code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase ): lowerCamelCase : str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Optional[int] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Tuple: lowerCAmelCase = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> Optional[Any]: lowerCAmelCase = generator('Something there' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) lowerCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) lowerCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility lowerCAmelCase = generator('Something there' , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ''}] ) lowerCAmelCase = 3 lowerCAmelCase = generator( 'Something there' , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) lowerCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase = generator('This is a test' , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) lowerCAmelCase = generator.model.config.eos_token_id lowerCAmelCase = '<pad>' lowerCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def __UpperCAmelCase ( self : int ) -> str: lowerCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility lowerCAmelCase = generator('Something there' , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ''}] )
4
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowercase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __magic_name__ = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def _lowercase ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = generator("""Something there""" ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __magic_name__ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) __magic_name__ = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __magic_name__ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] ) __magic_name__ = 3 __magic_name__ = generator( """Something there""" , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) __magic_name__ = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = generator("""This is a test""" , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = """<pad>""" __magic_name__ = generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __magic_name__ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
88
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : int = 16 lowercase : int = 32 def SCREAMING_SNAKE_CASE__ ( __A , __A = 16 ) -> str: _snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( __A , batched=__A , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( __A , padding='longest' , max_length=__A , pad_to_multiple_of=__A , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['train'] , shuffle=__A , collate_fn=__A , batch_size=__A ) _snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __A ) == "1": _snake_case = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) set_seed(__A ) _snake_case , _snake_case = get_dataloaders(__A , __A ) _snake_case = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _snake_case = batch_size // MAX_GPU_BATCH_SIZE _snake_case = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=__A ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( __A , __A , __A , __A , __A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _snake_case = os.path.split(__A )[-1].split('.' )[0] accelerator.init_trackers(__A , __A ) # Now we train the model for epoch in range(__A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _snake_case = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case = model(**__A ) _snake_case = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _snake_case = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**__A ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__A , references=__A , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(__A ), 'epoch': epoch, } , step=__A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE__ ( ) -> Dict: _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__A , default=__A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__A , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _snake_case = parser.parse_args() _snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__A , __A ) if __name__ == "__main__": main()
356
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowerCamelCase ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(lowerCAmelCase_ )][self.get_x(lowerCAmelCase_ )] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_x * x ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = 800, 600 lowercase : Tuple = imread("image_data/lena.jpg", 1) lowercase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
160
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __snake_case = logging.get_logger(__name__) class lowercase ( A__ ): """simple docstring""" def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
97
'''simple docstring''' def a ( __a , __a ) -> int: '''simple docstring''' if len(__a ) != len(__a ): raise ValueError('''String lengths must match!''' ) UpperCamelCase__ :Union[str, Any] = 0 for chara, chara in zip(__a , __a ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
97
1
__UpperCamelCase : List[Any] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = '''▁''' __UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase : Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } __UpperCamelCase : Optional[Any] = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : Optional[int]="</s>" ,lowercase_ : List[Any]="<unk>" ,lowercase_ : Optional[Any]=[] ,lowercase_ : Optional[Dict[str, Any]] = None ,**lowercase_ : int ,): lowerCAmelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ ,unk_token=lowercase_ ,additional_special_tokens=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,) lowerCAmelCase__ : List[str] = vocab_file lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): lowerCAmelCase__ : str = self.__dict__.copy() lowerCAmelCase__ : Any = None return state def __setstate__( self : List[str] ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Dict ,lowercase_ : str ): return self.sp_model.encode(lowercase_ ,out_type=lowercase_ ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : int ): return self.sp_model.piece_to_id(lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Dict ): if index < self.sp_model.get_piece_size(): lowerCAmelCase__ : List[Any] = self.sp_model.IdToPiece(lowercase_ ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase__ : Dict = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : List[Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ ,'''wb''' ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
74
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Any = "new-model" if is_tf_available(): class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Any = NewModelConfig @require_tf class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] ="""bert-base-cased""" _a : Optional[int] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' _a : Tuple ="""bert-base-cased""" _a : Optional[Any] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict =TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE ) _a , _a : Dict =TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : str =TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Optional[Any] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE ) _a , _a : Dict =TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ) _a , _a : int =TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _a : str =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : int =TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :str ) -> Tuple: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _a : List[str] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[Any] =TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow @require_tensorflow_probability def __UpperCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _a : str =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : str =TFAutoModelForTableQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE ) _a , _a : Dict =TFAutoModelForTableQuestionAnswering.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' _a : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE ) , 1_4_4_1_0 ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : str =TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE ) , 1_4_4_1_0 ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel _a : Any =TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[Any] =copy.deepcopy(model.config ) _a : List[Any] =["""FunnelBaseModel"""] _a : List[str] =TFAutoModel.from_config(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' try: AutoConfig.register("""new-model""" , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): auto_class.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) auto_class.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): auto_class.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API _a : str =BertModelTester(self ).get_config() _a : Optional[Any] =NewModelConfig(**tiny_config.to_dict() ) _a : Union[str, Any] =auto_class.from_config(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE ) _a : str =auto_class.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ): _a : List[str] =TFAutoModel.from_pretrained("""bert-base""" ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _a : Union[str, Any] =TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def __UpperCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): _a : List[str] =TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __UpperCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , """Use `from_pt=True` to load this model""" ): _a : str =TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __UpperCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' # Make sure we have cached the model. _a : List[Any] =TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _a : str =TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _a : Optional[int] =TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: _a : List[Any] =TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
276
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_UpperCAmelCase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ) -> Optional[Any]: _a : Tuple =_distribute_shards(**_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ) -> List[str]: _a : List[str] =_split_gen_kwargs(_UpperCAmelCase ,_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ) -> Union[str, Any]: if expected is RuntimeError: with pytest.raises(_UpperCAmelCase ): _number_of_shards_in_gen_kwargs(_UpperCAmelCase ) else: _a : Dict =_number_of_shards_in_gen_kwargs(_UpperCAmelCase ) assert out == expected
276
1
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : int = sorted(numsa + numsa ) A , A : List[Any] = divmod(len(_lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = [float(x) for x in input("""Enter the elements of first array: """).split()] __SCREAMING_SNAKE_CASE = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
256
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase ): A : List[Any] = R"\w+[.]\d+" A : Optional[Any] = re.findall(_lowerCamelCase , _lowerCamelCase ) for pat in pats: A : int = key.replace(_lowerCamelCase , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A : List[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A : int = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[int] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : List[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": A : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : Optional[Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=42 ): # Step 1: Convert pytorch tensor to numpy A : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A : Dict = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) A : Dict = flatten_dict(_lowerCamelCase ) A : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : Tuple = rename_key(_lowerCamelCase ) A : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters A , A : str = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A : Union[str, Any] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
256
1
def A ( _lowercase , _lowercase ): if not isinstance(_lowercase , _lowercase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(_lowercase , _lowercase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
182
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ["""input_features""", """attention_mask"""] def __init__( self : Any , UpperCamelCase__ : List[str]=80 , UpperCamelCase__ : Tuple=1_6000 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : int=25 , UpperCamelCase__ : Optional[Any]="hamming_window" , UpperCamelCase__ : Tuple=3_2768.0 , UpperCamelCase__ : str=0.97 , UpperCamelCase__ : List[str]=1.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=False , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__(feature_size=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , padding_value=UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = feature_size SCREAMING_SNAKE_CASE : Union[str, Any] = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Optional[Any] = hop_length SCREAMING_SNAKE_CASE : Tuple = win_length SCREAMING_SNAKE_CASE : Union[str, Any] = frame_signal_scale SCREAMING_SNAKE_CASE : int = preemphasis_coeff SCREAMING_SNAKE_CASE : List[Any] = mel_floor SCREAMING_SNAKE_CASE : int = normalize_means SCREAMING_SNAKE_CASE : List[str] = normalize_vars SCREAMING_SNAKE_CASE : Any = win_function SCREAMING_SNAKE_CASE : Union[str, Any] = return_attention_mask SCREAMING_SNAKE_CASE : int = win_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE : Optional[int] = hop_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE : int = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE : Tuple = (self.n_fft // 2) + 1 def __A ( self : str , UpperCamelCase__ : np.array ): '''simple docstring''' if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE : List[str] = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Tuple = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=UpperCamelCase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=UpperCamelCase__ , preemphasis=self.preemphasis_coeff , mel_filters=UpperCamelCase__ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def __A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' if self.normalize_means: SCREAMING_SNAKE_CASE : str = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE : List[str] = np.subtract(UpperCamelCase__ , UpperCamelCase__ ) if self.normalize_vars: SCREAMING_SNAKE_CASE : str = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE : Optional[int] = np.divide(UpperCamelCase__ , UpperCamelCase__ ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE : List[str] = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE : str = x.astype(np.floataa ) return x def __A ( self : Union[str, Any] , UpperCamelCase__ : List[np.ndarray] , UpperCamelCase__ : Optional[np.ndarray] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(UpperCamelCase__ , UpperCamelCase__ , self.padding_value ) for x, n in zip(UpperCamelCase__ , UpperCamelCase__ )] def __call__( self : Dict , UpperCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE : Any = isinstance(UpperCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE : str = is_batched_numpy or ( isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : int = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase__ , np.ndarray ): SCREAMING_SNAKE_CASE : Dict = np.asarray(UpperCamelCase__ , dtype=np.floataa ) elif isinstance(UpperCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : List[str] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE : Optional[Any] = [self._extract_mfsc_features(UpperCamelCase__ ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = BatchFeature({'''input_features''': features} ) SCREAMING_SNAKE_CASE : Optional[Any] = self.pad( UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) # make sure list is in array format SCREAMING_SNAKE_CASE : Union[str, Any] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Any = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE : Union[str, Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: SCREAMING_SNAKE_CASE : Optional[int] = [np.asarray(UpperCamelCase__ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE : Optional[Any] = ( np.array(UpperCamelCase__ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase__ , max_length=UpperCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE : List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCamelCase__ ) if return_tensors is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = padded_inputs.convert_to_tensors(UpperCamelCase__ ) return padded_inputs
182
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any]=False ): UpperCamelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): UpperCamelCase_ : int = 'segformer.encoder.' + key if key.startswith('backbone' ): UpperCamelCase_ : List[str] = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase_ : List[Any] = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase_ : Optional[Any] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(lowerCamelCase )-1}" ) if "norm" in key: UpperCamelCase_ : Optional[Any] = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase_ : Tuple = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] UpperCamelCase_ : str = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(lowerCamelCase )-1}" ) if "layer_norm1" in key: UpperCamelCase_ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase_ : Dict = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase_ : Dict = key[key.find('block' ) + len('block' )] UpperCamelCase_ : Any = key.replace(F"block{idx}" , F"block.{int(lowerCamelCase )-1}" ) if "attn.q" in key: UpperCamelCase_ : Tuple = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase_ : int = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase_ : Optional[Any] = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase_ : Any = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase_ : Optional[Any] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase_ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase_ : Union[str, Any] = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase_ : Optional[Any] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase_ : Dict = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase_ : Tuple = key.replace(F"linear_c{idx}" , F"linear_c.{int(lowerCamelCase )-1}" ) if key.startswith('head' ): UpperCamelCase_ : str = key.replace('head' , 'classifier' ) UpperCamelCase_ : int = value return new_state_dict def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase_ : Any = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) UpperCamelCase_ : int = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict UpperCamelCase_ : Any = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase_ : Union[str, Any] = kv_bias[: config.hidden_sizes[i]] UpperCamelCase_ : List[Any] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase_ : str = kv_bias[ config.hidden_sizes[i] : ] def __lowercase ( ): UpperCamelCase_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : Tuple = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ): UpperCamelCase_ : Union[str, Any] = SegformerConfig() UpperCamelCase_ : Tuple = False # set attributes based on model_name UpperCamelCase_ : Any = 'huggingface/label-files' if "segformer" in model_name: UpperCamelCase_ : Optional[int] = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: UpperCamelCase_ : Optional[int] = 150 UpperCamelCase_ : Optional[Any] = 'ade20k-id2label.json' UpperCamelCase_ : Optional[Any] = (1, 150, 128, 128) elif "city" in model_name: UpperCamelCase_ : List[Any] = 19 UpperCamelCase_ : Dict = 'cityscapes-id2label.json' UpperCamelCase_ : List[str] = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : str = model_name[4:6] UpperCamelCase_ : str = 1000 UpperCamelCase_ : Any = 'imagenet-1k-id2label.json' UpperCamelCase_ : Optional[Any] = (1, 1000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes UpperCamelCase_ : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type='dataset' ) , 'r' ) ) UpperCamelCase_ : Dict = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_ : List[str] = idalabel UpperCamelCase_ : str = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCamelCase_ : Union[str, Any] = [64, 128, 320, 512] UpperCamelCase_ : Optional[Any] = 256 elif size == "b2": UpperCamelCase_ : Any = [64, 128, 320, 512] UpperCamelCase_ : int = 768 UpperCamelCase_ : Any = [3, 4, 6, 3] elif size == "b3": UpperCamelCase_ : Tuple = [64, 128, 320, 512] UpperCamelCase_ : Union[str, Any] = 768 UpperCamelCase_ : List[str] = [3, 4, 18, 3] elif size == "b4": UpperCamelCase_ : Optional[Any] = [64, 128, 320, 512] UpperCamelCase_ : List[Any] = 768 UpperCamelCase_ : str = [3, 8, 27, 3] elif size == "b5": UpperCamelCase_ : Optional[Any] = [64, 128, 320, 512] UpperCamelCase_ : Union[str, Any] = 768 UpperCamelCase_ : List[str] = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) UpperCamelCase_ : Union[str, Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) # prepare image UpperCamelCase_ : Optional[Any] = prepare_img() UpperCamelCase_ : int = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: UpperCamelCase_ : str = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) else: UpperCamelCase_ : Tuple = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) )['state_dict'] # rename keys UpperCamelCase_ : Union[str, Any] = rename_keys(lowerCamelCase , encoder_only=lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: UpperCamelCase_ : Tuple = False UpperCamelCase_ : Any = SegformerForImageClassification(lowerCamelCase ) else: UpperCamelCase_ : Optional[Any] = SegformerForSemanticSegmentation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass UpperCamelCase_ : Optional[Any] = model(lowerCamelCase ) UpperCamelCase_ : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCamelCase_ : Optional[Any] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCamelCase_ : Optional[Any] = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -10.3529, -10.0304], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCamelCase_ : Tuple = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCamelCase_ : Dict = torch.tensor( [ [[-9.0_8_7_8, -10.2081, -10.1891], [-9.3_1_4_4, -10.7941, -10.9843], [-9.2_2_9_4, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCamelCase_ : Optional[int] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCamelCase_ : int = torch.tensor( [ [[-9.5_5_2_4, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5_8_4_2, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCamelCase_ : Union[str, Any] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCamelCase_ : Tuple = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -10.1717], [-9.4_4_3_8, -10.9058, -11.4047], [-9.7_9_3_9, -12.3495, -12.1079]], [[-7.1_5_1_4, -9.5_3_3_6, -10.0860], [-9.7_7_7_6, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCamelCase_ : int = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCamelCase_ : Optional[Any] = torch.tensor( [ [[-9.4_9_5_9, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8_9_0_5, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCamelCase_ : int = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCamelCase_ : Any = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCamelCase_ : Tuple = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCamelCase_ : Union[str, Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCamelCase_ : int = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: UpperCamelCase_ : str = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) a_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
363
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a_ = random.Random() def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : int=1.0 , lowerCamelCase : Optional[int]=None , lowerCamelCase : Optional[int]=None ): if rng is None: UpperCamelCase_ : Union[str, Any] = global_rng UpperCamelCase_ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowercase ( unittest.TestCase ): def __init__( self : Optional[Any] , snake_case : Tuple , snake_case : str=7 , snake_case : Tuple=4_0_0 , snake_case : List[Any]=2_0_0_0 , snake_case : Optional[Any]=2_4 , snake_case : Tuple=2_4 , snake_case : Dict=0.0 , snake_case : Any=1_6_0_0_0 , snake_case : Tuple=True , snake_case : List[str]=True , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : int = batch_size UpperCamelCase_ : str = min_seq_length UpperCamelCase_ : str = max_seq_length UpperCamelCase_ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_ : int = feature_size UpperCamelCase_ : Optional[int] = num_mel_bins UpperCamelCase_ : str = padding_value UpperCamelCase_ : Union[str, Any] = sampling_rate UpperCamelCase_ : Tuple = return_attention_mask UpperCamelCase_ : List[str] = do_normalize def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Dict=False , snake_case : List[str]=False ) -> int: """simple docstring""" def _flatten(snake_case : Optional[Any] ): return list(itertools.chain(*snake_case ) ) if equal_length: UpperCamelCase_ : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_ : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = SpeechaTextFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[str] = SpeechaTextFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : str ) -> Tuple: """simple docstring""" self.assertTrue(np.all(np.mean(snake_case , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_ : List[Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_ : Tuple = feature_extractor(snake_case , padding=snake_case , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_ : int = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features UpperCamelCase_ : str = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched UpperCamelCase_ : Union[str, Any] = feature_extractor(snake_case , return_tensors='np' ).input_features UpperCamelCase_ : List[str] = feature_extractor(snake_case , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_ : int = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase_ : List[str] = np.asarray(snake_case ) UpperCamelCase_ : Any = feature_extractor(snake_case , return_tensors='np' ).input_features UpperCamelCase_ : str = feature_extractor(snake_case , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_ : Union[str, Any] = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase_ : Tuple = [None, 1_6, None] for max_length, padding in zip(snake_case , snake_case ): UpperCamelCase_ : Optional[Any] = feature_extractor( snake_case , padding=snake_case , max_length=snake_case , return_attention_mask=snake_case ) UpperCamelCase_ : List[str] = inputs.input_features UpperCamelCase_ : List[str] = inputs.attention_mask UpperCamelCase_ : Optional[int] = [np.sum(snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_ : List[str] = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase_ : Optional[Any] = [None, 1_6, None] for max_length, padding in zip(snake_case , snake_case ): UpperCamelCase_ : Any = feature_extractor( snake_case , max_length=snake_case , padding=snake_case , return_tensors='np' , return_attention_mask=snake_case ) UpperCamelCase_ : int = inputs.input_features UpperCamelCase_ : Optional[int] = inputs.attention_mask UpperCamelCase_ : str = [np.sum(snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_ : str = feature_extractor( snake_case , padding='max_length' , max_length=4 , truncation=snake_case , return_tensors='np' , return_attention_mask=snake_case , ) UpperCamelCase_ : int = inputs.input_features UpperCamelCase_ : Union[str, Any] = inputs.attention_mask UpperCamelCase_ : Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_ : Any = feature_extractor( snake_case , padding='longest' , max_length=4 , truncation=snake_case , return_tensors='np' , return_attention_mask=snake_case , ) UpperCamelCase_ : Dict = inputs.input_features UpperCamelCase_ : List[Any] = inputs.attention_mask UpperCamelCase_ : Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) UpperCamelCase_ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_ : int = feature_extractor( snake_case , padding='longest' , max_length=1_6 , truncation=snake_case , return_tensors='np' , return_attention_mask=snake_case , ) UpperCamelCase_ : Dict = inputs.input_features UpperCamelCase_ : Union[str, Any] = inputs.attention_mask UpperCamelCase_ : Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: """simple docstring""" import torch UpperCamelCase_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ : Optional[Any] = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) UpperCamelCase_ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_ : Tuple = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_ : Tuple = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Tuple ) -> Dict: """simple docstring""" from datasets import load_dataset UpperCamelCase_ : Optional[int] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCamelCase_ : Optional[Any] = ds.sort('id' ).select(range(snake_case ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: """simple docstring""" UpperCamelCase_ : Union[str, Any] = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on UpperCamelCase_ : str = self._load_datasamples(1 ) UpperCamelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ : str = feature_extractor(snake_case , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , snake_case , atol=1e-4 ) )
