code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A__ ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = DebertaVaTokenizer UpperCamelCase = DebertaVaTokenizerFast UpperCamelCase = True UpperCamelCase = True def snake_case__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] , a_ : Any ): '''simple docstring''' __UpperCAmelCase : Dict = '''this is a test''' __UpperCAmelCase : str = '''this is a test''' return input_text, output_text def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = '''<pad>''' __UpperCAmelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 3_00_01 ) def snake_case__ ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = ''' \tHeLLo!how \n Are yoU? ''' __UpperCAmelCase : Optional[int] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on __UpperCAmelCase : Tuple = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : str = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def snake_case__ ( self : Any ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' pass def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __UpperCAmelCase : Optional[int] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[str] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : int = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __UpperCAmelCase : List[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[str] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : Tuple = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : Tuple = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __UpperCAmelCase : Optional[int] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = ''' \tHeLLo!how \n Are yoU? ''' __UpperCAmelCase : Union[str, Any] = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on __UpperCAmelCase : Any = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Dict = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : int = self.get_rust_tokenizer() __UpperCAmelCase : Tuple = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) __UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCAmelCase : str = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = '''This is a test''' __UpperCAmelCase : Dict = [13, 1, 43_98, 25, 21, 12_89] __UpperCAmelCase : Optional[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __UpperCAmelCase : str = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : int = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fmt: off __UpperCAmelCase : Optional[int] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : str = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] __UpperCAmelCase : List[str] = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] __UpperCAmelCase : Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Any = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[int] = tokenizer.encode('''sequence builders''' ) __UpperCAmelCase : str = tokenizer.encode('''multi-sequence build''' ) __UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE__ , ) @slow def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : str = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
226
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
337
0
from math import pow, sqrt def A ( *_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = len(a__ ) > 0 and all(value > 0.0 for value in values ) return result def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
UpperCAmelCase_ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ : str = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int , __A : int ) -> str: """simple docstring""" assert len(str(__A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a_ : List[str] = year // 1_00 a_ : Optional[int] = (5 * (century % 4) + 2) % 7 a_ : List[str] = year % 1_00 a_ : str = centurian % 12 a_ : List[str] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a_ : Any = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) a_ : Any = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Any: a_ : Tuple = parent a_ : int = batch_size a_ : Tuple = seq_length a_ : List[Any] = is_training a_ : List[str] = use_token_type_ids a_ : Dict = use_labels a_ : Any = vocab_size a_ : List[str] = hidden_size a_ : Tuple = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Dict = intermediate_size a_ : Any = hidden_act a_ : List[str] = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : List[Any] = type_vocab_size a_ : int = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : str = scope a_ : Tuple = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_token_type_ids: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : List[Any] = None a_ : Union[str, Any] = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: a_ : Dict = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: a_ : str = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : int = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Any = self.num_labels a_ : Dict = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Tuple = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ : Dict = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=False ) -> List[str]: a_ : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : str = inputs_dict['labels'] a_ : Optional[int] = inputs_dict['labels'] a_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : str = OpenAIGPTModelTester(self ) a_ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Dict = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is a_ : Tuple = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a_ : Dict = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
32
1
'''simple docstring''' # Imports import numpy as np class UpperCamelCase_ : def __init__( self , A=None , A=None , A=None , A=None , A=None ) -> Union[str, Any]: self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None ) -> Dict: if red is not None: UpperCAmelCase : Optional[Any] = red if green is not None: UpperCAmelCase : Optional[Any] = green if blue is not None: UpperCAmelCase : List[Any] = blue if red_edge is not None: UpperCAmelCase : Dict = red_edge if nir is not None: UpperCAmelCase : str = nir return True def _lowercase( self , A="" , A=None , A=None , A=None , A=None , A=None ) -> List[Any]: self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A ) UpperCAmelCase : Tuple = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _lowercase( self ) -> int: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _lowercase( self ) -> Optional[int]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowercase( self ) -> Any: return self.nir * (self.red / (self.green**2)) def _lowercase( self ) -> int: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowercase( self ) -> Any: return (self.nir - self.red) / (self.nir + self.red) def _lowercase( self ) -> Optional[Any]: return (self.nir - self.blue) / (self.nir + self.blue) def _lowercase( self ) -> Dict: return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowercase( self ) -> Dict: return (self.nir - self.green) / (self.nir + self.green) def _lowercase( self ) -> str: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowercase( self ) -> List[Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowercase( self ) -> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowercase( self ) -> int: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowercase( self , A=0.0_8 , A=1.2_2 , A=0.0_3 ) -> List[str]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowercase( self ) -> List[str]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowercase( self ) -> Union[str, Any]: return (self.nir / self.green) - 1 def _lowercase( self ) -> Dict: return (self.nir / self.redEdge) - 1 def _lowercase( self ) -> str: return (self.red - self.blue) / self.red def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowercase( self ) -> int: return self.nir - self.green def _lowercase( self ) -> str: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _lowercase( self , A=0.1_6 ) -> Any: return (self.nir - self.green) / (self.nir + self.green + y) def _lowercase( self , A=0.5 ) -> Optional[int]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowercase( self ) -> Optional[int]: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _lowercase( self , A=None , A=None ) -> Union[str, Any]: return (self.nir - b) / (a * self.red) def _lowercase( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowercase( self ) -> Optional[Any]: return (self.red + self.green + self.blue) / 3_0.5 def _lowercase( self ) -> Dict: return self.nir / self.red def _lowercase( self ) -> List[str]: return (self.rvi() - 1) / (self.rvi() + 1) def _lowercase( self ) -> List[Any]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowercase( self ) -> Dict: return self.green / (self.nir + self.red + self.green) def _lowercase( self ) -> Any: return self.nir / (self.nir + self.red + self.green) def _lowercase( self ) -> int: return self.red / (self.nir + self.red + self.green) def _lowercase( self ) -> Tuple: return (self.green - self.red) / (self.green + self.red) def _lowercase( self ) -> Union[str, Any]: return (self.red - self.green) / (self.red + self.green) def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowercase( self ) -> Tuple: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowercase( self ) -> str: return self.nir / self.red def _lowercase( self ) -> Optional[int]: return (self.ndvi() + 0.5) ** (1 / 2) def _lowercase( self ) -> List[str]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
"""simple docstring""" from math import ceil, sqrt def lowercase ( a__ : int = 1000000 ) -> int: _UpperCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _UpperCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _UpperCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
256
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
'''simple docstring''' def _a( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' return base * power(UpperCamelCase__, (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') a_ = int(input('Enter the base: ').strip()) a_ = int(input('Enter the exponent: ').strip()) a_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a_ = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
367
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = """time_series_transformer""" lowerCAmelCase__ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self : Any , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : Optional[Union[str, bool]] = "mean" , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : bool = True , UpperCamelCase : str = "gelu" , UpperCamelCase : int = 64 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 100 , UpperCamelCase : float = 0.02 , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(UpperCamelCase ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
2
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class a__ ( _UpperCamelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusTokenizer _SCREAMING_SNAKE_CASE : List[Any] = PegasusTokenizerFast _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowercase : List[str] = PegasusTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def _lowerCamelCase ( self , **_UpperCamelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return ("This is a test", "This is a test") def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = "</s>" _lowercase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1103 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase : Optional[int] = ( "Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _lowercase : Dict = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] _lowercase : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowercase : int = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _lowercase : int = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] _lowercase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _lowercase : Union[str, Any] = "To ensure a smooth flow of bank resolutions." _lowercase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] _lowercase : int = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = ["This is going to be way too long." * 150, "short example"] _lowercase : List[str] = ["not super long but more than 5 tokens", "tiny"] _lowercase : Optional[int] = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) _lowercase : Optional[Any] = self._large_tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = {"input_ids": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class a__ ( _UpperCamelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = PegasusTokenizer _SCREAMING_SNAKE_CASE : List[str] = PegasusTokenizerFast _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Tuple = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = PegasusTokenizer(_SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=_SCREAMING_SNAKE_CASE , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def _lowerCamelCase ( self , **_UpperCamelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return ("This is a test", "This is a test") def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase : Optional[Any] = ( "Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _lowercase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] _lowercase : Dict = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = ["This is going to be way too long." * 1000, "short example"] _lowercase : Tuple = ["not super long but more than 5 tokens", "tiny"] _lowercase : List[str] = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) _lowercase : str = self._large_tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _lowercase : Tuple = self._large_tokenizer(_SCREAMING_SNAKE_CASE ).input_ids self.assertListEqual( _SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
368
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _snake_case = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _snake_case = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _snake_case = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _A ( snake_case , snake_case ) -> int: return float((preds == labels).mean() ) def _A ( snake_case , snake_case ) -> Union[str, Any]: _lowercase : Any = simple_accuracy(snake_case , snake_case ) _lowercase : List[Any] = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def _A ( snake_case , snake_case ) -> List[str]: _lowercase : Any = np.array(snake_case ) _lowercase : Any = np.array(snake_case ) _lowercase : str = en_sentvecs.shape[0] # mean centering _lowercase : List[Any] = en_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Tuple = in_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Any = cdist(snake_case , snake_case , "cosine" ) _lowercase : Any = np.array(range(snake_case ) ) _lowercase : Dict = sim.argsort(axis=1 )[:, :10] _lowercase : List[str] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_UpperCamelCase , _UpperCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_UpperCamelCase , _UpperCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_UpperCamelCase , _UpperCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
199
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _a ( _lowercase): _a : Dict = '''xmod''' def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[str]=3_0522 , _SCREAMING_SNAKE_CASE : Optional[int]=768 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : str=12 , _SCREAMING_SNAKE_CASE : Dict=3072 , _SCREAMING_SNAKE_CASE : str="gelu" , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Any=512 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : Tuple=0.02 , _SCREAMING_SNAKE_CASE : Optional[int]=1E-12 , _SCREAMING_SNAKE_CASE : str=1 , _SCREAMING_SNAKE_CASE : List[Any]=0 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : str="absolute" , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : int=False , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Optional[Any]=("en_XX",) , _SCREAMING_SNAKE_CASE : str=None , **_SCREAMING_SNAKE_CASE : Dict , )-> Union[str, Any]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Any = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : List[Any] = position_embedding_type lowerCAmelCase__ : Optional[int] = use_cache lowerCAmelCase__ : str = classifier_dropout lowerCAmelCase__ : Union[str, Any] = pre_norm lowerCAmelCase__ : int = adapter_reduction_factor lowerCAmelCase__ : Union[str, Any] = adapter_layer_norm lowerCAmelCase__ : str = adapter_reuse_layer_norm lowerCAmelCase__ : Tuple = ln_before_adapter lowerCAmelCase__ : Any = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = default_language class _a ( _lowercase): @property def UpperCAmelCase__( self : int )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
1
# Imports import numpy as np class lowercase_ : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->int: self.set_matricies(red=__SCREAMING_SNAKE_CASE , green=__SCREAMING_SNAKE_CASE , blue=__SCREAMING_SNAKE_CASE , red_edge=__SCREAMING_SNAKE_CASE , nir=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->List[Any]: if red is not None: lowerCAmelCase = red if green is not None: lowerCAmelCase = green if blue is not None: lowerCAmelCase = blue if red_edge is not None: lowerCAmelCase = red_edge if nir is not None: lowerCAmelCase = nir return True def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE="" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict: self.set_matricies(red=__SCREAMING_SNAKE_CASE , green=__SCREAMING_SNAKE_CASE , blue=__SCREAMING_SNAKE_CASE , red_edge=__SCREAMING_SNAKE_CASE , nir=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def SCREAMING_SNAKE_CASE_ ( self ) ->Any: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.nir * (self.red / (self.green**2)) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return (self.nir - self.red) / (self.nir + self.red) def SCREAMING_SNAKE_CASE_ ( self ) ->str: return (self.nir - self.blue) / (self.nir + self.blue) def SCREAMING_SNAKE_CASE_ ( self ) ->str: return (self.redEdge - self.red) / (self.redEdge + self.red) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return (self.nir - self.green) / (self.nir + self.green) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def SCREAMING_SNAKE_CASE_ ( self ) ->int: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0.0_8 , __SCREAMING_SNAKE_CASE=1.2_2 , __SCREAMING_SNAKE_CASE=0.0_3 ) ->List[str]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return (self.nir / self.green) - 1 def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: return (self.nir / self.redEdge) - 1 def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return (self.red - self.blue) / self.red def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return self.nir - self.green def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0.1_6 ) ->List[Any]: return (self.nir - self.green) / (self.nir + self.green + y) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0.5 ) ->Optional[Any]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Tuple: return (self.nir - b) / (a * self.red) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return (self.red + self.green + self.blue) / 3_0.5 def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.nir / self.red def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return (self.rvi() - 1) / (self.rvi() + 1) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: return self.green / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: return self.nir / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.red / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: return (self.green - self.red) / (self.green + self.red) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: return (self.red - self.green) / (self.red + self.green) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.nir / self.red def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return (self.ndvi() + 0.5) ** (1 / 2) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
338
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = KarrasVeScheduler() lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = '''google/ncsnpp-celebahq-256''' lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = KarrasVeScheduler() lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
338
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase__ ( __magic_name__ , __magic_name__ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCAmelCase = 7_68 , ) -> Dict: super().__init__() _lowerCAmelCase =nn.Parameter(torch.zeros(1 , __UpperCAmelCase ) ) _lowerCAmelCase =nn.Parameter(torch.ones(1 , __UpperCAmelCase ) ) def _lowerCAmelCase ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Any: _lowerCAmelCase =nn.Parameter(self.mean.to(__UpperCAmelCase ).to(__UpperCAmelCase ) ) _lowerCAmelCase =nn.Parameter(self.std.to(__UpperCAmelCase ).to(__UpperCAmelCase ) ) return self def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =(embeds - self.mean) * 1.0 / self.std return embeds def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Any: _lowerCAmelCase =(embeds * self.std) + self.mean return embeds
341
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
341
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model A ='0.12' # assumed parallelism: 8 if is_torch_available(): import torch def snake_case_ (_a : str , _a : Optional[Any] , _a : Dict=None ): if rng is None: UpperCAmelCase = random.Random() UpperCAmelCase = 1 for dim in shape: total_dims *= dim UpperCAmelCase = [] for _ in range(_a ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase = np.array(_a , dtype=jnp.intaa ).reshape(_a ) return output def snake_case_ (_a : Any , _a : int=None ): UpperCAmelCase = ids_tensor(_a , vocab_size=2 , rng=_a ) # make sure that at least one token is attended to for each batch UpperCAmelCase = 1 return attn_mask @require_flax class _a : __a : Dict = None __a : List[Any] = () def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase = 2 UpperCAmelCase = inputs['''input_ids'''].shape[-1] // 2 UpperCAmelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCAmelCase = jnp.ones_like(lowercase ) UpperCAmelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def A ( self : Dict ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase = getattr(lowercase , lowercase ) UpperCAmelCase = pt_model_class(lowercase ).eval() UpperCAmelCase = load_flax_weights_in_pytorch_model(lowercase , flax_model.params ) UpperCAmelCase = flax_model.generate(lowercase ).sequences UpperCAmelCase = pt_model.generate(torch.tensor(lowercase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length UpperCAmelCase = 0.8 UpperCAmelCase = 10 UpperCAmelCase = 0.3 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase , attention_mask=lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase , attention_mask=lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase , attention_mask=lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase , attention_mask=lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = 2 UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.generate(lowercase , attention_mask=lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowercase , attention_mask=lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _a ( unittest.TestCase ): def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) UpperCAmelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase = '''Hello world''' UpperCAmelCase = tokenizer(lowercase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase , '''do_samples''' ): model.generate(lowercase , do_samples=lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase , '''foo''' ): UpperCAmelCase = {'''foo''': '''bar'''} model.generate(lowercase , **lowercase )
34
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = IFInpaintingPipeline __lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._get_dummy_components() def __UpperCamelCase ( self , A_ , A_=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_save_load_local() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('only integers accepted as input' ) else: lowercase__ = str(abs(_SCREAMING_SNAKE_CASE ) ) lowercase__ = [list(_SCREAMING_SNAKE_CASE ) for char in range(len(_SCREAMING_SNAKE_CASE ) )] for index in range(len(_SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(_SCREAMING_SNAKE_CASE ) return max( int(''.join(list(_SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
356
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
269
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''') A__ = BertTokenizer.from_pretrained('''bert-base-uncased''') A__ = bertabert.config.encoder.vocab_size A__ = tokenizer.sep_token_id A__ = tokenizer.cls_token_id A__ = 128 A__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''') A__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''') A__ = train_dataset.select(range(32)) A__ = val_dataset.select(range(16)) A__ = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase__ : List[str]): # Tokenizer will automatically set [BOS] <text> [EOS] A__ = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=UpperCAmelCase__ , max_length=512) A__ = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=UpperCAmelCase__ , max_length=128) A__ = inputs.input_ids A__ = inputs.attention_mask A__ = outputs.input_ids A__ = outputs.input_ids.copy() A__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] A__ = outputs.attention_mask assert all(len(UpperCAmelCase__) == 512 for x in inputs.input_ids) assert all(len(UpperCAmelCase__) == 128 for x in outputs.input_ids) return batch def _compute_metrics(UpperCAmelCase__ : Tuple): A__ = pred.label_ids A__ = pred.predictions # all unnecessary tokens are removed A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = sum([int(pred_str[i] == label_str[i]) for i in range(len(UpperCAmelCase__))]) / len(UpperCAmelCase__) return {"accuracy": accuracy} # map train dataset A__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset A__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) A__ = self.get_auto_remove_tmp_dir() A__ = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase__ , per_device_train_batch_size=UpperCAmelCase__ , per_device_eval_batch_size=UpperCAmelCase__ , predict_with_generate=UpperCAmelCase__ , evaluation_strategy='''steps''' , do_train=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ = SeqaSeqTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) # start training trainer.train()
14
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( UpperCamelCase_ ): UpperCamelCase__ : Any =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(('num_inference_steps', 25),) def lowerCamelCase ( self : Optional[Any] , **lowercase_ : List[Any] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**lowercase_ ) return config def lowerCamelCase ( self : Optional[int] , lowercase_ : Optional[Any]=0 , **lowercase_ : Any ) -> List[Any]: """simple docstring""" _lowerCamelCase : List[Any] =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Optional[int] =self.dummy_sample _lowerCamelCase : Dict =0.1 * sample _lowerCamelCase : Optional[int] =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : int =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : str =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : int =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Dict =scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : str =dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase , _lowerCamelCase : Any =sample, sample for t in range(lowercase_ , time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase : List[str] =scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase ( self : str , lowercase_ : str=0 , **lowercase_ : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : int =dict(self.forward_default_kwargs ) _lowerCamelCase : Dict =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Optional[int] =self.dummy_sample _lowerCamelCase : Any =0.1 * sample _lowerCamelCase : int =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Optional[int] =self.get_scheduler_config() _lowerCamelCase : Any =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : Dict =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[int] =scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : str =dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : Dict =scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Dict =new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Any , lowercase_ : Union[str, Any]=None , **lowercase_ : List[str] ) -> str: """simple docstring""" if scheduler is None: _lowerCamelCase : Tuple =self.scheduler_classes[0] _lowerCamelCase : Optional[int] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : Union[str, Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : List[Any] =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : str =10 _lowerCamelCase : Union[str, Any] =self.dummy_model() _lowerCamelCase : Dict =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : List[str] =model(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[int] =scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _lowerCamelCase : Any =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : int =50 _lowerCamelCase : Optional[int] =self.dummy_model() _lowerCamelCase : Tuple =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCamelCase : Any =model(lowercase_ , lowercase_ ) _lowerCamelCase : List[str] =scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample _lowerCamelCase : int =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : Optional[Any] =self.full_loop(scheduler=lowercase_ ) _lowerCamelCase : Tuple =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCamelCase : Dict =DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Optional[int] =DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Union[str, Any] =UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : List[str] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase : List[Any] =self.full_loop(scheduler=lowercase_ ) _lowerCamelCase : List[str] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , algorithm_type='dpmsolver++' , solver_order=lowercase_ , solver_type=lowercase_ , ) def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , algorithm_type=lowercase_ , ) _lowerCamelCase : Any =self.full_loop( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , algorithm_type=lowercase_ , ) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.check_over_configs(variance_type=lowercase_ ) self.check_over_configs(variance_type='learned_range' ) def lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowercase_ , time_step=0 ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : Dict =self.full_loop() _lowerCamelCase : Dict =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : str =self.full_loop(use_karras_sigmas=lowercase_ ) _lowerCamelCase : Optional[Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =self.full_loop(prediction_type='v_prediction' ) _lowerCamelCase : Dict =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : str =self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=lowercase_ ) _lowerCamelCase : List[str] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =self.scheduler_classes[0] _lowerCamelCase : List[str] =self.get_scheduler_config(thresholding=lowercase_ , dynamic_thresholding_ratio=0 ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : Optional[Any] =10 _lowerCamelCase : Optional[int] =self.dummy_model() _lowerCamelCase : List[Any] =self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : str =model(lowercase_ , lowercase_ ) _lowerCamelCase : Any =scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample assert sample.dtype == torch.floataa
199
0
def lowerCamelCase ( a_ ) -> int: assert column_title.isupper() lowerCAmelCase_ = 0 lowerCAmelCase_ = len(a_ ) - 1 lowerCAmelCase_ = 0 while index >= 0: lowerCAmelCase_ = (ord(column_title[index] ) - 64) * pow(26 , a_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
'''simple docstring''' from math import isqrt def lowerCAmelCase (__A): """simple docstring""" _a = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , __A , __A): _a = False return [i for i in range(2 , __A) if is_prime[i]] def lowerCAmelCase (__A = 10**8): """simple docstring""" _a = calculate_prime_numbers(max_number // 2) _a = 0 _a = 0 _a = len(__A) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
