ): """simple docstring""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[dict] , SCREAMING_SNAKE_CASE_: dict ) -> List[str]: '''simple docstring''' if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) A__ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE_ ) ) logger.info("All the splits matched successfully." ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: bool = True ) -> dict: '''simple docstring''' if record_checksum: A__ = shaaaa() with open(SCREAMING_SNAKE_CASE_ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"" ): m.update(SCREAMING_SNAKE_CASE_ ) A__ = m.hexdigest() else: A__ = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE_ ), "checksum": checksum} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] ) -> str: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
68
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase__ = logging.getLogger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' A__ = label_idx def UpperCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = mode.value A__ = os.path.join(lowercase , F'{mode}.txt' ) A__ = 1 A__ = [] with open(lowercase , encoding="utf-8" ) as f: A__ = [] A__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(" " ) words.append(splits[0] ) if len(lowercase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) return examples def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(lowercase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class a__ ( snake_case ): """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class a__ ( snake_case ): """simple docstring""" def UpperCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = mode.value A__ = os.path.join(lowercase , F'{mode}.txt' ) A__ = 1 A__ = [] with open(lowercase , encoding="utf-8" ) as f: for sentence in parse_incr(lowercase ): A__ = [] A__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(lowercase ) == len(lowercase ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) guid_index += 1 return examples def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' A__ = 0 for sentence in parse_incr(lowercase ): A__ = preds_list[example_id] A__ = "" for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase ) example_id += 1 def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
68
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __lowerCamelCase : List[str] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = UniSpeechSatForSequenceClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = downstream_dict["""projector.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""projector.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.post_net.linear.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.post_net.linear.bias"""] return model def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = UniSpeechSatForAudioFrameClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = downstream_dict["""model.linear.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.linear.bias"""] return model def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = UniSpeechSatForXVector.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = downstream_dict["""connector.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE__ = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] SCREAMING_SNAKE_CASE__ = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.load(__UpperCamelCase , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = checkpoint["""Downstream"""] SCREAMING_SNAKE_CASE__ = UniSpeechSatConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase , return_attention_mask=__UpperCamelCase , do_normalize=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): SCREAMING_SNAKE_CASE__ = convert_classification(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): SCREAMING_SNAKE_CASE__ = convert_diarization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForXVector""" ): SCREAMING_SNAKE_CASE__ = convert_xvector(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __lowerCamelCase : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
204
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE__ = Vector() def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowercase ) , """(0,0,0,0,0,1)""" ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowercase ) , 4 ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2] ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __a ( self : str ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowercase , _lowercase ) ) , """(3,4,7)""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = x.copy() self.assertEqual(str(_lowercase ) , str(_lowercase ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowercase ) , """(0,1,0)""" ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowercase , _lowercase ) ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowercase , _lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __a ( self : Any ): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
204
1
import math from collections.abc import Iterator from itertools import takewhile def lowerCamelCase_ ( _a ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = 2 while True: if is_prime(_a ): yield num num += 1 def lowerCamelCase_ ( _a = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda _a : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
131
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase = random.Random() def lowerCamelCase_ ( _a , _a=1.0 , _a=None , _a=None ): """simple docstring""" if rng is None: lowerCAmelCase__ : Tuple = global_rng lowerCAmelCase__ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a ( unittest.TestCase): def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str=7 , _SCREAMING_SNAKE_CASE : str=400 , _SCREAMING_SNAKE_CASE : Any=2000 , _SCREAMING_SNAKE_CASE : List[Any]=1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE : Tuple=1_6000 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : List[Any]=True , )-> Any: lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = min_seq_length lowerCAmelCase__ : int = max_seq_length lowerCAmelCase__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : Optional[Any] = feature_size lowerCAmelCase__ : Union[str, Any] = padding_value lowerCAmelCase__ : Tuple = sampling_rate lowerCAmelCase__ : int = return_attention_mask lowerCAmelCase__ : Optional[int] = do_normalize def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any]=False , _SCREAMING_SNAKE_CASE : str=False )-> Tuple: def _flatten(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: lowerCAmelCase__ : int = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase__ : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs class _a ( _lowercase , unittest.TestCase): _a : List[str] = WavaVecaFeatureExtractor def UpperCAmelCase__( self : Union[str, Any] )-> List[str]: lowerCAmelCase__ : List[str] = WavaVecaFeatureExtractionTester(self ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase__( self : int )-> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase__ : int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase__ : Any = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values lowerCAmelCase__ : Dict = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values lowerCAmelCase__ : Optional[int] = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : Tuple = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ : str = [None, 1600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : int = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) lowerCAmelCase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : List[str] = range(800 , 1400 , 200 ) lowerCAmelCase__ : List[Any] = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase__ : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ : Optional[int] = [None, 1600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : List[str] = feat_extract(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCAmelCase__( self : List[str] )-> int: lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : str = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) lowerCAmelCase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : List[str] = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) lowerCAmelCase__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowerCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : str = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) lowerCAmelCase__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCAmelCase__( self : List[Any] )-> List[str]: import torch lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase__ : List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCAmelCase__( self : Optional[int] )-> Dict: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase__ : Tuple = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
131