50
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __A = logging.getLogger(__name__) @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[Any] = field( default="tab_fact" ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase :Tuple = field( default="tab_fact" ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ,) _UpperCAmelCase :List[Any] = field( default=1024 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase :List[str] = field( default=_UpperCamelCase ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) _UpperCAmelCase :Optional[int] = field( default=_UpperCamelCase ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) _UpperCAmelCase :Optional[int] = field( default=_UpperCamelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) _UpperCAmelCase :Tuple = field( default=_UpperCamelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) _UpperCAmelCase :Optional[Any] = field( default=_UpperCamelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) _UpperCAmelCase :List[Any] = field( default=_UpperCamelCase ,metadata={"help": "A csv or a json file containing the training data."} ) _UpperCAmelCase :int = field( default=_UpperCamelCase ,metadata={"help": "A csv or a json file containing the validation data."} ) _UpperCAmelCase :Any = field(default=_UpperCamelCase ,metadata={"help": "A csv or a json file containing the test data."} ) def _snake_case ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowercase__: int = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__: Dict = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( default=_UpperCamelCase ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase :List[Any] = field( default=_UpperCamelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[int] = field( default=_UpperCamelCase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase :Union[str, Any] = field( default=_UpperCamelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) _UpperCAmelCase :Any = field( default=_UpperCamelCase ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) _UpperCAmelCase :Union[str, Any] = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) _UpperCAmelCase :Tuple = field( default=_UpperCamelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__: str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__: Dict = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__: Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__: List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__: int = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__: int = data_args.train_file.split('''.''' )[-1] lowercase__: List[str] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__: Any = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowercase__: Union[str, Any] = load_dataset('''csv''' , data_files=a_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__: Union[str, Any] = load_dataset('''json''' , data_files=a_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__: Tuple = raw_datasets['''train'''].features['''label'''].names lowercase__: str = len(a_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__: Any = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a_ , ) lowercase__: Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__: List[Any] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__: Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__: Dict = {'''Refused''': 0, '''Entailed''': 1} lowercase__: Dict = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowercase__: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): lowercase__: Optional[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowercase__: int = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__: str = examples['''statement'''] lowercase__: List[Any] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) lowercase__: Dict = tokenizer(a_ , a_ , padding=a_ , max_length=a_ , truncation=a_ ) lowercase__: List[str] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowercase__: Dict = raw_datasets.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowercase__: str = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowercase__: List[str] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowercase__: List[Any] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowercase__: Tuple = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowercase__: Any = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowercase__: Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a_ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): lowercase__: Optional[Any] = p.predictions[0] if isinstance(p.predictions , a_ ) else p.predictions lowercase__: Union[str, Any] = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__: str = default_data_collator elif training_args.fpaa: lowercase__: Union[str, Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) else: lowercase__: List[Any] = None # Initialize our Trainer lowercase__: Union[str, Any] = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: lowercase__: Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowercase__: List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__: List[str] = last_checkpoint lowercase__: int = trainer.train(resume_from_checkpoint=a_ ) lowercase__: str = train_result.metrics lowercase__: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) lowercase__: Optional[int] = min(a_ , len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_ ) trainer.save_metrics('''train''' , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__: int = trainer.evaluate(eval_dataset=a_ ) lowercase__: Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) lowercase__: Union[str, Any] = min(a_ , len(a_ ) ) trainer.log_metrics('''eval''' , a_ ) trainer.save_metrics('''eval''' , a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__: Any = predict_dataset.remove_columns('''label''' ) lowercase__: List[str] = trainer.predict(a_ , metric_key_prefix='''predict''' ).predictions lowercase__: Optional[int] = np.argmax(a_ , axis=1 ) lowercase__: Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a_ ): lowercase__: List[str] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) lowercase__: Dict = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
177
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __a : Optional[int] = img __a : Any = img.shape[1] __a : Optional[int] = img.shape[0] __a : Tuple = dst_width __a : List[Any] = dst_height __a : Optional[int] = self.src_w / self.dst_w __a : Tuple = self.src_h / self.dst_h __a : Union[str, Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _lowerCamelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): __a : Optional[int] = self.img[self.get_y(_UpperCAmelCase )][self.get_x(_UpperCAmelCase )] def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_x * x ) def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": A , A = 800, 600 A = imread('''image_data/lena.jpg''', 1) A = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
160
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase = 8 def a__ ( lowerCAmelCase__ , lowerCAmelCase__=BITS ): UpperCAmelCase_ = x.device UpperCAmelCase_ = (x * 255).int().clamp(0 , 255 ) UpperCAmelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case_ ) UpperCAmelCase_ = rearrange(snake_case_ , "d -> d 1 1" ) UpperCAmelCase_ = rearrange(snake_case_ , "b c h w -> b c 1 h w" ) UpperCAmelCase_ = ((x & mask) != 0).float() UpperCAmelCase_ = rearrange(snake_case_ , "b c d h w -> b (c d) h w" ) UpperCAmelCase_ = bits * 2 - 1 return bits def a__ ( lowerCAmelCase__ , lowerCAmelCase__=BITS ): UpperCAmelCase_ = x.device UpperCAmelCase_ = (x > 0).int() UpperCAmelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case_ , dtype=torch.intaa ) UpperCAmelCase_ = rearrange(snake_case_ , "d -> d 1 1" ) UpperCAmelCase_ = rearrange(snake_case_ , "b (c d) h w -> b c d h w" , d=8 ) UpperCAmelCase_ = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = True , lowerCAmelCase__=None , lowerCAmelCase__ = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCAmelCase_ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCAmelCase_ = self.alphas_cumprod[timestep] UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCAmelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCAmelCase_ = self.bit_scale if self.config.clip_sample: UpperCAmelCase_ = torch.clamp(snake_case_ , -scale , snake_case_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCAmelCase_ = self._get_variance(snake_case_ , snake_case_ ) UpperCAmelCase_ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCAmelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCAmelCase_ = model_output.device if torch.is_tensor(snake_case_ ) else "cpu" UpperCAmelCase_ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case_ ).to(snake_case_ ) UpperCAmelCase_ = self._get_variance(snake_case_ , snake_case_ ) ** 0.5 * eta * noise UpperCAmelCase_ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="epsilon" , lowerCAmelCase__=None , lowerCAmelCase__ = True , ): UpperCAmelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCAmelCase_ , UpperCAmelCase_ = torch.split(snake_case_ , sample.shape[1] , dim=1 ) else: UpperCAmelCase_ = None # 1. compute alphas, betas UpperCAmelCase_ = self.alphas_cumprod[t] UpperCAmelCase_ = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCAmelCase_ = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" UpperCAmelCase_ = self.bit_scale if self.config.clip_sample: UpperCAmelCase_ = torch.clamp(snake_case_ , -scale , snake_case_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCAmelCase_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ = 0 if t > 0: UpperCAmelCase_ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case_ ).to(model_output.device ) UpperCAmelCase_ = (self._get_variance(snake_case_ , predicted_variance=snake_case_ ) ** 0.5) * noise UpperCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) class lowercase__ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : Optional[float] = 1.0 , ) -> List[str]: '''simple docstring''' super().__init__() UpperCAmelCase_ = bit_scale UpperCAmelCase_ = ( ddim_bit_scheduler_step if isinstance(__a , __a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : List[Any] , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 50 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Union[str, Any] , ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__a , ) UpperCAmelCase_ = decimal_to_bits(__a ) * self.bit_scale UpperCAmelCase_ = latents.to(self.device ) self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCAmelCase_ = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(__a , __a , __a ).prev_sample UpperCAmelCase_ = bits_to_decimal(__a ) if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
368
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCamelCase = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCamelCase = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowerCamelCase = """zero2""" lowerCamelCase = """zero3""" lowerCamelCase = [ZEROa, ZEROa] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param UpperCAmelCase_ = parameterized.to_safe_name("_".join(str(lowerCAmelCase__ ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test lowerCamelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = models[model] UpperCAmelCase_ = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir("./xxx" , after=_UpperCAmelCase ) UpperCAmelCase_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCAmelCase_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() UpperCAmelCase_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] UpperCAmelCase_ = self.get_launcher(_UpperCAmelCase ) UpperCAmelCase_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def lowercase__ ( self : List[Any] , _UpperCAmelCase : int=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
241
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowercase : def __init__( self: List[str] , UpperCamelCase__: Dict , UpperCamelCase__: Dict=13 , UpperCamelCase__: int=30 , UpperCamelCase__: Tuple=2 , UpperCamelCase__: Any=3 , UpperCamelCase__: List[str]=True , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Tuple=5 , UpperCamelCase__: Any=4 , UpperCamelCase__: str=37 , UpperCamelCase__: Union[str, Any]="gelu" , UpperCamelCase__: str=0.1 , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: Union[str, Any]=10 , UpperCamelCase__: Optional[Any]=0.02 , UpperCamelCase__: Optional[Any]=3 , UpperCamelCase__: Any=None , UpperCamelCase__: Any=2 , ): lowerCamelCase__ : str = parent lowerCamelCase__ : List[str] = batch_size lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : int = type_sequence_label_size lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : Optional[int] = scope lowerCamelCase__ : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : int = num_patches + 2 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Any = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : List[str] = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Any = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Optional[int] = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: List[str] ): lowerCamelCase__ : str = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : List[Any] = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) a = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) a = False a = False a = False def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[str] = DeiTModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: int ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def lowerCamelCase_ ( self: Optional[Any] ): pass def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: List[str] , UpperCamelCase__: Dict=False ): lowerCamelCase__ : List[Any] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase_ ( self: Dict ): if not self.model_tester.is_training: return lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[str] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowerCamelCase__ : Optional[int] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCamelCase__ : Any = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase__ : str = model(**UpperCamelCase__ ).loss loss.backward() def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCamelCase__ : Tuple = False lowerCamelCase__ : Any = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowerCamelCase__ : Optional[int] = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowerCamelCase__ : Optional[int] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase__ : int = model(**UpperCamelCase__ ).loss loss.backward() def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : str = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): lowerCamelCase__ : int = problem_type["""title"""] lowerCamelCase__ : Any = problem_type["""num_labels"""] lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCamelCase__ : Dict = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowerCamelCase__ : List[Any] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowerCamelCase__ : List[Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowerCamelCase__ : List[Any] = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowerCamelCase_ ( self: Union[str, Any] ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> List[str]: lowerCamelCase__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: List[Any] ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : str = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Any = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowerCamelCase__ : Optional[Any] = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCamelCase__ : int = model(UpperCamelCase__ )
41
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): A = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = 'sgugger/tiny-distilbert-classification' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,only_pretrain_model=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,torchscript=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,fpaa=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` A = None A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,save_to_csv=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(A_ ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(A_ ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(A_ ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(A_ ,'train_time.csv' ) ,env_info_csv_file=os.path.join(A_ ,'env.csv' ) ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'env.csv' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ : Optional[int] ): self.assertTrue(hasattr(A_ ,'sequential' ) ) self.assertTrue(hasattr(A_ ,'cumulative' ) ) self.assertTrue(hasattr(A_ ,'current' ) ) self.assertTrue(hasattr(A_ ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(A_ ,'log.txt' ) ,log_print=A_ ,trace_memory_line_by_line=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ ,'log.txt' ) ).exists() )
74
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowercase__ ( unittest.TestCase): def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) SCREAMING_SNAKE_CASE : List[str] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() SCREAMING_SNAKE_CASE : Optional[int] = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
363
import re def A ( _lowercase ): SCREAMING_SNAKE_CASE : Any = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(_lowercase , _lowercase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
258
0
"""simple docstring""" def lowercase ( a__ : int , a__ : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def lowercase ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
256
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCAmelCase = logging.getLogger() def lowercase ( ) -> List[str]: _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def lowercase ( a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = {} _UpperCamelCase = os.path.join(a__ , '''all_results.json''' ) if os.path.exists(a__ ): with open(a__ , '''r''' ) as f: _UpperCamelCase = json.load(a__ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def lowercase ( ) -> str: _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( _lowercase): @classmethod def _UpperCamelCase ( cls : Any ) -> List[Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _UpperCamelCase ( cls : int ) -> str: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : str ) -> Dict: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : List[str] ) -> Tuple: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : List[str] ) -> str: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : Optional[Any] ) -> str: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : int ) -> Optional[Any]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : str ) -> str: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def _UpperCamelCase ( self : Any ) -> List[Any]: _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(__UpperCamelCase ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.1_0 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(__UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''image_classification_no_trainer''' ) ) )
256
1
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a : Any = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize a : Tuple = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' a : List[str] = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' a : Optional[Any] = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def A_ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def A_ ( self : List[str] , lowercase_ : Optional[int] ): import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def A_ ( self : Any , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[str]=0.9 , lowercase_ : Optional[int]=3 , lowercase_ : Union[str, Any]=0.5 ): if NLTK_VERSION >= version.Version('''3.6.5''' ): snake_case_ = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] else: snake_case_ = [ meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
359
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int]=None , lowercase_ : str=1 ): snake_case_ = tokenizer snake_case_ = dataset snake_case_ = len(lowercase_ ) if n_tasks is None else n_tasks snake_case_ = n_copies def __iter__( self : Optional[Any] ): snake_case_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) snake_case_ = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( _lowerCamelCase ): def __init__( self : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ = start_length snake_case_ = eof_strings snake_case_ = tokenizer def __call__( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , **lowercase_ : List[str] ): snake_case_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase_ ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = re.split('''(%s)''' % '''|'''.join(__UpperCAmelCase ), __UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=20, **__UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__UpperCAmelCase ) ): with torch.no_grad(): snake_case_ = batch['''ids'''].shape[-1] snake_case_ = accelerator.unwrap_model(__UpperCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__UpperCAmelCase, **__UpperCAmelCase ) # each task is generated batch_size times snake_case_ = batch['''task_id'''].repeat(__UpperCAmelCase ) snake_case_ = accelerator.pad_across_processes( __UpperCAmelCase, dim=1, pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ = generated_tokens.cpu().numpy() snake_case_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__UpperCAmelCase, __UpperCAmelCase ): gen_token_dict[task].append(__UpperCAmelCase ) snake_case_ = [[] for _ in range(__UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ = tokenizer.decode(__UpperCAmelCase, skip_special_tokens=__UpperCAmelCase, clean_up_tokenization_spaces=__UpperCAmelCase ) code_gens[task].append(remove_last_block(__UpperCAmelCase ) ) return code_gens def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = HfArgumentParser(__UpperCAmelCase ) snake_case_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ = '''false''' if args.num_workers is None: snake_case_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ = Accelerator() set_seed(args.seed, device_specific=__UpperCAmelCase ) # Load model and tokenizer snake_case_ = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ = tokenizer.eos_token snake_case_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __UpperCAmelCase, __UpperCAmelCase )] ), } # Load evaluation dataset and metric snake_case_ = load_dataset('''openai_humaneval''' ) snake_case_ = load_metric('''code_eval''' ) snake_case_ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) snake_case_ = args.n_samples // args.batch_size snake_case_ = TokenizedDataset(__UpperCAmelCase, human_eval['''test'''], n_copies=__UpperCAmelCase, n_tasks=__UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ = DataLoader(__UpperCAmelCase, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception snake_case_ ,snake_case_ = accelerator.prepare(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = complete_code( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, n_tasks=__UpperCAmelCase, batch_size=args.batch_size, **__UpperCAmelCase, ) if accelerator.is_main_process: snake_case_ = [] for task in tqdm(range(__UpperCAmelCase ) ): snake_case_ = human_eval['''test'''][task]['''test'''] snake_case_ = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ = code_eval_metric.compute( references=__UpperCAmelCase, predictions=__UpperCAmelCase, num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__UpperCAmelCase, __UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
72
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase = emb.weight.data return lin_layer def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase = state_dict['decoder.embed_tokens.weight'] lowerCamelCase = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
252
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A = logging.getLogger(__name__) def snake_case_() -> Tuple: """simple docstring""" _snake_case = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=lowerCAmelCase__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=lowerCAmelCase__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=lowerCAmelCase__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=lowerCAmelCase__ , default='''data/dump''' , help='''The dump file prefix.''' ) _snake_case = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": _snake_case = BertTokenizer.from_pretrained(args.tokenizer_name ) _snake_case = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` _snake_case = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": _snake_case = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _snake_case = tokenizer.special_tokens_map['''cls_token'''] # `<s>` _snake_case = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": _snake_case = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _snake_case = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` _snake_case = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: _snake_case = fp.readlines() logger.info('''Start encoding''' ) logger.info(F"""{len(lowerCAmelCase__ )} examples to process.""" ) _snake_case = [] _snake_case = 0 _snake_case = 10_000 _snake_case = time.time() for text in data: _snake_case = F"""{bos} {text.strip()} {sep}""" _snake_case = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) rslt.append(lowerCAmelCase__ ) iter += 1 if iter % interval == 0: _snake_case = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) _snake_case = time.time() logger.info('''Finished binarization''' ) logger.info(F"""{len(lowerCAmelCase__ )} examples processed.""" ) _snake_case = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" _snake_case = tokenizer.vocab_size if vocab_size < (1 << 16): _snake_case = [np.uintaa(lowerCAmelCase__ ) for d in rslt] else: _snake_case = [np.intaa(lowerCAmelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(lowerCAmelCase__ , '''wb''' ) as handle: pickle.dump(rslt_ , lowerCAmelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
352
from __future__ import annotations def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" _snake_case = get_failure_array(_UpperCamelCase ) # 2) Step through text searching for pattern _snake_case, _snake_case = 0, 0 # index into text, pattern while i < len(_UpperCamelCase ): if pattern[j] == text[i]: if j == (len(_UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _snake_case = failure[j - 1] continue i += 1 return False def snake_case_(_UpperCamelCase ) -> list[int]: """simple docstring""" _snake_case = [0] _snake_case = 0 _snake_case = 1 while j < len(_UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _snake_case = failure[i - 1] continue j += 1 failure.append(_UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) __A = '''abc1abc12''' __A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __A = '''ABABX''' __A = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __A = '''AAAB''' __A = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __A = '''abcdabcy''' __A = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __A = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