211
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCamelCase : bool = None __lowerCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCamelCase : int = datasets.Audio() __lowerCamelCase : str = 'audio' __lowerCamelCase : Optional[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Union[str, Any] = AudioClassification(audio_column='audio' , label_column='label' ) lowercase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase_ = AUDIO_EXTENSIONS
211
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : int = ["flax"] def __init__( self , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : int = ["flax"] def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Any = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : str = ["flax"] def __init__( self , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Tuple = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] )
92
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[str] = IFPipeline lowerCAmelCase_ : int = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} lowerCAmelCase_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def lowerCAmelCase__ ( self , a__ , a__=0 ) -> str: '''simple docstring''' if str(a__ ).startswith("mps" ): snake_case_ = torch.manual_seed(a__ ) else: snake_case_ = torch.Generator(device=a__ ).manual_seed(a__ ) snake_case_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) snake_case_ = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=a__ , tokenizer=a__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) snake_case_ , snake_case_ = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case_ = None snake_case_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case_ = IFImgaImgPipeline(**pipe_a.components ) snake_case_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case_ = IFInpaintingPipeline(**pipe_a.components ) snake_case_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a__ , a__ , a__ , a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Dict: '''simple docstring''' _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , num_inference_steps=2 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (64, 64, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a__ , a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Dict: '''simple docstring''' _start_torch_memory_measurement() snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , num_inference_steps=2 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (64, 64, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a__ , a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' _start_torch_memory_measurement() snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a__ ) snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , num_inference_steps=2 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (64, 64, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(a__ ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a__ , a__ ) def UpperCamelCase_( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
92
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__(self , UpperCAmelCase = 768 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) _snake_case = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def lowercase (self , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Union[str, Any]: _snake_case = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) _snake_case = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def lowercase (self , UpperCAmelCase ) -> Optional[Any]: _snake_case = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase (self , UpperCAmelCase ) -> Optional[int]: _snake_case = (embeds * self.std) + self.mean return embeds
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = IMAGENET_DEFAULT_MEAN , __UpperCAmelCase = IMAGENET_DEFAULT_STD , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : Union[str, Any] = do_resize __UpperCAmelCase : Optional[Any] = size __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : Dict = do_center_crop __UpperCAmelCase : List[str] = crop_size __UpperCAmelCase : List[str] = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = int((256 / 224) * size["""shortest_edge"""] ) __UpperCAmelCase : str = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : str = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( __UpperCAmelCase , size=(size_dict["""height"""], size_dict["""width"""]) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> BatchFeature: '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Dict = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __UpperCAmelCase : Dict = [self.resize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_center_crop: __UpperCAmelCase : Tuple = [self.center_crop(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_rescale: __UpperCAmelCase : Optional[int] = [self.rescale(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_normalize: __UpperCAmelCase : str = [self.normalize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = 256 class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = ["""melgan"""] def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> None: super().__init__() # From MELGAN __UpperCamelCase :int = math.log(1E-5) # Matches MelGAN training. __UpperCamelCase :int = 4.0 # Largest value for most examples __UpperCamelCase :str = 128 self.register_modules( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Dict: __UpperCamelCase , __UpperCamelCase :str = output_range if clip: __UpperCamelCase :Union[str, Any] = torch.clip(__lowercase , self.min_value , self.max_value) # Scale to [0, 1]. __UpperCamelCase :Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :int = input_range __UpperCamelCase :Optional[int] = torch.clip(__lowercase , __lowercase , __lowercase) if clip else outputs # Scale to [0, 1]. __UpperCamelCase :List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = input_tokens > 0 __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.notes_encoder( encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.continuous_encoder( encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Optional[int] = noise_time if not torch.is_tensor(__lowercase): __UpperCamelCase :str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(__lowercase) and len(timesteps.shape) == 0: __UpperCamelCase :Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase :List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) __UpperCamelCase :Tuple = self.decoder( encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase) return logits @torch.no_grad() def __call__( self , __lowercase , __lowercase = None , __lowercase = 100 , __lowercase = True , __lowercase = "numpy" , __lowercase = None , __lowercase = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowercase)}.""") __UpperCamelCase :Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) __UpperCamelCase :Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa) __UpperCamelCase :Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) for i, encoder_input_tokens in enumerate(__lowercase): if i == 0: __UpperCamelCase :int = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. __UpperCamelCase :int = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCamelCase :Tuple = ones __UpperCamelCase :Optional[Any] = self.scale_features( __lowercase , output_range=[-1.0, 1.0] , clip=__lowercase) __UpperCamelCase :int = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowercase , continuous_mask=__lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCamelCase :int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowercase) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCamelCase :Optional[int] = self.decode( encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCamelCase :int = self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase).prev_sample __UpperCamelCase :Tuple = self.scale_to_features(__lowercase , input_range=[-1.0, 1.0]) __UpperCamelCase :List[Any] = mel[:1] __UpperCamelCase :Optional[Any] = mel.cpu().float().numpy() __UpperCamelCase :Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase) logger.info('''Generated segment''' , __lowercase) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''') elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''') if output_type == "numpy": __UpperCamelCase :Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: __UpperCamelCase :List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowercase)
43
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=13 , _SCREAMING_SNAKE_CASE: Tuple=7 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: int=99 , _SCREAMING_SNAKE_CASE: int=32 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: int=64 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Tuple=16 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: int=2 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: int=4 , _SCREAMING_SNAKE_CASE: List[str]=1 , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Optional[Any] = batch_size __lowerCAmelCase : Union[str, Any] = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Optional[int] = use_input_mask __lowerCAmelCase : Dict = use_token_type_ids __lowerCAmelCase : Dict = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Optional[int] = type_sequence_label_size __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : Tuple = num_labels __lowerCAmelCase : Optional[Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope __lowerCAmelCase : Optional[Any] = q_groups __lowerCAmelCase : Optional[int] = k_groups __lowerCAmelCase : Any = v_groups __lowerCAmelCase : int = post_attention_groups __lowerCAmelCase : List[str] = intermediate_groups __lowerCAmelCase : Optional[Any] = output_groups def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : List[Any] = None __lowerCAmelCase : str = None if self.use_labels: __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = SqueezeBertModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple) -> Dict: """simple docstring""" __lowerCAmelCase : int = SqueezeBertForMaskedLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : str = SqueezeBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Union[str, Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Union[str, Any] = SqueezeBertForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = self.num_labels __lowerCAmelCase : Optional[int] = SqueezeBertForTokenClassification(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_choices __lowerCAmelCase : str = SqueezeBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : str = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) : Union[str, Any] = config_and_inputs __lowerCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = SqueezeBertModelTester(self) __lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37) def _SCREAMING_SNAKE_CASE ( self: Any) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = SqueezeBertModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) @require_sentencepiece @require_tokenizers @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") __lowerCAmelCase : List[Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]]) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : Any = torch.Size((1, 3)) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = torch.tensor([[0.6401, -0.0349, -0.6041]]) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-4))
269
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = tempfile.mkdtemp() __a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __a = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __a = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase_ , lowercase_ ) def a__ ( self , **lowerCamelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def a__ ( self , **lowerCamelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def a__ ( self , **lowerCamelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def a__ ( self ): shutil.rmtree(self.tmpdirname ) def a__ ( self ): __a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = self.get_image_processor() __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) __a = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) __a = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def a__ ( self ): __a = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __a = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) __a = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) __a = self.prepare_image_inputs() __a = image_processor(lowercase_ , return_tensors="np" ) __a = processor(images=lowercase_ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) __a = "lower newer" __a = processor(text=lowercase_ ) __a = tokenizer(lowercase_ , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) __a = "lower newer" __a = self.prepare_image_inputs() __a = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(lowercase_ ) __a = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def a__ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) __a = "lower newer" __a = self.prepare_image_inputs() __a = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
356
"""simple docstring""" import math def _lowerCamelCase( a ): __a = [] __a = 2 __a = int(math.sqrt(a ) ) # Size of every segment __a = [True] * (end + 1) __a = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __a = False start += 1 prime += in_prime __a = end + 1 __a = min(2 * end , a ) while low <= n: __a = [True] * (high - low + 1) for each in in_prime: __a = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __a = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __a = high + 1 __a = min(high + end , a ) return prime print(sieve(10**6))
268
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" assert column_title.isupper() A__ = 0 A__ = len(lowercase_ ) - 1 A__ = 0 while index >= 0: A__ = (ord(column_title[index] ) - 64) * pow(26 , lowercase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
14
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
1
import datasets _UpperCAmelCase = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" _UpperCAmelCase = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" _UpperCAmelCase = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def UpperCAmelCase__ ( self : Optional[Any] )->List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : str )->Optional[int]: '''simple docstring''' return {"accuracy": simple_accuracy(_snake_case , _snake_case )}
368
from datetime import datetime import requests def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> bytes: __lowerCAmelCase : List[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowerCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": _UpperCAmelCase = input('Enter Video/IGTV url: ').strip() _UpperCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
232
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): UpperCamelCase__ = True from torch.cuda.amp import autocast UpperCamelCase__ = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : List[str]=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class a__ : _a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _a : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _a : Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) _a : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) _a : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) _a : Optional[float] = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) _a : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) _a : Optional[float] = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) _a : Optional[float] = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class a__ : _a : Optional[str] = field( default=snake_case__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _a : Optional[str] = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _a : Optional[int] = field( default=snake_case__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _a : Optional[int] = field( default=snake_case__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _a : Optional[int] = field( default=snake_case__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) _a : List[str] = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class a__ : _a : WavaVecaProcessor _a : Union[bool, str] = True _a : Optional[int] = None _a : Optional[int] = None _a : Optional[int] = None _a : Optional[int] = None def __call__( self , _A ): """simple docstring""" __lowerCAmelCase = [{"input_values": feature["input_values"]} for feature in features] __lowerCAmelCase = [{"input_ids": feature["labels"]} for feature in features] __lowerCAmelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) __lowerCAmelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class a__ ( snake_case__ ): def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" model.train() __lowerCAmelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(_A , _A ) else: __lowerCAmelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer __lowerCAmelCase = F"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = re.sub(SCREAMING_SNAKE_CASE_ , "" , batch["sentence"] ).lower() + " " return batch __lowerCAmelCase = train_dataset.map(SCREAMING_SNAKE_CASE_ , remove_columns=["sentence"] ) __lowerCAmelCase = eval_dataset.map(SCREAMING_SNAKE_CASE_ , remove_columns=["sentence"] ) def extract_all_chars(SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = " ".join(batch["text"] ) __lowerCAmelCase = list(set(SCREAMING_SNAKE_CASE_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE_ , remove_columns=train_dataset.column_names , ) __lowerCAmelCase = train_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , batch_size=-1 , keep_in_memory=SCREAMING_SNAKE_CASE_ , remove_columns=eval_dataset.column_names , ) __lowerCAmelCase = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(SCREAMING_SNAKE_CASE_ )} __lowerCAmelCase = vocab_dict[" "] del vocab_dict[" "] __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) with open("vocab.json" , "w" ) as vocab_file: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch["path"] ) __lowerCAmelCase = resampler(SCREAMING_SNAKE_CASE_ ).squeeze().numpy() __lowerCAmelCase = 1_60_00 __lowerCAmelCase = batch["text"] return batch __lowerCAmelCase = train_dataset.map( SCREAMING_SNAKE_CASE_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowerCAmelCase = eval_dataset.map( SCREAMING_SNAKE_CASE_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(SCREAMING_SNAKE_CASE_ : Tuple ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(SCREAMING_SNAKE_CASE_ ) return batch __lowerCAmelCase = train_dataset.map( SCREAMING_SNAKE_CASE_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , ) __lowerCAmelCase = eval_dataset.map( SCREAMING_SNAKE_CASE_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowerCAmelCase = datasets.load_metric("wer" ) def compute_metrics(SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids , group_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = wer_metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics("train" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("train" , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE_ ) return results if __name__ == "__main__": main()
92
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
92
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A : int = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase=None, _UpperCAmelCase=None ) -> Any: '''simple docstring''' return field(default_factory=lambda: default, metadata=_UpperCAmelCase ) @dataclass class __A : lowerCAmelCase_ : int lowerCAmelCase_ : float lowerCAmelCase_ : str lowerCAmelCase_ : bool @dataclass class __A : lowerCAmelCase_ : int = 42 lowerCAmelCase_ : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class __A : lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = True lowerCAmelCase_ : Optional[bool] = None class __A ( lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "titi" lowerCAmelCase_ : Union[str, Any] = "toto" class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = "titi" lowerCAmelCase_ : Union[str, Any] = "toto" lowerCAmelCase_ : int = 42 @dataclass class __A : lowerCAmelCase_ : BasicEnum = "toto" def lowercase__ ( self : List[Any] ): lowerCAmelCase : str = BasicEnum(self.foo ) @dataclass class __A : lowerCAmelCase_ : MixedTypeEnum = "toto" def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = MixedTypeEnum(self.foo ) @dataclass class __A : lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[float] = field(default=lowerCAmelCase , metadata={"help": "help message"} ) lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[List[str]] = list_field(default=[] ) lowerCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class __A : lowerCAmelCase_ : List[int] = list_field(default=[] ) lowerCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) lowerCAmelCase_ : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) lowerCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __A : lowerCAmelCase_ : List[int] = field() lowerCAmelCase_ : str = field() lowerCAmelCase_ : BasicEnum = field() def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = BasicEnum(self.required_enum ) @dataclass class __A : lowerCAmelCase_ : int lowerCAmelCase_ : "BasicEnum" = field() lowerCAmelCase_ : "Optional[bool]" = None lowerCAmelCase_ : "str" = field(default="toto" , metadata={"help": "help message"} ) lowerCAmelCase_ : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __A : lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool | None = None @dataclass class __A : lowerCAmelCase_ : int | None = None lowerCAmelCase_ : float | None = field(default=lowerCAmelCase , metadata={"help": "help message"} ) lowerCAmelCase_ : str | None = None lowerCAmelCase_ : list[str] | None = list_field(default=[] ) lowerCAmelCase_ : list[int] | None = list_field(default=[] ) class __A ( unittest.TestCase ): def lowercase__ ( self : Dict , UpperCAmelCase_ : argparse.ArgumentParser , UpperCAmelCase_ : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase : Any = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != 'container'} lowerCAmelCase : Tuple = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , UpperCAmelCase_ ) and yy.get('choices' , UpperCAmelCase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](UpperCAmelCase_ ) , yy['type'](UpperCAmelCase_ ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : Optional[Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument('--bar' , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument('--baz' , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument('--flag' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs='?' ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((lowerCAmelCase) , ) : Optional[Any] = parser.parse_args_into_dataclasses(UpperCAmelCase_ , look_for_args_file=UpperCAmelCase_ ) self.assertFalse(example.flag ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : int = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=UpperCAmelCase_ ) expected.add_argument('--baz' , default='toto' , type=UpperCAmelCase_ , help='help message' ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs='?' ) expected.add_argument('--baz' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=UpperCAmelCase_ , dest='baz' ) expected.add_argument('--opt' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) lowerCAmelCase : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: lowerCAmelCase : Optional[Any] = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) lowerCAmelCase : Dict = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) lowerCAmelCase : str = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase : Optional[int] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCAmelCase : Dict = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase : Dict = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase : Any = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase__ ( self : Optional[Any] ): @dataclass class __A : lowerCAmelCase_ : Literal["titi", "toto", 42] = "toto" lowerCAmelCase : List[Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCAmelCase : str = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCAmelCase : Tuple = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=UpperCAmelCase_ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=UpperCAmelCase_ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=UpperCAmelCase_ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = parser.parse_args([] ) self.assertEqual( UpperCAmelCase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase : Union[str, Any] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def lowercase__ ( self : int ): lowerCAmelCase : int = argparse.ArgumentParser() expected.add_argument('--foo' , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument('--bar' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='help message' ) expected.add_argument('--baz' , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=UpperCAmelCase_ ) expected.add_argument('--des' , nargs='+' , default=[] , type=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: lowerCAmelCase : Any = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , bar=UpperCAmelCase_ , baz=UpperCAmelCase_ , ces=[] , des=[] ) ) lowerCAmelCase : str = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def lowercase__ ( self : int ): lowerCAmelCase : List[str] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument('--required_str' , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=UpperCAmelCase_ , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=UpperCAmelCase_ , ) expected.add_argument('--opt' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) expected.add_argument('--baz' , default='toto' , type=UpperCAmelCase_ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : Any = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } lowerCAmelCase : List[Any] = parser.parse_dict(UpperCAmelCase_ )[0] lowerCAmelCase : Tuple = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : str = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(UpperCAmelCase_ , parser.parse_dict , UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : str = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Any = os.path.join(UpperCAmelCase_ , 'temp_json' ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCAmelCase : int = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Union[str, Any] = HfArgumentParser(UpperCAmelCase_ ) lowerCAmelCase : int = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : str = os.path.join(UpperCAmelCase_ , 'temp_yaml' ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCAmelCase : int = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Any = HfArgumentParser(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
323
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
1
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = ["pixel_values"] def __init__( self : int ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,_snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**_snake_case : Optional[int] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[str] = size if size is not None else {'''shortest_edge''': 224} lowercase__ : Union[str, Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : int = get_size_dict(_snake_case ,param_name='''crop_size''' ) lowercase__ : List[str] = do_resize lowercase__ : List[str] = size lowercase__ : List[Any] = resample lowercase__ : Any = do_center_crop lowercase__ : List[str] = crop_size lowercase__ : Union[str, Any] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Optional[int] = do_normalize lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : List[str] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ,default_to_square=_snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase__ : Optional[Any] = int((256 / 224) * size['''shortest_edge'''] ) lowercase__ : List[str] = get_resize_output_image_size(_snake_case ,size=_snake_case ,default_to_square=_snake_case ) lowercase__ : List[str] = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _snake_case ,size=(size_dict['''height'''], size_dict['''width''']) ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[str] ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Any ,) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, Iterable[float]]] = None ,_snake_case : Optional[Union[float, Iterable[float]]] = None ,_snake_case : Optional[TensorType] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : Dict ,) -> BatchFeature: """simple docstring""" lowercase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowercase__ : str = resample if resample is not None else self.resample lowercase__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : str = image_mean if image_mean is not None else self.image_mean lowercase__ : Optional[int] = image_std if image_std is not None else self.image_std lowercase__ : Optional[Any] = size if size is not None else self.size lowercase__ : Tuple = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : int = get_size_dict(_snake_case ,param_name='''crop_size''' ) lowercase__ : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Any = [self.resize(_snake_case ,_snake_case ,_snake_case ) for image in images] if do_center_crop: lowercase__ : Tuple = [self.center_crop(_snake_case ,_snake_case ) for image in images] if do_rescale: lowercase__ : Dict = [self.rescale(_snake_case ,_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(_snake_case ,_snake_case ,_snake_case ) for image in images] lowercase__ : int = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = len(snake_case__ ) lowerCAmelCase__ : Dict = [] for i in range(len(snake_case__ ) - pat_len + 1 ): lowerCAmelCase__ : str = True for j in range(snake_case__ ): if s[i + j] != pattern[j]: lowerCAmelCase__ : int = False break if match_found: position.append(snake_case__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
365
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class _a ( _lowercase): _a : Tuple = VOCAB_FILES_NAMES _a : Dict = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_INIT_CONFIGURATION _a : Union[str, Any] = FunnelTokenizer _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = 2 def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any="<unk>" , _SCREAMING_SNAKE_CASE : Dict="<sep>" , _SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , _SCREAMING_SNAKE_CASE : str="<cls>" , _SCREAMING_SNAKE_CASE : List[str]="<mask>" , _SCREAMING_SNAKE_CASE : Optional[int]="<s>" , _SCREAMING_SNAKE_CASE : Dict="</s>" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : str="##" , **_SCREAMING_SNAKE_CASE : List[str] , )-> List[str]: super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , clean_text=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , wordpieces_prefix=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): lowerCAmelCase__ : int = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : str = strip_accents lowerCAmelCase__ : Dict = tokenize_chinese_chars lowerCAmelCase__ : str = normalizer_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = do_lower_case def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None )-> Optional[int]: lowerCAmelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: lowerCAmelCase__ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
211
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] __UpperCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
65