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class _a : def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : bool = False )-> str: lowerCAmelCase__ : Dict = scheduler lowerCAmelCase__ : int = optimizers if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers] lowerCAmelCase__ : List[str] = split_batches lowerCAmelCase__ : Dict = step_with_optimizer lowerCAmelCase__ : List[str] = GradientState() def UpperCAmelCase__( self : int , *_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : List[Any] )-> Optional[int]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowerCAmelCase__ : Dict = AcceleratorState().num_processes for _ in range(_SCREAMING_SNAKE_CASE ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> str: return self.scheduler.get_last_lr() def UpperCAmelCase__( self : Optional[int] )-> int: return self.scheduler.state_dict() def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : str )-> int: self.scheduler.load_state_dict(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> int: return self.scheduler.get_lr() def UpperCAmelCase__( self : Union[str, Any] , *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Tuple )-> Union[str, Any]: return self.scheduler.print_lr(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
211
from math import isqrt def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _a , _a ): lowerCAmelCase__ : int = False return [i for i in range(2 , _a ) if is_prime[i]] def lowerCamelCase_ ( _a = 10**8 ): """simple docstring""" lowerCAmelCase__ : Any = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[int] = len(_a ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
211
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : List[str] ={'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] =['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
367
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : List[str] = CycleDiffusionPipeline UpperCamelCase__ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } UpperCamelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) UpperCamelCase__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , num_train_timesteps=1_000 , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(_A ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _A ( self , _A , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE = image / 2 + 0.5 if str(_A ).startswith('mps' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**_A ) __SCREAMING_SNAKE_CASE = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE = pipe(**_A ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_components() for name, module in components.items(): if hasattr(_A , 'half' ): __SCREAMING_SNAKE_CASE = module.half() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**_A ) __SCREAMING_SNAKE_CASE = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE = pipe(**_A ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _A ( self ): '''simple docstring''' return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def _A ( self ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def _A ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _A ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _A ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) __SCREAMING_SNAKE_CASE = init_image.resize((512, 512) ) __SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-4' __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(_A , subfolder='scheduler' ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained( _A , scheduler=_A , safety_checker=_A , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = 'A black colored car' __SCREAMING_SNAKE_CASE = 'A blue colored car' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=_A , source_prompt=_A , image=_A , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_A , output_type='np' , ) __SCREAMING_SNAKE_CASE = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) __SCREAMING_SNAKE_CASE = init_image.resize((512, 512) ) __SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-4' __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(_A , subfolder='scheduler' ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = 'A black colored car' __SCREAMING_SNAKE_CASE = 'A blue colored car' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=_A , source_prompt=_A , image=_A , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_A , output_type='np' , ) __SCREAMING_SNAKE_CASE = output.images assert np.abs(image - expected_image ).max() < 2e-2
118
0
from scipy.stats import pearsonr import datasets a__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> Optional[Any]: if return_pvalue: _a : Optional[Any] = pearsonr(__A , __A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__A , __A )[0] )}
235
"""simple docstring""" def _A ( ): """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _A ( lowercase ): """simple docstring""" a =1 a =2 while i * i <= n: a =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowercase ) > 5_00 ) if __name__ == "__main__": print(solution())
81
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Union[str, Any] = get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Tuple: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving model to {ckpt_dir}" ) snake_case_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__UpperCAmelCase, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Model saved to {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> str: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) snake_case_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCAmelCase, storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), planner=DefaultLoadPlanner(), ) snake_case_ = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Dict: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(__UpperCAmelCase, __UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: snake_case_ = os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Union[str, Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), ) snake_case_ = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) snake_case_ = FSDP.optim_state_dict_to_load(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) optimizer.load_state_dict(__UpperCAmelCase )
72
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' lowerCamelCase_ = 2**power lowerCamelCase_ = 0 while n: lowerCamelCase_ , lowerCamelCase_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
204
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> str: """simple docstring""" super().__init__() self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ ) # create a imagenet -> id dictionary for easier use lowerCamelCase_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowerCamelCase_ = int(A_ ) lowerCamelCase_ = dict(sorted(self.labels.items() ) ) def a__ ( self : Optional[int] , A_ : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(A_ , A_ ): lowerCamelCase_ = list(A_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Any , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self.transformer.config.sample_size lowerCamelCase_ = self.transformer.config.in_channels lowerCamelCase_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , ) lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 ) lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device ) lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowerCamelCase_ = latent_model_input[: len(A_ ) // 2] lowerCamelCase_ = torch.cat([half, half] , dim=0 ) lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = t if not torch.is_tensor(A_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowerCamelCase_ = latent_model_input.device.type == 'mps' if isinstance(A_ , A_ ): lowerCamelCase_ = torch.floataa if is_mps else torch.floataa else: lowerCamelCase_ = torch.intaa if is_mps else torch.intaa lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowerCamelCase_ = self.transformer( A_ , timestep=A_ , class_labels=A_ ).sample # perform guidance if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 ) lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 ) lowerCamelCase_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 ) else: lowerCamelCase_ = noise_pred # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 ) else: lowerCamelCase_ = latent_model_input lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A_ )
204
1
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: super().__init__() self.register_modules(unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self ,lowerCamelCase_ = 1 ,lowerCamelCase_ = None ,lowerCamelCase_ = 5_0 ,lowerCamelCase_ = "pil" ,lowerCamelCase_ = True ,**lowerCamelCase_ ,) -> Union[ImagePipelineOutput, Tuple]: A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=lowerCamelCase_ ,) A = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A = self.unet(lowerCamelCase_ ,lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A = self.scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ).prev_sample A = (image / 2 + 0.5).clamp(0 ,1 ) A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase_ ), "This is a local test"
77
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
1