278
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 100 ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
100
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase__ = get_logger() lowercase__ = None class __lowerCamelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Optional[Any]=None , **a_ : Tuple ): super().__init__(features=a_ ) import jax from jaxlib.xla_client import Device if isinstance(a_ , a_ ): raise ValueError( f'''Expected {device} to be a `str` not {type(a_ )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowerCAmelCase_ : List[Any] = device if isinstance(a_ , a_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase_ : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) lowerCAmelCase_ : Tuple = str(jax.devices()[0] ) lowerCAmelCase_ : Dict = jnp_array_kwargs @staticmethod def lowerCamelCase ( ): import jax return {str(a_ ): device for device in jax.devices()} def lowerCamelCase ( self : Tuple , a_ : Dict ): import jax import jax.numpy as jnp if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a_ , axis=0 ) return column def lowerCamelCase ( self : Tuple , a_ : Tuple ): import jax import jax.numpy as jnp if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase_ : Any = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase_ : List[Any] = {"dtype": jnp.intaa} else: lowerCAmelCase_ : Tuple = {"dtype": jnp.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase_ : Optional[int] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ : List[str] = np.asarray(a_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase_ : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCamelCase ( self : Any , a_ : List[str] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a_ , "__array__" ) and not isinstance(a_ , jax.Array ): lowerCAmelCase_ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def lowerCamelCase ( self : Dict , a_ : dict ): return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def lowerCamelCase ( self : List[str] , a_ : pa.Table ): lowerCAmelCase_ : Tuple = self.numpy_arrow_extractor().extract_row(a_ ) lowerCAmelCase_ : Union[str, Any] = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def lowerCamelCase ( self : Any , a_ : pa.Table ): lowerCAmelCase_ : Dict = self.numpy_arrow_extractor().extract_column(a_ ) lowerCAmelCase_ : Optional[int] = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) lowerCAmelCase_ : List[str] = self.recursive_tensorize(a_ ) lowerCAmelCase_ : Optional[Any] = self._consolidate(a_ ) return column def lowerCamelCase ( self : Tuple , a_ : pa.Table ): lowerCAmelCase_ : Tuple = self.numpy_arrow_extractor().extract_batch(a_ ) lowerCAmelCase_ : Tuple = self.python_features_decoder.decode_batch(a_ ) lowerCAmelCase_ : List[str] = self.recursive_tensorize(a_ ) for column_name in batch: lowerCAmelCase_ : Tuple = self._consolidate(batch[column_name] ) return batch
241
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __A = HUGGINGFACE_HUB_CACHE __A = 'config.json' __A = 'diffusion_pytorch_model.bin' __A = 'diffusion_flax_model.msgpack' __A = 'model.onnx' __A = 'diffusion_pytorch_model.safetensors' __A = 'weights.pb' __A = 'https://huggingface.co' __A = default_cache_path __A = 'diffusers_modules' __A = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __A = ['fp16', 'non-ema'] __A = '.self_attn'
75
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> Union[str, Any]: _A = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _A = dict(zip(__A , range(len(__A ) ) ) ) _A = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _A = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) # load decoder from hub _A = '''hf-internal-testing/ngram-beam-search-decoder''' def __A ( self: Tuple , **__A: str ) -> str: _A = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self: Any , **__A: List[Any] ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def __A ( self: List[Any] , **__A: Union[str, Any] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def __A ( self: List[str] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __A ( self: List[str] ) -> Optional[Any]: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def __A ( self: Optional[int] ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __A ( self: str ) -> Any: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __A ( self: List[str] ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = floats_list((3, 10_00) ) _A = feature_extractor(__A , return_tensors='''np''' ) _A = processor(__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self: Union[str, Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = '''This is a test string''' _A = processor(text=__A ) _A = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self: List[str] , __A: Optional[int]=(2, 10, 16) , __A: Optional[int]=77 ) -> List[Any]: np.random.seed(__A ) return np.random.rand(*__A ) def __A ( self: List[Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(__A ) _A = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __A ( self: str , __A: Any ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: _A = processor.batch_decode(__A , __A ) _A = list(__A ) with get_context('''fork''' ).Pool() as p: _A = decoder.decode_beams_batch(__A , __A ) _A ,_A ,_A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def __A ( self: Optional[Any] ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = decoded_processor_out.text _A = list(__A ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __A , atol=1e-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __A , atol=1e-3 ) ) def __A ( self: Optional[int] ) -> Dict: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) _A = decoded_processor_out.text _A = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __A ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __A ) def __A ( self: int ) -> Optional[Any]: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def __A ( self: Tuple ) -> Any: _A = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _A = WavaVecaProcessorWithLM.from_pretrained(__A ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def __A ( self: List[str] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(__A , return_tensors='''np''' ) _A = processor_auto(__A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(__A ) _A = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __A ( self: Optional[int] ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __A ( __A: int , __A: List[str] ) -> Union[str, Any]: _A = [d[key] for d in offsets] return retrieved_list def __A ( self: Optional[Any] ) -> int: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits()[0] _A = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __A ( self: Optional[Any] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits() _A = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __A ( self: Optional[Any] ) -> Optional[Any]: import torch _A = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__A ) _A = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(__A ) _A = next(__A ) _A = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _A = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _A = model(__A ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=__A ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _A = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , __A ) self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(__A , '''start_time''' ) ) _A = torch.tensor(self.get_from_offsets(__A , '''end_time''' ) ) # fmt: off _A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) )
75
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = HfArgumentParser(A__ ) UpperCamelCase = parser.parse_args_into_dataclasses()[0] UpperCamelCase = TensorFlowBenchmark(args=A__ ) try: UpperCamelCase = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase = ' '.join(str(A__ ).split(' ' )[:-1] ) UpperCamelCase = '' UpperCamelCase = eval(str(A__ ).split(' ' )[-1] ) UpperCamelCase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A__ ) if len(A__ ) > 0: UpperCamelCase = full_error_msg + begin_error_msg + str(A__ ) raise ValueError(A__ ) benchmark.run() if __name__ == "__main__": main()
28
'''simple docstring''' from __future__ import annotations import numpy as np def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" return np.maximum(0 , UpperCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
258
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 42 A_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 42 A_ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
75
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __A = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
75
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__: Optional[int] = logging.get_logger(__name__) a__: str = {'vocab_file': 'sentencepiece.bpe.model'} a__: Tuple = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } a__: Optional[Any] = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } a__: Union[str, Any] = '▁' class SCREAMING_SNAKE_CASE__ ( _lowercase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self,__lowerCamelCase,__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="</s>",__lowerCamelCase="<s>",__lowerCamelCase="<unk>",__lowerCamelCase="<pad>",__lowerCamelCase="<mask>",__lowerCamelCase = None,**__lowerCamelCase,): A__ = AddedToken(__lowerCAmelCase,lstrip=__lowerCAmelCase,rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase,__lowerCAmelCase ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase,eos_token=__lowerCAmelCase,unk_token=__lowerCAmelCase,sep_token=__lowerCAmelCase,cls_token=__lowerCAmelCase,pad_token=__lowerCAmelCase,mask_token=__lowerCAmelCase,sp_model_kwargs=self.sp_model_kwargs,**__lowerCAmelCase,) A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) A__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} A__ = len(self.sp_model ) - 1 A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase,token_ids_a=__lowerCAmelCase,already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase ( self ): return len(self.sp_model ) def UpperCamelCase ( self ): A__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.encode(__lowerCAmelCase,out_type=__lowerCAmelCase ) def UpperCamelCase ( self,__lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(__lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def UpperCamelCase ( self,__lowerCamelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCAmelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = [] A__ = '''''' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token A__ = True A__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) A__ = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __getstate__( self ): A__ = self.__dict__.copy() A__ = None return state def __setstate__( self,__lowerCamelCase ): A__ = d # for backward compatibility if not hasattr(self,'''sp_model_kwargs''' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not os.path.isdir(__lowerCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( __lowerCAmelCase,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase,'''wb''' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
193
"""simple docstring""" def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(A_ ): if len(A_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A_ ) ) return data_lists def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(A_, A_ ): _lowerCamelCase : Any = min(A_ ) _lowerCamelCase : Optional[Any] = max(A_ ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : str = F'''Invalid weight of {weight:f} provided''' raise ValueError(A_ ) score_lists.append(A_ ) return score_lists def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A_ ): _lowerCamelCase : List[str] = final_scores[j] + ele return final_scores def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : Tuple = get_data(A_ ) _lowerCamelCase : Optional[Any] = calculate_each_score(A_, A_ ) _lowerCamelCase : str = generate_final_scores(A_ ) # append scores to source data for i, ele in enumerate(A_ ): source_data[i].append(A_ ) return source_data
72
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _UpperCAmelCase ): if not nums: raise ValueError("List is empty" ) return sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' import math class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : Optional[int]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" __UpperCAmelCase : Optional[int] = n __UpperCAmelCase : Optional[int] = [ [math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ ) ] # adjacency matrix for weight __UpperCAmelCase : str = [ [math.inf for j in range(0 , UpperCAmelCase_ )] for i in range(0 , UpperCAmelCase_ ) ] # dp[i][j] stores minimum distance from i to j def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : str = w def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __UpperCAmelCase : int = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCamelCase_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ : List[Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
37
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase__ : lowercase__ = XGLMConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self : List[str] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any]=14 ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Union[str, Any]=99 ,lowerCamelCase__ : List[Any]=32 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : str=37 ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : int=512 ,lowerCamelCase__ : List[str]=0.0_2 ,): '''simple docstring''' _UpperCamelCase : str = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Dict = use_input_mask _UpperCamelCase : str = use_labels _UpperCamelCase : Union[str, Any] = vocab_size _UpperCamelCase : Tuple = d_model _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[Any] = ffn_dim _UpperCamelCase : Optional[Any] = activation_function _UpperCamelCase : List[Any] = activation_dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[int] = 2 _UpperCamelCase : int = 1 def UpperCamelCase_ ( self : str ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : List[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) _UpperCamelCase : List[Any] = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Union[str, Any] = self.get_config() _UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=lowerCamelCase__ ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=lowerCamelCase__ ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : int = config_and_inputs _UpperCamelCase : str = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase__ = (TFXGLMForCausalLM,) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = TFXGLMModelTester(self ) _UpperCamelCase : str = ConfigTester(self ,config_class=lowerCamelCase__ ,n_embd=37 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[Any]=True ): '''simple docstring''' _UpperCamelCase : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _UpperCamelCase : Optional[int] = tf.convert_to_tensor([[2, 268, 9865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCamelCase : Union[str, Any] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on _UpperCamelCase : Tuple = model.generate(lowerCamelCase__ ,do_sample=lowerCamelCase__ ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _UpperCamelCase : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _UpperCamelCase : List[str] = tokenizer('Today is a nice day and' ,return_tensors='tf' ) _UpperCamelCase : Any = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _UpperCamelCase : Optional[int] = model.generate(lowerCamelCase__ ,do_sample=lowerCamelCase__ ,seed=[7, 0] ) _UpperCamelCase : Any = tokenizer.decode(output_ids[0] ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : List[Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _UpperCamelCase : List[str] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _UpperCamelCase : Optional[Any] = 'left' # use different length sentences to test batching _UpperCamelCase : List[str] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _UpperCamelCase : Dict = tokenizer(lowerCamelCase__ ,return_tensors='tf' ,padding=lowerCamelCase__ ) _UpperCamelCase : List[Any] = inputs['input_ids'] _UpperCamelCase : int = model.generate(input_ids=lowerCamelCase__ ,attention_mask=inputs['attention_mask'] ,max_new_tokens=12 ) _UpperCamelCase : int = tokenizer(sentences[0] ,return_tensors='tf' ).input_ids _UpperCamelCase : List[str] = model.generate(input_ids=lowerCamelCase__ ,max_new_tokens=12 ) _UpperCamelCase : List[str] = tokenizer(sentences[1] ,return_tensors='tf' ).input_ids _UpperCamelCase : Union[str, Any] = model.generate(input_ids=lowerCamelCase__ ,max_new_tokens=12 ) _UpperCamelCase : List[str] = tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : List[Any] = tokenizer.decode(output_padded[0] ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,[non_padded_sentence, padded_sentence] )
83
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __UpperCamelCase ( _A ): lowerCAmelCase_ = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(_A , _A , bias=_A ) lowerCAmelCase_ = emb.weight.data return lin_layer def __UpperCamelCase ( _A ): lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) lowerCAmelCase_ = Namespace(**checkpoint['''cfg''']['''model'''] ) lowerCAmelCase_ = checkpoint['''model'''] remove_ignore_keys_(_A ) lowerCAmelCase_ = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCAmelCase_ = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} lowerCAmelCase_ = XGLMConfig( vocab_size=_A , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCAmelCase_ = XGLMForCausalLM(_A ) lowerCAmelCase_ = model.load_state_dict(_A , strict=_A ) print(_A ) lowerCAmelCase_ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A = parser.parse_args() _A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
278
0
"""simple docstring""" import argparse import datetime def _A ( lowercase ): """simple docstring""" a ={ '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } a ={0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month a =int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) a =date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day a =int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator a =date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year a =int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation a =datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: a =y - 1 a =m + 12 # maths var a =int(str(lowercase )[:2] ) a =int(str(lowercase )[2:] ) a =int(2.6 * m - 5.39 ) a =int(c / 4 ) a =int(k / 4 ) a =int(d + k ) a =int(t + u + v + x ) a =int(z - (2 * c) ) a =round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response a =f'''Your date {date_input}, is a {days[str(lowercase )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowerCamelCase_ : int = parser.parse_args() zeller(args.date_input)
215
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = IFInpaintingSuperResolutionPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self , __A , __A=0 ) -> Optional[int]: if str(__A ).startswith('''mps''' ): a =torch.manual_seed(__A ) else: a =torch.Generator(device=__A ).manual_seed(__A ) a =floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) a ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
215
1
'''simple docstring''' def a_ ( __snake_case : int , __snake_case : int ) -> int: """simple docstring""" while b: lowerCamelCase_, lowerCamelCase_ =b, a % b return a def a_ ( __snake_case : int , __snake_case : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__snake_case , a % b ) def a_ ( ) -> str: """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
75
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Union[str, Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
75
1
def __magic_name__ ( A , A , A , A ) -> Any: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case = mf_knapsack(i - 1 , A , A , A ) else: snake_case = max( mf_knapsack(i - 1 , A , A , A ) , mf_knapsack(i - 1 , A , A , j - wt[i - 1] ) + val[i - 1] , ) snake_case = val return f[i][j] def __magic_name__ ( A , A , A , A ) -> Tuple: snake_case = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case = dp[i - 1][w_] return dp[n][w_], dp def __magic_name__ ( A , A , A ) -> List[Any]: if not (isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) snake_case = len(A ) if num_items != len(A ): snake_case = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(A )} values''' ) raise ValueError(A ) for i in range(A ): if not isinstance(wt[i] , A ): snake_case = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(A ) snake_case , snake_case = knapsack(A , A , A , A ) snake_case = set() _construct_solution(A , A , A , A , A ) return optimal_val, example_optional_set def __magic_name__ ( A , A , A , A , A ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(A , A , i - 1 , A , A ) else: optimal_set.add(A ) _construct_solution(A , A , i - 1 , j - wt[i - 1] , A ) if __name__ == "__main__": lowerCAmelCase_ = [3, 2, 4, 4] lowerCAmelCase_ = [4, 3, 2, 3] lowerCAmelCase_ = 4 lowerCAmelCase_ = 6 lowerCAmelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase_ , lowerCAmelCase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase_ , lowerCAmelCase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ : Tuple = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a_ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING a_ : Tuple = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def a_ ( __snake_case : Any , __snake_case : Tuple , __snake_case : Dict , __snake_case : str ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): lowerCamelCase_ =True # Deal with multi-line cases elif ( re.search( rF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , __snake_case , ) is not None ): lowerCamelCase_ =True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCamelCase_ =True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCamelCase_ =[ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowerCamelCase_ =['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowerCamelCase_ =True if not attribute_used: lowerCamelCase_ =False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCamelCase_ =True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCamelCase_ =True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCamelCase_ =True elif attribute.endswith('''_token_id''' ): lowerCamelCase_ =True # configuration class specific cases if not case_allowed: lowerCamelCase_ =SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCamelCase_ =allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def a_ ( __snake_case : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =dict(inspect.signature(config_class.__init__ ).parameters ) lowerCamelCase_ =[x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowerCamelCase_ =[signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCamelCase_ ={} if len(config_class.attribute_map ) > 0: lowerCamelCase_ ={v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCamelCase_ =inspect.getsourcefile(__snake_case ) lowerCamelCase_ =os.path.dirname(__snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCamelCase_ =[os.path.join(__snake_case , __snake_case ) for fn in os.listdir(__snake_case ) if fn.startswith('''modeling_''' )] # Get the source code strings lowerCamelCase_ =[] for path in modeling_paths: if os.path.isfile(__snake_case ): with open(__snake_case ) as fp: modeling_sources.append(fp.read() ) lowerCamelCase_ =[] for config_param, default_value in zip(__snake_case , __snake_case ): # `attributes` here is all the variant names for `config_param` lowerCamelCase_ =[config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__snake_case , __snake_case , __snake_case , __snake_case ): unused_attributes.append(attributes[0] ) return sorted(__snake_case ) def a_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase_ ={} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCamelCase_ =[ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __snake_case : inspect.isclass(__snake_case ) and issubclass(__snake_case , __snake_case ) and inspect.getmodule(__snake_case ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCamelCase_ =check_config_attributes_being_used(__snake_case ) if len(__snake_case ) > 0: lowerCamelCase_ =unused_attributes if len(__snake_case ) > 0: lowerCamelCase_ ='''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(__snake_case ) if __name__ == "__main__": check_config_attributes()
75
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : str , __snake_case : list[str] | None = None , __snake_case : dict[str, float] | None = None , __snake_case : bool = False , ) -> tuple[int, float, str]: """simple docstring""" lowerCamelCase_ =cipher_alphabet or [chr(__snake_case ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase_ ={ '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary lowerCamelCase_ =frequencies_dict if not case_sensitive: lowerCamelCase_ =ciphertext.lower() # Chi squared statistic values lowerCamelCase_ ={} # cycle through all of the shifts for shift in range(len(__snake_case ) ): lowerCamelCase_ ='''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase_ =(alphabet_letters.index(letter.lower() ) - shift) % len( __snake_case ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase_ =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase_ =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.lower().count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase_ =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__snake_case : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase_ =min( __snake_case , key=__snake_case , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
75