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = BertTokenizer __magic_name__ = BertTokenizerFast __magic_name__ = True __magic_name__ = True __magic_name__ = filter_non_english def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = "UNwant\u00E9d,running" UpperCAmelCase_ : Any = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Any = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: if not self.test_rust_tokenizer: return UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : List[Any] = "UNwant\u00E9d,running" UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : int = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing UpperCAmelCase_ : Tuple = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = "UNwant\u00E9d,running" UpperCAmelCase_ : List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: UpperCAmelCase_ : Any = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = BasicTokenizer() UpperCAmelCase_ : Dict = "a\n'll !!to?'d of, can't." UpperCAmelCase_ : List[str] = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : int = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ : Tuple = {} for i, token in enumerate(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = i UpperCAmelCase_ : Optional[Any] = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ : Any = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ : Tuple = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) UpperCAmelCase_ : Optional[int] = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , "do_lower_case" ) else False UpperCAmelCase_ : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ["的", "人", "有"] UpperCAmelCase_ : Tuple = "".join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Any = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : int = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ : Tuple = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
268
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
215
"""simple docstring""" from __future__ import annotations class __A : """simple docstring""" def __init__( self , __A = 0 ) -> Dict: a =key def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a ='''''' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a ='''''' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
215
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """vocab.json"""} snake_case_ = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } snake_case_ = {"""mgp-str""": 27} class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Dict , lowercase_ :Tuple , lowercase_ :Optional[int]="[GO]" , lowercase_ :Tuple="[GO]" , lowercase_ :Optional[Any]="[s]" , lowercase_ :List[str]="[GO]" , **lowercase_ :int ) -> List[str]: super().__init__( unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase__ ( self :List[str] ) -> Any: return len(self.vocab ) def UpperCAmelCase__ ( self :Dict ) -> List[str]: return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[Any] ) -> int: UpperCAmelCase = [] for s in text: char_tokens.extend(lowercase_ ) return char_tokens def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Union[str, Any] ) -> Dict: return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[int] ) -> Optional[Any]: return self.decoder.get(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowercase_ ) ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) return (vocab_file,)
78
import math def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCamelCase : List[Any] = input("Enter message: ") __UpperCamelCase : Optional[int] = int(input(F'Enter key [2-{len(_lowerCamelCase) - 1}]: ')) __UpperCamelCase : str = input("Encryption/Decryption [e/d]: ") if mode.lower().startswith("e"): __UpperCamelCase : List[str] = encrypt_message(_lowerCamelCase , _lowerCamelCase) elif mode.lower().startswith("d"): __UpperCamelCase : Dict = decrypt_message(_lowerCamelCase , _lowerCamelCase) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = [""] * key for col in range(_lowerCamelCase): __UpperCamelCase : Any = col while pointer < len(_lowerCamelCase): cipher_text[col] += message[pointer] pointer += key return "".join(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : Any = math.ceil(len(_lowerCamelCase) / key) __UpperCamelCase : Any = key __UpperCamelCase : str = (num_cols * num_rows) - len(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = [""] * num_cols __UpperCamelCase : Dict = 0 __UpperCamelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __UpperCamelCase : List[Any] = 0 row += 1 return "".join(_lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod() main()
232
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='OwlViTImageProcessor' __a =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Tuple , __a : List[Any]=None , __a : int=None , **__a : Any ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Tuple , __a : Tuple=None , __a : Optional[Any]=None , __a : str=None , __a : Optional[Any]="max_length" , __a : Dict="np" , **__a : List[str] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__a , __a ) or (isinstance(__a , __a ) and not isinstance(text[0] , __a )): _a = [self.tokenizer(__a , padding=__a , return_tensors=__a , **__a )] elif isinstance(__a , __a ) and isinstance(text[0] , __a ): _a = [] # Maximum number of queries across batch _a = max([len(__a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__a ) != max_num_queries: _a = t + [" "] * (max_num_queries - len(__a )) _a = self.tokenizer(__a , padding=__a , return_tensors=__a , **__a ) encodings.append(__a ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _a = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _a = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _a = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _a = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _a = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _a = BatchEncoding() _a = input_ids _a = attention_mask if query_images is not None: _a = BatchEncoding() _a = self.image_processor( __a , return_tensors=__a , **__a ).pixel_values _a = query_pixel_values if images is not None: _a = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif query_images is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def UpperCamelCase__ ( self : List[Any] , *__a : Optional[Any] , **__a : Union[str, Any] ): return self.image_processor.post_process(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : Tuple , **__a : str ): return self.image_processor.post_process_object_detection(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : List[str] , **__a : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*__a , **__a ) def UpperCamelCase__ ( self : int , *__a : str , **__a : Optional[int] ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : List[str] , *__a : Dict , **__a : Union[str, Any] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
346
'''simple docstring''' import requests lowerCAmelCase_ : List[Any] = 'YOUR API KEY' def _lowerCamelCase ( lowercase : str , lowercase : str = giphy_api_key ) -> list: _a = "+".join(query.split() ) _a = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' _a = requests.get(lowercase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
346
1
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[Any] = rotary_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE : str = vocab_size - 1 SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 20 SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE : str = jax.jit(model.generate ) SCREAMING_SNAKE_CASE : str = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
323
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small""" SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = """en_speaker_1""" SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string""" SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json""" SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings""" def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE : List[str] = 35 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : int = 8 SCREAMING_SNAKE_CASE : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string ) SCREAMING_SNAKE_CASE : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
323
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( UpperCamelCase__ ): a__ : List[str] = ["""pixel_values"""] def __init__(self : str , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : Tuple , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ = do_convert_rgb def _lowercase (self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ): UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : int , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : int , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : int , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a , param_name="size" , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: int ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_: Union[str, Any] =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_: List[str] =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure)
106
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , a : Optional[int] , a : str=13 , a : str=7 , a : List[Any]=True , a : List[str]=True , a : int=True , a : Any=True , a : Tuple=99 , a : int=32 , a : Union[str, Any]=5 , a : str=4 , a : Optional[Any]=37 , a : Optional[Any]="gelu" , a : Any=0.1 , a : Optional[Any]=0.1 , a : Any=512 , a : int=16 , a : Optional[int]=2 , a : Optional[int]=0.02 , a : str=4 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = num_choices def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =True lowerCamelCase__ =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = FlaxRoFormerModelTester(self ) @slow def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=a ) SCREAMING_SNAKE_CASE : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Tuple = model(a )[0] SCREAMING_SNAKE_CASE : Optional[int] = 5_0000 SCREAMING_SNAKE_CASE : Any = (1, 6, vocab_size) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Any = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
76
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowercase_ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase (__A , __A , __A , __A , __A , __A): """simple docstring""" for attribute in key.split('''.'''): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _a = '''lm_head''' _a = getattr(__A , __A) if weight_type is not None: _a = getattr(__A , __A).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [] _a = fairseq_model.state_dict() _a = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) _a = True else: for key, mapped_key in MAPPING.items(): _a = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: _a = True if "*" in mapped_key: _a = name.split(__A)[0].split('''.''')[-2] _a = mapped_key.replace('''*''' , __A) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a = '''weight''' else: _a = None set_recursively(__A , __A , __A , __A , __A , __A) continue if not is_used: unused_weights.append(__A) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = full_name.split('''conv_layers.''')[-1] _a = name.split('''.''') _a = int(items[0]) _a = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__A) @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None , __A=None , __A=True): """simple docstring""" if config_path is not None: _a = UniSpeechConfig.from_pretrained(__A) else: _a = UniSpeechConfig() if is_finetuned: if dict_path: _a = Dictionary.load_from_json(__A) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols) _a = os.path.join(__A , '''vocab.json''') if not os.path.isdir(__A): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A)) return os.makedirs(__A , exist_ok=__A) _a = target_dict.indices # fairseq has the <pad> and <s> switched _a = 42 _a = 43 with open(__A , '''w''' , encoding='''utf-8''') as vocab_handle: json.dump(__A , __A) _a = WavaVecaPhonemeCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) _a = True if config.feat_extract_norm == '''layer''' else False _a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) _a = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A) processor.save_pretrained(__A) _a = UniSpeechForCTC(__A) else: _a = UniSpeechForPreTraining(__A) if is_finetuned: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1]), '''w2v_path''': checkpoint_path}) else: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) _a = model[0].eval() recursively_load_weights(__A , __A , __A) hf_unispeech.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
211
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowercase ( __snake_case ): """simple docstring""" _a = 'pegasus' _a = ['past_key_values'] _a = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , UpperCamelCase_=50265 , UpperCamelCase_=1024 , UpperCamelCase_=12 , UpperCamelCase_=4096 , UpperCamelCase_=16 , UpperCamelCase_=12 , UpperCamelCase_=4096 , UpperCamelCase_=16 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_="gelu" , UpperCamelCase_=1024 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=0 , UpperCamelCase_=False , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=1 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Union[str, Any] = d_model UpperCamelCase__ :List[Any] = encoder_ffn_dim UpperCamelCase__ :Union[str, Any] = encoder_layers UpperCamelCase__ :int = encoder_attention_heads UpperCamelCase__ :Optional[Any] = decoder_ffn_dim UpperCamelCase__ :List[str] = decoder_layers UpperCamelCase__ :List[str] = decoder_attention_heads UpperCamelCase__ :int = dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :Any = activation_dropout UpperCamelCase__ :Dict = activation_function UpperCamelCase__ :Optional[int] = init_std UpperCamelCase__ :int = encoder_layerdrop UpperCamelCase__ :List[Any] = decoder_layerdrop UpperCamelCase__ :List[str] = use_cache UpperCamelCase__ :int = encoder_layers UpperCamelCase__ :int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.d_model
352
'''simple docstring''' from collections import Counter from timeit import timeit def a ( __a = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def a ( __a = "" ) -> bool: '''simple docstring''' if len(__a ) == 0: return True UpperCamelCase__ :List[Any] = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCamelCase__ :dict[str, int] = {} for character in lower_case_input_str: UpperCamelCase__ :Optional[int] = character_freq_dict.get(__a , 0 ) + 1 UpperCamelCase__ :List[str] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a ( __a = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , __a , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__a ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__a ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": __snake_case = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) __snake_case = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
219
0
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(lowerCAmelCase_ ), magnitude * sin(lowerCAmelCase_ )] return [magnitude * cos(radians(lowerCAmelCase_ ) ), magnitude * sin(radians(lowerCAmelCase_ ) )] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10**-1 )-> bool: '''simple docstring''' _UpperCAmelCase : NDArray[floataa] = cross(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : float = sum(lowerCAmelCase_ ) return abs(lowerCAmelCase_ ) < eps if __name__ == "__main__": # Test to check if it works A_ : str = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) A_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A_ : List[str] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) A_ : Tuple = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A_ : Dict = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) A_ : Union[str, Any] = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
215
'''simple docstring''' from __future__ import annotations import queue class lowercase : """simple docstring""" def __init__( self ,a_ ) -> str: _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = None def snake_case_ ( )-> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) _UpperCAmelCase : Any = input("""Enter the value of the root node: """ ).strip().lower() _UpperCAmelCase : queue.Queue = queue.Queue() _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : str = q.get() _UpperCAmelCase : Any = F'''Enter the left node of {node_found.data}: ''' _UpperCAmelCase : Union[str, Any] = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = left_node q.put(lowerCAmelCase_ ) _UpperCAmelCase : Dict = F'''Enter the right node of {node_found.data}: ''' _UpperCAmelCase : Tuple = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : Any = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = right_node q.put(lowerCAmelCase_ ) raise def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Optional[int] = [] while not q.empty(): _UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = n.left # end of while means current node doesn't have left child _UpperCAmelCase : int = stack.pop() # start to traverse its right child _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = n.left _UpperCAmelCase : Union[str, Any] = stack.pop() print(n.data , end=""",""" ) _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase ,_UpperCAmelCase : str = [], [] _UpperCAmelCase : Dict = node stacka.append(lowerCAmelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ = "" , lowerCAmelCase_=50 , lowerCAmelCase_="*" )-> str: '''simple docstring''' if not s: return "\n" + width * char _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = divmod(width - len(lowerCAmelCase_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) A_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
215
1
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = GPTaTokenizer lowerCamelCase_ = GPTaTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = {'''add_prefix_space''': True} lowerCamelCase_ = False def lowerCAmelCase_ ( self : Dict ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _SCREAMING_SNAKE_CASE = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def lowerCAmelCase_ ( self : Any , **__lowerCamelCase : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[Any] , **__lowerCamelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = "lower newer" _SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _SCREAMING_SNAKE_CASE = "lower newer" _SCREAMING_SNAKE_CASE = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] _SCREAMING_SNAKE_CASE = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "lower newer" # Testing tokenization _SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens _SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing the unknown token _SCREAMING_SNAKE_CASE = tokens + [rust_tokenizer.unk_token] _SCREAMING_SNAKE_CASE = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase_ ( self : str , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : int=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # Simple input _SCREAMING_SNAKE_CASE = "This is a simple input" _SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] _SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") _SCREAMING_SNAKE_CASE = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _SCREAMING_SNAKE_CASE = "This is a simple input" _SCREAMING_SNAKE_CASE = ["This is a simple input looooooooong", "This is a simple input"] _SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") _SCREAMING_SNAKE_CASE = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _SCREAMING_SNAKE_CASE = tokenizer.pad_token_id _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding="max_length" , max_length=3_0 , return_tensors="np" ) _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) _SCREAMING_SNAKE_CASE = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=6_0 , return_tensors="np" ) _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = "$$$" _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "This is a simple input" _SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] _SCREAMING_SNAKE_CASE = tokenizer.bos_token_id _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _SCREAMING_SNAKE_CASE = tokenizer.decode(out_s.input_ids ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = [self.get_tokenizer(do_lower_case=__lowerCamelCase , add_bos_token=__lowerCamelCase )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _SCREAMING_SNAKE_CASE = "Encode this." _SCREAMING_SNAKE_CASE = "This one too please." _SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) encoded_sequence += tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer.encode_plus( __lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = encoded_sequence_dict["input_ids"] _SCREAMING_SNAKE_CASE = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCamelCase ) ] _SCREAMING_SNAKE_CASE = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers class lowercase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "A photo of a cat" _SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("./test_opt" ) _SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "A photo of a cat" _SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) # Same as above self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "bos" _SCREAMING_SNAKE_CASE = tokenizer.get_vocab()["bos"] _SCREAMING_SNAKE_CASE = "A photo of a cat" _SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) # We changed the bos token self.assertEqual(__lowerCamelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
360
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''efficientnet''' def __init__( self : Optional[Any] , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 6_0_0 , __lowerCamelCase : float = 2.0 , __lowerCamelCase : float = 3.1 , __lowerCamelCase : int = 8 , __lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase : List[int] = [] , __lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase : float = 0.2_5 , __lowerCamelCase : str = "swish" , __lowerCamelCase : int = 2_5_6_0 , __lowerCamelCase : str = "mean" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 0.0_0_1 , __lowerCamelCase : float = 0.9_9 , __lowerCamelCase : float = 0.5 , __lowerCamelCase : float = 0.2 , **__lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = width_coefficient _SCREAMING_SNAKE_CASE = depth_coefficient _SCREAMING_SNAKE_CASE = depth_divisor _SCREAMING_SNAKE_CASE = kernel_sizes _SCREAMING_SNAKE_CASE = in_channels _SCREAMING_SNAKE_CASE = out_channels _SCREAMING_SNAKE_CASE = depthwise_padding _SCREAMING_SNAKE_CASE = strides _SCREAMING_SNAKE_CASE = num_block_repeats _SCREAMING_SNAKE_CASE = expand_ratios _SCREAMING_SNAKE_CASE = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = pooling_type _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = batch_norm_eps _SCREAMING_SNAKE_CASE = batch_norm_momentum _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = drop_connect_rate _SCREAMING_SNAKE_CASE = sum(__lowerCamelCase ) * 4 class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return 1e-5
111
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = ["""image_processor""", """tokenizer"""] lowerCAmelCase_ : Union[str, Any] = """OwlViTImageProcessor""" lowerCAmelCase_ : Union[str, Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCAmelCase , ) UpperCAmelCase__ = kwargs.pop("""feature_extractor""" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any="max_length" , _UpperCAmelCase : Dict="np" , **_UpperCAmelCase : List[Any] ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(text[0] , _UpperCAmelCase )): UpperCAmelCase__ = [self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(text[0] , _UpperCAmelCase ): UpperCAmelCase__ = [] # Maximum number of queries across batch UpperCAmelCase__ = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: UpperCAmelCase__ = t + [""" """] * (max_num_queries - len(_UpperCAmelCase )) UpperCAmelCase__ = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase__ = BatchEncoding() UpperCAmelCase__ = input_ids UpperCAmelCase__ = attention_mask if query_images is not None: UpperCAmelCase__ = BatchEncoding() UpperCAmelCase__ = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ).pixel_values UpperCAmelCase__ = query_pixel_values if images is not None: UpperCAmelCase__ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: UpperCAmelCase__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Any ): """simple docstring""" return self.image_processor.post_process(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : str ): """simple docstring""" return self.image_processor.post_process_object_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Dict ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , *_UpperCAmelCase : str , **_UpperCAmelCase : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCAmelCase , ) return self.image_processor
346
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]: '''simple docstring''' lowercase_ = 2 lowercase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
313
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ (a_ ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , ): super().__init__() self.register_modules(transformer=lowercase_ , vae=lowercase_ , scheduler=lowercase_ ) # create a imagenet -> id dictionary for easier use _lowerCAmelCase : int = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): _lowerCAmelCase : Union[str, Any] = int(lowercase_ ) _lowerCAmelCase : int = dict(sorted(self.labels.items() ) ) def __UpperCamelCase ( self , snake_case_ ): if not isinstance(lowercase_ , lowercase_ ): _lowerCAmelCase : Any = list(lowercase_ ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , snake_case_ , snake_case_ = 4.0 , snake_case_ = None , snake_case_ = 5_0 , snake_case_ = "pil" , snake_case_ = True , ): _lowerCAmelCase : Optional[Any] = len(lowercase_ ) _lowerCAmelCase : Any = self.transformer.config.sample_size _lowerCAmelCase : int = self.transformer.config.in_channels _lowerCAmelCase : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase_ , device=self.device , dtype=self.transformer.dtype , ) _lowerCAmelCase : Any = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowerCAmelCase : List[Any] = torch.tensor(lowercase_ , device=self.device ).reshape(-1 ) _lowerCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device ) _lowerCAmelCase : List[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowerCAmelCase : List[Any] = latent_model_input[: len(lowercase_ ) // 2] _lowerCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0 ) _lowerCAmelCase : List[str] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) _lowerCAmelCase : Optional[int] = t if not torch.is_tensor(lowercase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase : Any = latent_model_input.device.type == '''mps''' if isinstance(lowercase_ , lowercase_ ): _lowerCAmelCase : Dict = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase : List[str] = torch.intaa if is_mps else torch.intaa _lowerCAmelCase : List[Any] = torch.tensor([timesteps] , dtype=lowercase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowerCAmelCase : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : List[str] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowerCAmelCase : Dict = self.transformer( lowercase_ , timestep=lowercase_ , class_labels=lowercase_ ).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase : Tuple = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase : Any = torch.split(lowercase_ , len(lowercase_ ) // 2 , dim=0 ) _lowerCAmelCase : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) _lowerCAmelCase : Union[str, Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase : Any = torch.split(lowercase_ , lowercase_ , dim=1 ) else: _lowerCAmelCase : int = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase : int = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample if guidance_scale > 1: _lowerCAmelCase : int = latent_model_input.chunk(2 , dim=0 ) else: _lowerCAmelCase : Optional[int] = latent_model_input _lowerCAmelCase : List[Any] = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase : List[Any] = self.vae.decode(lowercase_ ).sample _lowerCAmelCase : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : Tuple = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase_ )
309
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
0
import copy import re class lowercase_ : A__ : Optional[Any] = """hp""" A__ : Union[str, Any] = {} A__ : Optional[int] = None @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = prefix UpperCamelCase_ = defaults cls.build_naming_info() @staticmethod def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if len(__UpperCamelCase ) == 0: return "" UpperCamelCase_ = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__UpperCamelCase ) + 1 ): UpperCamelCase_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCamelCase_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__UpperCamelCase ): UpperCamelCase_ = """""" while integer != 0: UpperCamelCase_ = chr(ord("""A""" ) + integer % 1_0 ) + s integer //= 1_0 return s UpperCamelCase_ = 0 while True: UpperCamelCase_ = word + """#""" + int_to_alphabetic(__UpperCamelCase ) if sword in info["reverse_short_word"]: continue else: UpperCamelCase_ = sword break UpperCamelCase_ = short_word UpperCamelCase_ = word return short_word @staticmethod def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = param_name.split("""_""" ) UpperCamelCase_ = [TrialShortNamer.shortname_for_word(__UpperCamelCase , __UpperCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCamelCase_ = ["""""", """_"""] for separator in separators: UpperCamelCase_ = separator.join(__UpperCamelCase ) if shortname not in info["reverse_short_param"]: UpperCamelCase_ = shortname UpperCamelCase_ = param_name return shortname return param_name @staticmethod def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = TrialShortNamer.shortname_for_key(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = short_name UpperCamelCase_ = param_name @classmethod def lowerCamelCase_ ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return UpperCamelCase_ = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } UpperCamelCase_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = info @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None UpperCamelCase_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCamelCase_ = cls.NAMING_INFO["""short_param"""][k] if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = 1 if v else 0 UpperCamelCase_ = """""" if isinstance(__UpperCamelCase , (int, float) ) else """-""" UpperCamelCase_ = f'''{key}{sep}{v}''' name.append(__UpperCamelCase ) return "_".join(__UpperCamelCase ) @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCamelCase_ = [] else: UpperCamelCase_ = repr.split("""_""" ) UpperCamelCase_ = {} for value in values: if "-" in value: UpperCamelCase_ , UpperCamelCase_ = value.split("""-""" ) else: UpperCamelCase_ = re.sub("""[0-9.]""" , """""" , __UpperCamelCase ) UpperCamelCase_ = float(re.sub("""[^0-9.]""" , """""" , __UpperCamelCase ) ) UpperCamelCase_ = cls.NAMING_INFO["""reverse_short_param"""][p_k] UpperCamelCase_ = p_v for k in cls.DEFAULTS: if k not in parameters: UpperCamelCase_ = cls.DEFAULTS[k] return parameters
261
from __future__ import annotations def lowerCamelCase__ ( a__ : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
261
1
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return int((input_a, input_a).count(0 ) == 0 ) def lowerCamelCase_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
19
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp __lowerCamelCase : Any = 5 __lowerCamelCase : Dict = 10 @require_sentencepiece @require_tokenizers class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = SpeechaTextTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def __a ( self : Tuple ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) SCREAMING_SNAKE_CASE__ = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] SCREAMING_SNAKE_CASE__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """<pad>""" SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowercase ) , 10_01 ) def __a ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase_ = "C'est trop cool" lowerCAmelCase_ = "Esto es genial" @classmethod def __a ( cls : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __a ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __a ( self : int ): """simple docstring""" self.assertIn(_lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """fr""" SCREAMING_SNAKE_CASE__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
219
0
from collections.abc import Callable import numpy as np def UpperCamelCase (lowercase_: Callable , lowercase_: float , lowercase_: float , lowercase_: float , lowercase_: float ) -> np.array: A__ : List[str] = int(np.ceil((x_end - xa) / step_size ) ) A__ : Union[str, Any] = np.zeros((n + 1,) ) A__ : Dict = ya A__ : Optional[int] = xa for k in range(lowercase_ ): A__ : Tuple = y[k] + step_size * ode_func(lowercase_ , y[k] ) A__ : Tuple = y[k] + ( (step_size / 2) * (ode_func(lowercase_ , y[k] ) + ode_func(x + step_size , lowercase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