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCAmelCase ( lowercase_ ): def __get__( self :Tuple , _lowercase :str , _lowercase :Union[str, Any]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowercase__ = "__cached_" + self.fget.__name__ lowercase__ = getattr(_lowercase , _lowercase , _lowercase ) if cached is None: lowercase__ = self.fget(_lowercase ) setattr(_lowercase , _lowercase , _lowercase ) return cached def _A ( __magic_name__ ): lowercase__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def _A ( __magic_name__ ): if is_torch_fx_proxy(__magic_name__ ): return True if is_torch_available(): import torch if isinstance(__magic_name__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__magic_name__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__magic_name__ , (jnp.ndarray, Tracer) ): return True return isinstance(__magic_name__ , np.ndarray ) def _A ( __magic_name__ ): return isinstance(__magic_name__ , np.ndarray ) def _A ( __magic_name__ ): return _is_numpy(__magic_name__ ) def _A ( __magic_name__ ): import torch return isinstance(__magic_name__ , torch.Tensor ) def _A ( __magic_name__ ): return False if not is_torch_available() else _is_torch(__magic_name__ ) def _A ( __magic_name__ ): import torch return isinstance(__magic_name__ , torch.device ) def _A ( __magic_name__ ): return False if not is_torch_available() else _is_torch_device(__magic_name__ ) def _A ( __magic_name__ ): import torch if isinstance(__magic_name__ , __magic_name__ ): if hasattr(__magic_name__ , __magic_name__ ): lowercase__ = getattr(__magic_name__ , __magic_name__ ) else: return False return isinstance(__magic_name__ , torch.dtype ) def _A ( __magic_name__ ): return False if not is_torch_available() else _is_torch_dtype(__magic_name__ ) def _A ( __magic_name__ ): import tensorflow as tf return isinstance(__magic_name__ , tf.Tensor ) def _A ( __magic_name__ ): return False if not is_tf_available() else _is_tensorflow(__magic_name__ ) def _A ( __magic_name__ ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__magic_name__ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(__magic_name__ ) return type(__magic_name__ ) == tf.Tensor def _A ( __magic_name__ ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__magic_name__ ) def _A ( __magic_name__ ): import jax.numpy as jnp # noqa: F811 return isinstance(__magic_name__ , jnp.ndarray ) def _A ( __magic_name__ ): return False if not is_flax_available() else _is_jax(__magic_name__ ) def _A ( __magic_name__ ): if isinstance(__magic_name__ , (dict, UserDict) ): return {k: to_py_obj(__magic_name__ ) for k, v in obj.items()} elif isinstance(__magic_name__ , (list, tuple) ): return [to_py_obj(__magic_name__ ) for o in obj] elif is_tf_tensor(__magic_name__ ): return obj.numpy().tolist() elif is_torch_tensor(__magic_name__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(__magic_name__ ): return np.asarray(__magic_name__ ).tolist() elif isinstance(__magic_name__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _A ( __magic_name__ ): if isinstance(__magic_name__ , (dict, UserDict) ): return {k: to_numpy(__magic_name__ ) for k, v in obj.items()} elif isinstance(__magic_name__ , (list, tuple) ): return np.array(__magic_name__ ) elif is_tf_tensor(__magic_name__ ): return obj.numpy() elif is_torch_tensor(__magic_name__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(__magic_name__ ): return np.asarray(__magic_name__ ) else: return obj class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = fields(self ) # Safety and consistency checks if not len(_lowercase ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) lowercase__ = getattr(self , class_fields[0].name ) lowercase__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_lowercase ): if isinstance(_lowercase , _lowercase ): lowercase__ = first_field.items() lowercase__ = True else: try: lowercase__ = iter(_lowercase ) lowercase__ = True except TypeError: lowercase__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_lowercase ): if ( not isinstance(_lowercase , (list, tuple) ) or not len(_lowercase ) == 2 or not isinstance(element[0] , _lowercase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowercase__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowercase__ = element[1] elif first_field is not None: lowercase__ = first_field else: for field in class_fields: lowercase__ = getattr(self , field.name ) if v is not None: lowercase__ = v def __delitem__( self :Union[str, Any] , *_lowercase :str , **_lowercase :Dict ): '''simple docstring''' raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def UpperCAmelCase ( self :List[Any] , *_lowercase :Dict , **_lowercase :Dict ): '''simple docstring''' raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def UpperCAmelCase ( self :int , *_lowercase :Tuple , **_lowercase :Dict ): '''simple docstring''' raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def UpperCAmelCase ( self :Tuple , *_lowercase :Dict , **_lowercase :Tuple ): '''simple docstring''' raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self :Any , _lowercase :List[str] ): '''simple docstring''' if isinstance(_lowercase , _lowercase ): lowercase__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Any ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_lowercase , _lowercase ) super().__setattr__(_lowercase , _lowercase ) def __setitem__( self :Union[str, Any] , _lowercase :Optional[Any] , _lowercase :List[Any] ): '''simple docstring''' super().__setitem__(_lowercase , _lowercase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCAmelCase ( lowercase_ , lowercase_ ): @classmethod def UpperCAmelCase ( cls :Dict , _lowercase :List[str] ): '''simple docstring''' raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'longest' __lowerCamelCase = 'max_length' __lowerCamelCase = 'do_not_pad' class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'pt' __lowerCamelCase = 'tf' __lowerCamelCase = 'np' __lowerCamelCase = 'jax' class lowerCAmelCase : def __init__( self :str , _lowercase :List[ContextManager] ): '''simple docstring''' lowercase__ = context_managers lowercase__ = ExitStack() def __enter__( self :Tuple ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_lowercase ) def __exit__( self :List[str] , *_lowercase :Optional[Any] , **_lowercase :List[str] ): '''simple docstring''' self.stack.__exit__(*_lowercase , **_lowercase ) def _A ( __magic_name__ ): lowercase__ = infer_framework(__magic_name__ ) if framework == "tf": lowercase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowercase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowercase__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _A ( __magic_name__ ): lowercase__ = model_class.__name__ lowercase__ = infer_framework(__magic_name__ ) if framework == "tf": lowercase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowercase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowercase__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _A ( __magic_name__ , __magic_name__ = "" , __magic_name__ = "." ): def _flatten_dict(__magic_name__ , __magic_name__="" , __magic_name__="." ): for k, v in d.items(): lowercase__ = str(__magic_name__ ) + delimiter + str(__magic_name__ ) if parent_key else k if v and isinstance(__magic_name__ , __magic_name__ ): yield from flatten_dict(__magic_name__ , __magic_name__ , delimiter=__magic_name__ ).items() else: yield key, v return dict(_flatten_dict(__magic_name__ , __magic_name__ , __magic_name__ ) ) @contextmanager def _A ( __magic_name__ , __magic_name__ = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _A ( __magic_name__ , __magic_name__=None ): if is_numpy_array(__magic_name__ ): return np.transpose(__magic_name__ , axes=__magic_name__ ) elif is_torch_tensor(__magic_name__ ): return array.T if axes is None else array.permute(*__magic_name__ ) elif is_tf_tensor(__magic_name__ ): import tensorflow as tf return tf.transpose(__magic_name__ , perm=__magic_name__ ) elif is_jax_tensor(__magic_name__ ): return jnp.transpose(__magic_name__ , axes=__magic_name__ ) else: raise ValueError(f'''Type not supported for transpose: {type(__magic_name__ )}.''' ) def _A ( __magic_name__ , __magic_name__ ): if is_numpy_array(__magic_name__ ): return np.reshape(__magic_name__ , __magic_name__ ) elif is_torch_tensor(__magic_name__ ): return array.reshape(*__magic_name__ ) elif is_tf_tensor(__magic_name__ ): import tensorflow as tf return tf.reshape(__magic_name__ , __magic_name__ ) elif is_jax_tensor(__magic_name__ ): return jnp.reshape(__magic_name__ , __magic_name__ ) else: raise ValueError(f'''Type not supported for reshape: {type(__magic_name__ )}.''' ) def _A ( __magic_name__ , __magic_name__=None ): if is_numpy_array(__magic_name__ ): return np.squeeze(__magic_name__ , axis=__magic_name__ ) elif is_torch_tensor(__magic_name__ ): return array.squeeze() if axis is None else array.squeeze(dim=__magic_name__ ) elif is_tf_tensor(__magic_name__ ): import tensorflow as tf return tf.squeeze(__magic_name__ , axis=__magic_name__ ) elif is_jax_tensor(__magic_name__ ): return jnp.squeeze(__magic_name__ , axis=__magic_name__ ) else: raise ValueError(f'''Type not supported for squeeze: {type(__magic_name__ )}.''' ) def _A ( __magic_name__ , __magic_name__ ): if is_numpy_array(__magic_name__ ): return np.expand_dims(__magic_name__ , __magic_name__ ) elif is_torch_tensor(__magic_name__ ): return array.unsqueeze(dim=__magic_name__ ) elif is_tf_tensor(__magic_name__ ): import tensorflow as tf return tf.expand_dims(__magic_name__ , axis=__magic_name__ ) elif is_jax_tensor(__magic_name__ ): return jnp.expand_dims(__magic_name__ , axis=__magic_name__ ) else: raise ValueError(f'''Type not supported for expand_dims: {type(__magic_name__ )}.''' ) def _A ( __magic_name__ ): if is_numpy_array(__magic_name__ ): return np.size(__magic_name__ ) elif is_torch_tensor(__magic_name__ ): return array.numel() elif is_tf_tensor(__magic_name__ ): import tensorflow as tf return tf.size(__magic_name__ ) elif is_jax_tensor(__magic_name__ ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__magic_name__ )}.''' ) def _A ( __magic_name__ , __magic_name__ ): for key, value in auto_map.items(): if isinstance(__magic_name__ , (tuple, list) ): lowercase__ = [f'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowercase__ = f'''{repo_id}--{value}''' return auto_map def _A ( __magic_name__ ): for base_class in inspect.getmro(__magic_name__ ): lowercase__ = base_class.__module__ lowercase__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
201
from __future__ import annotations from collections import deque class lowerCAmelCase : def __init__( self :List[Any] , _lowercase :list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowercase ) self.set_fail_transitions() def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self :List[str] , _lowercase :str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_lowercase , _lowercase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_lowercase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowercase ) lowercase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowercase , self.adlist[child]["value"] ) is None and state != 0 ): lowercase__ = self.adlist[state]["fail_state"] lowercase__ = self.find_next_state( _lowercase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_lowercase ) ): while ( self.find_next_state(_lowercase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["fail_state"] lowercase__ = self.find_next_state(_lowercase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_lowercase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
201
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Any = 11 lowerCAmelCase__ : Dict = int("""1""" + """0""" * digit_len ) for num in range(UpperCamelCase , UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCamelCase , UpperCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCAmelCase__ : str = 10 return solutions def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 2 ): """simple docstring""" lowerCAmelCase__ : str = 1.0 for fraction in fraction_list(UpperCamelCase ): lowerCAmelCase__ : str = Fraction(UpperCamelCase ) result *= frac.denominator / frac.numerator return int(UpperCamelCase ) if __name__ == "__main__": print(solution())
37
'''simple docstring''' from math import sqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase__ : int = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase__ : Optional[Any] = False for divisor in range(2 , int(round(sqrt(UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase__ : Any = False break # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'status' must been from type bool" return status def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase__ : List[str] = list(range(2 , n + 1 ) ) lowerCAmelCase__ : str = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCamelCase ) ): for j in range(i + 1 , len(UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase__ : List[Any] = 0 # filters actual prime numbers. lowerCAmelCase__ : List[Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type list" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase__ : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCamelCase ): ans.append(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type list" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase__ : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase__ : Dict = 2 lowerCAmelCase__ : Dict = number if number == 0 or number == 1: ans.append(UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCamelCase ): while quotient != 1: if is_prime(UpperCamelCase ) and (quotient % factor == 0): ans.append(UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type list" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase__ : Optional[int] = 0 # prime factorization of 'number' lowerCAmelCase__ : List[str] = prime_factorization(UpperCamelCase ) lowerCAmelCase__ : Any = max(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type int" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase__ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase__ : List[str] = prime_factorization(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = min(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ), "'ans' must been from type int" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (number > 2) and is_even(UpperCamelCase ) ), "'number' must been an int, even and > 2" lowerCAmelCase__ : Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase__ : Dict = get_prime_numbers(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = len(UpperCamelCase ) # run variable for while-loops. lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = None # exit variable. for break up the loops lowerCAmelCase__ : Any = True while i < len_pn and loop: lowerCAmelCase__ : List[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase__ : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (len(UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase__ : int = 0 while numbera != 0: lowerCAmelCase__ : Any = numbera % numbera lowerCAmelCase__ : str = numbera lowerCAmelCase__ : List[str] = rest # precondition assert isinstance(UpperCamelCase , UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase__ : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase__ : int = prime_factorization(UpperCamelCase ) lowerCAmelCase__ : Any = prime_factorization(UpperCamelCase ) elif numbera == 1 or numbera == 1: lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = max(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase__ : int = prime_fac_a.count(UpperCamelCase ) lowerCAmelCase__ : Any = prime_fac_a.count(UpperCamelCase ) for _ in range(max(UpperCamelCase , UpperCamelCase ) ): ans *= n else: lowerCAmelCase__ : Any = prime_fac_a.count(UpperCamelCase ) for _ in range(UpperCamelCase ): ans *= n done.append(UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase__ : Optional[int] = prime_fac_a.count(UpperCamelCase ) for _ in range(UpperCamelCase ): ans *= n done.append(UpperCamelCase ) # precondition assert isinstance(UpperCamelCase , UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCamelCase ): ans += 1 # precondition assert isinstance(UpperCamelCase , UpperCamelCase ) and is_prime( UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( is_prime(UpperCamelCase ) and is_prime(UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase__ : Dict = p_number_a + 1 # jump to the next number lowerCAmelCase__ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCamelCase ): number += 1 while number < p_number_a: ans.append(UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(UpperCamelCase ): number += 1 # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and ans[0] != p_number_a and ans[len(UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase__ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase__ : Optional[int] = get_divisors(UpperCamelCase ) # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase__ : int = gcd(abs(UpperCamelCase ) , abs(UpperCamelCase ) ) # precondition assert ( isinstance(UpperCamelCase , UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase__ : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Optional[Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase__ : Dict = ans ans += fiba lowerCAmelCase__ : str = tmp return ans
37
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = DownBlockaD # noqa F405 __lowerCamelCase = "down" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ResnetDownsampleBlockaD # noqa F405 __lowerCamelCase = "down" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = AttnDownBlockaD # noqa F405 __lowerCamelCase = "down" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = CrossAttnDownBlockaD # noqa F405 __lowerCamelCase = "down" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__ : Union[str, Any]= super().prepare_init_args_and_inputs_for_common() lowercase__ : Dict= 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SimpleCrossAttnDownBlockaD # noqa F405 __lowerCamelCase = "down" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__ : List[str]= super().prepare_init_args_and_inputs_for_common() lowercase__ : Tuple= 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SkipDownBlockaD # noqa F405 __lowerCamelCase = "down" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = AttnSkipDownBlockaD # noqa F405 __lowerCamelCase = "down" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = DownEncoderBlockaD # noqa F405 __lowerCamelCase = "down" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= { "in_channels": 32, "out_channels": 32, } lowercase__ : str= self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = AttnDownEncoderBlockaD # noqa F405 __lowerCamelCase = "down" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= { "in_channels": 32, "out_channels": 32, } lowercase__ : List[Any]= self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = UNetMidBlockaD # noqa F405 __lowerCamelCase = "mid" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= { "in_channels": 32, "temb_channels": 128, } lowercase__ : Dict= self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = UNetMidBlockaDCrossAttn # noqa F405 __lowerCamelCase = "mid" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__ : Union[str, Any]= super().prepare_init_args_and_inputs_for_common() lowercase__ : List[Any]= 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = UNetMidBlockaDSimpleCrossAttn # noqa F405 __lowerCamelCase = "mid" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__ : List[str]= super().prepare_init_args_and_inputs_for_common() lowercase__ : Dict= 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = UpBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ResnetUpsampleBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = CrossAttnUpBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__ : Tuple= super().prepare_init_args_and_inputs_for_common() lowercase__ : Optional[Any]= 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SimpleCrossAttnUpBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ , include_encoder_hidden_states=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__ : Tuple= super().prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int]= 32 return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = AttnUpBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SkipUpBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = AttnSkipUpBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = UpDecoderBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= {"in_channels": 32, "out_channels": 32} lowercase__ : Union[str, Any]= self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(snake_case__ ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = AttnUpDecoderBlockaD # noqa F405 __lowerCamelCase = "up" @property def UpperCAmelCase_ ( self ): '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= {"in_channels": 32, "out_channels": 32} lowercase__ : Optional[Any]= self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(snake_case__ )
150
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__=None ): '''simple docstring''' lowercase__ : Union[str, Any]= data lowercase__ : Optional[Any]= None def __repr__( self ): '''simple docstring''' lowercase__ : str= [] lowercase__ : Tuple= self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int]= temp.next return "->".join(snake_case__ ) def lowercase__(A ) ->Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ : Optional[int]= Node(elements_list[0] ) for i in range(1 , len(A ) ): lowercase__ : Optional[Any]= Node(elements_list[i] ) lowercase__ : str= current.next return head def lowercase__(A ) ->None: """simple docstring""" if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__() ->str: """simple docstring""" from doctest import testmod testmod() lowercase__ : Optional[int]= make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A ) print("Elements in Reverse:" ) print_reverse(A ) if __name__ == "__main__": main()
150
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_MASKED_LM_MAPPING def _snake_case ( self ) -> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Dict = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""tf""" ) _UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser"""}, ] ,) _UpperCAmelCase : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser""", }, ] ,) _UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-0_5, """token""": 2_941, """token_str""": """ Te"""}, ] ,) @require_torch def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""pt""" ) _UpperCAmelCase : Any = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] ,) _UpperCAmelCase : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] ,) _UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is Patrick""", """score""": 2.1E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-0_5, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, ] ,) _UpperCAmelCase : List[str] = unmasker("""My name is <mask> <mask>""" ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] ,) @require_torch_gpu def _snake_case ( self ) -> Any: _UpperCAmelCase : int = pipeline("""fill-mask""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,device=0 ,framework="""pt""" ) # convert model to fp16 pipe.model.half() _UpperCAmelCase : Dict = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a_ ,a_ ) @slow @require_torch def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""pt""" ) self.run_large_test(a_ ) @slow @require_tf def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""tf""" ) self.run_large_test(a_ ) def _snake_case ( self ,a_ ) -> Any: _UpperCAmelCase : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(a_ ) ,[ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] ,) _UpperCAmelCase : List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(a_ ) ,[ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] ,) _UpperCAmelCase : str = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(a_ ) ,[ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] ,) @require_torch def _snake_case ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""pt""" ) _UpperCAmelCase : int = None _UpperCAmelCase : Optional[Any] = None self.run_pipeline_test(a_ ,[] ) @require_tf def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""tf""" ) _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[Any] = None self.run_pipeline_test(a_ ,[] ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _UpperCAmelCase : str = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Tuple = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def _snake_case ( self ,a_ ,a_ ) -> str: _UpperCAmelCase : Union[str, Any] = fill_masker.tokenizer _UpperCAmelCase : Any = fill_masker.model _UpperCAmelCase : Any = fill_masker( f'''This is a {tokenizer.mask_token}''' ,) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Any = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Tuple = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( a_ ,[ [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], ] ,) with self.assertRaises(a_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a_ ): fill_masker("""This is""" ) self.run_test_top_k(a_ ,a_ ) self.run_test_targets(a_ ,a_ ) self.run_test_top_k_targets(a_ ,a_ ) self.fill_mask_with_duplicate_targets_and_top_k(a_ ,a_ ) self.fill_mask_with_multiple_masks(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : str = tokenizer.get_vocab() _UpperCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase : Dict = FillMaskPipeline(model=a_ ,tokenizer=a_ ,targets=a_ ) _UpperCAmelCase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : str = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,a_ ) _UpperCAmelCase : List[str] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(a_ ) ) # Call argument _UpperCAmelCase : Optional[int] = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=a_ ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,a_ ) _UpperCAmelCase : Optional[int] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(a_ ) ) # Score equivalence _UpperCAmelCase : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=a_ ) _UpperCAmelCase : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _UpperCAmelCase : Optional[int] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a_ ) == set(a_ ): _UpperCAmelCase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=a_ ) _UpperCAmelCase : Optional[int] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a_ ) ,nested_simplify(a_ ) ) # Raises with invalid with self.assertRaises(a_ ): _UpperCAmelCase : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a_ ): _UpperCAmelCase : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[""""""] ) with self.assertRaises(a_ ): _UpperCAmelCase : Any = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets="""""" ) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : List[str] = FillMaskPipeline(model=a_ ,tokenizer=a_ ,top_k=2 ) _UpperCAmelCase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : int = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) self.assertEqual(nested_simplify(a_ ) ,nested_simplify(a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = tokenizer.get_vocab() _UpperCAmelCase : List[Any] = FillMaskPipeline(model=a_ ,tokenizer=a_ ) # top_k=2, ntargets=3 _UpperCAmelCase : Tuple = sorted(vocab.keys() )[:3] _UpperCAmelCase : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ,targets=a_ ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase : Any = [el["""token_str"""] for el in sorted(a_ ,key=lambda a_ : x["score"] ,reverse=a_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a_ ).issubset(a_ ): _UpperCAmelCase : Any = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=3 ,targets=a_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a_ ) ,nested_simplify(a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Optional[Any] = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Any = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase : Optional[Any] = sorted(vocab.keys() )[:3] _UpperCAmelCase : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase : str = fill_masker(f'''My name is {tokenizer.mask_token}''' ,targets=a_ ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a_ ) ,3 ) def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : str = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( a_ ,[ [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], ] ,)
215
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : List[str] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A_ : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) A_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A_ : Dict = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): _UpperCAmelCase : Tuple = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCAmelCase_ , ) is not None ): _UpperCAmelCase : Any = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _UpperCAmelCase : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _UpperCAmelCase : Dict = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] _UpperCAmelCase : int = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed _UpperCAmelCase : Optional[Any] = True if not attribute_used: _UpperCAmelCase : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _UpperCAmelCase : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: _UpperCAmelCase : Any = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _UpperCAmelCase : Dict = True elif attribute.endswith("""_token_id""" ): _UpperCAmelCase : Optional[int] = True # configuration class specific cases if not case_allowed: _UpperCAmelCase : int = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _UpperCAmelCase : Union[str, Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) _UpperCAmelCase : Optional[int] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] _UpperCAmelCase : Optional[int] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _UpperCAmelCase : List[Any] = {} if len(config_class.attribute_map ) > 0: _UpperCAmelCase : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _UpperCAmelCase : int = inspect.getsourcefile(lowerCAmelCase_ ) _UpperCAmelCase : str = os.path.dirname(lowerCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _UpperCAmelCase : Optional[int] = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for fn in os.listdir(lowerCAmelCase_ ) if fn.startswith("""modeling_""" )] # Get the source code strings _UpperCAmelCase : str = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) _UpperCAmelCase : Any = [] for config_param, default_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): # `attributes` here is all the variant names for `config_param` _UpperCAmelCase : List[str] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase_ ) def snake_case_ ( )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _UpperCAmelCase : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase_ : inspect.isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) and inspect.getmodule(lowerCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _UpperCAmelCase : Optional[int] = check_config_attributes_being_used(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Tuple = unused_attributes if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Dict = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
215
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE :Tuple = TypeVar('''T''') class A_ ( Generic[T] ): def __init__( self : Tuple , snake_case_ : bool = True ): _UpperCAmelCase = {} # dictionary of lists _UpperCAmelCase = directed def lowercase ( self : Union[str, Any] , snake_case_ : T , snake_case_ : T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) self.adj_list[destination_vertex].append(snake_case_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) _UpperCAmelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case_ ) _UpperCAmelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _UpperCAmelCase = [destination_vertex] _UpperCAmelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) _UpperCAmelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _UpperCAmelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _UpperCAmelCase = [destination_vertex] _UpperCAmelCase = [] return self def __repr__( self : str ): return pformat(self.adj_list )
156
'''simple docstring''' from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE :Any = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __SCREAMING_SNAKE_CASE :Tuple = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __SCREAMING_SNAKE_CASE :Optional[int] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def lowercase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int]=None , snake_case_ : str=1 , snake_case_ : str="binary" , snake_case_ : int=None , snake_case_ : List[Any]="warn" , ): _UpperCAmelCase = recall_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ , zero_division=snake_case_ , ) return {"recall": float(snake_case_ ) if score.size == 1 else score}
156
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : str=7 , lowerCAmelCase : int=True , lowerCAmelCase : str=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=99 , lowerCAmelCase : str=32 , lowerCAmelCase : Dict=5 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : str=16 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Tuple=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = self.vocab_size - 1 def __lowercase ( self : str ): lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __lowercase ( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , *lowerCAmelCase : Tuple ): lowerCAmelCase = OpenAIGPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase ) lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase ) lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , *lowerCAmelCase : List[Any] ): lowerCAmelCase = OpenAIGPTLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str , *lowerCAmelCase : Dict ): lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , *lowerCAmelCase : Any ): lowerCAmelCase = self.num_labels lowerCAmelCase = OpenAIGPTForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __lowercase ( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int=False ): lowerCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase , ) lowerCAmelCase = inputs_dict["""labels"""] lowerCAmelCase = inputs_dict["""labels"""] lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowercase , ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def __lowercase ( self : Optional[Any] ): lowerCAmelCase = OpenAIGPTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def __lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def __lowercase ( self : int ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowercase ) def __lowercase ( self : Any ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowercase ) def __lowercase ( self : int ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowercase ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowercase ) @slow def __lowercase ( self : Union[str, Any] ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = OpenAIGPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : str ): lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_lowercase ) lowerCAmelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_lowercase ) # the president is lowerCAmelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].tolist() , _lowercase )
155
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCamelCase__ ( unittest.TestCase ): def _lowerCamelCase ( self : Union[str, Any] ): a__: List[Any] =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Tuple =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: Optional[Any] =-1 a__: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: Tuple =model.generate(_a , max_new_tokens=1_0 , do_sample=_a ) a__: List[str] =tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: a__: List[Any] =TextStreamer(_a ) model.generate(_a , max_new_tokens=1_0 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer a__: Union[str, Any] =cs.out[:-1] self.assertEqual(_a , _a ) def _lowerCamelCase ( self : str ): a__: int =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Tuple =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: Dict =-1 a__: List[Any] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: List[str] =model.generate(_a , max_new_tokens=1_0 , do_sample=_a ) a__: Union[str, Any] =tokenizer.decode(greedy_ids[0] ) a__: Union[str, Any] =TextIteratorStreamer(_a ) a__: Optional[int] ={"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} a__: Union[str, Any] =Thread(target=model.generate , kwargs=_a ) thread.start() a__: Any ="" for new_text in streamer: streamer_text += new_text self.assertEqual(_a , _a ) def _lowerCamelCase ( self : Optional[Any] ): a__: str =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Dict =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: List[str] =-1 a__: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: List[Any] =model.generate(_a , max_new_tokens=1_0 , do_sample=_a ) a__: Tuple =greedy_ids[:, input_ids.shape[1] :] a__: List[Any] =tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: a__: Dict =TextStreamer(_a , skip_prompt=_a ) model.generate(_a , max_new_tokens=1_0 , do_sample=_a , streamer=_a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer a__: Union[str, Any] =cs.out[:-1] self.assertEqual(_a , _a ) def _lowerCamelCase ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them a__: Optional[Any] =AutoTokenizer.from_pretrained("distilgpt2" ) a__: str =AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_a ) a__: Any =-1 a__: Optional[int] =torch.ones((1, 5) , device=_a ).long() * model.config.bos_token_id with CaptureStdout() as cs: a__: Optional[int] =TextStreamer(_a , skip_special_tokens=_a ) model.generate(_a , max_new_tokens=1 , do_sample=_a , streamer=_a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token a__: Union[str, Any] =cs.out[:-1] # Remove the final "\n" a__: int =tokenizer(_a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _lowerCamelCase ( self : Optional[Any] ): a__: Optional[Any] =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__: Optional[Any] =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_a ) a__: Tuple =-1 a__: Optional[int] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_a ) a__: Any =TextIteratorStreamer(_a , timeout=0.0_0_1 ) a__: Dict ={"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} a__: int =Thread(target=model.generate , kwargs=_a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_a ): a__: Tuple ="" for new_text in streamer: streamer_text += new_text
42
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __UpperCAmelCase = random.Random() def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=1.0 , __magic_name__ : Any=None , __magic_name__ : int=None ): if rng is None: a__: str =global_rng a__: Dict =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : str , _a : Any , _a : Union[str, Any]=7 , _a : Any=4_0_0 , _a : Optional[int]=2_0_0_0 , _a : Tuple=1 , _a : str=0.0 , _a : Optional[Any]=1_6_0_0_0 , _a : List[str]=True , _a : Dict=8_0 , _a : List[str]=1_6 , _a : Union[str, Any]=6_4 , _a : Any="hann_window" , _a : Dict=8_0 , _a : int=7_6_0_0 , _a : List[str]=1e-10 , _a : int=True , ): a__: Tuple =parent a__: Optional[int] =batch_size a__: Dict =min_seq_length a__: Any =max_seq_length a__: Dict =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__: str =feature_size a__: List[Any] =padding_value a__: Union[str, Any] =sampling_rate a__: List[str] =do_normalize a__: Any =num_mel_bins a__: Dict =hop_length a__: Optional[int] =win_length a__: List[Any] =win_function a__: int =fmin a__: List[str] =fmax a__: List[str] =mel_floor a__: str =return_attention_mask def _lowerCamelCase ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCamelCase ( self : str , _a : List[str]=False , _a : Optional[Any]=False ): def _flatten(_a : List[str] ): return list(itertools.chain(*_a ) ) if equal_length: a__: int =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a__: Any =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__: Optional[int] =[np.asarray(_a ) for x in speech_inputs] return speech_inputs def _lowerCamelCase ( self : int , _a : Union[str, Any]=False , _a : str=False ): if equal_length: a__: Union[str, Any] =[floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__: Optional[Any] =[ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__: Optional[int] =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase__ ( _a , unittest.TestCase ): _lowerCAmelCase = SpeechTaFeatureExtractor def _lowerCamelCase ( self : Optional[Any] ): a__: List[str] =SpeechTaFeatureExtractionTester(self ) def _lowerCamelCase ( self : Optional[int] , _a : Union[str, Any] ): self.assertTrue(np.all(np.mean(_a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self : Union[str, Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus a__: Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__: Union[str, Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Union[str, Any] =[np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input a__: Union[str, Any] =feat_extract(speech_inputs[0] , return_tensors="np" ).input_values a__: List[Any] =feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__: Tuple =feat_extract(_a , return_tensors="np" ).input_values a__: int =feat_extract(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def _lowerCamelCase ( self : int ): a__: Optional[int] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Union[str, Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Tuple =["longest", "max_length", "do_not_pad"] a__: List[str] =[None, 1_6_0_0, None] for max_length, padding in zip(_a , _a ): a__: Optional[int] =feat_extract(_a , padding=_a , max_length=_a , return_tensors="np" ) a__: Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowerCamelCase ( self : Any ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Tuple =range(8_0_0 , 1_4_0_0 , 2_0_0 ) a__: List[Any] =[floats_list((1, x) )[0] for x in lengths] a__: Optional[int] =["longest", "max_length", "do_not_pad"] a__: Optional[Any] =[None, 1_6_0_0, None] for max_length, padding in zip(_a , _a ): a__: List[Any] =feat_extract(_a , max_length=_a , padding=_a ) a__: Optional[Any] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowerCamelCase ( self : str ): a__: List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: str =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: int =feat_extract( _a , truncation=_a , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) a__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self : Optional[int] ): a__: Optional[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Dict =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: int =feat_extract( _a , truncation=_a , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) a__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) a__: int =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Tuple =feat_extract( _a , truncation=_a , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) a__: Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _lowerCamelCase ( self : Any ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Dict =np.random.rand(1_0_0 ).astype(np.floataa ) a__: str =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__: int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a__: int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCamelCase ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus a__: int =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__: Optional[int] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Any =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size a__: Dict =feature_extractor(audio_target=_a , padding=_a , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a__: Tuple =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values a__: str =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__: List[Any] =feature_extractor(_a , return_tensors="np" ).input_values a__: Union[str, Any] =feature_extractor(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a__: Optional[int] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__: str =np.asarray(_a ) a__: int =feature_extractor(_a , return_tensors="np" ).input_values a__: int =feature_extractor(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def _lowerCamelCase ( self : str ): a__: str =self.feat_extract_tester.prepare_inputs_for_target() a__: Dict =self.feature_extraction_class(**self.feat_extract_dict ) a__: int =feat_extract.model_input_names[0] a__: Optional[Any] =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) a__: Any =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) a__: List[str] =BatchFeature({input_name: speech_inputs} , tensor_type="np" ) a__: List[Any] =processed_features[input_name] if len(batch_features_input.shape ) < 3: a__: Tuple =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): a__: Tuple =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) a__: int =self.feature_extraction_class(**self.feat_extract_dict ) a__: Tuple =feat_extract.model_input_names[0] a__: Optional[int] =BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) a__: Optional[int] =processed_features[input_name] if len(batch_features_input.shape ) < 3: a__: Optional[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : str ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) a__: Tuple =self.feat_extract_tester.prepare_inputs_for_target() a__: Optional[int] =feat_extract.model_input_names[0] a__: Optional[int] =BatchFeature({input_name: speech_inputs} ) a__: Tuple =feat_extract.num_mel_bins # hack! a__: int =feat_extract.pad(_a , padding="longest" , return_tensors="np" )[input_name] a__: Dict =feat_extract.pad(_a , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCamelCase ( self : List[str] ): a__: Dict =self.feat_extract_dict a__: Optional[Any] =True a__: Any =self.feature_extraction_class(**_a ) a__: List[str] =self.feat_extract_tester.prepare_inputs_for_target() a__: Optional[Any] =[len(_a ) for x in speech_inputs] a__: Any =feat_extract.model_input_names[0] a__: Union[str, Any] =BatchFeature({input_name: speech_inputs} ) a__: List[Any] =feat_extract.num_mel_bins # hack! a__: Any =feat_extract.pad(_a , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def _lowerCamelCase ( self : Any ): a__: Tuple =self.feat_extract_dict a__: Dict =True a__: Tuple =self.feature_extraction_class(**_a ) a__: str =self.feat_extract_tester.prepare_inputs_for_target() a__: List[str] =[len(_a ) for x in speech_inputs] a__: Optional[int] =feat_extract.model_input_names[0] a__: Optional[Any] =BatchFeature({input_name: speech_inputs} ) a__: List[str] =min(_a ) a__: Optional[int] =feat_extract.num_mel_bins # hack! a__: Optional[Any] =feat_extract.pad( _a , padding="max_length" , max_length=_a , truncation=_a , return_tensors="np" ) self.assertIn("attention_mask" , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowerCamelCase ( self : List[str] , _a : List[str] ): from datasets import load_dataset a__: List[Any] =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a__: Union[str, Any] =ds.sort("id" ).select(range(_a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Tuple ): # fmt: off a__: Optional[Any] =torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on a__: Tuple =self._load_datasamples(1 ) a__: Tuple =SpeechTaFeatureExtractor() a__: Any =feature_extractor(_a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _a , atol=1e-6 ) ) def _lowerCamelCase ( self : int ): # fmt: off a__: List[Any] =torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on a__: List[Any] =self._load_datasamples(1 ) a__: List[str] =SpeechTaFeatureExtractor() a__: Any =feature_extractor(audio_target=_a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _a , atol=1e-4 ) )
42
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Union[PIL.Image.Image, np.ndarray] class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, ) -> List[Any]: """simple docstring""" super().__init__() self.register_modules( prior=__magic_name__, image_encoder=__magic_name__, image_processor=__magic_name__, scheduler=__magic_name__, renderer=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" if latents is None: UpperCamelCase__ : Dict = randn_tensor(__magic_name__, generator=__magic_name__, device=__magic_name__, dtype=__magic_name__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCamelCase__ : Union[str, Any] = latents.to(__magic_name__ ) UpperCamelCase__ : Tuple = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self, __magic_name__=0 ) -> Tuple: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCamelCase__ : int = torch.device(f"cuda:{gpu_id}" ) UpperCamelCase__ : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__, __magic_name__ ) @property def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder, '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__magic_name__, '''_hf_hook''' ) and hasattr(module._hf_hook, '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, ) -> str: """simple docstring""" if isinstance(__magic_name__, __magic_name__ ) and isinstance(image[0], torch.Tensor ): UpperCamelCase__ : Any = torch.cat(__magic_name__, axis=0 ) if image[0].ndim == 4 else torch.stack(__magic_name__, axis=0 ) if not isinstance(__magic_name__, torch.Tensor ): UpperCamelCase__ : Union[str, Any] = self.image_processor(__magic_name__, return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) UpperCamelCase__ : str = image.to(dtype=self.image_encoder.dtype, device=__magic_name__ ) UpperCamelCase__ : List[Any] = self.image_encoder(__magic_name__ )['''last_hidden_state'''] UpperCamelCase__ : Optional[int] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCamelCase__ : Optional[int] = image_embeds.repeat_interleave(__magic_name__, dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ : int = torch.zeros_like(__magic_name__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__( self, __magic_name__, __magic_name__ = 1, __magic_name__ = 25, __magic_name__ = None, __magic_name__ = None, __magic_name__ = 4.0, __magic_name__ = 64, __magic_name__ = "pil", __magic_name__ = True, ) -> Any: """simple docstring""" if isinstance(__magic_name__, PIL.Image.Image ): UpperCamelCase__ : Dict = 1 elif isinstance(__magic_name__, torch.Tensor ): UpperCamelCase__ : Tuple = image.shape[0] elif isinstance(__magic_name__, __magic_name__ ) and isinstance(image[0], (torch.Tensor, PIL.Image.Image) ): UpperCamelCase__ : Optional[Any] = len(__magic_name__ ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__magic_name__ )}" ) UpperCamelCase__ : List[Any] = self._execution_device UpperCamelCase__ : List[Any] = batch_size * num_images_per_prompt UpperCamelCase__ : List[Any] = guidance_scale > 1.0 UpperCamelCase__ : List[str] = self._encode_image(__magic_name__, __magic_name__, __magic_name__, __magic_name__ ) # prior self.scheduler.set_timesteps(__magic_name__, device=__magic_name__ ) UpperCamelCase__ : List[Any] = self.scheduler.timesteps UpperCamelCase__ : Optional[Any] = self.prior.config.num_embeddings UpperCamelCase__ : str = self.prior.config.embedding_dim UpperCamelCase__ : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim), image_embeds.dtype, __magic_name__, __magic_name__, __magic_name__, self.scheduler, ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCamelCase__ : Dict = latents.reshape(latents.shape[0], __magic_name__, __magic_name__ ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ : Dict = self.scheduler.scale_model_input(__magic_name__, __magic_name__ ) UpperCamelCase__ : Dict = self.prior( __magic_name__, timestep=__magic_name__, proj_embedding=__magic_name__, ).predicted_image_embedding # remove the variance UpperCamelCase__ ,UpperCamelCase__ : str = noise_pred.split( scaled_model_input.shape[2], dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = noise_pred.chunk(2 ) UpperCamelCase__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCamelCase__ : Optional[Any] = self.scheduler.step( __magic_name__, timestep=__magic_name__, sample=__magic_name__, ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__magic_name__ ) UpperCamelCase__ : int = [] for i, latent in enumerate(__magic_name__ ): print() UpperCamelCase__ : str = self.renderer.decode( latent[None, :], __magic_name__, size=__magic_name__, ray_batch_size=4096, n_coarse_samples=64, n_fine_samples=128, ) images.append(__magic_name__ ) UpperCamelCase__ : Dict = torch.stack(__magic_name__ ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCamelCase__ : Optional[Any] = images.cpu().numpy() if output_type == "pil": UpperCamelCase__ : Optional[Any] = [self.numpy_to_pil(__magic_name__ ) for image in images] # Offload last model to CPU if hasattr(self, '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__magic_name__ )
201
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> list[int]: UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Tuple = len(__UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ : Tuple = i + 1 else: UpperCamelCase__ : str = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
201
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowercase : a = BlenderbotConfig a = {} a = """gelu""" def __init__( self: List[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any]=13 , UpperCamelCase__: List[Any]=7 , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: int=False , UpperCamelCase__: Dict=99 , UpperCamelCase__: Union[str, Any]=32 , UpperCamelCase__: Dict=2 , UpperCamelCase__: Union[str, Any]=4 , UpperCamelCase__: int=37 , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: Optional[Any]=0.1 , UpperCamelCase__: Any=20 , UpperCamelCase__: List[Any]=2 , UpperCamelCase__: Union[str, Any]=1 , UpperCamelCase__: int=0 , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : Optional[int] = pad_token_id lowerCamelCase__ : Optional[int] = bos_token_id def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : Tuple = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str] , UpperCamelCase__: int ): lowerCamelCase__ : Optional[Any] = TFBlenderbotModel(config=lowercase_ ).get_decoder() lowerCamelCase__ : Optional[Any] = inputs_dict["input_ids"] lowerCamelCase__ : int = input_ids[:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict["attention_mask"][:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict["head_mask"] lowerCamelCase__ : Optional[int] = 1 # first forward pass lowerCamelCase__ : List[str] = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) lowerCamelCase__ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__ : Dict = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCamelCase__ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__ : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__ : Tuple = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): if attention_mask is None: lowerCamelCase__ : int = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase ): a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () a = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) a = True a = False a = False def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = TFBlenderbotModelTester(self ) lowerCamelCase__ : str = ConfigTester(self , config_class=lowercase_ ) def lowerCamelCase_ ( self: Any ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): a = ["""My friends are cool but they eat too many carbs."""] a = """facebook/blenderbot-400M-distill""" @cached_property def lowerCamelCase_ ( self: str ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = self.tokenizer(self.src_text , return_tensors="""tf""" ) lowerCamelCase__ : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) lowerCamelCase__ : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
351
'''simple docstring''' from collections import deque class _lowercase : def __init__( self: int , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : int = process_name # process name lowerCamelCase__ : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ : List[str] = arrival_time lowerCamelCase__ : Tuple = burst_time # remaining burst time lowerCamelCase__ : str = 0 # total time of the process wait in ready queue lowerCamelCase__ : Optional[Any] = 0 # time from arrival time to completion time class _lowercase : def __init__( self: Any , UpperCamelCase__: int , UpperCamelCase__: list[int] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int , ): # total number of mlfq's queues lowerCamelCase__ : Tuple = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ : List[Any] = time_slices # unfinished process is in this ready_queue lowerCamelCase__ : int = queue # current time lowerCamelCase__ : Optional[int] = current_time # finished process is in this sequence queue lowerCamelCase__ : deque[Process] = deque() def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : int = [] for i in range(len(UpperCamelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase_ ( self: Any , UpperCamelCase__: list[Process] ): lowerCamelCase__ : Optional[int] = [] for i in range(len(UpperCamelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : List[Any] = [] for i in range(len(UpperCamelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase_ ( self: int , UpperCamelCase__: deque[Process] ): return [q.burst_time for q in queue] def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: deque[Process] ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of finished process while len(UpperCamelCase__ ) != 0: lowerCamelCase__ : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ : Dict = 0 # set the process's turnaround time because it is finished lowerCamelCase__ : List[str] = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ : int = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase__ ) ): lowerCamelCase__ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ : Any = 0 # set the finish time lowerCamelCase__ : List[Any] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ : Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase_ ( self: Tuple ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ : str = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _A : Optional[Any] =Process('''P1''', 0, 53) _A : List[Any] =Process('''P2''', 0, 17) _A : Any =Process('''P3''', 0, 68) _A : Tuple =Process('''P4''', 0, 24) _A : int =3 _A : Tuple =[17, 25] _A : List[Any] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _A : Dict =Process('''P1''', 0, 53) _A : Union[str, Any] =Process('''P2''', 0, 17) _A : int =Process('''P3''', 0, 68) _A : Dict =Process('''P4''', 0, 24) _A : List[str] =3 _A : List[Any] =[17, 25] _A : Any =deque([Pa, Pa, Pa, Pa]) _A : List[str] =MLFQ(number_of_queues, time_slices, queue, 0) _A : Union[str, Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
129
0