141
from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCamelCase (lowercase_: int ) -> str: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _a (__magic_name__ ): '''simple docstring''' @staticmethod def __A ( A__ ): A__ : Any = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=A__ , default=A__ , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=A__ , help="""Name of the model to download""" ) download_parser.set_defaults(func=A__ ) def __init__( self , A__ , A__ , A__ , A__ ): A__ : Union[str, Any] = model A__ : Dict = cache A__ : str = force A__ : Tuple = trust_remote_code def __A ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
141
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : str = Dict[str, Any] __UpperCAmelCase : int = List[Prediction] @add_end_docstrings(__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , *A : Optional[int] , **A : Optional[int] ): super().__init__(*A , **A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase__ ( self : List[str] , **A : Tuple ): __snake_case: List[str] = {} if "threshold" in kwargs: __snake_case: Optional[Any] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : int , *A : Optional[Any] , **A : Tuple ): return super().__call__(*A , **A ) def UpperCAmelCase__ ( self : Optional[int] , A : str ): __snake_case: Optional[Any] = load_image(A ) __snake_case: Dict = torch.IntTensor([[image.height, image.width]] ) __snake_case: str = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __snake_case: Optional[Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __snake_case: Any = target_size return inputs def UpperCAmelCase__ ( self : Optional[int] , A : Dict ): __snake_case: int = model_inputs.pop("""target_size""" ) __snake_case: int = self.model(**A ) __snake_case: Any = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __snake_case: Optional[int] = model_inputs["""bbox"""] return model_outputs def UpperCAmelCase__ ( self : List[Any] , A : Optional[int] , A : Union[str, Any]=0.9 ): __snake_case: Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __snake_case , __snake_case: Union[str, Any] = target_size[0].tolist() def unnormalize(A : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) __snake_case , __snake_case: Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __snake_case: List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __snake_case: int = [unnormalize(A ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __snake_case: int = ["""score""", """label""", """box"""] __snake_case: List[Any] = [dict(zip(A , A ) ) for vals in zip(scores.tolist() , A , A ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __snake_case: Tuple = self.image_processor.post_process_object_detection(A , A , A ) __snake_case: Optional[Any] = raw_annotations[0] __snake_case: int = raw_annotation["""scores"""] __snake_case: int = raw_annotation["""labels"""] __snake_case: Optional[Any] = raw_annotation["""boxes"""] __snake_case: Union[str, Any] = scores.tolist() __snake_case: List[str] = [self.model.config.idalabel[label.item()] for label in labels] __snake_case: List[str] = [self._get_bounding_box(A ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __snake_case: List[Any] = ["""score""", """label""", """box"""] __snake_case: Dict = [ dict(zip(A , A ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCAmelCase__ ( self : Optional[Any] , A : "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __snake_case , __snake_case , __snake_case , __snake_case: Union[str, Any] = box.int().tolist() __snake_case: Optional[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
111
0
'''simple docstring''' import argparse import datetime def _snake_case ( A ) -> str: lowerCAmelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowerCAmelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month lowerCAmelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) lowerCAmelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day lowerCAmelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator lowerCAmelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year lowerCAmelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation lowerCAmelCase__ = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: lowerCAmelCase__ = y - 1 lowerCAmelCase__ = m + 12 # maths var lowerCAmelCase__ = int(str(lowercase__ )[:2] ) lowerCAmelCase__ = int(str(lowercase__ )[2:] ) lowerCAmelCase__ = int(2.6 * m - 5.39 ) lowerCAmelCase__ = int(c / 4 ) lowerCAmelCase__ = int(k / 4 ) lowerCAmelCase__ = int(d + k ) lowerCAmelCase__ = int(t + u + v + x ) lowerCAmelCase__ = int(z - (2 * c) ) lowerCAmelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response lowerCAmelCase__ = F"""Your date {date_input}, is a {days[str(lowercase__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) __UpperCAmelCase = parser.parse_args() zeller(args.date_input)
356
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __UpperCAmelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def _snake_case ( A , A ) -> Optional[Any]: lowerCAmelCase__ = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase__ = int(re.match(R'''.*layer_(\d*).*''' , A )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def _snake_case ( A ) -> Optional[int]: if dtype == torch.bool: return 1 / 8 lowerCAmelCase__ = re.search(R'''[^\d](\d+)$''' , str(A ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) lowerCAmelCase__ = int(bit_search.groups()[0] ) return bit_size // 8 def _snake_case ( A , A , A , A , A ) -> Dict: # Construct model if bloom_config_file == "": lowerCAmelCase__ = BloomConfig() else: lowerCAmelCase__ = BloomConfig.from_json_file(A ) if shard_model: lowerCAmelCase__ = os.listdir(A ) lowerCAmelCase__ = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) lowerCAmelCase__ = {'''weight_map''': {}, '''metadata''': {}} lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = BloomConfig() for j, file in enumerate(A ): print('''Processing file: {}'''.format(A ) ) lowerCAmelCase__ = None for i in range(A ): # load all TP files lowerCAmelCase__ = file.replace('''model_00''' , F"""model_0{i}""" ) lowerCAmelCase__ = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(A ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp torch.save( A , os.path.join( A , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase__ = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) lowerCAmelCase__ = BloomConfig() lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowerCAmelCase__ = total_size with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) else: lowerCAmelCase__ = BloomModel(A ) lowerCAmelCase__ = os.listdir(A ) lowerCAmelCase__ = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) lowerCAmelCase__ = None for i, file in enumerate(A ): lowerCAmelCase__ = None for i in range(A ): # load all TP files lowerCAmelCase__ = file.replace('''model_00''' , F"""model_0{i}""" ) lowerCAmelCase__ = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(A ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp lowerCAmelCase__ = model.load_state_dict(A , strict=A ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: lowerCAmelCase__ = set(other_keys.missing_keys ) else: lowerCAmelCase__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: lowerCAmelCase__ = model.to(config.torch_dtype ) torch.save(model.state_dict() , A ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __UpperCAmelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
228
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE : List[Any] = Vector() def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowerCamelCase ) , '''(0,0,0,0,0,1)''' ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowerCamelCase ) , 4 ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Dict = Vector([1, 2] ) SCREAMING_SNAKE_CASE : str = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE : List[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE : Tuple = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Dict = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : List[str] = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : List[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[int] = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __lowerCAmelCase ( self ) ->None: self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __lowerCAmelCase ( self ) ->None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowerCamelCase , _lowerCamelCase ) ) , '''(3,4,7)''' ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Tuple = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE : str = x.copy() self.assertEqual(str(_lowerCamelCase ) , str(_lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Dict = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowerCamelCase ) , '''(0,1,0)''' ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(_lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : str = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(_lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __lowerCAmelCase ( self ) ->None: self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
313
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
1
from __future__ import annotations from typing import Any class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ = 0 ) -> None: '''simple docstring''' snake_case_ : Tuple = row, column snake_case_ : Optional[int] = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__(self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier snake_case_ : Dict = 0 for row_vector in self.array: for obj in row_vector: snake_case_ : Tuple = max(__magic_name__ , len(str(__magic_name__ ) ) ) snake_case_ : Dict = F'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ ) -> str: nonlocal string_format_identifier snake_case_ : Any = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__(self ) -> str: '''simple docstring''' return str(self ) def lowerCamelCase (self , __magic_name__ ) -> bool: '''simple docstring''' if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self , __magic_name__ ) -> Any: '''simple docstring''' assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__(self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' assert self.validate_indicies(__magic_name__ ) snake_case_ : List[str] = value def __add__(self , __magic_name__ ) -> Matrix: '''simple docstring''' assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add snake_case_ : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): snake_case_ : str = self[r, c] + another[r, c] return result def __neg__(self ) -> Matrix: '''simple docstring''' snake_case_ : Optional[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): snake_case_ : int = -self[r, c] return result def __sub__(self , __magic_name__ ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__(self , __magic_name__ ) -> Matrix: '''simple docstring''' if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication snake_case_ : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): snake_case_ : Dict = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row snake_case_ : str = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: snake_case_ : str = F'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowerCamelCase (self ) -> Matrix: '''simple docstring''' snake_case_ : Tuple = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): snake_case_ : Tuple = self[r, c] return result def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate snake_case_ : str = v.transpose() snake_case_ : Dict = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : Optional[int] = Matrix(3 , 3 , 0 ) for i in range(3 ): snake_case_ : Any = 1 print(f'''a^(-1) is {ainv}''' ) # u, v snake_case_ : List[str] = Matrix(3 , 1 , 0 ) snake_case_ : Optional[Any] = 1, 2, -3 snake_case_ : Union[str, Any] = Matrix(3 , 1 , 0 ) snake_case_ : Tuple = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_UpperCamelCase , _UpperCamelCase )}''' ) def lowerCamelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
355
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
0
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class snake_case__ : _snake_case : float _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None def _lowerCamelCase( a ): # Validation def is_valid_tree(a ) -> bool: if node is None: return True if not isinstance(a , a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(a ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( a , a , a ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , a , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , a ) ) return is_binary_search_tree_recursive_check(a , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
261
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__ ( snake_case_, snake_case_ ): @register_to_config def __init__( self , lowerCamelCase = 768 , ): super().__init__() __a = nn.Parameter(torch.zeros(1 , lowerCamelCase ) ) __a = nn.Parameter(torch.ones(1 , lowerCamelCase ) ) def a__ ( self , lowerCamelCase = None , lowerCamelCase = None , ): __a = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __a = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def a__ ( self , lowerCamelCase ): __a = (embeds - self.mean) * 1.0 / self.std return embeds def a__ ( self , lowerCamelCase ): __a = (embeds * self.std) + self.mean return embeds
261
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase = threading.Lock() UpperCAmelCase = None UpperCAmelCase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } UpperCAmelCase = logging.WARNING UpperCAmelCase = True def lowerCamelCase () -> Tuple: lowercase :int = os.getenv('''TRANSFORMERS_VERBOSITY''' , a_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys()) }""") return _default_log_level def lowerCamelCase () -> str: return __name__.split('''.''')[0] def lowerCamelCase () -> logging.Logger: return logging.getLogger(_get_library_name()) def lowerCamelCase () -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowercase :str = logging.StreamHandler() # Set sys.stderr as stream. lowercase :Tuple = sys.stderr.flush # Apply our default configuration to the library root logger. lowercase :Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) lowercase :List[str] = False def lowerCamelCase () -> None: global _default_handler with _lock: if not _default_handler: return lowercase :Optional[int] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) lowercase :str = None def lowerCamelCase () -> Optional[int]: return log_levels def lowerCamelCase (a_ :Optional[str] = None) -> logging.Logger: if name is None: lowercase :Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(a_) def lowerCamelCase () -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase (a_ :int) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(a_) def lowerCamelCase () -> Any: return set_verbosity(a_) def lowerCamelCase () -> Optional[int]: return set_verbosity(a_) def lowerCamelCase () -> int: return set_verbosity(a_) def lowerCamelCase () -> Optional[Any]: return set_verbosity(a_) def lowerCamelCase () -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def lowerCamelCase () -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def lowerCamelCase (a_ :logging.Handler) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a_) def lowerCamelCase (a_ :logging.Handler) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a_) def lowerCamelCase () -> None: _configure_library_root_logger() lowercase :List[Any] = False def lowerCamelCase () -> None: _configure_library_root_logger() lowercase :int = True def lowerCamelCase () -> None: lowercase :Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: lowercase :str = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''') handler.setFormatter(a_) def lowerCamelCase () -> None: lowercase :Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a_) def lowerCamelCase (self :Tuple , *a_ :List[Any] , **a_ :Dict) -> Union[str, Any]: lowercase :Tuple = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , a_) if no_advisory_warnings: return self.warning(*a_ , **a_) UpperCAmelCase = warning_advice @functools.lru_cache(a_) def lowerCamelCase (self :List[Any] , *a_ :Optional[int] , **a_ :str) -> str: self.warning(*a_ , **a_) UpperCAmelCase = warning_once class __magic_name__ : def __init__( self : Any , *snake_case__ : Tuple , **snake_case__ : int ): # pylint: disable=unused-argument '''simple docstring''' lowercase :str = args[0] if args else None def __iter__( self : Optional[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Union[str, Any] , snake_case__ : Optional[int] ): '''simple docstring''' def empty_fn(*snake_case__ : Any , **snake_case__ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Union[str, Any] ): '''simple docstring''' return self def __exit__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[str] ): '''simple docstring''' return class __magic_name__ : def __call__( self : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def __snake_case ( self : Optional[Any] , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ): '''simple docstring''' lowercase :Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase = _tqdm_cls() def lowerCamelCase () -> bool: global _tqdm_active return bool(_tqdm_active) def lowerCamelCase () -> Union[str, Any]: global _tqdm_active lowercase :str = True hf_hub_utils.enable_progress_bars() def lowerCamelCase () -> str: global _tqdm_active lowercase :Union[str, Any] = False hf_hub_utils.disable_progress_bars()
350
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( __UpperCAmelCase ): __A : UNetaDModel __A : ScoreSdeVeScheduler def __init__( self : List[Any] , snake_case__ : UNetaDModel , snake_case__ : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Optional[Any] , snake_case__ : int = 1 , snake_case__ : int = 2_0_0_0 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , **snake_case__ : Optional[Any] , ): '''simple docstring''' lowercase :List[str] = self.unet.config.sample_size lowercase :Optional[int] = (batch_size, 3, img_size, img_size) lowercase :Optional[Any] = self.unet lowercase :Dict = randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma lowercase :Any = sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase :Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase :Union[str, Any] = self.unet(snake_case__ , snake_case__ ).sample lowercase :Union[str, Any] = self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step lowercase :List[str] = model(snake_case__ , snake_case__ ).sample lowercase :Optional[int] = self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) lowercase , lowercase :Optional[int] = output.prev_sample, output.prev_sample_mean lowercase :List[Any] = sample_mean.clamp(0 , 1 ) lowercase :Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase :Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
172
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( A , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaImgaImgPipeline lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "image"] lowerCAmelCase_ = [ "image_embeds", "negative_image_embeds", "image", ] lowerCAmelCase_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def snake_case ( self : List[str] ): """simple docstring""" return 32 @property def snake_case ( self : Any ): """simple docstring""" return 32 @property def snake_case ( self : List[str] ): """simple docstring""" return self.time_input_dim @property def snake_case ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def snake_case ( self : Union[str, Any] ): """simple docstring""" return 100 @property def snake_case ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowercase ={ 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowercase =UNetaDConditionModel(**__lowercase ) return model @property def snake_case ( self : Any ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowercase =VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : Tuple ): """simple docstring""" __lowercase =self.dummy_unet __lowercase =self.dummy_movq __lowercase ={ 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __lowercase =DDIMScheduler(**__lowercase ) __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : int=0 ): """simple docstring""" __lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowercase ) # create init_image __lowercase =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase =Image.fromarray(np.uinta(__lowercase ) ).convert('RGB' ).resize((256, 256) ) if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase ={ 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def snake_case ( self : List[str] ): """simple docstring""" __lowercase ='cpu' __lowercase =self.get_dummy_components() __lowercase =self.pipeline_class(**__lowercase ) __lowercase =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowercase =pipe(**self.get_dummy_inputs(__lowercase ) ) __lowercase =output.images __lowercase =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __lowercase =image[0, -3:, -3:, -1] __lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase =np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any ): """simple docstring""" __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowercase ='A red cartoon frog, 4k' __lowercase =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) __lowercase =KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) __lowercase =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) __lowercase =torch.Generator(device='cpu' ).manual_seed(0 ) __lowercase , __lowercase =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowercase =pipeline( image=__lowercase , image_embeds=__lowercase , negative_image_embeds=__lowercase , generator=__lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __lowercase =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
141
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __UpperCamelCase ( lowercase__ : Optional[int], lowercase__ : str, lowercase__ : int ): '''simple docstring''' __lowercase =OmegaConf.load(lowercase__ ) __lowercase =torch.load(lowercase__, map_location='cpu' )['model'] __lowercase =list(state_dict.keys() ) # extract state_dict for VQVAE __lowercase ={} __lowercase ='first_stage_model.' for key in keys: if key.startswith(lowercase__ ): __lowercase =state_dict[key] # extract state_dict for UNetLDM __lowercase ={} __lowercase ='model.diffusion_model.' for key in keys: if key.startswith(lowercase__ ): __lowercase =state_dict[key] __lowercase =config.model.params.first_stage_config.params __lowercase =config.model.params.unet_config.params __lowercase =VQModel(**lowercase__ ).eval() vqvae.load_state_dict(lowercase__ ) __lowercase =UNetLDMModel(**lowercase__ ).eval() unet.load_state_dict(lowercase__ ) __lowercase =DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule='scaled_linear', beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=lowercase__, ) __lowercase =LDMPipeline(lowercase__, lowercase__, lowercase__ ) pipeline.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) UpperCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
141
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase__ :Optional[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase__ :Optional[Any] = TaTokenizerFast lowerCAmelCase__ :Any = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[str] = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Optional[int] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase__ :Dict = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
364
from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase__ :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase__ :Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(a__ ) ): _UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a__ ) return next_generation def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[Image.Image]: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): # Create output image _UpperCAmelCase = Image.new('RGB' , (len(cells[0] ), len(a__ )) ) _UpperCAmelCase = img.load() # Save cells to image for x in range(len(a__ ) ): for y in range(len(cells[0] ) ): _UpperCAmelCase = 2_5_5 - cells[y][x] * 2_5_5 _UpperCAmelCase = (colour, colour, colour) # Save image images.append(a__ ) _UpperCAmelCase = new_generation(a__ ) return images if __name__ == "__main__": lowerCAmelCase__ :Tuple = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
185
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : Dict ) -> Tuple: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__snake_case , ) def A ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : str ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__snake_case , ) def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def A ( self : Tuple , __snake_case : Tuple , __snake_case : str ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) def snake_case_ ( ) -> Optional[Any]: return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def snake_case_ ( ) -> Union[str, Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" @require_beam def A ( self : Tuple ) -> Dict: UpperCAmelCase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : str = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase : str = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def A ( self : List[Any] ) -> List[Any]: import apache_beam as beam UpperCAmelCase : Tuple = beam.io.parquetio.WriteToParquet UpperCAmelCase : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: UpperCAmelCase : str = partial(__snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase : Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def A ( self : Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = DummyBeamDataset(cache_dir=__snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : List[str] = NestedBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) UpperCAmelCase : List[Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
23
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowerCAmelCase : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = '''gelu''' def __init__( self :Optional[int] , __magic_name__ :Dict , __magic_name__ :List[str]=13 , __magic_name__ :Union[str, Any]=7 , __magic_name__ :str=True , __magic_name__ :Union[str, Any]=False , __magic_name__ :Union[str, Any]=99 , __magic_name__ :List[Any]=32 , __magic_name__ :str=2 , __magic_name__ :List[str]=4 , __magic_name__ :str=37 , __magic_name__ :Any=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=20 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :List[Any]=1 , __magic_name__ :Optional[int]=0 , __magic_name__ :Optional[int]=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a = prepare_led_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) a = tf.concat( [tf.zeros_like(__magic_name__ )[:, :-1], tf.ones_like(__magic_name__ )[:, -1:]] , axis=-1 , ) a = global_attention_mask return config, inputs_dict def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[int] , __magic_name__ :List[Any] ): '''simple docstring''' a = TFLEDModel(config=__magic_name__ ).get_decoder() a = inputs_dict["""input_ids"""] a = input_ids[:1, :] a = inputs_dict["""attention_mask"""][:1, :] a = 1 # first forward pass a = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__magic_name__ , attention_mask=__magic_name__ )[0] a = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[str]: if attention_mask is None: a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = TFLEDModelTester(self ) a = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase__ ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self :str ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = tf.zeros_like(inputs_dict["""attention_mask"""] ) a = 2 a = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) a = True a = self.model_tester.seq_length a = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__magic_name__ :int ): a = outputs.decoder_attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__magic_name__ :Any ): a = [t.numpy() for t in outputs.encoder_attentions] a = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a = True a = False a = False a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) a = len(__magic_name__ ) self.assertEqual(config.output_hidden_states , __magic_name__ ) check_encoder_attentions_output(__magic_name__ ) if self.is_encoder_decoder: a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(config.output_hidden_states , __magic_name__ ) check_decoder_attentions_output(__magic_name__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a = True a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(config.output_hidden_states , __magic_name__ ) check_encoder_attentions_output(__magic_name__ ) # Check attention is always last and order is fine a = True a = True a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__magic_name__ ) ) self.assertEqual(model.config.output_hidden_states , __magic_name__ ) check_encoder_attentions_output(__magic_name__ ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self :int ): '''simple docstring''' pass def __A ( __lowerCamelCase ) -> int: return tf.constant(__lowerCamelCase , dtype=tf.intaa ) __UpperCamelCase : int = 1E-4 @slow @require_tf class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here a = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = prepare_led_inputs_dict(model.config , __magic_name__ , __magic_name__ ) a = model(**__magic_name__ )[0] a = (1, 1024, 768) self.assertEqual(output.shape , __magic_name__ ) # change to expected output here a = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-3 ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here a = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = prepare_led_inputs_dict(model.config , __magic_name__ , __magic_name__ ) a = model(**__magic_name__ )[0] a = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __magic_name__ ) # change to expected output here a = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-3 , rtol=1E-3 )
228
0
import os from collections import deque import torch from torch.utils.data import Dataset class __UpperCAmelCase ( lowercase__ ): def __init__( self : Tuple, __A : str="", __A : str="train" ): assert os.path.isdir(lowercase_ ) UpperCAmelCase : str = [] UpperCAmelCase : int = os.listdir(lowercase_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase : Union[str, Any] = os.path.join(lowercase_, lowercase_ ) if not os.path.isfile(lowercase_ ): continue self.documents.append(lowercase_ ) def __len__( self : Dict ): return len(self.documents ) def __getitem__( self : Tuple, __A : Union[str, Any] ): UpperCAmelCase : Optional[Any] = self.documents[idx] UpperCAmelCase : Dict = document_path.split('''/''' )[-1] with open(lowercase_, encoding='''utf-8''' ) as source: UpperCAmelCase : Union[str, Any] = source.read() UpperCAmelCase : Any = process_story(lowercase_ ) return document_name, story_lines, summary_lines def a__ ( UpperCAmelCase : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = list(filter(lambda UpperCAmelCase : len(__lowerCamelCase ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase : List[Any] = [_add_missing_period(__lowerCamelCase ) for line in nonempty_lines] # gather article lines UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[int] = deque(__lowerCamelCase ) while True: try: UpperCAmelCase : List[str] = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(__lowerCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase : int = list(filter(lambda UpperCAmelCase : not t.startswith('''@highlight''' ) , __lowerCamelCase ) ) return story_lines, summary_lines def a__ ( UpperCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : List[Any] = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ) -> List[Any]: if len(__lowerCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCamelCase )) ) return sequence def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Any ) -> Dict: UpperCAmelCase : int = torch.ones_like(__lowerCamelCase ) UpperCAmelCase : Optional[Any] = sequence == pad_token_id UpperCAmelCase : Any = 0 return mask def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str ) -> Tuple: UpperCAmelCase : int = [tokenizer.encode(__lowerCamelCase ) for line in story_lines] UpperCAmelCase : Optional[Any] = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase : Optional[Any] = [tokenizer.encode(__lowerCamelCase ) for line in summary_lines] UpperCAmelCase : str = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : Tuple = [] for sequence in batch: UpperCAmelCase : Dict = -1 UpperCAmelCase : Any = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCamelCase ) return torch.tensor(__lowerCamelCase )