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : str=1_0_2_4 ) -> Union[str, Any]: """simple docstring""" snake_case ,snake_case = [], [] snake_case = list(zip(_UpperCamelCase , _UpperCamelCase ) ) snake_case ,snake_case = sorted_examples[0] def is_too_big(_UpperCamelCase : Dict ): return tok(_UpperCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case = new_src + ' ' + src snake_case = new_tgt + ' ' + tgt if is_too_big(_UpperCamelCase ) or is_too_big(_UpperCamelCase ): # cant fit, finalize example finished_src.append(_UpperCamelCase ) finished_tgt.append(_UpperCamelCase ) snake_case ,snake_case = src, tgt else: # can fit, keep adding snake_case ,snake_case = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCamelCase ) finished_tgt.append(_UpperCamelCase ) return finished_src, finished_tgt def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Path , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" snake_case = Path(_UpperCamelCase ) save_path.mkdir(exist_ok=_UpperCamelCase ) for split in ["train"]: snake_case ,snake_case = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" snake_case = [x.rstrip() for x in Path(_UpperCamelCase ).open().readlines()] snake_case = [x.rstrip() for x in Path(_UpperCamelCase ).open().readlines()] snake_case ,snake_case = pack_examples(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) print(f"""packed {split} split from {len(_UpperCamelCase )} examples -> {len(_UpperCamelCase )}.""" ) Path(save_path / f"""{split}.source""" ).open('w' ).write('\n'.join(_UpperCamelCase ) ) Path(save_path / f"""{split}.target""" ).open('w' ).write('\n'.join(_UpperCamelCase ) ) for split in ["val", "test"]: snake_case ,snake_case = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(_UpperCamelCase , save_path / f"""{split}.source""" ) shutil.copyfile(_UpperCamelCase , save_path / f"""{split}.target""" ) def lowerCAmelCase__ ( ) -> str: """simple docstring""" snake_case = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=_UpperCamelCase , default=1_2_8 ) parser.add_argument('--data_dir' , type=_UpperCamelCase ) parser.add_argument('--save_path' , type=_UpperCamelCase ) snake_case = parser.parse_args() snake_case = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_UpperCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
150
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any ) -> Dict: """simple docstring""" snake_case = XCLIPTextConfig() # derive patch size from model name snake_case = model_name.find('patch' ) snake_case = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) snake_case = XCLIPVisionConfig(patch_size=_UpperCamelCase , num_frames=_UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 snake_case = 3_0_7_2 snake_case = 1_2 snake_case = 1_0_2_4 snake_case = 4_0_9_6 snake_case = 1_6 snake_case = 2_4 snake_case = 7_6_8 snake_case = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": snake_case = 3_3_6 snake_case = XCLIPConfig.from_text_vision_configs(_UpperCamelCase , _UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 return config def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" if name == "token_embedding.weight": snake_case = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": snake_case = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): snake_case = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: snake_case = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: snake_case = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": snake_case = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": snake_case = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): snake_case = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: snake_case = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: snake_case = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: snake_case = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: snake_case = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: snake_case = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: snake_case = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: snake_case = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": snake_case = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): snake_case = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): snake_case = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(_UpperCamelCase ) if "attn.in_proj" in key: snake_case = key.split('.' ) if key.startswith('visual' ): snake_case = key_split[3] snake_case = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[ :dim ] snake_case = val[ dim : dim * 2 ] snake_case = val[ -dim: ] else: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] elif key.startswith('mit' ): snake_case = key_split[2] snake_case = config.vision_config.mit_hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[dim : dim * 2] snake_case = val[-dim:] else: snake_case = key_split[2] snake_case = config.text_config.hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[ dim : dim * 2, : ] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] else: snake_case = rename_key(_UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case = val.T snake_case = val return orig_state_dict def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" if num_frames == 8: snake_case = 'eating_spaghetti_8_frames.npy' elif num_frames == 1_6: snake_case = 'eating_spaghetti.npy' elif num_frames == 3_2: snake_case = 'eating_spaghetti_32_frames.npy' snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_UpperCamelCase , repo_type='dataset' , ) snake_case = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" snake_case = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } snake_case = model_to_url[model_name] snake_case = 8 if "16-frames" in model_name: snake_case = 1_6 elif "shot" in model_name: snake_case = 3_2 snake_case = get_xclip_config(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) model.eval() if "drive" in checkpoint_url: snake_case = 'pytorch_model.bin' gdown.cached_download(_UpperCamelCase , _UpperCamelCase , quiet=_UpperCamelCase ) snake_case = torch.load(_UpperCamelCase , map_location='cpu' )['model'] else: snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase )['model'] snake_case = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) snake_case ,snake_case = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case = 3_3_6 if model_name == 'xclip-large-patch14-16-frames' else 2_2_4 snake_case = VideoMAEImageProcessor(size=_UpperCamelCase ) snake_case = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = XCLIPProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) snake_case = prepare_video(_UpperCamelCase ) snake_case = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): snake_case = model(**_UpperCamelCase ) # Verify outputs snake_case = outputs.logits_per_video snake_case = logits_per_video.softmax(dim=1 ) print('Probs:' , _UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": snake_case = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": snake_case = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_UpperCamelCase , organization='nielsr' ) processor.push_to_hub(_UpperCamelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(_UpperCamelCase , organization='nielsr' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
150
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase__ ( _A , _A , _A=[] ): a : Any = size[0] - overlap_pixels * 2 a : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels a : Optional[int] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 a : Optional[int] = np.pad(_A , mode='linear_ramp' , pad_width=_A , end_values=0 ) if "l" in remove_borders: a : List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: a : int = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: a : int = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: a : Optional[int] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase__ ( _A , _A , _A ): return max(_A , min(_A , _A ) ) def lowerCamelCase__ ( _A , _A , _A ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = list(_A ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap a : Optional[int] = clamp_rect(_A , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCamelCase__ ( _A , _A , _A , _A ): a : Optional[int] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_A , (original_slice, 0) ) return result def lowerCamelCase__ ( _A , _A ): a : Any = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) a : Optional[Any] = tile.crop(_A ) return tile def lowerCamelCase__ ( _A , _A ): a : Dict = n % d return n - divisor class a__( lowerCamelCase__ ): def __init__( self : Tuple , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __snake_case : int = 3_50 , ): super().__init__( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , low_res_scheduler=__snake_case , scheduler=__snake_case , max_noise_level=__snake_case , ) def lowercase_ ( self : List[Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : List[str] , **__snake_case : List[str] ): torch.manual_seed(0 ) a : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) a : Dict = add_overlap_rect(__snake_case , __snake_case , image.size ) a : Tuple = image.crop(__snake_case ) a : Tuple = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] a : List[str] = translated_slice_x - (original_image_slice / 2) a : Dict = max(0 , __snake_case ) a : Optional[int] = squeeze_tile(__snake_case , __snake_case , __snake_case , __snake_case ) a : Tuple = to_input.size a : Union[str, Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) a : Any = super(__snake_case , self ).__call__(image=__snake_case , **__snake_case ).images[0] a : str = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) a : str = unsqueeze_tile(__snake_case , __snake_case ) a : Dict = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) a : Union[str, Any] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) a : Optional[Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__snake_case ) , mode='L' , ) final_image.paste( __snake_case , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __snake_case ) @torch.no_grad() def __call__( self : Tuple , __snake_case : Union[str, List[str]] , __snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] , __snake_case : int = 75 , __snake_case : float = 9.0 , __snake_case : int = 50 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , __snake_case : int = 1_28 , __snake_case : int = 32 , __snake_case : int = 32 , ): a : Tuple = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) a : Optional[int] = math.ceil(image.size[0] / tile_size ) a : Tuple = math.ceil(image.size[1] / tile_size ) a : Tuple = tcx * tcy a : Dict = 0 for y in range(__snake_case ): for x in range(__snake_case ): self._process_tile( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , prompt=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , noise_level=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def lowerCamelCase__ ( ): # Run a demo a : List[str] = 'stabilityai/stable-diffusion-x4-upscaler' a : Optional[int] = StableDiffusionTiledUpscalePipeline.from_pretrained(_A , revision='fp16' , torch_dtype=torch.floataa ) a : Dict = pipe.to('cuda' ) a : Optional[int] = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(_A ): print(f"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('diffusers_library_progress.jpg' ) a : List[Any] = pipe(image=_A , prompt='Black font, white background, vector' , noise_level=40 , callback=_A ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
96
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a__( lowerCamelCase__ ): lowercase__ = 42 @flax_register_to_config class a__( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = 32 lowercase__ = 4 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = False def lowercase_ ( self : List[Any] , __snake_case : jax.random.KeyArray ): # init input tensors a : Dict = (1, self.in_channels, self.sample_size, self.sample_size) a : str = jnp.zeros(__snake_case , dtype=jnp.floataa ) a : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) a : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a , a : Optional[int] = jax.random.split(__snake_case ) a : Any = {'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def lowercase_ ( self : Union[str, Any] ): a : int = self.block_out_channels a : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a : str = self.num_attention_heads or self.attention_head_dim # input a : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a : Optional[int] = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) a : Optional[Any] = self.only_cross_attention if isinstance(__snake_case , __snake_case ): a : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): a : str = (num_attention_heads,) * len(self.down_block_types ) # down a : int = [] a : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a : List[Any] = output_channel a : Dict = block_out_channels[i] a : Union[str, Any] = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": a : Dict = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : List[str] = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) a : Dict = down_blocks # mid a : Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a : List[Any] = [] a : Dict = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a : Dict = output_channel a : Dict = reversed_block_out_channels[i] a : Dict = reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] a : List[Any] = i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": a : List[Any] = FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : Dict = FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) a : Dict = output_channel a : int = up_blocks # out a : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Dict=None , __snake_case : Any=None , __snake_case : bool = True , __snake_case : bool = False , ): # 1. time if not isinstance(__snake_case , jnp.ndarray ): a : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: a : Tuple = timesteps.astype(dtype=jnp.floataa ) a : Optional[int] = jnp.expand_dims(__snake_case , 0 ) a : Optional[Any] = self.time_proj(__snake_case ) a : Optional[int] = self.time_embedding(__snake_case ) # 2. pre-process a : str = jnp.transpose(__snake_case , (0, 2, 3, 1) ) a : Optional[int] = self.conv_in(__snake_case ) # 3. down a : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): a , a : Any = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: a , a : Optional[Any] = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a : Tuple = new_down_block_res_samples # 4. mid a : int = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a : int = down_block_res_samples[-(self.layers_per_block + 1) :] a : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): a : Optional[int] = up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: a : Optional[Any] = up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process a : Any = self.conv_norm_out(__snake_case ) a : List[str] = nn.silu(__snake_case ) a : Optional[int] = self.conv_out(__snake_case ) a : Any = jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
96
1
from __future__ import annotations import bisect def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ) -> int: if hi < 0: __lowercase : Optional[Any] = len(__lowerCAmelCase ) while lo < hi: __lowercase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase : int = mid + 1 else: __lowercase : int = mid return lo def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ) -> int: if hi < 0: __lowercase : Optional[Any] = len(__lowerCAmelCase ) while lo < hi: __lowercase : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase : Optional[Any] = mid + 1 else: __lowercase : Tuple = mid return lo def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ) -> None: sorted_collection.insert(bisect_left(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ) -> None: sorted_collection.insert(bisect_right(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int | None: __lowercase : int = 0 __lowercase : str = len(__lowerCAmelCase ) - 1 while left <= right: __lowercase : int = left + (right - left) // 2 __lowercase : Tuple = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase : Tuple = midpoint - 1 else: __lowercase : Dict = midpoint + 1 return None def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int | None: __lowercase : Union[str, Any] = bisect.bisect_left(__lowerCAmelCase , __lowerCAmelCase ) if index != len(__lowerCAmelCase ) and sorted_collection[index] == item: return index return None def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int | None: if right < left: return None __lowercase : Optional[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , midpoint + 1 , __lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = input("Enter numbers separated by comma:\n").strip() __lowerCAmelCase : Any = sorted(int(item) for item in user_input.split(",")) __lowerCAmelCase : str = int(input("Enter a single number to be found in the list:\n")) __lowerCAmelCase : List[str] = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
156
from collections import deque from .hash_table import HashTable class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , *_snake_case : Union[str, Any] , **_snake_case : Union[str, Any] ): super().__init__(*_snake_case , **_snake_case ) def snake_case_ ( self : List[Any] , _snake_case : List[Any] , _snake_case : Dict ): __lowercase : Any = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_snake_case ) __lowercase : List[Any] = self.values[key] def snake_case_ ( self : Any ): return ( sum(self.charge_factor - len(_snake_case ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case_ ( self : int , _snake_case : str , _snake_case : Optional[int]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_snake_case ) == 0 ): return key return super()._collision_resolution(_snake_case , _snake_case )
156
1
from collections import Counter from timeit import timeit def snake_case (UpperCAmelCase__ = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def snake_case (UpperCAmelCase__ = "" ) -> bool: if len(UpperCAmelCase__ ) == 0: return True UpperCamelCase_: Tuple = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCamelCase_: dict[str, int] = {} for character in lower_case_input_str: UpperCamelCase_: Any = character_freq_dict.get(UpperCAmelCase__ , 0 ) + 1 UpperCamelCase_: int = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def snake_case (UpperCAmelCase__ = "" ) -> None: print('\nFor string = ' , UpperCAmelCase__ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": A_ : Union[str, Any] = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) A_ : Any = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
361
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: int = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Any = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
0
'''simple docstring''' import math def SCREAMING_SNAKE_CASE__ ( __A ) -> list: _snake_case = [True] * n _snake_case = False _snake_case = False _snake_case = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _snake_case = i * 2 while index < n: _snake_case = False _snake_case = index + i _snake_case = [2] for i in range(3 , __A , 2 ): if is_prime[i]: primes.append(__A ) return primes def SCREAMING_SNAKE_CASE__ ( __A = 999_966_663_333 ) -> int: _snake_case = math.floor(math.sqrt(__A ) ) + 100 _snake_case = prime_sieve(__A ) _snake_case = 0 _snake_case = 0 _snake_case = primes[prime_index] while (last_prime**2) <= limit: _snake_case = primes[prime_index + 1] _snake_case = last_prime**2 _snake_case = next_prime**2 # Get numbers divisible by lps(current) _snake_case = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _snake_case = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _snake_case = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _snake_case = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["ChineseCLIPFeatureExtractor"] lowercase : List[Any] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def A(__a: np.ndarray , __a: Union[int, Iterable[int]] , __a: bool , __a: int ): def constraint_to_multiple_of(__a: Union[str, Any] , __a: Dict , __a: List[str]=0 , __a: List[Any]=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(__a , __a ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(__a ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=__a ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=__a ) return (new_height, new_width) class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''pixel_values'''] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = False , _a = 1 , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) lowerCAmelCase_ = size if size is not None else {"height": 384, "width": 384} lowerCAmelCase_ = get_size_dict(_a ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , _a , _a , _a = False , _a = 1 , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCAmelCase_ = get_resize_output_image_size( _a , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_a , multiple=_a , ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a = None , **_a , ) -> str: return rescale(_a , scale=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_a ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_a ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_a , _a ) for image in images] lowerCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a ) def __a ( self , _a , _a = None ) -> Dict: lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(_a ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowercase : List[Any] = parser.parse_args() lowercase : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase : Any = CLIPImageProcessor() lowercase : Any = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowercase : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
20
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""Speech2TextFeatureExtractor""" snake_case_ ="""Speech2TextTokenizer""" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" super().__init__(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : List[str] = False def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase ,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase__ : Optional[Any] = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase__ : str = kwargs.pop('''audio''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''sampling_rate''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''text''' ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ : Union[str, Any] = args[0] lowerCAmelCase__ : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase__ : str = self.feature_extractor(__lowerCamelCase ,*__lowerCamelCase ,sampling_rate=__lowerCamelCase ,**__lowerCamelCase ) if text is not None: lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : str = encodings['''input_ids'''] return inputs def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @contextmanager def lowerCAmelCase__ (self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer yield lowerCAmelCase__ : List[str] = self.feature_extractor lowerCAmelCase__ : Any = False
129
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __snake_case : Optional[int] = HUGGINGFACE_HUB_CACHE __snake_case : Tuple = """config.json""" __snake_case : Dict = """diffusion_pytorch_model.bin""" __snake_case : Union[str, Any] = """diffusion_flax_model.msgpack""" __snake_case : Optional[Any] = """model.onnx""" __snake_case : Optional[int] = """diffusion_pytorch_model.safetensors""" __snake_case : Union[str, Any] = """weights.pb""" __snake_case : List[str] = """https://huggingface.co""" __snake_case : int = default_cache_path __snake_case : Union[str, Any] = """diffusers_modules""" __snake_case : str = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) __snake_case : Optional[Any] = ["""fp16""", """non-ema"""] __snake_case : Union[str, Any] = """.self_attn"""
122
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __snake_case : List[str] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ __snake_case : Dict = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase__ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase__ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
122
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Dict = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = BlipImageProcessor() _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowerCamelCase : str = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) _lowerCamelCase : Optional[Any] = InstructBlipProcessor(lowercase , lowercase , lowercase ) processor.save_pretrained(self.tmpdirname ) def A_ ( self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).tokenizer def A_ ( self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).image_processor def A_ ( self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).qformer_tokenizer def A_ ( self ): shutil.rmtree(self.tmpdirname ) def A_ ( self ): _lowerCamelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCamelCase : int = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self ): _lowerCamelCase : Dict = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : str = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) _lowerCamelCase : Union[str, Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) self.assertIsInstance(processor.qformer_tokenizer , lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : List[Any] = self.get_qformer_tokenizer() _lowerCamelCase : List[Any] = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Optional[Any] = image_processor(lowercase , return_tensors='np' ) _lowerCamelCase : Any = processor(images=lowercase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self ): _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_qformer_tokenizer() _lowerCamelCase : Optional[int] = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) _lowerCamelCase : Dict = 'lower newer' _lowerCamelCase : Dict = processor(text=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer(lowercase , return_token_type_ids=lowercase ) _lowerCamelCase : Any = qformer_tokenizer(lowercase , return_token_type_ids=lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A_ ( self ): _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_qformer_tokenizer() _lowerCamelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) _lowerCamelCase : Tuple = 'lower newer' _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=lowercase , images=lowercase ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A_ ( self ): _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_qformer_tokenizer() _lowerCamelCase : Optional[int] = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) _lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : List[Any] = processor.batch_decode(lowercase ) _lowerCamelCase : str = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : str = self.get_qformer_tokenizer() _lowerCamelCase : Any = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) _lowerCamelCase : int = 'lower newer' _lowerCamelCase : str = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=lowercase , images=lowercase ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
96
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """ctrl""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=246534 , lowercase=256 , lowercase=1280 , lowercase=8192 , lowercase=48 , lowercase=16 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-6 , lowercase=0.02 , lowercase=True , **lowercase , ): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = n_positions _lowerCamelCase : Optional[int] = n_embd _lowerCamelCase : str = n_layer _lowerCamelCase : Union[str, Any] = n_head _lowerCamelCase : Any = dff _lowerCamelCase : int = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : Union[str, Any] = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : str = use_cache super().__init__(**lowercase )
96
1