351
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCamelCase : List[str] = True from torch.cuda.amp import autocast _lowerCamelCase : Any = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) UpperCamelCase = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.9_9_9_9_9_5 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def a__ ( UpperCAmelCase : ModelArguments , UpperCAmelCase : TrainingArguments ) -> Any: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : Any = logging.WARNING if model_args.verbose_logging: UpperCAmelCase : Any = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase : Any = logging.INFO logger.setLevel(UpperCAmelCase ) @dataclass class __UpperCAmelCase : UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase = field( default=2_0.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "longest" UpperCamelCase = None UpperCamelCase = None def __call__( self : int, __A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format UpperCAmelCase : List[Any] = self.feature_extractor.pad( __A, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) UpperCAmelCase : int = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) UpperCAmelCase : Tuple = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) UpperCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase : Tuple = 1 UpperCAmelCase : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase : Dict = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__A, min_masks=2, ) return batch class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Union[str, Any], *__A : int, __A : Dict=1, __A : Any=0, __A : Optional[Any]=1.0, **__A : Any ): super().__init__(*__A, **__A ) UpperCAmelCase : Any = 0 UpperCAmelCase : Any = max_gumbel_temp UpperCAmelCase : Optional[Any] = min_gumbel_temp UpperCAmelCase : str = gumbel_temp_decay def __magic_name__ ( self : Dict, __A : nn.Module, __A : Dict[str, Union[torch.Tensor, Any]] ): model.train() UpperCAmelCase : List[Any] = self._prepare_inputs(__A ) if self.use_amp: with autocast(): UpperCAmelCase : Optional[Any] = self.compute_loss(__A, __A ) else: UpperCAmelCase : Optional[int] = self.compute_loss(__A, __A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase : str = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def a__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() configure_logger(UpperCAmelCase , UpperCAmelCase ) # Downloading and loading a dataset from the hub. UpperCAmelCase : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase : Union[str, Any] = DatasetDict() UpperCAmelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase : Optional[Any] = DatasetDict() UpperCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=UpperCAmelCase ) def prepare_dataset(UpperCAmelCase : Dict ): # check that all files have the correct sampling rate UpperCAmelCase , UpperCAmelCase : Optional[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase : str = datasets.map( UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long UpperCAmelCase : int = vectorized_datasets.filter( lambda UpperCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(UpperCAmelCase : Dict ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase : Any = vectorized_datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) UpperCAmelCase : Any = WavaVecaForPreTraining(UpperCAmelCase ) UpperCAmelCase : int = DataCollatorForWavaVecaPretraining(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) UpperCAmelCase : Any = WavaVecaPreTrainer( model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=UpperCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
99
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model'''} __snake_case = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __snake_case = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class __snake_case ( _a ): __lowerCamelCase : List[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case__ , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = None , **snake_case__ , ) -> None: '''simple docstring''' UpperCAmelCase : List[str] ={} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase : Union[str, Any] =kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) UpperCAmelCase : Dict ='''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCAmelCase : str ='''<|endoftext|>''' if eos_token is None else eos_token UpperCAmelCase : str ='''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCAmelCase : Dict =unk_token if pad_token is None else pad_token UpperCAmelCase : List[str] =eos_token if bos_token is None else bos_token else: UpperCAmelCase : Tuple ='''<pad>''' if pad_token is None else pad_token UpperCAmelCase : Optional[int] ='''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) UpperCAmelCase : Dict =do_lower_case UpperCAmelCase : Optional[Any] =remove_space UpperCAmelCase : Optional[Any] =keep_accents UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # Used for whitespace normalization in input texts # fmt : off UpperCAmelCase : List[Any] ={''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCAmelCase : str =re.compile( f'''[{''.join(map(snake_case__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =self.__dict__.copy() UpperCAmelCase : Tuple =None return state def __setstate__( self , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Tuple ={} UpperCAmelCase : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : Dict =self.non_printing_characters_re.sub('''''' , snake_case__ ) # Normalize whitespaces UpperCAmelCase : Optional[int] =''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization UpperCAmelCase : Union[str, Any] =unicodedata.normalize('''NFC''' , snake_case__ ) return text def UpperCAmelCase__ ( self , snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict =self.preprocess_text(snake_case__ ) return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' return self.sp_model.PieceToId(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(snake_case__ ) @staticmethod def UpperCAmelCase__ ( snake_case__ ) -> str: '''simple docstring''' return out_string def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Dict ='''''' UpperCAmelCase : int =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token UpperCAmelCase : Dict =True UpperCAmelCase : List[Any] =[] else: current_sub_tokens.append(snake_case__ ) UpperCAmelCase : Dict =False out_string += self.sp_model.decode(snake_case__ ) return out_string def UpperCAmelCase__ ( self ) -> Dict[str, int]: '''simple docstring''' UpperCAmelCase : str ={self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : List[str] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , '''wb''' ) as fi: UpperCAmelCase : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : List[str] =self.preprocess_text(snake_case__ ) UpperCAmelCase : List[str] =self.sp_model.encode(snake_case__ ) else: UpperCAmelCase : Dict =[self.preprocess_text(snake_case__ ) for t in text] UpperCAmelCase : Union[str, Any] =self.sp_model.encode(snake_case__ ) if return_tensors is True or return_tensors == "pt": UpperCAmelCase : List[Any] =torch.tensor(snake_case__ ) return token_ids def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' return self.sp_model.decode(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> List[int]: '''simple docstring''' UpperCAmelCase : Dict =[f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] UpperCAmelCase : Any =( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(snake_case__ ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=snake_case__ )
348
lowerCAmelCase_ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case_ : str = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {", ".join(_UpperCamelCase )}''' ) raise ValueError(_UpperCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
279
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :str = logging.get_logger(__name__) _lowerCAmelCase :Optional[int] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''big_bird''' def __init__( self , A=5_0_3_5_8 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu_new" , A=0.1 , A=0.1 , A=4_0_9_6 , A=2 , A=0.02 , A=1E-12 , A=True , A=0 , A=1 , A=2 , A=6_6 , A="block_sparse" , A=True , A=False , A=6_4 , A=3 , A=None , **A , ) -> int: super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , sep_token_id=A , **A , ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Tuple = use_cache _UpperCAmelCase : Optional[int] = rescale_embeddings _UpperCAmelCase : List[str] = attention_type _UpperCAmelCase : str = use_bias _UpperCAmelCase : Optional[int] = block_size _UpperCAmelCase : Tuple = num_random_blocks _UpperCAmelCase : str = classifier_dropout class _UpperCAmelCase ( a ): '''simple docstring''' @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
68
"""simple docstring""" from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''WhisperFeatureExtractor''' a__ ='''WhisperTokenizer''' def __init__( self , A , A ) -> Any: super().__init__(A , A ) _UpperCAmelCase : int = self.feature_extractor _UpperCAmelCase : List[str] = False def __lowerCAmelCase ( self , A=None , A=None , A=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=A , language=A , no_timestamps=A ) def __call__( self , *A , **A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) _UpperCAmelCase : str = kwargs.pop('''audio''' , A ) _UpperCAmelCase : Dict = kwargs.pop('''sampling_rate''' , A ) _UpperCAmelCase : Dict = kwargs.pop('''text''' , A ) if len(A ) > 0: _UpperCAmelCase : List[Any] = args[0] _UpperCAmelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: _UpperCAmelCase : Any = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : int = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self , *A , **A ) -> Optional[Any]: return self.tokenizer.batch_decode(*A , **A ) def __lowerCAmelCase ( self , *A , **A ) -> Any: return self.tokenizer.decode(*A , **A ) def __lowerCAmelCase ( self , A , A="np" ) -> Any: return self.tokenizer.get_prompt_ids(A , return_tensors=A )
68
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=4 , snake_case="gelu" , snake_case=0.0 , snake_case=0.1 , snake_case=True , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = weight_tying snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def a ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def a ( self , snake_case , snake_case , snake_case ): snake_case_ = GPTNeoXJapaneseModel(config=_A ) model.to(_A ) model.eval() snake_case_ = model(_A , attention_mask=_A ) snake_case_ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = True snake_case_ = GPTNeoXJapaneseModel(_A ) model.to(_A ) model.eval() snake_case_ = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case ): snake_case_ = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() snake_case_ = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = True snake_case_ = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass snake_case_ = model(_A , attention_mask=_A , use_cache=_A ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(_A , attention_mask=_A , output_hidden_states=_A ) snake_case_ = output_from_no_past['hidden_states'][0] snake_case_ = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Any = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def a ( self ): snake_case_ = GPTNeoXJapaneseModelTester(self ) snake_case_ = ConfigTester(self , config_class=_A , hidden_size=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def a ( self ): # This regression test was failing with PyTorch < 1.3 snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A ) @slow def a ( self ): snake_case_ = 'abeja/gpt-neox-japanese-2.7b' snake_case_ = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] snake_case_ = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] snake_case_ = GPTNeoXJapaneseTokenizer.from_pretrained(_A ) snake_case_ = GPTNeoXJapaneseForCausalLM.from_pretrained(_A ) snake_case_ = [] for prompt in prompts: snake_case_ = tokenizer(_A , return_tensors='pt' ).input_ids snake_case_ = model.generate(_A , max_length=50 ) snake_case_ = tokenizer.batch_decode(_A , skip_special_tokens=_A ) predicted_outputs += generated_string self.assertListEqual(_A , _A )
285
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Any) -> Optional[int]: __snake_case : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Any , _A : Any) -> str: __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = hidden_states.shape __snake_case : Union[str, Any] = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __snake_case : List[Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Optional[Any]) -> List[Any]: __snake_case : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : int , _A : str) -> Any: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __snake_case : Union[str, Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : int = None UpperCAmelCase : float = 0.0 UpperCAmelCase : bool = None UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : List[str]) -> Dict: __snake_case : str = self.in_channels if self.out_channels is None else self.out_channels __snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : Optional[int] = nn.Dense(_A , dtype=self.dtype) __snake_case : int = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Dropout(self.dropout_prob) __snake_case : Dict = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __snake_case : Optional[Any] = None if use_nin_shortcut: __snake_case : List[str] = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__(self : List[Any] , _A : Union[str, Any] , _A : str , _A : int=True) -> Any: __snake_case : List[Any] = hidden_states __snake_case : Optional[Any] = self.norma(_A) __snake_case : int = nn.swish(_A) __snake_case : Optional[int] = self.conva(_A) __snake_case : Dict = self.time_emb_proj(nn.swish(_A)) __snake_case : List[str] = jnp.expand_dims(jnp.expand_dims(_A , 1) , 1) __snake_case : Any = hidden_states + temb __snake_case : Tuple = self.norma(_A) __snake_case : Dict = nn.swish(_A) __snake_case : Union[str, Any] = self.dropout(_A , _A) __snake_case : Union[str, Any] = self.conva(_A) if self.conv_shortcut is not None: __snake_case : List[Any] = self.conv_shortcut(_A) return hidden_states + residual
172
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__: Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=__lowerCamelCase,speech_processor=__lowerCamelCase,vae=__lowerCamelCase,text_encoder=__lowerCamelCase,tokenizer=__lowerCamelCase,unet=__lowerCamelCase,scheduler=__lowerCamelCase,feature_extractor=__lowerCamelCase,) def UpperCamelCase ( self,__lowerCamelCase = "auto" ): if slice_size == "auto": A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def UpperCamelCase ( self ): self.enable_attention_slicing(__lowerCamelCase ) @torch.no_grad() def __call__( self,__lowerCamelCase,__lowerCamelCase=1_6000,__lowerCamelCase = 512,__lowerCamelCase = 512,__lowerCamelCase = 50,__lowerCamelCase = 7.5,__lowerCamelCase = None,__lowerCamelCase = 1,__lowerCamelCase = 0.0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = "pil",__lowerCamelCase = True,__lowerCamelCase = None,__lowerCamelCase = 1,**__lowerCamelCase,): A__ = self.speech_processor.feature_extractor( __lowerCamelCase,return_tensors='''pt''',sampling_rate=__lowerCamelCase ).input_features.to(self.device ) A__ = self.speech_model.generate(__lowerCamelCase,max_length=48_0000 ) A__ = self.speech_processor.tokenizer.batch_decode(__lowerCamelCase,skip_special_tokens=__lowerCamelCase,normalize=__lowerCamelCase )[ 0 ] if isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = 1 elif isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = len(__lowerCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCamelCase,__lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__lowerCamelCase )}." ) # get prompt text embeddings A__ = self.tokenizer( __lowerCamelCase,padding='''max_length''',max_length=self.tokenizer.model_max_length,return_tensors='''pt''',) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1,__lowerCamelCase,1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt,__lowerCamelCase,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [''''''] * batch_size elif type(__lowerCamelCase ) is not type(__lowerCamelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCamelCase )} !=" f" {type(__lowerCamelCase )}." ) elif isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = [negative_prompt] elif batch_size != len(__lowerCamelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__lowerCamelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( __lowerCamelCase,padding='''max_length''',max_length=__lowerCamelCase,truncation=__lowerCamelCase,return_tensors='''pt''',) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(1,__lowerCamelCase,1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt,__lowerCamelCase,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn(__lowerCamelCase,generator=__lowerCamelCase,device='''cpu''',dtype=__lowerCamelCase ).to( self.device ) else: A__ = torch.randn(__lowerCamelCase,generator=__lowerCamelCase,device=self.device,dtype=__lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(__lowerCamelCase,__lowerCamelCase ) # predict the noise residual A__ = self.unet(__lowerCamelCase,__lowerCamelCase,encoder_hidden_states=__lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = 1 / 0.18215 * latents A__ = self.vae.decode(__lowerCamelCase ).sample A__ = (image / 2 + 0.5).clamp(0,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0,2,3,1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowerCamelCase,nsfw_content_detected=__lowerCamelCase )
39
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
39
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" def is_in_circle(__a , __a ) -> bool: lowerCamelCase__: Tuple =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCamelCase__: List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__a ) ) # The ratio of the area for circle to square is pi/4. lowerCamelCase__: Dict =proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def lowerCAmelCase_ ( __a , __a , __a = 0.0 , __a = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(__a , __a ) ) for _ in range(__a ) ) * (max_value - min_value) def lowerCAmelCase_ ( __a , __a = 0.0 , __a = 1.0 ) -> None: """simple docstring""" def identity_function(__a ) -> float: return x lowerCamelCase__: Dict =area_under_curve_estimator( __a , __a , __a , __a ) lowerCamelCase__: Union[str, Any] =(max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" def function_to_integrate(__a ) -> float: return sqrt(4.0 - x * x ) lowerCamelCase__: List[Any] =area_under_curve_estimator( __a , __a , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) A__ : List[str] = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""BeitFeatureExtractor"""] A__ : List[str] = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
185
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __snake_case :Tuple = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') __snake_case :Optional[int] = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __snake_case :Dict = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __snake_case :Optional[Any] = sorted(arg_to_scheduler.keys()) __snake_case :Tuple = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _A ( pl.LightningModule ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE) __a = 0 __a = Path(self.hparams.output_dir) __a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __a = config __a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): assert hasattr(self.config , __SCREAMING_SNAKE_CASE), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE)) if tokenizer is None: __a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __a = tokenizer __a = MODEL_MODES[mode] if model is None: __a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __a = model def _lowerCamelCase ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = arg_to_scheduler[self.hparams.lr_scheduler] __a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) __a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model __a = ['''bias''', '''LayerNorm.weight'''] __a = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: __a = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE) else: __a = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) __a = optimizer __a = self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.validation_end(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores __a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' if stage == "test": __a = len(self.test_dataloader().dataset) else: __a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE) __a = len(self.train_dataloader().dataset) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''') def _lowerCamelCase ( self : str): '''simple docstring''' return self.train_loader def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split('''/'''))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict[str, Any]): '''simple docstring''' __a = self.output_dir.joinpath('''best_tfmr''') __a = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE) @staticmethod def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=__SCREAMING_SNAKE_CASE , help='''Pretrained config name or path if not the same as model_name''') parser.add_argument( '''--tokenizer_name''' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(__SCREAMING_SNAKE_CASE).parent / '''test_run''' / '''cache''') , type=__SCREAMING_SNAKE_CASE , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=__SCREAMING_SNAKE_CASE , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=__SCREAMING_SNAKE_CASE , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=__SCREAMING_SNAKE_CASE , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=__SCREAMING_SNAKE_CASE , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help='''The initial learning rate for Adam.''') parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__SCREAMING_SNAKE_CASE , help='''Weight decay if we apply some.''') parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--warmup_steps''' , default=0 , type=__SCREAMING_SNAKE_CASE , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--num_workers''' , default=4 , type=__SCREAMING_SNAKE_CASE , help='''kwarg passed to DataLoader''') parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__SCREAMING_SNAKE_CASE) parser.add_argument('''--train_batch_size''' , default=32 , type=__SCREAMING_SNAKE_CASE) parser.add_argument('''--eval_batch_size''' , default=32 , type=__SCREAMING_SNAKE_CASE) parser.add_argument('''--adafactor''' , action='''store_true''') class _A ( pl.Callback ): def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _A ( pl.Callback ): def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE) class _A ( pl.Callback ): def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = trainer.lr_schedulers[0]['''scheduler'''] __a = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule): '''simple docstring''' rank_zero_info('''***** Validation results *****''') __a = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__SCREAMING_SNAKE_CASE , str(metrics[key]))) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule): '''simple docstring''' rank_zero_info('''***** Test results *****''') __a = trainer.callback_metrics # Log and save results to file __a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''') with open(__SCREAMING_SNAKE_CASE , '''w''') as writer: for key in sorted(__SCREAMING_SNAKE_CASE): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__SCREAMING_SNAKE_CASE , str(metrics[key]))) writer.write('''{} = {}\n'''.format(__SCREAMING_SNAKE_CASE , str(metrics[key]))) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_UpperCAmelCase ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_UpperCAmelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_UpperCAmelCase , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_UpperCAmelCase ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_UpperCAmelCase , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_UpperCAmelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_UpperCAmelCase , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_UpperCAmelCase ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_UpperCAmelCase , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[] , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): pl.seed_everything(args.seed ) # init model __a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCAmelCase ) if logging_callback is None: __a = LoggingCallback() __a = {} if args.fpaa: __a = 16 if args.gpus > 1: __a = '''auto''' __a = '''ddp''' __a = args.accumulate_grad_batches __a = None __a = '''auto''' __a = pl.Trainer.from_argparse_args( _UpperCAmelCase , weights_summary=_UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCAmelCase , ) if args.do_train: trainer.fit(_UpperCAmelCase ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
131
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case :Tuple = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.') requires_backends(self , '''vision''') self.check_model_type(__SCREAMING_SNAKE_CASE) def __call__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, "Image.Image", List[Dict[str, Any]]] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' if "text_queries" in kwargs: __a = kwargs.pop('''text_queries''') if isinstance(__SCREAMING_SNAKE_CASE , (str, Image.Image)): __a = {'''image''': image, '''candidate_labels''': candidate_labels} else: __a = image __a = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) return results def _lowerCamelCase ( self : str , **__SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs['''threshold'''] if "top_k" in kwargs: __a = kwargs['''top_k'''] return {}, {}, postprocess_params def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = load_image(inputs['''image''']) __a = inputs['''candidate_labels'''] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = candidate_labels.split(''',''') __a = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(__SCREAMING_SNAKE_CASE): __a = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework) __a = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(__SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = model_inputs.pop('''target_size''') __a = model_inputs.pop('''candidate_label''') __a = model_inputs.pop('''is_last''') __a = self.model(**__SCREAMING_SNAKE_CASE) __a = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None): '''simple docstring''' __a = [] for model_output in model_outputs: __a = model_output['''candidate_label'''] __a = BaseModelOutput(__SCREAMING_SNAKE_CASE) __a = self.image_processor.post_process_object_detection( outputs=__SCREAMING_SNAKE_CASE , threshold=__SCREAMING_SNAKE_CASE , target_sizes=model_output['''target_size'''])[0] for index in outputs["scores"].nonzero(): __a = outputs['''scores'''][index].item() __a = self._get_bounding_box(outputs['''boxes'''][index][0]) __a = {'''score''': score, '''label''': label, '''box''': box} results.append(__SCREAMING_SNAKE_CASE) __a = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE: x["score"] , reverse=__SCREAMING_SNAKE_CASE) if top_k: __a = results[:top_k] return results def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : "torch.Tensor"): '''simple docstring''' if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''') __a , __a , __a , __a = box.int().tolist() __a = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
131
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : str = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 ) -> Dict: _lowercase : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : str = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowercase : List[str] = 8 else: _lowercase : List[Any] = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _lowercase : Any = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) _lowercase : Optional[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE : Tuple = mocked_dataloaders # noqa: F811 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase_ ) == "1": _lowercase : int = 2 # Initialize accelerator _lowercase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : str = config['lr'] _lowercase : Any = int(config['num_epochs'] ) _lowercase : int = int(config['seed'] ) _lowercase : Dict = int(config['batch_size'] ) _lowercase : int = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase_ ) def inner_training_loop(lowerCamelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase : Dict = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) _lowercase , _lowercase : Tuple = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate scheduler _lowercase : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[str] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : List[str] = outputs.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : List[Any] = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_( ) -> List[Any]: _lowercase : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowercase : Union[str, Any] = parser.parse_args() _lowercase : Optional[int] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): a__ : int = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = 'sgugger/tiny-distilbert-classification' a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase) a__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' a__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' a__ : str = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = 'sshleifer/tiny-gpt2' a__ : Union[str, Any] = AutoConfig.from_pretrained(lowercase) a__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase , [config]) a__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Tuple = TensorFlowBenchmark(lowercase) a__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = 'sshleifer/tiny-gpt2' a__ : List[Any] = AutoConfig.from_pretrained(lowercase) a__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = 'patrickvonplaten/t5-tiny-random' a__ : Optional[int] = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase , configs=[config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowercase , multi_process=lowercase , ) a__ : int = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: a__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , 'inf_time.csv') , inference_memory_csv_file=os.path.join(lowercase , 'inf_mem.csv') , env_info_csv_file=os.path.join(lowercase , 'env.csv') , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) benchmark.run() self.assertTrue(Path(os.path.join(lowercase , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'env.csv')).exists()) def __lowercase ( self) -> str: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase): self.assertTrue(hasattr(lowercase , 'sequential')) self.assertTrue(hasattr(lowercase , 'cumulative')) self.assertTrue(hasattr(lowercase , 'current')) self.assertTrue(hasattr(lowercase , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , 'log.txt') , log_print=lowercase , trace_memory_line_by_line=lowercase , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(lowercase , 'log.txt')).exists())
99
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
2
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCAmelCase__ = random.Random() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Optional[int]=1.0 , SCREAMING_SNAKE_CASE_: Tuple=None , SCREAMING_SNAKE_CASE_: Dict=None ) -> List[Any]: '''simple docstring''' if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=400 , lowercase=2000 , lowercase=1 , lowercase=0.0 , lowercase=16000 , lowercase=True , lowercase=80 , lowercase=16 , lowercase=64 , lowercase="hann_window" , lowercase=80 , lowercase=7600 , lowercase=1e-10 , lowercase=True , ) -> Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = feature_size A__ = padding_value A__ = sampling_rate A__ = do_normalize A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = fmin A__ = fmax A__ = mel_floor A__ = return_attention_mask def UpperCamelCase ( self ) -> str: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCamelCase ( self , lowercase=False , lowercase=False ) -> Union[str, Any]: '''simple docstring''' def _flatten(lowercase ): return list(itertools.chain(*lowercase ) ) if equal_length: A__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase ) for x in speech_inputs] return speech_inputs def UpperCamelCase ( self , lowercase=False , lowercase=False ) -> Union[str, Any]: '''simple docstring''' if equal_length: A__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase ) for x in speech_inputs] return speech_inputs @require_torch class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaFeatureExtractor def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = SpeechTaFeatureExtractionTester(self ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' self.assertTrue(np.all(np.mean(lowercase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = [np.asarray(lowercase ) for speech_input in speech_inputs] # Test not batched input A__ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values A__ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) # Test batched A__ = feat_extract(lowercase , return_tensors="np" ).input_values A__ = feat_extract(lowercase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = ["longest", "max_length", "do_not_pad"] A__ = [None, 1600, None] for max_length, padding in zip(lowercase , lowercase ): A__ = feat_extract(lowercase , padding=lowercase , max_length=lowercase , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = range(800 , 1400 , 200 ) A__ = [floats_list((1, x) )[0] for x in lengths] A__ = ["longest", "max_length", "do_not_pad"] A__ = [None, 1600, None] for max_length, padding in zip(lowercase , lowercase ): A__ = feat_extract(lowercase , max_length=lowercase , padding=lowercase ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = feat_extract( lowercase , truncation=lowercase , max_length=1000 , padding="max_length" , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = feat_extract( lowercase , truncation=lowercase , max_length=1000 , padding="longest" , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = feat_extract( lowercase , truncation=lowercase , max_length=2000 , padding="longest" , return_tensors="np" ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = np.random.rand(100 ).astype(np.floataa ) A__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ = [np.asarray(lowercase ) for speech_input in speech_inputs] # Test feature size A__ = feature_extractor(audio_target=lowercase , padding=lowercase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input A__ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values A__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) # Test batched A__ = feature_extractor(lowercase , return_tensors="np" ).input_values A__ = feature_extractor(lowercase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ = np.asarray(lowercase ) A__ = feature_extractor(lowercase , return_tensors="np" ).input_values A__ = feature_extractor(lowercase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase ): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3 ) ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowercase ) == len(lowercase ) for x, y in zip(lowercase , processed_features[input_name] ) ) ) A__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase ) A__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad(lowercase , padding="longest" , return_tensors="np" )[input_name] A__ = feat_extract.pad(lowercase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**lowercase ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = [len(lowercase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad(lowercase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowercase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowercase ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**lowercase ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = [len(lowercase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = min(lowercase ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad( lowercase , padding="max_length" , max_length=lowercase , truncation=lowercase , return_tensors="np" ) self.assertIn("attention_mask" , lowercase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' from datasets import load_dataset A__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A__ = ds.sort("id" ).select(range(lowercase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = SpeechTaFeatureExtractor() A__ = feature_extractor(lowercase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowercase , atol=1e-6 ) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = SpeechTaFeatureExtractor() A__ = feature_extractor(audio_target=lowercase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowercase , atol=1e-4 ) )
68
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
1
'''simple docstring''' lowerCamelCase_ = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __lowercase ( __lowercase ) -> str: '''simple docstring''' assert type(__lowercase ) in (int, float) and decimal == int(__lowercase ) _A = int(__lowercase ) _A = "" _A = False if decimal < 0: _A = True decimal *= -1 while decimal > 0: _A , _A = divmod(__lowercase , 16 ) _A = values[remainder] + hexadecimal _A = "0x" + hexadecimal if negative: _A = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''camembert''' def __init__( self : Union[str, Any] , __UpperCAmelCase : int=30522 , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Dict=3072 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[str]=1E-12 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : str=2 , __UpperCAmelCase : int="absolute" , __UpperCAmelCase : Any=True , __UpperCAmelCase : int=None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": _A = {0: "batch", 1: "choice", 2: "sequence"} else: _A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
174
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = StableDiffusionDiffEditPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCamelCase__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([]) def UpperCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) _UpperCAmelCase = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _UpperCAmelCase = CLIPTextModel(UpperCAmelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): """simple docstring""" _UpperCAmelCase = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _UpperCAmelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(UpperCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _UpperCAmelCase = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('RGB' ) if str(UpperCAmelCase ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(UpperCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _UpperCAmelCase = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('RGB' ) if str(UpperCAmelCase ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(UpperCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _UpperCAmelCase = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self ): """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase ) _UpperCAmelCase = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) _UpperCAmelCase = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) _UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase ) _UpperCAmelCase = pipe_loaded(**UpperCAmelCase )[0] _UpperCAmelCase = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = self.get_dummy_mask_inputs(UpperCAmelCase ) _UpperCAmelCase = pipe.generate_mask(**UpperCAmelCase ) _UpperCAmelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _UpperCAmelCase = np.array([0] * 9 ) _UpperCAmelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = self.get_dummy_inversion_inputs(UpperCAmelCase ) _UpperCAmelCase = pipe.invert(**UpperCAmelCase ).images _UpperCAmelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _UpperCAmelCase = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} _UpperCAmelCase = DPMSolverMultistepScheduler(**UpperCAmelCase ) _UpperCAmelCase = DPMSolverMultistepInverseScheduler(**UpperCAmelCase ) _UpperCAmelCase = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = self.get_dummy_inversion_inputs(UpperCAmelCase ) _UpperCAmelCase = pipe.invert(**UpperCAmelCase ).images _UpperCAmelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _UpperCAmelCase = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase ( cls ): """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) _UpperCAmelCase = raw_image.convert('RGB' ).resize((768, 768) ) _UpperCAmelCase = raw_image def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) _UpperCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) _UpperCAmelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = 'a bowl of fruit' _UpperCAmelCase = 'a bowl of pears' _UpperCAmelCase = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) _UpperCAmelCase = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents _UpperCAmelCase = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0] _UpperCAmelCase = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _UpperCAmelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = 'a bowl of fruit' _UpperCAmelCase = 'a bowl of pears' _UpperCAmelCase = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) _UpperCAmelCase = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents _UpperCAmelCase = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] _UpperCAmelCase = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
39
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : Any , a : Optional[Any] , a : int=13 , a : List[Any]=32 , a : Optional[int]=3 , a : List[str]=4 , a : List[Any]=[10, 20, 30, 40] , a : Optional[int]=[2, 2, 3, 2] , a : Any=True , a : Tuple=True , a : int=37 , a : List[str]="gelu" , a : Dict=10 , a : Optional[int]=0.0_2 , a : List[Any]=["stage2", "stage3", "stage4"] , a : Union[str, Any]=3 , a : Tuple=None , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : Any = num_stages lowerCAmelCase__ : str = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : int = is_training lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[Any] = type_sequence_label_size lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : str = out_features lowerCAmelCase__ : List[Any] = num_labels lowerCAmelCase__ : Optional[int] = scope lowerCAmelCase__ : Any = num_stages def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=a , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowerCamelCase ( self : Tuple , a : Tuple , a : Any , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = UperNetForSemanticSegmentation(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UperNetModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(a ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(a : str , a : Optional[Any] , a : Optional[Any] ): lowerCAmelCase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(a , a ) ) lowerCAmelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : List[str] = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Union[str, Any] = _config_zero_init(a ) lowerCAmelCase__ : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(config=a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = UperNetForSemanticSegmentation.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) lowerCAmelCase__ : int = Image.open(SCREAMING_SNAKE_CASE_ ).convert('RGB' ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) lowerCAmelCase__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(a ) lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[int] = processor(images=a , return_tensors='pt' ).to(a ) with torch.no_grad(): lowerCAmelCase__ : str = model(**a ) lowerCAmelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Tuple = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1E-4 ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) lowerCAmelCase__ : int = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(a ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Dict = processor(images=a , return_tensors='pt' ).to(a ) with torch.no_grad(): lowerCAmelCase__ : str = model(**a ) lowerCAmelCase__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Any = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1E-4 ) )
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCamelCase = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCamelCase = '''UperNetConfig''' class _a ( nn.Module): def __init__( self : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] , _SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int], str] = 0 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] = 1 , )-> None: super().__init__() lowerCAmelCase__ : List[str] = nn.Convad( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : List[str] = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = nn.ReLU() def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : torch.Tensor )-> torch.Tensor: lowerCAmelCase__ : Optional[int] = self.conv(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.batch_norm(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return output class _a ( nn.Module): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )-> None: super().__init__() lowerCAmelCase__ : Dict = [ nn.AdaptiveAvgPoolad(_SCREAMING_SNAKE_CASE ), UperNetConvModule(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : torch.Tensor )-> torch.Tensor: lowerCAmelCase__ : str = input for layer in self.layers: lowerCAmelCase__ : Union[str, Any] = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class _a ( nn.Module): def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple[int, ...] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool )-> None: super().__init__() lowerCAmelCase__ : Optional[Any] = pool_scales lowerCAmelCase__ : int = align_corners lowerCAmelCase__ : Any = in_channels lowerCAmelCase__ : str = channels lowerCAmelCase__ : List[Any] = [] for i, pool_scale in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Tuple = UperNetPyramidPoolingBlock(pool_scale=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , channels=_SCREAMING_SNAKE_CASE ) self.blocks.append(_SCREAMING_SNAKE_CASE ) self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : torch.Tensor )-> List[torch.Tensor]: lowerCAmelCase__ : Dict = [] for ppm in self.blocks: lowerCAmelCase__ : List[Any] = ppm(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_SCREAMING_SNAKE_CASE ) return ppm_outs class _a ( nn.Module): def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict )-> Union[str, Any]: super().__init__() lowerCAmelCase__ : int = config lowerCAmelCase__ : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase__ : Union[str, Any] = in_channels lowerCAmelCase__ : List[str] = config.hidden_size lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase__ : int = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase__ : List[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase__ : Tuple = UperNetConvModule(_SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) lowerCAmelCase__ : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_SCREAMING_SNAKE_CASE ) self.fpn_convs.append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__( self : Union[str, Any] )-> str: self.apply(self._init_weights ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[Any] )-> Dict: lowerCAmelCase__ : Optional[int] = inputs[-1] lowerCAmelCase__ : int = [x] psp_outs.extend(self.psp_modules(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) lowerCAmelCase__ : str = self.bottleneck(_SCREAMING_SNAKE_CASE ) return output def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : torch.Tensor )-> torch.Tensor: # build laterals lowerCAmelCase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_SCREAMING_SNAKE_CASE ) ) # build top-down path lowerCAmelCase__ : List[Any] = len(_SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ : Dict = laterals[i - 1].shape[2:] lowerCAmelCase__ : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs lowerCAmelCase__ : Dict = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ : List[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) lowerCAmelCase__ : int = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) lowerCAmelCase__ : int = self.fpn_bottleneck(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.classifier(_SCREAMING_SNAKE_CASE ) return output class _a ( nn.Module): def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int = 2 , _SCREAMING_SNAKE_CASE : int = 3 , _SCREAMING_SNAKE_CASE : Union[int, Tuple[int, int]] = 1 )-> None: super().__init__() lowerCAmelCase__ : Optional[int] = config lowerCAmelCase__ : str = config.auxiliary_in_channels lowerCAmelCase__ : str = config.auxiliary_channels lowerCAmelCase__ : Union[str, Any] = config.auxiliary_num_convs lowerCAmelCase__ : str = config.auxiliary_concat_input lowerCAmelCase__ : Union[str, Any] = in_index lowerCAmelCase__ : Tuple = (kernel_size // 2) * dilation lowerCAmelCase__ : int = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: lowerCAmelCase__ : Dict = nn.Identity() else: lowerCAmelCase__ : List[str] = nn.Sequential(*_SCREAMING_SNAKE_CASE ) if self.concat_input: lowerCAmelCase__ : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) lowerCAmelCase__ : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__( self : str )-> List[Any]: self.apply(self._init_weights ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Tuple )-> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : torch.Tensor )-> torch.Tensor: # just take the relevant feature maps lowerCAmelCase__ : List[Any] = encoder_hidden_states[self.in_index] lowerCAmelCase__ : Optional[int] = self.convs(_SCREAMING_SNAKE_CASE ) if self.concat_input: lowerCAmelCase__ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase__ : Optional[int] = self.classifier(_SCREAMING_SNAKE_CASE ) return output class _a ( _lowercase): _a : Tuple = UperNetConfig _a : Optional[int] = '''pixel_values''' _a : Union[str, Any] = True def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Any: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__( self : Dict )-> Optional[int]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str]=False )-> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Any = value lowerCamelCase = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , _lowercase , ) class _a ( _lowercase): def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Dict )-> List[str]: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase__ : Any = UperNetHead(_SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) lowerCAmelCase__ : Any = UperNetFCNHead(_SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , )-> Union[tuple, SemanticSegmenterOutput]: lowerCAmelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Dict = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase__ : List[str] = self.backbone.forward_with_filtered_kwargs( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = outputs.feature_maps lowerCAmelCase__ : Tuple = self.decode_head(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = nn.functional.interpolate(_SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = None if self.auxiliary_head is not None: lowerCAmelCase__ : Optional[Any] = self.auxiliary_head(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowerCAmelCase__ : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase__ : str = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase__ : str = (logits,) + outputs[1:] else: lowerCAmelCase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
131
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase = { '''facebook/blenderbot_small-90M''': 512, } class _a ( _lowercase): _a : Dict = VOCAB_FILES_NAMES _a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Dict = BlenderbotSmallTokenizer def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Tuple="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Any="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[Any]=True , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=_SCREAMING_SNAKE_CASE , merges=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , ) , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : List[str] = add_prefix_space def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any=None )-> Optional[int]: lowerCAmelCase__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
131
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> set: SCREAMING_SNAKE_CASE__ : Union[str, Any] = set() # edges = list of graph's edges SCREAMING_SNAKE_CASE__ : List[str] = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def _lowercase ( __lowerCAmelCase ) -> set: SCREAMING_SNAKE_CASE__ : Tuple = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
56
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a :List[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: a :str = json.load(f) @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self , _a ) -> Optional[int]: """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def _a ( self , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _a ( self , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(_a ) SCREAMING_SNAKE_CASE__ : Any = self.get_model(_a ) SCREAMING_SNAKE_CASE__ : Tuple = bleu_data[pair]["""src"""] SCREAMING_SNAKE_CASE__ : Any = bleu_data[pair]["""tgt"""] SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , return_tensors="""pt""" , truncation=_a , padding="""longest""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) SCREAMING_SNAKE_CASE__ : Dict = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores["""bleu"""] , _a )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Any = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} _lowerCamelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self : str , _UpperCamelCase : str=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Optional[Any]="<sep>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : int="<cls>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : Union[str, Any]="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=None , _UpperCamelCase : Dict="##" , **_UpperCamelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , clean_text=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , wordpieces_prefix=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase__ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase__ ( ): """simple docstring""" __a = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __a = bs[:] __a = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __a = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = set() __a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __a = char return pairs class SCREAMING_SNAKE_CASE ( __A ): __lowerCamelCase : Tuple =VOCAB_FILES_NAMES __lowerCamelCase : List[str] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Dict =['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , __lowercase : Any , __lowercase : Optional[Any] , __lowercase : Optional[Any]="replace" , __lowercase : List[Any]="<s>" , __lowercase : Union[str, Any]="</s>" , __lowercase : Tuple="</s>" , __lowercase : List[str]="<s>" , __lowercase : Dict="<unk>" , __lowercase : str="<pad>" , __lowercase : Optional[int]="<mask>" , __lowercase : str=False , **__lowercase : int , ): '''simple docstring''' __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: __a = json.load(__lowercase ) __a = {v: k for k, v in self.encoder.items()} __a = errors # how to handle errors in decoding __a = bytes_to_unicode() __a = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: __a = merges_handle.read().split("""\n""" )[1:-1] __a = [tuple(merge.split() ) for merge in bpe_merges] __a = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __a = {} __a = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __a = re.compile(r"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : int ): '''simple docstring''' if token in self.cache: return self.cache[token] __a = tuple(__lowercase ) __a = get_pairs(__lowercase ) if not pairs: return token while True: __a = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __a , __a = bigram __a = [] __a = 0 while i < len(__lowercase ): try: __a = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a = tuple(__lowercase ) __a = new_word if len(__lowercase ) == 1: break else: __a = get_pairs(__lowercase ) __a = """ """.join(__lowercase ) __a = word return word def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[str] ): '''simple docstring''' __a = [] for token in re.findall(self.pat , __lowercase ): __a = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(""" """ ) ) return bpe_tokens def UpperCamelCase_ ( self : int , __lowercase : int ): '''simple docstring''' return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : str , __lowercase : List[Any] ): '''simple docstring''' return self.decoder.get(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : int ): '''simple docstring''' __a = """""".join(__lowercase ) __a = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase_ ( self : Tuple , __lowercase : List[Any] , __lowercase : Optional[int] = None ): '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) __a = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __a = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] = None , __lowercase : Optional[Any] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def UpperCamelCase_ ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Any = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[str] , __lowercase : Optional[int]=False , **__lowercase : str ): '''simple docstring''' __a = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): __a = """ """ + text return (text, kwargs) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : List[Any] , __lowercase : Tuple = None , __lowercase : str = PaddingStrategy.DO_NOT_PAD , __lowercase : List[str] = None , __lowercase : Optional[Any] = None , ): '''simple docstring''' __a = super()._pad( encoded_inputs=__lowercase , max_length=__lowercase , padding_strategy=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , ) # Load from model defaults if return_attention_mask is None: __a = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a = len(encoded_inputs["""global_attention_mask"""] ) != len(__lowercase ) if needs_to_be_padded: __a = len(__lowercase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __a = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
302
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = None , __lowercase = None , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 3_84} __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size # Default value set here for backwards compatibility where the value in config is None __lowerCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 __lowerCAmelCase = resample __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) __lowerCAmelCase = size['''shortest_edge'''] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __lowerCAmelCase = int(shortest_edge / crop_pct ) __lowerCAmelCase = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = resize(image=__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__lowercase , size=(shortest_edge, shortest_edge) , data_format=__lowercase , **__lowercase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __lowercase , size=(shortest_edge, shortest_edge) , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
174
0
from collections import deque class __snake_case : def __init__( self : Tuple , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = process_name # process name UpperCAmelCase_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase_ = arrival_time UpperCAmelCase_ = burst_time # remaining burst time UpperCAmelCase_ = 0 # total time of the process wait in ready queue UpperCAmelCase_ = 0 # time from arrival time to completion time class __snake_case : def __init__( self : Tuple , _snake_case : int , _snake_case : list[int] , _snake_case : deque[Process] , _snake_case : int , ): """simple docstring""" UpperCAmelCase_ = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase_ = time_slices # unfinished process is in this ready_queue UpperCAmelCase_ = queue # current time UpperCAmelCase_ = current_time # finished process is in this sequence queue UpperCAmelCase_ = deque() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def lowerCamelCase ( self : Optional[Any] , _snake_case : list[Process]): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): waiting_times.append(queue[i].waiting_time) return waiting_times def lowerCamelCase ( self : Dict , _snake_case : list[Process]): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def lowerCamelCase ( self : Optional[Any] , _snake_case : list[Process]): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): completion_times.append(queue[i].stop_time) return completion_times def lowerCamelCase ( self : Dict , _snake_case : deque[Process]): """simple docstring""" return [q.burst_time for q in queue] def lowerCamelCase ( self : Tuple , _snake_case : Process): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase ( self : List[str] , _snake_case : deque[Process]): """simple docstring""" UpperCAmelCase_ = deque() # sequence deque of finished process while len(_snake_case) != 0: UpperCAmelCase_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase_ = 0 # set the process's turnaround time because it is finished UpperCAmelCase_ = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase_ = self.current_time # add the process to queue that has finished queue finished.append(_snake_case) self.finish_queue.extend(_snake_case) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase ( self : Dict , _snake_case : deque[Process] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case)): UpperCAmelCase_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase_ = 0 # set the finish time UpperCAmelCase_ = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case) self.finish_queue.extend(_snake_case) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for i in range(self.number_of_queues - 1): UpperCAmelCase_ , UpperCAmelCase_ = self.round_robin( self.ready_queue , self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest snake_case_ : Union[str, Any] = Process("P1", 0, 53) snake_case_ : List[Any] = Process("P2", 0, 17) snake_case_ : Tuple = Process("P3", 0, 68) snake_case_ : Optional[Any] = Process("P4", 0, 24) snake_case_ : Dict = 3 snake_case_ : Optional[Any] = [17, 25] snake_case_ : List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) snake_case_ : int = Process("P1", 0, 53) snake_case_ : Tuple = Process("P2", 0, 17) snake_case_ : Union[str, Any] = Process("P3", 0, 68) snake_case_ : Optional[Any] = Process("P4", 0, 24) snake_case_ : str = 3 snake_case_ : str = [17, 25] snake_case_ : List[str] = deque([Pa, Pa, Pa, Pa]) snake_case_ : int = MLFQ(number_of_queues, time_slices, queue, 0) snake_case_ : Optional[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
364
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
0