'''simple docstring''' __UpperCamelCase = range(2, 20 + 1) __UpperCamelCase = [10**k for k in range(ks[-1] + 1)] __UpperCamelCase = {} def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = sum(a_i[j] for j in range(_lowerCamelCase , len(_lowerCamelCase ) ) ) __snake_case : Dict = sum(a_i[j] * base[j] for j in range(min(len(_lowerCamelCase ) , _lowerCamelCase ) ) ) __snake_case : int = 0, 0 __snake_case : List[str] = n - i __snake_case : Optional[Any] = memo.get(_lowerCamelCase ) if sub_memo is not None: __snake_case : int = sub_memo.get(_lowerCamelCase ) if jumps is not None and len(_lowerCamelCase ) > 0: # find and make the largest jump without going over __snake_case : Optional[int] = -1 for _k in range(len(_lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __snake_case : Dict = _k break if max_jump >= 0: __snake_case : Any = jumps[max_jump] # since the difference between jumps is cached, add c __snake_case : int = diff + c for j in range(min(_lowerCamelCase , len(_lowerCamelCase ) ) ): __snake_case : int = divmod(_lowerCamelCase , 10 ) if new_c > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case : List[str] = [] else: __snake_case : int = {c: []} __snake_case : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __snake_case : str = next_term(_lowerCamelCase , k - 1 , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __snake_case : List[str] = compute(_lowerCamelCase , _lowerCamelCase , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped __snake_case : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped __snake_case : Union[str, Any] = 0 while j < len(_lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCamelCase , (diff, dn, k) ) return (diff, dn) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" if i >= n: return 0, i if k > len(_lowerCamelCase ): a_i.extend([0 for _ in range(k - len(_lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __snake_case : List[Any] = i __snake_case : str = 0, 0, 0 for j in range(len(_lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __snake_case : Dict = ds_c + ds_b diff += addend __snake_case : List[Any] = 0 for j in range(_lowerCamelCase ): __snake_case : str = a_i[j] + addend __snake_case : Any = divmod(_lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return diff, i - start_i def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[Any] = digits[j] + addend if s >= 10: __snake_case : List[str] = divmod(_lowerCamelCase , 10 ) __snake_case : List[Any] = addend // 10 + quotient else: __snake_case : int = s __snake_case : Optional[int] = addend // 10 if addend == 0: break while addend > 0: __snake_case : Union[str, Any] = divmod(_lowerCamelCase , 10 ) digits.append(_lowerCamelCase ) def _a ( _lowerCamelCase = 10**15 ) -> int: """simple docstring""" __snake_case : Dict = [1] __snake_case : Dict = 1 __snake_case : List[Any] = 0 while True: __snake_case : Any = next_term(_lowerCamelCase , 20 , i + dn , _lowerCamelCase ) dn += terms_jumped if dn == n - i: break __snake_case : Optional[Any] = 0 for j in range(len(_lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCamelCase__ = threading.Lock() UpperCamelCase__ = None UpperCamelCase__ = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } UpperCamelCase__ = logging.WARNING UpperCamelCase__ = True def _a ( ): __lowerCAmelCase = os.getenv("TRANSFORMERS_VERBOSITY" , SCREAMING_SNAKE_CASE_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _a ( ): return __name__.split("." )[0] def _a ( ): return logging.getLogger(_get_library_name() ) def _a ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream. __lowerCAmelCase = sys.stderr.flush # Apply our default configuration to the library root logger. __lowerCAmelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __lowerCAmelCase = False def _a ( ): global _default_handler with _lock: if not _default_handler: return __lowerCAmelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __lowerCAmelCase = None def _a ( ): return log_levels def _a ( SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if name is None: __lowerCAmelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE_ ) def _a ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _a ( SCREAMING_SNAKE_CASE_ : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE_ ) def _a ( ): return set_verbosity(SCREAMING_SNAKE_CASE_ ) def _a ( ): return set_verbosity(SCREAMING_SNAKE_CASE_ ) def _a ( ): return set_verbosity(SCREAMING_SNAKE_CASE_ ) def _a ( ): return set_verbosity(SCREAMING_SNAKE_CASE_ ) def _a ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _a ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _a ( SCREAMING_SNAKE_CASE_ : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE_ ) def _a ( ): _configure_library_root_logger() __lowerCAmelCase = False def _a ( ): _configure_library_root_logger() __lowerCAmelCase = True def _a ( ): __lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: __lowerCAmelCase = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE_ ) def _a ( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , SCREAMING_SNAKE_CASE_ ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE_ ) def _a ( self : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ): self.warning(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = warning_once class a__ : def __init__( self , *_A , **_A ): # pylint: disable=unused-argument """simple docstring""" __lowerCAmelCase = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , _A ): """simple docstring""" def empty_fn(*_A , **_A ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , _A , _A , _A ): """simple docstring""" return class a__ : def __call__( self , *_A , **_A ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def __SCREAMING_SNAKE_CASE( self , *_A , **_A ): """simple docstring""" __lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCamelCase__ = _tqdm_cls() def _a ( ): global _tqdm_active return bool(_tqdm_active ) def _a ( ): global _tqdm_active __lowerCAmelCase = True hf_hub_utils.enable_progress_bars() def _a ( ): global _tqdm_active __lowerCAmelCase = False hf_hub_utils.disable_progress_bars()
92
"""simple docstring""" from __future__ import annotations _snake_case : str = [] def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): for i in range(len(UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def A__ ( UpperCamelCase , UpperCamelCase ): if row >= len(UpperCamelCase ): solution.append(UpperCamelCase ) printboard(UpperCamelCase ) print() return True for i in range(len(UpperCamelCase ) ): if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = 1 solve(UpperCamelCase , row + 1 ) A = 0 return False def A__ ( UpperCamelCase ): for i in range(len(UpperCamelCase ) ): for j in range(len(UpperCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _snake_case : List[str] = 8 _snake_case : List[str] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
292
0
"""simple docstring""" import math class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase=0 ): # a graph with Node 0,1,...,N-1 __a : Tuple = n __a : Tuple = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # adjacency matrix for weight __a : Union[str, Any] = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = w def _lowerCamelCase ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __a : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.dp[u][v] if __name__ == "__main__": A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
355
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : Any = np.random.RandomState(_UpperCAmelCase ) __a : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : List[str] = self.get_dummy_inputs() __a : Tuple = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[Any] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : List[Any] = output.images __a : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Any = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A fantasy landscape, trending on artstation''' __a : str = np.random.RandomState(0 ) __a : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Dict = output.images __a : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
188
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> List[Any]: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : int , __lowercase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = TextDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : Tuple ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"text": "string"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = TextDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Any , __lowercase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"text": "string"} _UpperCAmelCase = TextDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> int: '''simple docstring''' if issubclass(__lowercase , __lowercase ): _UpperCAmelCase = text_path elif issubclass(__lowercase , __lowercase ): _UpperCAmelCase = [text_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"text": "string"} _UpperCAmelCase = TextDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : Optional[Any]=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Dict , __lowercase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = TextDatasetReader({"train": text_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : int , __lowercase : Dict ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _UpperCAmelCase = {"text": "string"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = TextDatasetReader({"train": text_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Dict , __lowercase : Any ) -> Tuple: '''simple docstring''' if split: _UpperCAmelCase = {split: text_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": text_path, "test": text_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"text": "string"} _UpperCAmelCase = TextDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
22
'''simple docstring''' import string from math import logaa def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _UpperCAmelCase = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> tuple[int, int]: '''simple docstring''' _UpperCAmelCase = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("\n" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
22
1
import logging import os from .state import PartialState class __UpperCAmelCase ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( __A : str ): UpperCAmelCase : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Union[str, Any], *__A : Optional[int], **__A : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''', __A ) UpperCAmelCase : int = kwargs.pop('''in_order''', __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): UpperCAmelCase , UpperCAmelCase : Dict = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) elif in_order: UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) state.wait_for_everyone() def a__ ( UpperCAmelCase : str , UpperCAmelCase : str = None ) -> Dict: if log_level is None: UpperCAmelCase : Union[str, Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCAmelCase ) UpperCAmelCase : Tuple = logging.getLogger(UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase , {} )
99
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[Any], __A : str, __A : List[str]=7, __A : List[str]=3, __A : Optional[int]=1_8, __A : List[Any]=3_0, __A : Tuple=4_0_0, __A : Tuple=True, __A : List[Any]=None, __A : str=True, __A : int=None, __A : Optional[Any]=True, __A : List[Any]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], __A : List[str]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], __A : Tuple=True, ): UpperCAmelCase : int = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} UpperCAmelCase : int = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Dict = image_size UpperCAmelCase : List[str] = min_resolution UpperCAmelCase : Optional[Any] = max_resolution UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Any = do_center_crop UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : List[str] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std UpperCAmelCase : List[Any] = do_convert_rgb def __magic_name__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __magic_name__ ( self : Optional[Any], __A : Any=False, __A : str=False, __A : List[Any]=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCAmelCase : Dict = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) ) else: UpperCAmelCase : Tuple = [] for i in range(self.batch_size ): UpperCAmelCase , UpperCAmelCase : Tuple = np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 ) image_inputs.append(np.random.randint(2_5_5, size=(self.num_channels, width, height), dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__A, 0, -1 ) ) for x in image_inputs] if torchify: UpperCAmelCase : str = [torch.from_numpy(__A ) for x in image_inputs] return image_inputs @require_torch @require_vision class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self : Dict ): UpperCAmelCase : Optional[Any] = ChineseCLIPImageProcessingTester(self, do_center_crop=__A ) @property def __magic_name__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Any ): UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A, '''do_resize''' ) ) self.assertTrue(hasattr(__A, '''size''' ) ) self.assertTrue(hasattr(__A, '''do_center_crop''' ) ) self.assertTrue(hasattr(__A, '''center_crop''' ) ) self.assertTrue(hasattr(__A, '''do_normalize''' ) ) self.assertTrue(hasattr(__A, '''image_mean''' ) ) self.assertTrue(hasattr(__A, '''image_std''' ) ) self.assertTrue(hasattr(__A, '''do_convert_rgb''' ) ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size, {'''height''': 1_8, '''width''': 1_8} ) UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size, {'''height''': 8_4, '''width''': 8_4} ) def __magic_name__ ( self : Union[str, Any] ): pass def __magic_name__ ( self : Tuple ): # Initialize image_processing UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A, Image.Image ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Any = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __magic_name__ ( self : Optional[Any] ): # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A, numpify=__A ) for image in image_inputs: self.assertIsInstance(__A, np.ndarray ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Dict = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __magic_name__ ( self : Any ): # Initialize image_processing UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A, torchify=__A ) for image in image_inputs: self.assertIsInstance(__A, torch.Tensor ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : List[str] = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) @require_torch @require_vision class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=__A ) UpperCAmelCase : Dict = 3 @property def __magic_name__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Dict ): UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A, '''do_resize''' ) ) self.assertTrue(hasattr(__A, '''size''' ) ) self.assertTrue(hasattr(__A, '''do_center_crop''' ) ) self.assertTrue(hasattr(__A, '''center_crop''' ) ) self.assertTrue(hasattr(__A, '''do_normalize''' ) ) self.assertTrue(hasattr(__A, '''image_mean''' ) ) self.assertTrue(hasattr(__A, '''image_std''' ) ) self.assertTrue(hasattr(__A, '''do_convert_rgb''' ) ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : Tuple ): # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A, Image.Image ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Tuple = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
99
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Dict = """instructblip_vision_model""" def __init__( self , __UpperCamelCase=1_4_0_8 , __UpperCamelCase=6_1_4_4 , __UpperCamelCase=3_9 , __UpperCamelCase=1_6 , __UpperCamelCase=2_2_4 , __UpperCamelCase=1_4 , __UpperCamelCase="gelu" , __UpperCamelCase=1e-6 , __UpperCamelCase=0.0 , __UpperCamelCase=1e-10 , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = hidden_size UpperCamelCase_ = intermediate_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = patch_size UpperCamelCase_ = image_size UpperCamelCase_ = initializer_range UpperCamelCase_ = attention_dropout UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = hidden_act UpperCamelCase_ = qkv_bias @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCamelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = """instructblip_qformer""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=2 , __UpperCamelCase=1_4_0_8 , **__UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = cross_attention_frequency UpperCamelCase_ = encoder_hidden_size @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCamelCase_ = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = """instructblip""" A__ : Dict = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=3_2 , **__UpperCamelCase ): """simple docstring""" super().__init__(**__UpperCamelCase ) if vision_config is None: UpperCamelCase_ = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: UpperCamelCase_ = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: UpperCamelCase_ = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCamelCase_ = InstructBlipVisionConfig(**__UpperCamelCase ) UpperCamelCase_ = InstructBlipQFormerConfig(**__UpperCamelCase ) UpperCamelCase_ = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCamelCase_ = CONFIG_MAPPING[text_model_type](**__UpperCamelCase ) UpperCamelCase_ = self.text_config.tie_word_embeddings UpperCamelCase_ = self.text_config.is_encoder_decoder UpperCamelCase_ = num_query_tokens UpperCamelCase_ = self.vision_config.hidden_size UpperCamelCase_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCamelCase_ = 1.0 UpperCamelCase_ = 0.02 @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__UpperCamelCase , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.qformer_config.to_dict() UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "ViTImageProcessor" lowerCAmelCase__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __snake_case , ) lowercase_ = kwargs.pop("feature_extractor" ) lowercase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__snake_case , __snake_case ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowercase_ = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if visual_prompt is not None: lowercase_ = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: lowercase_ = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if visual_prompt is not None and images is not None: lowercase_ = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase_ = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __snake_case , ) return self.image_processor_class @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __snake_case , ) return self.image_processor
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCamelCase_ = """""" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class _SCREAMING_SNAKE_CASE( tr.AbstractTransform ): def __init__( self ,SCREAMING_SNAKE_CASE__ = " " ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sentence_delimiter def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" return list(lowerCAmelCase__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = [] for sent_idx, sentence in enumerate(lowerCAmelCase__ ): chars.extend(self.process_string(lowerCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCamelCase_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCamelCase_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCamelCase_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCamelCase_ = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowerCamelCase_ = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE( datasets.Metric ): def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/jitsi/jiwer/'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> Dict: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ ,lowerCAmelCase__ ,truth_transform=lowerCAmelCase__ ,hypothesis_transform=lowerCAmelCase__ ,)["wer"] __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 __SCREAMING_SNAKE_CASE :Any = 0 for prediction, reference in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE :List[Any] = jiwer.compute_measures( lowerCAmelCase__ ,lowerCAmelCase__ ,truth_transform=lowerCAmelCase__ ,hypothesis_transform=lowerCAmelCase__ ,) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
191
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : '''simple docstring''' def __init__( self : str , lowercase__ : Dict , lowercase__ : Optional[Any]=3 , lowercase__ : Any=32 , lowercase__ : Optional[int]=3 , lowercase__ : Any=10 , lowercase__ : List[str]=[10, 20, 30, 40] , lowercase__ : List[str]=[1, 1, 2, 1] , lowercase__ : Optional[int]=True , lowercase__ : int=True , lowercase__ : Any="relu" , lowercase__ : List[Any]=3 , lowercase__ : Union[str, Any]=None , ): '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(_SCREAMING_SNAKE_CASE) def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __snake_case ( self : List[str]): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __snake_case ( self : List[str] , lowercase__ : int , lowercase__ : str , lowercase__ : List[str]): '''simple docstring''' lowerCAmelCase__ = TFResNetModel(config=_SCREAMING_SNAKE_CASE) lowerCAmelCase__ = model(_SCREAMING_SNAKE_CASE) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : int , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Dict): '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE) lowerCAmelCase__ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase_ = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = TFResNetModelTester(self) lowerCAmelCase__ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE) def __snake_case ( self : List[str]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Optional[int]): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds') def __snake_case ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings') def __snake_case ( self : Union[str, Any]): '''simple docstring''' pass def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_SCREAMING_SNAKE_CASE) lowerCAmelCase__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def __snake_case ( self : Any): '''simple docstring''' def check_hidden_states_output(lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Dict): lowerCAmelCase__ = model_class(_SCREAMING_SNAKE_CASE) lowerCAmelCase__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE) , expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) @slow def __snake_case ( self : Optional[int]): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def __lowerCamelCase ( ): lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Tuple): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf') # forward pass lowerCAmelCase__ = model(**_SCREAMING_SNAKE_CASE) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) lowerCAmelCase__ = tf.constant([-11.1_069, -9.7_877, -8.3_777]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1e-4))
368
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCAmelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCAmelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCAmelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCAmelCase__ , default=0 , help='cuda_id.' , ) lowerCAmelCase__ = parser.parse_args() return args def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not len(lowerCAmelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase__ , lowerCAmelCase__ = imgs[0].size lowerCAmelCase__ = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase__ , lowerCAmelCase__ = grid.size for i, img in enumerate(lowerCAmelCase__ ): grid.paste(lowerCAmelCase__ , box=(i % cols * w, i // cols * h) ) return grid def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__="robotic cat with wings" , lowerCAmelCase__=7.5 , lowerCAmelCase__=5_0 , lowerCAmelCase__=1 , lowerCAmelCase__=4_2 , ): lowerCAmelCase__ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase__ = pipeline( lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , ).images lowerCAmelCase__ = int(math.sqrt(lowerCAmelCase__ ) ) lowerCAmelCase__ = image_grid(lowerCAmelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowerCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowerCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowerCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowerCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowerCAmelCase__ = unet.to(torch.device('cuda', args.cuda_id)) lowerCAmelCase__ = pipeline.to(unet.device) lowerCAmelCase__ , lowerCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowerCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
119
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = IFInpaintingSuperResolutionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} def snake_case ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(lowercase_ ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowercase_ ) else: _lowerCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def snake_case ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case ( self ): """simple docstring""" self._test_save_load_local() def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
82
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'mgp-str' def __init__( self , __snake_case=[3_2, 1_2_8] , __snake_case=4 , __snake_case=3 , __snake_case=2_7 , __snake_case=3_8 , __snake_case=5_0_2_5_7 , __snake_case=3_0_5_2_2 , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=4.0 , __snake_case=True , __snake_case=False , __snake_case=1E-5 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=False , __snake_case=0.02 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = max_token_length snake_case = num_character_labels snake_case = num_bpe_labels snake_case = num_wordpiece_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = mlp_ratio snake_case = distilled snake_case = layer_norm_eps snake_case = drop_rate snake_case = qkv_bias snake_case = attn_drop_rate snake_case = drop_path_rate snake_case = output_aa_attentions snake_case = initializer_range
213
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=6_4 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=1_6 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = vocab_size - 1 def a_ ( self ): snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def a_ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = self.num_labels snake_case = GPTNeoXForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = self.num_labels snake_case = GPTNeoXForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = self.num_labels snake_case = GPTNeoXForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case ) snake_case = output_from_no_past['''hidden_states'''][0] snake_case = model( __snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = (GPTNeoXForCausalLM,) if is_torch_available() else () __magic_name__ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = GPTNeoXModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=6_4 , num_attention_heads=8 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def a_ ( self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a_ ( self , __snake_case ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = ids_tensor([1, 1_0] , config.vocab_size ) snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case = GPTNeoXModel(__snake_case ) original_model.to(__snake_case ) original_model.eval() snake_case = original_model(__snake_case ).last_hidden_state snake_case = original_model(__snake_case ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case = {'''type''': scaling_type, '''factor''': 10.0} snake_case = GPTNeoXModel(__snake_case ) scaled_model.to(__snake_case ) scaled_model.eval() snake_case = scaled_model(__snake_case ).last_hidden_state snake_case = scaled_model(__snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self ): snake_case = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__snake_case ) snake_case = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=2_0 ) snake_case = tokenizer.batch_decode(__snake_case )[0] self.assertEqual(__snake_case , __snake_case )
213