from numpy import exp, pi, sqrt def lowerCamelCase_ ( _a : str , _a : int = 0.0 , _a : Dict = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Any = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a : Optional[int] = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> List[int]: '''simple docstring''' if isinstance(__UpperCAmelCase, np.ndarray ): return list(tensor.shape ) snake_case_ = tf.shape(__UpperCAmelCase ) if tensor.shape == tf.TensorShape(__UpperCAmelCase ): return dynamic snake_case_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__UpperCAmelCase )] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = None, __UpperCAmelCase = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9, axis=__UpperCAmelCase, name=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=1e-5, __UpperCAmelCase=-1 ) -> Any: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__UpperCAmelCase, __UpperCAmelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized snake_case_ ,snake_case_ = tf.nn.moments(__UpperCAmelCase, axes=[axis], keepdims=__UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case_ = [1] * inputs.shape.rank snake_case_ = shape_list(__UpperCAmelCase )[axis] snake_case_ = tf.reshape(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = tf.reshape(__UpperCAmelCase, __UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. snake_case_ = tf.nn.batch_normalization( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, offset=__UpperCAmelCase, scale=__UpperCAmelCase, variance_epsilon=__UpperCAmelCase, ) return outputs def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=0, __UpperCAmelCase=-1 ) -> Optional[int]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case_ = tf.shape(__UpperCAmelCase ) snake_case_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0 ) return tf.reshape(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> tf.Tensor: '''simple docstring''' if not isinstance(__UpperCAmelCase, tf.Tensor ): snake_case_ = tf.convert_to_tensor(__UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case_ = ( tf.cast(1, encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( __UpperCAmelCase, tf.cast(__UpperCAmelCase, dtype=tensor.dtype ), message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(__UpperCAmelCase )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ), ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case_ = [x for x in data if len(__UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) snake_case_ = np.asarray(__UpperCAmelCase ) snake_case_ = 1 snake_case_ = np.array_split(__UpperCAmelCase, __UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case_ = np.array_split(__UpperCAmelCase, __UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__UpperCAmelCase ): snake_case_ = chunk_data else: snake_case_ = data def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' if name in group.attrs: snake_case_ = [n.decode('''utf8''' ) if hasattr(__UpperCAmelCase, '''decode''' ) else n for n in group.attrs[name]] else: snake_case_ = [] snake_case_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__UpperCAmelCase, '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' def _expand_single_ad_tensor(__UpperCAmelCase ): if isinstance(__UpperCAmelCase, tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__UpperCAmelCase, axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor, __UpperCAmelCase )
56
'''simple docstring''' import math from collections.abc import Callable def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' snake_case_ = xa snake_case_ = xa while True: if x_n == x_na or function(__UpperCAmelCase ) == function(__UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) snake_case_ = x_na - ( function(__UpperCAmelCase ) / ((function(__UpperCAmelCase ) - function(__UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ = x_na snake_case_ = x_na def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class lowerCamelCase : '''simple docstring''' def __init__(self ): """simple docstring""" UpperCAmelCase__ : List[str] = {} def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = {} def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if nodea not in self.connections: self.add_node(_lowerCamelCase ) if nodea not in self.connections: self.add_node(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = probability def _a (self ): """simple docstring""" return list(self.connections ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Any = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> dict[str, int]: UpperCAmelCase__ : Any = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = Counter(graph.get_nodes() ) UpperCAmelCase__ : str = start for _ in range(lowerCAmelCase ): UpperCAmelCase__ : List[str] = graph.transition(lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
166
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def _a (self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_lowerCamelCase , ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def _a (self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_lowerCamelCase , ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) def a__ ( ) -> Tuple: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def a__ ( ) -> List[str]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @require_beam def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Dict = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a (self ): """simple docstring""" import apache_beam as beam UpperCAmelCase__ : Optional[int] = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Any = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: UpperCAmelCase__ : int = partial(_lowerCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase__ : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=_lowerCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = NestedBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) UpperCAmelCase__ : str = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
166
1
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def UpperCamelCase_ ( lowerCAmelCase__ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Optional[int] = VideoMAEConfig() set_architecture_configs(lowerCamelCase__ , lowerCamelCase__ ) if "finetuned" not in model_name: lowerCAmelCase_ : Dict = False if "finetuned" in model_name: lowerCAmelCase_ : List[Any] = """huggingface/label-files""" if "kinetics" in model_name: lowerCAmelCase_ : Dict = 400 lowerCAmelCase_ : List[str] = """kinetics400-id2label.json""" elif "ssv2" in model_name: lowerCAmelCase_ : Tuple = 174 lowerCAmelCase_ : str = """something-something-v2-id2label.json""" else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" if "small" in model_name: lowerCAmelCase_ : int = 384 lowerCAmelCase_ : Union[str, Any] = 1536 lowerCAmelCase_ : List[str] = 12 lowerCAmelCase_ : Optional[int] = 16 lowerCAmelCase_ : Any = 12 lowerCAmelCase_ : int = 3 lowerCAmelCase_ : Optional[Any] = 192 lowerCAmelCase_ : Union[str, Any] = 768 elif "large" in model_name: lowerCAmelCase_ : List[Any] = 1024 lowerCAmelCase_ : Optional[Any] = 4096 lowerCAmelCase_ : Optional[Any] = 24 lowerCAmelCase_ : List[str] = 16 lowerCAmelCase_ : Any = 12 lowerCAmelCase_ : str = 8 lowerCAmelCase_ : str = 512 lowerCAmelCase_ : int = 2048 elif "huge" in model_name: lowerCAmelCase_ : Optional[Any] = 1280 lowerCAmelCase_ : str = 5120 lowerCAmelCase_ : str = 32 lowerCAmelCase_ : int = 16 lowerCAmelCase_ : Any = 12 lowerCAmelCase_ : Union[str, Any] = 8 lowerCAmelCase_ : Dict = 640 lowerCAmelCase_ : Optional[Any] = 2560 elif "base" not in model_name: raise ValueError('Model name should include either \"small\", \"base\", \"large\", or \"huge\"' ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Optional[int]: """simple docstring""" if "encoder." in name: lowerCAmelCase_ : List[Any] = name.replace('encoder.' , '' ) if "cls_token" in name: lowerCAmelCase_ : List[str] = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: lowerCAmelCase_ : Tuple = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase_ : int = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase_ : Optional[Any] = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase_ : Dict = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: lowerCAmelCase_ : List[str] = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: lowerCAmelCase_ : List[str] = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: lowerCAmelCase_ : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: lowerCAmelCase_ : str = name.replace('attn' , 'attention.self' ) if "attn" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('attn' , 'attention.attention' ) if "norm1" in name: lowerCAmelCase_ : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase_ : List[str] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase_ : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase_ : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: lowerCAmelCase_ : Optional[Any] = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCAmelCase_ : Tuple = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCAmelCase_ : Tuple = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase_ : Dict = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase_ : List[str] = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: lowerCAmelCase_ : Optional[Any] = name.replace('head' , 'classifier' ) return name def UpperCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : str = orig_state_dict.pop(lowerCamelCase__ ) if key.startswith('encoder.' ): lowerCAmelCase_ : Tuple = key.replace('encoder.' , '' ) if "qkv" in key: lowerCAmelCase_ : Optional[int] = key.split('.' ) if key.startswith('decoder.blocks' ): lowerCAmelCase_ : Union[str, Any] = config.decoder_hidden_size lowerCAmelCase_ : Any = int(key_split[2] ) lowerCAmelCase_ : int = """decoder.decoder_layers.""" if "weight" in key: lowerCAmelCase_ : Optional[Any] = val[:dim, :] lowerCAmelCase_ : Any = val[dim : dim * 2, :] lowerCAmelCase_ : Dict = val[-dim:, :] else: lowerCAmelCase_ : List[Any] = config.hidden_size lowerCAmelCase_ : List[Any] = int(key_split[1] ) lowerCAmelCase_ : int = """videomae.encoder.layer.""" if "weight" in key: lowerCAmelCase_ : Any = val[:dim, :] lowerCAmelCase_ : Union[str, Any] = val[dim : dim * 2, :] lowerCAmelCase_ : List[str] = val[-dim:, :] else: lowerCAmelCase_ : Union[str, Any] = val return orig_state_dict def UpperCamelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : List[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowerCAmelCase_ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase_ : Any = get_videomae_config(lowerCamelCase__ ) if "finetuned" in model_name: lowerCAmelCase_ : List[str] = VideoMAEForVideoClassification(lowerCamelCase__ ) else: lowerCAmelCase_ : Optional[Any] = VideoMAEForPreTraining(lowerCamelCase__ ) # download original checkpoint, hosted on Google Drive lowerCAmelCase_ : Optional[Any] = """pytorch_model.bin""" gdown.cached_download(lowerCamelCase__ , lowerCamelCase__ , quiet=lowerCamelCase__ ) lowerCAmelCase_ : Any = torch.load(lowerCamelCase__ , map_location='cpu' ) if "model" in files: lowerCAmelCase_ : Any = files["""model"""] else: lowerCAmelCase_ : Dict = files["""module"""] lowerCAmelCase_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify model on basic input lowerCAmelCase_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase_ : Union[str, Any] = prepare_video() lowerCAmelCase_ : str = image_processor(lowerCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: lowerCAmelCase_ : List[str] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowerCAmelCase_ : Optional[Any] = torch.load(lowerCamelCase__ ) lowerCAmelCase_ : Dict = model(**lowerCamelCase__ ) lowerCAmelCase_ : List[Any] = outputs.logits lowerCAmelCase_ : Any = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase_ : str = torch.Size([1, 400] ) lowerCAmelCase_ : Optional[Any] = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase_ : str = torch.Size([1, 174] ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCAmelCase_ : Tuple = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ : List[str] = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCAmelCase_ : Dict = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ : List[str] = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase_ : List[Any] = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCAmelCase_ : str = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ : Dict = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase_ : int = torch.Size([1, 400] ) lowerCAmelCase_ : Optional[Any] = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase_ : Union[str, Any] = torch.Size([1, 400] ) lowerCAmelCase_ : Optional[int] = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase_ : List[Any] = torch.Size([1, 400] ) lowerCAmelCase_ : Optional[Any] = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase_ : Union[str, Any] = torch.Size([1, 400] ) lowerCAmelCase_ : Tuple = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase_ : Optional[Any] = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ : List[Any] = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase_ : Any = torch.Size([1, 174] ) lowerCAmelCase_ : Any = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase_ : Dict = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ : Dict = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase_ : Any = torch.Size([1, 174] ) lowerCAmelCase_ : str = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase_ : Optional[int] = outputs.loss assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(lowerCamelCase__ , organization='nielsr' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase__ : Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
224
'''simple docstring''' import argparse import struct import unittest class _lowerCAmelCase : def __init__(self , lowercase ): A_ : List[str] = data # Initialize hash values A_ : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants A_ : List[Any] = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] A_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a (lowercase ): A_ : Any = b"""\x80""" + (b"""\x00""" * (63 - (len(lowercase ) + 8) % 64)) A_ : Optional[Any] = struct.pack(""">Q""" , (len(lowercase ) * 8) ) return data + padding + big_endian_integer def _a (self ): # Convert into blocks of 64 bytes A_ : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A_ : Tuple = list(struct.unpack(""">16L""" , lowercase ) ) # add 48 0-ed integers words += [0] * 48 A_, A_, A_, A_, A_, A_, A_, A_ : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A_ : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A_ : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A_ : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression A_ : Union[str, Any] = self.ror(lowercase , 6 ) ^ self.ror(lowercase , 11 ) ^ self.ror(lowercase , 25 ) A_ : List[Any] = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) A_ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 A_ : List[str] = self.ror(lowercase , 2 ) ^ self.ror(lowercase , 13 ) ^ self.ror(lowercase , 22 ) A_ : str = (a & b) ^ (a & c) ^ (b & c) A_ : int = (sa + maj) % 0X1_0000_0000 A_, A_, A_, A_, A_, A_, A_, A_ : List[Any] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) A_ : int = [a, b, c, d, e, f, g, h] # Modify final values A_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] A_ : Any = """""".join([hex(lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _a (self , lowercase , lowercase ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): import hashlib A_ : Optional[Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowercase ).hash , hashlib.shaaaa(lowercase ).hexdigest() ) def a ( ): '''simple docstring''' import doctest doctest.testmod() A_ : Any = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) A_ : List[str] = parser.parse_args() A_ : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: A_ : Union[str, Any] = f.read() else: A_ : Optional[Any] = bytes(lowerCamelCase__ , """utf-8""" ) print(SHAaaa(lowerCamelCase__ ).hash ) if __name__ == "__main__": main()
206
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =KandinskyVaaImgaImgPipeline a__ =['''image_embeds''', '''negative_image_embeds''', '''image'''] a__ =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] a__ =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a__ =False @property def __lowerCAmelCase ( self ) -> Dict: return 3_2 @property def __lowerCAmelCase ( self ) -> Tuple: return 3_2 @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim @property def __lowerCAmelCase ( self ) -> Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) -> int: return 1_0_0 @property def __lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _UpperCAmelCase : str = UNetaDConditionModel(**A ) return model @property def __lowerCAmelCase ( self ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = self.dummy_unet _UpperCAmelCase : Tuple = self.dummy_movq _UpperCAmelCase : Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _UpperCAmelCase : Optional[int] = DDIMScheduler(**A ) _UpperCAmelCase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , A , A=0 ) -> int: _UpperCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A ) # create init_image _UpperCAmelCase : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(A ).startswith('''mps''' ): _UpperCAmelCase : Tuple = torch.manual_seed(A ) else: _UpperCAmelCase : Dict = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : List[Any] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = '''cpu''' _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Any = self.pipeline_class(**A ) _UpperCAmelCase : Optional[int] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(A ) ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : Dict = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : Tuple = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) _UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _UpperCAmelCase : List[Any] = '''A red cartoon frog, 4k''' _UpperCAmelCase : Dict = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(A ) _UpperCAmelCase : Dict = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) _UpperCAmelCase : str = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) _UpperCAmelCase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _UpperCAmelCase : List[Any] = pipeline( image=A , image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) _UpperCAmelCase : Any = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(A , A )
68
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=a ): '''simple docstring''' a__ =['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A , **A ) -> int: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
68
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase : List[Any] = """true""" def a__ ( snake_case__ , snake_case__=82 , snake_case__=16 ) -> Optional[Any]: set_seed(42 ) lowerCamelCase = RegressionModel() lowerCamelCase = deepcopy(SCREAMING_SNAKE_CASE__ ) lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) lowerCamelCase = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) model.to(accelerator.device ) lowerCamelCase , lowerCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model, ddp_model, dataloader def a__ ( snake_case__ , snake_case__=False ) -> int: lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) lowerCamelCase = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(snake_case__ ): lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs with accelerator.main_process_first(): lowerCamelCase = dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 ) def a__ ( snake_case__ , snake_case__ ) -> str: lowerCamelCase = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ ) lowerCamelCase = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches ) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE__ ) lowerCamelCase , lowerCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCamelCase = [] for batch in dataloader: lowerCamelCase , lowerCamelCase = batch.values() with torch.no_grad(): lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) lowerCamelCase , lowerCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCamelCase , lowerCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE__ ) targs.append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase , lowerCamelCase = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ ) return logits, targs def a__ ( snake_case__ , snake_case__=82 , snake_case__=False , snake_case__=False , snake_case__=16 ) -> List[Any]: lowerCamelCase , lowerCamelCase , lowerCamelCase = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase , lowerCamelCase = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert ( len(SCREAMING_SNAKE_CASE__ ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}' def a__ ( snake_case__ = False , snake_case__ = False ) -> str: lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) lowerCamelCase , lowerCamelCase = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # First do baseline lowerCamelCase , lowerCamelCase , lowerCamelCase = setup["""no"""] model.to(SCREAMING_SNAKE_CASE__ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE__ ) with torch.inference_mode(): lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch["""labels"""] ) lowerCamelCase = metric.compute() # Then do distributed lowerCamelCase , lowerCamelCase , lowerCamelCase = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase = outputs.logits.argmax(dim=-1 ) lowerCamelCase = batch["""labels"""] lowerCamelCase , lowerCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) lowerCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def a__ ( ) -> Optional[Any]: lowerCamelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCamelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) lowerCamelCase = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE__ , 5_12 ) accelerator.state._reset_state() def a__ ( snake_case__ ) -> Union[str, Any]: main() if __name__ == "__main__": main()
291
from timeit import timeit def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) A__ = 0 while number: number &= number - 1 result += 1 return result def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) A__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _snake_case( ) -> None: '''simple docstring''' def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None: A__ = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' ) A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' ) A__ = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
0
'''simple docstring''' import os def snake_case__ ( ) -> List[str]: A_ : Optional[Any] = os.path.join(os.path.dirname(lowerCamelCase__ ) , '''num.txt''' ) with open(lowerCamelCase__ ) as file_hand: return str(sum(int(lowerCamelCase__ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase_ (A__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'tapas' def __init__( self : int ,lowercase__ : Optional[Any]=3_0_5_2_2 ,lowercase__ : Tuple=7_6_8 ,lowercase__ : int=1_2 ,lowercase__ : Any=1_2 ,lowercase__ : Union[str, Any]=3_0_7_2 ,lowercase__ : Optional[int]="gelu" ,lowercase__ : Optional[int]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : str=1_0_2_4 ,lowercase__ : Union[str, Any]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] ,lowercase__ : Optional[int]=0.0_2 ,lowercase__ : List[str]=1e-1_2 ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[Any]=1_0.0 ,lowercase__ : Optional[Any]=0 ,lowercase__ : str=1.0 ,lowercase__ : Union[str, Any]=None ,lowercase__ : List[Any]=1.0 ,lowercase__ : Optional[Any]=False ,lowercase__ : Union[str, Any]=None ,lowercase__ : int=1.0 ,lowercase__ : Dict=1.0 ,lowercase__ : Optional[int]=False ,lowercase__ : int=False ,lowercase__ : List[str]="ratio" ,lowercase__ : Tuple=None ,lowercase__ : List[Any]=None ,lowercase__ : List[Any]=6_4 ,lowercase__ : Any=3_2 ,lowercase__ : Tuple=False ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[int]=False ,lowercase__ : Tuple=False ,lowercase__ : Tuple=True ,lowercase__ : Optional[Any]=False ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : str ,): super().__init__(pad_token_id=__lowerCamelCase ,**__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_sizes __lowercase = initializer_range __lowercase = layer_norm_eps # Fine-tuning task hyperparameters __lowercase = positive_label_weight __lowercase = num_aggregation_labels __lowercase = aggregation_loss_weight __lowercase = use_answer_as_supervision __lowercase = answer_loss_importance __lowercase = use_normalized_answer_loss __lowercase = huber_loss_delta __lowercase = temperature __lowercase = aggregation_temperature __lowercase = use_gumbel_for_cells __lowercase = use_gumbel_for_aggregation __lowercase = average_approximation_function __lowercase = cell_selection_preference __lowercase = answer_loss_cutoff __lowercase = max_num_rows __lowercase = max_num_columns __lowercase = average_logits_per_cell __lowercase = select_one_column __lowercase = allow_empty_column_selection __lowercase = init_cell_selection_weights_to_zero __lowercase = reset_position_index_per_cell __lowercase = disable_per_token_loss # Aggregation hyperparameters __lowercase = aggregation_labels __lowercase = no_aggregation_label_index if isinstance(self.aggregation_labels ,__lowerCamelCase ): __lowercase = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
104
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
0
import math from datetime import datetime, timedelta def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = year % 19 SCREAMING_SNAKE_CASE : List[str] = year % 4 SCREAMING_SNAKE_CASE : str = year % 7 SCREAMING_SNAKE_CASE : List[Any] = math.floor(year / 100 ) SCREAMING_SNAKE_CASE : int = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE : List[str] = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE : Dict = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE : Union[str, Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE : List[str] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowercase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowercase , 4 , 18 ) else: return datetime(lowercase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): snake_case = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[False] * len(_lowerCAmelCase ) __lowercase =[] queue.append(_lowerCAmelCase ) __lowercase =True while queue: __lowercase =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) __lowercase =True __lowercase =u return visited[t] def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[-1] * (len(_lowerCAmelCase )) __lowercase =0 while bfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowercase =float('Inf' ) __lowercase =sink while s != source: # Find the minimum value in select path __lowercase =min(_lowerCAmelCase , graph[parent[s]][s] ) __lowercase =parent[s] max_flow += path_flow __lowercase =sink while v != source: __lowercase =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase =parent[v] return max_flow lowerCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase , lowerCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
166
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[True] * limit __lowercase =False __lowercase =False __lowercase =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase =i * 2 while index < limit: __lowercase =False __lowercase =index + i __lowercase =[2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =prime_sieve(_lowerCAmelCase ) __lowercase =0 __lowercase =0 for i in range(len(_lowerCAmelCase ) ): for j in range(i + length , len(_lowerCAmelCase ) ): __lowercase =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase =j - i __lowercase =sol return largest if __name__ == "__main__": print(f"{solution() = }")
166
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase: str = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Union[str, Any] = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: int = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _lowercase: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
import math from numpy import inf from scipy.integrate import quad def a( A : float ) -> float: """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(A , 0 , A , args=(A) )[0] def a( A : float , A : float ) -> float: """simple docstring""" return math.pow(A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
71
0
from ...processing_utils import ProcessorMixin class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'WhisperFeatureExtractor' __lowerCamelCase = 'WhisperTokenizer' def __init__( self , lowercase , lowercase ) -> Dict: '''simple docstring''' super().__init__(lowercase , lowercase ) A__ = self.feature_extractor A__ = False def UpperCamelCase ( self , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowercase , language=lowercase , no_timestamps=lowercase ) def __call__( self , *lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) A__ = kwargs.pop("audio" , lowercase ) A__ = kwargs.pop("sampling_rate" , lowercase ) A__ = kwargs.pop("text" , lowercase ) if len(lowercase ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A__ = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: A__ = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings["input_ids"] return inputs def UpperCamelCase ( self , *lowercase , **lowercase ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def UpperCamelCase ( self , *lowercase , **lowercase ) -> str: '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase="np" ) -> Dict: '''simple docstring''' return self.tokenizer.get_prompt_ids(lowercase , return_tensors=lowercase )
68
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaTokenizer __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(lowercase ) A__ = AddedToken("<mask>" , lstrip=lowercase , rstrip=lowercase ) A__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = "this is a test" A__ = "this is a test" return input_text, output_text def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ) -> Optional[Any]: '''simple docstring''' A__ , A__ = self.get_input_output_texts(lowercase ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A__ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = "<pad>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowercase ) , 81 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] A__ = tokenizer.add_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size + len(lowercase ) ) A__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A__ = tokenizer.add_special_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size_a + len(lowercase ) ) A__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowercase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) # fmt: off self.assertListEqual(lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off A__ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowercase , )
68
1
"""simple docstring""" from __future__ import annotations from math import gcd def __A ( a_ :int , a_ :int = 2 , a_ :int = 1 , a_ :int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''') # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(a_ :int , a_ :int , a_ :int) -> int: return (pow(a_ , 2) + step) % modulus for _ in range(a_): # These track the position within the cycle detection logic. __a : Any = seed __a : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __a : Optional[Any] = rand_fn(a_ , a_ , a_) __a : int = rand_fn(a_ , a_ , a_) __a : List[Any] = rand_fn(a_ , a_ , a_) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __a : int = gcd(hare - tortoise , a_) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __a : Optional[int] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse A = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) A = parser.parse_args() A = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'{args.num} is probably prime') else: A = args.num // divisor print(F'{args.num} = {divisor} * {quotient}')
188
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' __lowerCAmelCase = '''image_segmenter''' __lowerCAmelCase = CLIPSegForImageSegmentation __lowerCAmelCase = ['''image''', '''text'''] __lowerCAmelCase = ['''image'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='''pt''' ) def _lowerCamelCase ( self , _UpperCAmelCase ): with torch.no_grad(): __a : List[str] = self.model(**_UpperCAmelCase ).logits return logits def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = outputs.cpu().detach().numpy() __a : int = 0 __a : Optional[int] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
188
1
'''simple docstring''' import os def a_ ( ): lowerCAmelCase = os.path.join(os.path.dirname(lowerCamelCase ) , 'num.txt' ) with open(lowerCamelCase ) as file_hand: return str(sum(int(lowerCamelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
4
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
1
"""simple docstring""" import string def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" snake_case : List[str] = "" for i in sequence: snake_case : Optional[Any] = ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" snake_case : Dict = string.ascii_letters snake_case : List[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __lowerCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running performance benchmarks..." ) snake_case : Optional[int] = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds' ) print(F'> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
112
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Any = self.dummy_uncond_unet snake_case : Tuple = KarrasVeScheduler() snake_case : int = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : Dict = torch.manual_seed(0 ) snake_case : Dict = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="numpy" , return_dict=UpperCamelCase__ )[0] snake_case : Tuple = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = "google/ncsnpp-celebahq-256" snake_case : List[str] = UNetaDModel.from_pretrained(UpperCamelCase__ ) snake_case : Optional[Any] = KarrasVeScheduler() snake_case : Optional[int] = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Dict = torch.manual_seed(0 ) snake_case : Union[str, Any] = pipe(num_inference_steps=20 , generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case : Any = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
112
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = s.rsplit(__lowercase , __lowercase ) return new.join(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _lowerCAmelCase = key.replace(F'{group_key}.' , F'{group_key}.group.' ) if "res_path" in key: _lowerCAmelCase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): _lowerCAmelCase = rreplace(__lowercase , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): _lowerCAmelCase = rreplace(__lowercase , """.b""" , """.bias""" , 1 ) _lowerCAmelCase = value.float() return upgrade @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=None , snake_case=True ): """simple docstring""" from dall_e import Encoder _lowerCAmelCase = Encoder() if os.path.exists(__lowercase ): _lowerCAmelCase = torch.load(__lowercase ) else: _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowercase ) if isinstance(__lowercase , __lowercase ): _lowerCAmelCase = ckpt.state_dict() encoder.load_state_dict(__lowercase ) if config_path is not None: _lowerCAmelCase = FlavaImageCodebookConfig.from_pretrained(__lowercase ) else: _lowerCAmelCase = FlavaImageCodebookConfig() _lowerCAmelCase = FlavaImageCodebook(__lowercase ).eval() _lowerCAmelCase = encoder.state_dict() _lowerCAmelCase = upgrade_state_dict(__lowercase ) hf_model.load_state_dict(__lowercase ) _lowerCAmelCase = hf_model.state_dict() _lowerCAmelCase = count_parameters(__lowercase ) _lowerCAmelCase = count_parameters(__lowercase ) assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowercase ) else: return hf_state_dict if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") A__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = [[1, 2, 4], [1, 2, 3, 4]] snake_case_ = DisjunctiveConstraint(a__ ) self.assertTrue(isinstance(dc.token_ids , a__ ) ) with self.assertRaises(a__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(a__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(a__ ): DisjunctiveConstraint(a__ ) # fails here def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = [[1, 2, 3], [1, 2, 4]] snake_case_ = DisjunctiveConstraint(a__ ) snake_case_ , snake_case_ , snake_case_ = dc.update(1 ) snake_case_ = stepped is True and completed is False and reset is False self.assertTrue(a__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case_ , snake_case_ , snake_case_ = dc.update(2 ) snake_case_ = stepped is True and completed is False and reset is False self.assertTrue(a__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case_ , snake_case_ , snake_case_ = dc.update(3 ) snake_case_ = stepped is True and completed is True and reset is False self.assertTrue(a__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case_ = DisjunctiveConstraint(a__ ) snake_case_ , snake_case_ , snake_case_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case_ , snake_case_ , snake_case_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case_ , snake_case_ , snake_case_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case_ , snake_case_ , snake_case_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case_ , snake_case_ , snake_case_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case_ , snake_case_ , snake_case_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case_ , snake_case_ , snake_case_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
92
'''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = "Alexander Joslin" import operator as op from .stack import Stack def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} snake_case_ = Stack() snake_case_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 snake_case_ = operator_stack.peek() operator_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operators[opr](snake_case , snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
92
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _snake_case ( _snake_case : Iterable[str] , _snake_case : int ): lowerCAmelCase : Optional[int] = iter(_snake_case ) while True: lowerCAmelCase : Tuple = tuple(itertools.islice(_snake_case , _snake_case ) ) if not chunk: return yield chunk def _snake_case ( _snake_case : str ): lowerCAmelCase : List[Any] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase : Union[str, Any] = '''''' if len(_snake_case ) < 2: return dirty for i in range(len(_snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_snake_case ) & 1: clean += "X" return clean def _snake_case ( _snake_case : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase : Dict = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase : Any = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_snake_case ) return table def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : Union[str, Any] = generate_table(_snake_case ) lowerCAmelCase : str = prepare_input(_snake_case ) lowerCAmelCase : Any = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): lowerCAmelCase, lowerCAmelCase : List[Any] = divmod(table.index(_snake_case ) , 5 ) lowerCAmelCase, lowerCAmelCase : List[str] = divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : Dict = generate_table(_snake_case ) lowerCAmelCase : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): lowerCAmelCase, lowerCAmelCase : List[str] = divmod(table.index(_snake_case ) , 5 ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
60
import random def A ( a_ ,a_ ,a_ = False ) -> dict: __UpperCamelCase : dict ={i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 ,a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def A ( a_ ) -> dict: return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
71
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : Dict = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict=1_3 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=9_9 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=3_6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Tuple=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : str = use_input_mask lowerCAmelCase_ : Union[str, Any] = use_token_type_ids lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Any = embedding_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_hidden_groups lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Dict = num_choices lowerCAmelCase_ : Tuple = scope def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : Union[str, Any] = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : Optional[Any] = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , sentence_order_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : str = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : List[str] = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : Union[str, Any] = self.num_labels lowerCAmelCase_ : Union[str, Any] = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[Any] = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : Optional[Any] = self.num_choices lowerCAmelCase_ : int = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase_ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=False ): lowerCAmelCase_ : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = AlbertModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Any = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
289
1
import random from .binary_exp_mod import bin_exp_mod def UpperCAmelCase__ ( _A : Optional[int] , _A : Dict=10_00 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd a__ =n - 1 a__ =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) a__ =0 while count < prec: a__ =random.randint(2 , n - 1 ) a__ =bin_exp_mod(_A , _A , _A ) if b != 1: a__ =True for _ in range(_A ): if b == n - 1: a__ =False break a__ =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
188
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Optional[int]: """simple docstring""" super().__init__(**lowercase_ ) requires_backends(self, '''vision''' ) requires_backends(self, '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> Optional[Any]: """simple docstring""" a__ ={} a__ ={} a__ ={} # preprocess args if "points_per_batch" in kwargs: a__ =kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: a__ =kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: a__ =kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: a__ =kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: a__ =kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: a__ =kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: a__ =kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: a__ =kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: a__ =kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: a__ =kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: a__ =kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: a__ =kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self, lowercase_, *lowercase_, lowercase_=None, lowercase_=None, **lowercase_ ) -> List[Any]: """simple docstring""" return super().__call__(lowercase_, *lowercase_, num_workers=lowercase_, batch_size=lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_=64, lowercase_ = 0, lowercase_ = 512 / 1500, lowercase_ = 32, lowercase_ = 1, ) -> Any: """simple docstring""" a__ =load_image(lowercase_ ) a__ =self.image_processor.size['''longest_edge'''] a__, a__, a__, a__ =self.image_processor.generate_crop_boxes( lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) a__ =self.image_processor(images=lowercase_, return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": a__ =self.get_inference_context() with inference_context(): a__ =self._ensure_tensor_on_device(lowercase_, device=self.device ) a__ =self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) a__ =image_embeddings a__ =grid_points.shape[1] a__ =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0, lowercase_, lowercase_ ): a__ =grid_points[:, i : i + points_per_batch, :, :] a__ =input_labels[:, i : i + points_per_batch] a__ =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCAmelCase ( self, lowercase_, lowercase_=0.88, lowercase_=0.95, lowercase_=0, lowercase_=1, ) -> int: """simple docstring""" a__ =model_inputs.pop('''input_boxes''' ) a__ =model_inputs.pop('''is_last''' ) a__ =model_inputs.pop('''original_sizes''' ).tolist() a__ =model_inputs.pop('''reshaped_input_sizes''' ).tolist() a__ =self.model(**lowercase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks a__ =model_outputs['''pred_masks'''] a__ =self.image_processor.post_process_masks( lowercase_, lowercase_, lowercase_, lowercase_, binarize=lowercase_ ) a__ =model_outputs['''iou_scores'''] a__, a__, a__ =self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowercase_, lowercase_, lowercase_, lowercase_, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCAmelCase ( self, lowercase_, lowercase_=False, lowercase_=False, lowercase_=0.7, ) -> Any: """simple docstring""" a__ =[] a__ =[] a__ =[] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) a__ =torch.cat(lowercase_ ) a__ =torch.cat(lowercase_ ) a__, a__, a__, a__ =self.image_processor.post_process_for_mask_generation( lowercase_, lowercase_, lowercase_, lowercase_ ) a__ =defaultdict(lowercase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowercase_ ) a__ ={} if output_rle_mask: a__ =rle_mask if output_bboxes_mask: a__ =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
188
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = WavaVecaPhonemeCTCTokenizer __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[int] ) -> int: super().setUp() UpperCAmelCase = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Any , lowercase_ :Union[str, Any]=False , lowercase_ :int=20 , lowercase_ :Dict=5 ) -> Tuple[str, list]: UpperCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ )) for i in range(len(lowercase_ ) )] UpperCAmelCase = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase_ ) , lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: UpperCAmelCase = ' ' + output_txt UpperCAmelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) return output_txt, output_ids def UpperCAmelCase__ ( self :Union[str, Any] , **lowercase_ :Union[str, Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :int ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCAmelCase = tokenizer('m xxx ɪ' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCAmelCase = tokenizer('m aaa ɪ ccc' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa UpperCAmelCase = tokenizer('maɪ c' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Dict: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :Any ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def UpperCAmelCase__ ( self :Any ) -> Any: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :int ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=lowercase_ ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='en-us' ).input_ids UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(lowercase_ , lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(lowercase_ , 'ɛ l o h aʊ a ʁ j u' ) def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how Are you' UpperCAmelCase = 'hello how are you' UpperCAmelCase = tokenizer(lowercase_ ).input_ids UpperCAmelCase = tokenizer(lowercase_ ).input_ids self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def UpperCAmelCase__ ( lowercase_ :List[str] , lowercase_ :List[str] ) -> List[str]: UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCAmelCase = tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ , filter_word_delimiter_token=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(lowercase_ :List[Any] , lowercase_ :str ): self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowercase_ ) ) # transform list to ModelOutput UpperCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(lowercase_ :Any , lowercase_ :str ): if isinstance(lowercase_ , lowercase_ ): [recursive_check(lowercase_ , lowercase_ ) for la, la in zip(lowercase_ , lowercase_ )] self.assertEqual(lowercase_ , lowercase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCAmelCase = tokenizer.batch_decode(lowercase_ , output_char_offsets=lowercase_ ) UpperCAmelCase = [tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ ) for ids in sample_ids] check_list_tuples_equal(lowercase_ , lowercase_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def UpperCAmelCase__ ( self :Any ) -> str: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def UpperCAmelCase__ ( self :str ) -> List[str]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def UpperCAmelCase__ ( self :List[str] ) -> int: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]: pass def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCAmelCase = tokenizer.add_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCAmelCase = tokenizer.add_special_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :Tuple ) -> Optional[Any]: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :int ) -> Any: pass def UpperCAmelCase__ ( self :Tuple ) -> Dict: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCAmelCase = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(output['text'] , lowercase_ )
181
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] ): return len(set(_lowerCamelCase ) ) == len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: float , _lowerCamelCase: list[float] ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __SCREAMING_SNAKE_CASE : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) ) return round(_lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
112
1
"""simple docstring""" from __future__ import annotations from typing import Any class lowercase__ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : int = 6 ) -> None: '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = None self.create_linked_list(_SCREAMING_SNAKE_CASE ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : int ) -> None: '''simple docstring''' UpperCAmelCase_ = Node() UpperCAmelCase_ = current_node UpperCAmelCase_ = current_node UpperCAmelCase_ = current_node for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = Node() UpperCAmelCase_ = current_node UpperCAmelCase_ = previous_node UpperCAmelCase_ = current_node UpperCAmelCase_ = self.front UpperCAmelCase_ = previous_node def lowercase__ ( self : Optional[int] ) -> bool: '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : List[str] ) -> Any | None: '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : List[str] , _UpperCAmelCase : Any ) -> None: '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase_ = self.rear.next if self.rear: UpperCAmelCase_ = data def lowercase__ ( self : str ) -> Any: '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase_ = self.front.data UpperCAmelCase_ = None return data UpperCAmelCase_ = self.front UpperCAmelCase_ = old_front.next UpperCAmelCase_ = old_front.data UpperCAmelCase_ = None return data def lowercase__ ( self : str ) -> None: '''simple docstring''' if self.is_empty(): raise Exception("Empty Queue" ) def lowercase__ ( self : Union[str, Any] ) -> None: '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" def a__ ( lowerCAmelCase__ = 2000000 ): UpperCAmelCase_ = [0 for i in range(n + 1 )] UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCAmelCase__ ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 for i in range(lowerCAmelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"{solution() = }")
241
0
def _a ( SCREAMING_SNAKE_CASE_ : int ): # noqa: E741 __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = 0 __lowerCAmelCase = [0] * n __lowerCAmelCase = [False] * n __lowerCAmelCase = [False] * n def dfs(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ): if parent == root: out_edge_count += 1 __lowerCAmelCase = True __lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __lowerCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __lowerCAmelCase = True # AP found via cycle if at == low[to]: __lowerCAmelCase = True else: __lowerCAmelCase = min(low[at] , SCREAMING_SNAKE_CASE_ ) return out_edge_count for i in range(SCREAMING_SNAKE_CASE_ ): if not visited[i]: __lowerCAmelCase = 0 __lowerCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = out_edge_count > 1 for x in range(len(SCREAMING_SNAKE_CASE_ ) ): if is_art[x] is True: print(SCREAMING_SNAKE_CASE_ ) # Adjacency list of graph UpperCamelCase__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
92
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__ ( snake_case__ ): def __init__( self , *_A , _A=None , _A=None , **_A ): """simple docstring""" super().__init__(*_A , **_A ) __lowerCAmelCase = eval_examples __lowerCAmelCase = post_process_function def __SCREAMING_SNAKE_CASE( self , _A = None , _A=None , _A = None , _A = "eval" , **_A , ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __lowerCAmelCase = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __lowerCAmelCase = gen_kwargs __lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset __lowerCAmelCase = self.get_eval_dataloader(_A ) __lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowerCAmelCase = self.post_process_function(_A , _A , _A ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) else: __lowerCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A = "test" , **_A ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowerCAmelCase = self.post_process_function(_A , _A , _A , "predict" ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
92
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=2 ,a_=3 ,a_=4 ,a_=2 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=36 ,a_=2 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=6 ,a_=6 ,a_=3 ,a_=4 ,a_=None ,a_=1_000 ,) -> Dict: _UpperCAmelCase : int = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : int = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Dict = coordinate_size _UpperCAmelCase : Union[str, Any] = shape_size _UpperCAmelCase : str = num_labels _UpperCAmelCase : Tuple = num_choices _UpperCAmelCase : int = scope _UpperCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase : int = text_seq_length _UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase : List[str] = self.text_seq_length + self.image_seq_length def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) _UpperCAmelCase : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : int = bbox[i, j, 3] _UpperCAmelCase : Optional[int] = bbox[i, j, 1] _UpperCAmelCase : Optional[int] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Dict = bbox[i, j, 2] _UpperCAmelCase : str = bbox[i, j, 0] _UpperCAmelCase : str = tmp_coordinate _UpperCAmelCase : List[str] = tf.constant(a_ ) _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) _UpperCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Tuple = TFLayoutLMvaModel(config=a_ ) # text + image _UpperCAmelCase : Any = model(a_ ,pixel_values=a_ ,training=a_ ) _UpperCAmelCase : Tuple = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,training=a_ ,) _UpperCAmelCase : int = model(a_ ,bbox=a_ ,pixel_values=a_ ,training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase : Optional[Any] = model(a_ ,training=a_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase : Optional[Any] = model({"""pixel_values""": pixel_values} ,training=a_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Any: _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=a_ ) _UpperCAmelCase : List[Any] = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ,training=a_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : List[Any] = TFLayoutLMvaForTokenClassification(config=a_ ) _UpperCAmelCase : Any = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ,training=a_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : str = 2 _UpperCAmelCase : Tuple = TFLayoutLMvaForQuestionAnswering(config=a_ ) _UpperCAmelCase : Union[str, Any] = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,start_positions=a_ ,end_positions=a_ ,training=a_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = self.prepare_config_and_inputs() ((_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase)) : Optional[Any] = config_and_inputs _UpperCAmelCase : str = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: return True def _snake_case ( self ,a_ ,a_ ,a_=False ) -> dict: _UpperCAmelCase : Dict = copy.deepcopy(a_ ) if model_class in get_values(a_ ): _UpperCAmelCase : Tuple = { k: tf.tile(tf.expand_dims(a_ ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(a_ ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a_ ): _UpperCAmelCase : Optional[Any] = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(a_ ): _UpperCAmelCase : List[Any] = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) _UpperCAmelCase : Dict = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(a_ ): _UpperCAmelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(a_ ): _UpperCAmelCase : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = TFLayoutLMvaModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self ,config_class=a_ ,hidden_size=37 ) def _snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: _UpperCAmelCase ,_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[int] = model_class(a_ ) if getattr(a_ ,"""hf_compute_loss""" ,a_ ): # The number of elements in the loss should be the same as the number of elements in the label _UpperCAmelCase : str = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=a_ )[0] ] _UpperCAmelCase : Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _UpperCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : Optional[Any] = prepared_for_class.pop("""input_ids""" ) _UpperCAmelCase : List[Any] = model(a_ ,**a_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _UpperCAmelCase : str = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : Dict = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: _UpperCAmelCase : Any = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _UpperCAmelCase : Any = -100 _UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(a_ ) _UpperCAmelCase : Any = model(a_ ,**a_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _UpperCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : List[Any] = model(a_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _UpperCAmelCase : int = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) # Get keys that were added with the _prepare_for_class function _UpperCAmelCase : Any = prepared_for_class.keys() - inputs_dict.keys() _UpperCAmelCase : Union[str, Any] = inspect.signature(model.call ).parameters _UpperCAmelCase : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _UpperCAmelCase : str = {0: """input_ids"""} for label_key in label_keys: _UpperCAmelCase : str = signature_names.index(a_ ) _UpperCAmelCase : Optional[int] = label_key _UpperCAmelCase : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _UpperCAmelCase : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _UpperCAmelCase : List[Any] = prepared_for_class[value] _UpperCAmelCase : Tuple = tuple(a_ ) # Send to model _UpperCAmelCase : Optional[int] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case ( self ) -> str: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> List[str]: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> str: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> Tuple: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> str: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) @slow def _snake_case ( self ) -> List[str]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = TFLayoutLMvaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ) -> str: return LayoutLMvaImageProcessor(apply_ocr=a_ ) if is_vision_available() else None @slow def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : int = image_processor(images=a_ ,return_tensors="""tf""" ).pixel_values _UpperCAmelCase : Tuple = tf.constant([[1, 2]] ) _UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass _UpperCAmelCase : Union[str, Any] = model(input_ids=a_ ,bbox=a_ ,pixel_values=a_ ,training=a_ ) # verify the logits _UpperCAmelCase : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape ,a_ ) _UpperCAmelCase : Optional[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,a_ ,atol=1E-4 ) )
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = coefficient_matrix.shape _UpperCAmelCase , _UpperCAmelCase = constant_matrix.shape if rowsa != colsa: _UpperCAmelCase = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if colsa != 1: _UpperCAmelCase = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if rowsa != rowsa: _UpperCAmelCase = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase ) if len(lowercase ) != rowsa: _UpperCAmelCase = ( """Number of initial values must be equal to number of rows in coefficient """ f'''matrix but received {len(lowercase )} and {rowsa}''' ) raise ValueError(lowercase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _UpperCAmelCase = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) _UpperCAmelCase , _UpperCAmelCase = table.shape strictly_diagonally_dominant(lowercase ) # Iterates the whole matrix for given number of times for _ in range(lowercase ): _UpperCAmelCase = [] for row in range(lowercase ): _UpperCAmelCase = 0 for col in range(lowercase ): if col == row: _UpperCAmelCase = table[row][col] elif col == cols - 1: _UpperCAmelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _UpperCAmelCase = (temp + val) / denom new_val.append(lowercase ) _UpperCAmelCase = new_val return [float(lowercase ) for i in new_val] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = table.shape _UpperCAmelCase = True for i in range(0 ,lowercase ): _UpperCAmelCase = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } UpperCAmelCase__ = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = EfficientNetConfig() _UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = 10_00 _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} ,image_mean=[0.4_85, 0.4_56, 0.4_06] ,image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] ,do_center_crop=lowercase ,) return preprocessor def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase = sorted(set(lowercase ) ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = {b: str(lowercase ) for b, i in zip(lowercase ,range(lowercase ) )} _UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase = """efficientnet.""" + item[1] _UpperCAmelCase = """classifier.weight""" _UpperCAmelCase = """classifier.bias""" return key_mapping def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: _UpperCAmelCase = torch.from_numpy(np.transpose(lowercase ) ) else: _UpperCAmelCase = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = model_classes[model_name]( include_top=lowercase ,weights="""imagenet""" ,input_tensor=lowercase ,input_shape=lowercase ,pooling=lowercase ,classes=10_00 ,classifier_activation="""softmax""" ,) _UpperCAmelCase = original_model.trainable_variables _UpperCAmelCase = original_model.non_trainable_variables _UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase = param.numpy() _UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase = get_efficientnet_config(lowercase ) _UpperCAmelCase = EfficientNetForImageClassification(lowercase ).eval() _UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase = rename_keys(lowercase ) replace_params(lowercase ,lowercase ,lowercase ) # Initialize preprocessor and preprocess input image _UpperCAmelCase = convert_image_processor(lowercase ) _UpperCAmelCase = preprocessor(images=prepare_img() ,return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase = hf_model(**lowercase ) _UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase = False _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) _UpperCAmelCase = image.img_to_array(lowercase ) _UpperCAmelCase = np.expand_dims(lowercase ,axis=0 ) _UpperCAmelCase = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase ,lowercase ,atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") UpperCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
289
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCAmelCase: List[str] = logging.get_logger(__name__) lowerCAmelCase: Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase: int = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowerCAmelCase: Dict = { 'facebook/blenderbot_small-90M': 5_1_2, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BlenderbotSmallTokenizer def __init__( self : Dict , __snake_case : Union[str, Any]=None , __snake_case : Dict=None , __snake_case : int="<|endoftext|>" , __snake_case : Dict="<|endoftext|>" , __snake_case : str="<|endoftext|>" , __snake_case : List[str]=False , __snake_case : str=True , **__snake_case : int , ): super().__init__( ByteLevelBPETokenizer( vocab=__snake_case , merges=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , ) , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , **__snake_case , ) a : Union[str, Any] = add_prefix_space def lowercase_ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int=None ): a : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : Dict = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
96
'''simple docstring''' from math import factorial, pi def lowerCamelCase__ ( _A , _A = 30 ): if not isinstance(_A , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) a : Dict = float(_A ) a : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_A ) ) def lowerCamelCase__ ( _A , _A = 30 ): if not isinstance(_A , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) a : int = float(_A ) a : str = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
96
1