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=2 , lowercase=32 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=4 , lowercase=[0, 1, 2, 3] , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=[1, 384, 24, 24] , lowercase=True , lowercase=None , ) -> Dict: '''simple docstring''' a__ : List[str] = parent a__ : Optional[Any] = batch_size a__ : Optional[int] = image_size a__ : List[Any] = patch_size a__ : List[Any] = num_channels a__ : Any = is_training a__ : Dict = use_labels a__ : Dict = hidden_size a__ : Tuple = num_hidden_layers a__ : int = backbone_out_indices a__ : int = num_attention_heads a__ : Any = intermediate_size a__ : Optional[Any] = hidden_act a__ : Tuple = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : int = initializer_range a__ : Optional[int] = num_labels a__ : int = backbone_featmap_shape a__ : Dict = scope a__ : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a__ : List[str] = (image_size // patch_size) ** 2 a__ : str = num_patches + 1 def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : int = None if self.use_labels: a__ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__ : str = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = DPTModel(config=lowercase) model.to(lowercase) model.eval() a__ : str = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : str = self.num_labels a__ : Dict = DPTForDepthEstimation(lowercase) model.to(lowercase) model.eval() a__ : Dict = model(lowercase) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : List[Any] = self.num_labels a__ : str = DPTForSemanticSegmentation(lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase , labels=lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : Any = config_and_inputs a__ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __A : Tuple = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __A : str = False __A : Optional[int] = False __A : int = False def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = DPTModelTester(self) a__ : Optional[int] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds') def __lowercase ( self) -> List[str]: '''simple docstring''' pass def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Tuple = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] = model_class(lowercase) a__ : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Tuple = [*signature.parameters.keys()] a__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True if model_class in get_values(lowercase): continue a__ : Optional[int] = model_class(lowercase) model.to(lowercase) model.train() a__ : List[str] = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__ : Optional[Any] = model(**lowercase).loss loss.backward() def __lowercase ( self) -> str: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a__ , a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[Any] = False a__ : Any = True if model_class in get_values(lowercase) or not model_class.supports_gradient_checkpointing: continue a__ : Tuple = model_class(lowercase) model.to(lowercase) model.gradient_checkpointing_enable() model.train() a__ : List[Any] = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__ : Any = model(**lowercase).loss loss.backward() def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : int = _config_zero_init(lowercase) for model_class in self.all_model_classes: a__ : List[str] = model_class(config=lowercase) # Skip the check for the backbone a__ : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a__ : Optional[int] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> Dict: '''simple docstring''' pass @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a__ : Dict = DPTModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[int] = 'add' with self.assertRaises(lowercase): a__ : str = DPTForDepthEstimation(lowercase) def A_ ( ) -> Any: a__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : str = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas') a__ : List[Any] = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas').to(lowercase) a__ : Dict = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : str = model(**lowercase) a__ : List[Any] = outputs.predicted_depth # verify the predicted depth a__ : Optional[int] = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape , lowercase) a__ : Optional[Any] = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]]).to(lowercase) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , lowercase , atol=1e-4))
99
from collections.abc import Iterable from typing import Generic, TypeVar lowercase : Any = TypeVar("""_T""") class A__ ( Generic[_T] ): """simple docstring""" def __init__( self , lowercase = None) -> None: '''simple docstring''' a__ : list[_T] = list(iterable or []) a__ : list[_T] = [] def __len__( self) -> int: '''simple docstring''' return len(self._stacka) + len(self._stacka) def __repr__( self) -> str: '''simple docstring''' return F'Queue({tuple(self._stacka[::-1] + self._stacka)})' def __lowercase ( self , lowercase) -> None: '''simple docstring''' self._stacka.append(lowercase) def __lowercase ( self) -> _T: '''simple docstring''' a__ : List[str] = self._stacka.pop a__ : Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop()) if not self._stacka: raise IndexError('Queue is empty') return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
99
1
def snake_case_ ( snake_case ) -> Dict: lowercase__: str = [] lowercase__: str = [] lowercase__: List[str] = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowercase__: Optional[int] = len(snake_case ) if (len(snake_case ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(snake_case ) , 'Postfix'.center(snake_case ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case ) == 0: stack.append(snake_case ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(snake_case ) # push x to stack print( x.center(8 ) , (''.join(snake_case )).ljust(snake_case ) , (''.join(snake_case )).ljust(snake_case ) , sep=' | ' , ) # Output in tabular format while len(snake_case ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(snake_case )).ljust(snake_case ) , (''.join(snake_case )).ljust(snake_case ) , sep=' | ' , ) # Output in tabular format return "".join(snake_case ) # return Postfix as str def snake_case_ ( snake_case ) -> int: lowercase__: Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(snake_case ) ): if infix[i] == "(": lowercase__: str = ')' # change "(" to ")" elif infix[i] == ")": lowercase__: Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(snake_case ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __lowerCAmelCase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __lowerCAmelCase = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
288
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowerCAmelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowerCAmelCase = {'''vinai/bartpho-syllable''': 10_24} class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: Dict = vocab_file lowercase__: str = monolingual_vocab_file lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: str = cnt cnt += 1 with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowercase__: Optional[Any] = line.strip().split()[0] lowercase__: Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Tuple = None lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Union[str, Any] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] lowercase__: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Dict = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowerCAmelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
288
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
'''simple docstring''' from __future__ import annotations import math class a__: def __init__( self : List[str] , __snake_case : int ): a : str = size # approximate the overall size of segment tree with given value a : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update a : Any = [0 for i in range(0 , 4 * size )] a : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase_ ( self : int , __snake_case : int ): return idx * 2 def lowercase_ ( self : Dict , __snake_case : int ): return idx * 2 + 1 def lowercase_ ( self : Dict , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : list[int] ): if left_element == right_element: a : Tuple = a[left_element - 1] else: a : Tuple = (left_element + right_element) // 2 self.build(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case ) self.build(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case ) a : Union[str, Any] = max( self.segment_tree[self.left(__snake_case )] , self.segment_tree[self.right(__snake_case )] ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ): if self.flag[idx] is True: a : int = self.lazy[idx] a : Union[str, Any] = False if left_element != right_element: a : Dict = self.lazy[idx] a : int = self.lazy[idx] a : Tuple = True a : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: a : int = val if left_element != right_element: a : int = val a : Dict = val a : List[str] = True a : List[str] = True return True a : Tuple = (left_element + right_element) // 2 self.update(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.update(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case , __snake_case , __snake_case ) a : Optional[int] = max( self.segment_tree[self.left(__snake_case )] , self.segment_tree[self.right(__snake_case )] ) return True def lowercase_ ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int ): if self.flag[idx] is True: a : str = self.lazy[idx] a : Optional[Any] = False if left_element != right_element: a : Dict = self.lazy[idx] a : Union[str, Any] = self.lazy[idx] a : Dict = True a : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] a : Dict = (left_element + right_element) // 2 a : Optional[int] = self.query(self.left(__snake_case ) , __snake_case , __snake_case , __snake_case , __snake_case ) a : Union[str, Any] = self.query(self.right(__snake_case ) , mid + 1 , __snake_case , __snake_case , __snake_case ) return max(__snake_case , __snake_case ) def __str__( self : Any ): return str([self.query(1 , 1 , self.size , __snake_case , __snake_case ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] lowerCAmelCase: int = 1_5 lowerCAmelCase: Optional[int] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
297
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowerCamelCase : List[Any] = logging.getLogger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Any = """token-classification""" def __init__( self , A_ ): '''simple docstring''' if type(_lowercase ) == dict: UpperCamelCase : List[str] = Namespace(**_lowercase ) UpperCamelCase : Optional[Any] = import_module("tasks" ) try: UpperCamelCase : Optional[Any] = getattr(_lowercase , hparams.task_type ) UpperCamelCase : Optional[int] = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) UpperCamelCase : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase : Optional[int] = CrossEntropyLoss().ignore_index super().__init__(_lowercase , len(self.labels ) , self.mode ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return self.model(**_lowercase ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase : List[str] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase : str = self(**_lowercase ) UpperCamelCase : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase : Any = self._feature_file(_lowercase ) if os.path.exists(_lowercase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , _lowercase ) UpperCamelCase : Optional[Any] = torch.load(_lowercase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCamelCase : Union[str, Any] = self.token_classification_task.read_examples_from_file(args.data_dir , _lowercase ) UpperCamelCase : List[str] = self.token_classification_task.convert_examples_to_features( _lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , _lowercase ) torch.save(_lowercase , _lowercase ) def __UpperCamelCase( self , A_ , A_ , A_ = False ): '''simple docstring''' UpperCamelCase : str = self._feature_file(_lowercase ) logger.info("Loading features from cached file %s" , _lowercase ) UpperCamelCase : str = torch.load(_lowercase ) UpperCamelCase : Optional[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase : Dict = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(_lowercase , _lowercase , _lowercase , _lowercase ) , batch_size=_lowercase ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' """Compute validation""" "" UpperCamelCase : Optional[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase : Optional[int] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase : List[Any] = self(**_lowercase ) UpperCamelCase , UpperCamelCase : Optional[Any] = outputs[:2] UpperCamelCase : List[Any] = logits.detach().cpu().numpy() UpperCamelCase : Optional[int] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = torch.stack([x["val_loss"] for x in outputs] ).mean() UpperCamelCase : List[str] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) UpperCamelCase : int = np.argmax(_lowercase , axis=2 ) UpperCamelCase : Optional[int] = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCamelCase : str = dict(enumerate(self.labels ) ) UpperCamelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase : int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase : Tuple = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(_lowercase , _lowercase ), "precision": precision_score(_lowercase , _lowercase ), "recall": recall_score(_lowercase , _lowercase ), "f1": fa_score(_lowercase , _lowercase ), } UpperCamelCase : List[Any] = dict(results.items() ) UpperCamelCase : Tuple = results return ret, preds_list, out_label_list def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase : str = self._eval_end(_lowercase ) UpperCamelCase : Tuple = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = self._eval_end(_lowercase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase : Dict = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase( A_ , A_ ): '''simple docstring''' BaseTransformer.add_model_specific_args(_lowercase , _lowercase ) parser.add_argument( "--task_type" , default="NER" , type=_lowercase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=_lowercase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=_lowercase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=_lowercase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowerCamelCase : Any = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : Any = NERTransformer(args) __lowerCamelCase : List[Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowerCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) __lowerCamelCase : List[str] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
366
__lowerCamelCase : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def A_ ( _lowerCAmelCase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : str = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowerCAmelCase ) UpperCamelCase : Optional[int] = "".join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data ) UpperCamelCase : str = len(_lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase : Optional[Any] = b"=" * ((6 - len(_lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6) else: UpperCamelCase : List[Any] = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowerCAmelCase ) , 6 ) ).encode() + padding ) def A_ ( _lowerCAmelCase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : List[Any] = ( "argument should be a bytes-like object or ASCII string, " F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: UpperCamelCase : Any = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCamelCase : Union[str, Any] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase : List[str] = encoded_data[:-padding] UpperCamelCase : List[Any] = "".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase : List[Any] = "".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase : Any = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowerCAmelCase ) , 8 ) ] return bytes(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
140
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): __A = tempfile.mkdtemp() # fmt: off __A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } __A = os.path.join(self.tmpdirname ,A ) with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp: json.dump(A ,A ) def UpperCamelCase_ ( self : int ,**A : List[Any] ): return BertTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : int ,**A : Optional[Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Dict ): __A = self.get_tokenizer() __A = self.get_image_processor() __A = VisionTextDualEncoderProcessor(tokenizer=A ,image_processor=A ) processor.save_pretrained(self.tmpdirname ) __A = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : Tuple ): __A = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = VisionTextDualEncoderProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = VisionTextDualEncoderProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : Any ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = VisionTextDualEncoderProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(A ): processor() def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = VisionTextDualEncoderProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = VisionTextDualEncoderProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
15
import argparse import json from tqdm import tqdm def UpperCamelCase ( ) -> Optional[int]: UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=snake_case__ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=snake_case__ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=snake_case__ , help='where to store parsed gold_data_path file' , ) UpperCamelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCamelCase : int = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): UpperCamelCase : Union[str, Any] = dpr_record['question'] UpperCamelCase : Dict = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(snake_case__ ) + '\n' ) if __name__ == "__main__": main()
119
0
import re from filelock import FileLock try: import nltk UpperCamelCase_ = True except (ImportError, ModuleNotFoundError): UpperCamelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def lowerCamelCase_ ( _a : str ): '''simple docstring''' re.sub("""<n>""" , """""" , _a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_a ) )
359
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
0
"""simple docstring""" from __future__ import annotations import queue class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Any = data lowercase_ : List[str] = None lowercase_ : Optional[int] = None def lowercase__( ): print('\n********Press N to stop entering at any point of time********\n' ) lowercase_ : str = input('Enter the value of the root node: ' ).strip().lower() lowercase_ : queue.Queue = queue.Queue() lowercase_ : str = TreeNode(int(__SCREAMING_SNAKE_CASE ) ) q.put(__SCREAMING_SNAKE_CASE ) while not q.empty(): lowercase_ : List[str] = q.get() lowercase_ : Optional[Any] = F'''Enter the left node of {node_found.data}: ''' lowercase_ : Union[str, Any] = input(__SCREAMING_SNAKE_CASE ).strip().lower() or 'n' if check == "n": return tree_node lowercase_ : str = TreeNode(int(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[int] = left_node q.put(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = F'''Enter the right node of {node_found.data}: ''' lowercase_ : Optional[int] = input(__SCREAMING_SNAKE_CASE ).strip().lower() or 'n' if check == "n": return tree_node lowercase_ : Any = TreeNode(int(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Any = right_node q.put(__SCREAMING_SNAKE_CASE ) raise def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(__SCREAMING_SNAKE_CASE ) while not q.empty(): lowercase_ : Union[str, Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(__SCREAMING_SNAKE_CASE ) while not q.empty(): lowercase_ : Union[str, Any] = [] while not q.empty(): lowercase_ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowercase_ : Optional[Any] = stack.pop() # start to traverse its right child lowercase_ : Any = n.right def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : List[Any] = node while n or stack: while n: stack.append(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = n.left lowercase_ : Dict = stack.pop() print(n.data , end=',' ) lowercase_ : Optional[int] = n.right def lowercase__( __SCREAMING_SNAKE_CASE : TreeNode ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not node: return lowercase_ , lowercase_ : List[Any] = [], [] lowercase_ : str = node stacka.append(__SCREAMING_SNAKE_CASE ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase_ : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__SCREAMING_SNAKE_CASE ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowercase__( __SCREAMING_SNAKE_CASE : str = "" , __SCREAMING_SNAKE_CASE : List[str]=50 , __SCREAMING_SNAKE_CASE : Dict="*" ): if not s: return "\n" + width * char lowercase_ , lowercase_ : List[Any] = divmod(width - len(__SCREAMING_SNAKE_CASE ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) __SCREAMING_SNAKE_CASE =build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
213
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __SCREAMING_SNAKE_CASE ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __SCREAMING_SNAKE_CASE ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __SCREAMING_SNAKE_CASE ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __SCREAMING_SNAKE_CASE ={ "num_train_timesteps": 40, "sigma_min": 0.0_02, "sigma_max": 80.0, } __SCREAMING_SNAKE_CASE ={ "num_train_timesteps": 201, "sigma_min": 0.0_02, "sigma_max": 80.0, } __SCREAMING_SNAKE_CASE ={ "num_train_timesteps": 151, "sigma_min": 0.0_02, "sigma_max": 80.0, } def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str=False ): lowercase_ : str = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] lowercase_ : Any = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] lowercase_ : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] lowercase_ : str = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] lowercase_ : Optional[Any] = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] lowercase_ : Any = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] lowercase_ : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] lowercase_ : Dict = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] lowercase_ : Any = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] lowercase_ : Dict = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowercase_ : Optional[Any] = checkpoint[F'''{old_prefix}.skip_connection.weight'''] lowercase_ : Tuple = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): lowercase_ , lowercase_ , lowercase_ : Optional[int] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowercase_ , lowercase_ , lowercase_ : Dict = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowercase_ : Any = checkpoint[F'''{old_prefix}.norm.weight'''] lowercase_ : Tuple = checkpoint[F'''{old_prefix}.norm.bias'''] lowercase_ : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) lowercase_ : Tuple = bias_q.squeeze(-1 ).squeeze(-1 ) lowercase_ : Optional[Any] = weight_k.squeeze(-1 ).squeeze(-1 ) lowercase_ : int = bias_k.squeeze(-1 ).squeeze(-1 ) lowercase_ : Optional[int] = weight_v.squeeze(-1 ).squeeze(-1 ) lowercase_ : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) lowercase_ : List[str] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowercase_ : int = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : Any = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) lowercase_ : Any = {} lowercase_ : Dict = checkpoint['time_embed.0.weight'] lowercase_ : Optional[Any] = checkpoint['time_embed.0.bias'] lowercase_ : List[str] = checkpoint['time_embed.2.weight'] lowercase_ : Any = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: lowercase_ : str = checkpoint['label_emb.weight'] lowercase_ : Optional[Any] = checkpoint['input_blocks.0.0.weight'] lowercase_ : Optional[int] = checkpoint['input_blocks.0.0.bias'] lowercase_ : Dict = unet_config['down_block_types'] lowercase_ : int = unet_config['layers_per_block'] lowercase_ : int = unet_config['attention_head_dim'] lowercase_ : Any = unet_config['block_out_channels'] lowercase_ : Optional[Any] = 1 lowercase_ : Tuple = channels_list[0] for i, layer_type in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = channels_list[i] lowercase_ : Any = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = F'''down_blocks.{i}.resnets.{j}''' lowercase_ : int = F'''input_blocks.{current_layer}.0''' lowercase_ : List[str] = True if j == 0 and downsample_block_has_skip else False lowercase_ : str = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_skip=__SCREAMING_SNAKE_CASE ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = F'''down_blocks.{i}.resnets.{j}''' lowercase_ : Dict = F'''input_blocks.{current_layer}.0''' lowercase_ : Optional[Any] = True if j == 0 and downsample_block_has_skip else False lowercase_ : Union[str, Any] = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_skip=__SCREAMING_SNAKE_CASE ) lowercase_ : str = F'''down_blocks.{i}.attentions.{j}''' lowercase_ : Union[str, Any] = F'''input_blocks.{current_layer}.1''' lowercase_ : int = convert_attention( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Tuple = F'''down_blocks.{i}.downsamplers.0''' lowercase_ : str = F'''input_blocks.{current_layer}.0''' lowercase_ : Tuple = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) current_layer += 1 lowercase_ : int = current_channels # hardcoded the mid-block for now lowercase_ : Any = 'mid_block.resnets.0' lowercase_ : Optional[Any] = 'middle_block.0' lowercase_ : Optional[int] = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = 'mid_block.attentions.0' lowercase_ : Optional[Any] = 'middle_block.1' lowercase_ : Dict = convert_attention(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = 'mid_block.resnets.1' lowercase_ : str = 'middle_block.2' lowercase_ : Dict = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = 0 lowercase_ : Union[str, Any] = unet_config['up_block_types'] for i, layer_type in enumerate(__SCREAMING_SNAKE_CASE ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowercase_ : Any = F'''up_blocks.{i}.resnets.{j}''' lowercase_ : Any = F'''output_blocks.{current_layer}.0''' lowercase_ : Union[str, Any] = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_skip=__SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Optional[Any] = F'''up_blocks.{i}.upsamplers.0''' lowercase_ : Optional[int] = F'''output_blocks.{current_layer-1}.1''' lowercase_ : Tuple = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowercase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' lowercase_ : List[Any] = F'''output_blocks.{current_layer}.0''' lowercase_ : Union[str, Any] = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_skip=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = F'''up_blocks.{i}.attentions.{j}''' lowercase_ : Dict = F'''output_blocks.{current_layer}.1''' lowercase_ : int = convert_attention( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Any = F'''up_blocks.{i}.upsamplers.0''' lowercase_ : str = F'''output_blocks.{current_layer-1}.2''' lowercase_ : int = convert_resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = checkpoint['out.0.weight'] lowercase_ : Dict = checkpoint['out.0.bias'] lowercase_ : Optional[int] = checkpoint['out.2.weight'] lowercase_ : Optional[int] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =strabool(args.class_cond) __SCREAMING_SNAKE_CASE =os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: __SCREAMING_SNAKE_CASE =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __SCREAMING_SNAKE_CASE =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __SCREAMING_SNAKE_CASE =TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: __SCREAMING_SNAKE_CASE =None __SCREAMING_SNAKE_CASE =con_pt_to_diffuser(args.unet_path, unet_config) __SCREAMING_SNAKE_CASE =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __SCREAMING_SNAKE_CASE =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __SCREAMING_SNAKE_CASE =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __SCREAMING_SNAKE_CASE =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") __SCREAMING_SNAKE_CASE =CMStochasticIterativeScheduler(**scheduler_config) __SCREAMING_SNAKE_CASE =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
213
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase_ ( A__ ): '''simple docstring''' lowercase__ : Any = """unispeech-sat""" def __init__( self , lowerCamelCase__=3_2 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2 , lowerCamelCase__=1_2 , lowerCamelCase__=3_0_7_2 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__=(1_0, 3, 3, 3, 3, 2, 2) , lowerCamelCase__=False , lowerCamelCase__=1_2_8 , lowerCamelCase__=1_6 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.0_5 , lowerCamelCase__=1_0 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=1_0 , lowerCamelCase__=0 , lowerCamelCase__=3_2_0 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , lowerCamelCase__=1_0_0 , lowerCamelCase__=2_5_6 , lowerCamelCase__=2_5_6 , lowerCamelCase__=0.1 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=2_5_6 , lowerCamelCase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCamelCase__=(5, 3, 3, 1, 1) , lowerCamelCase__=(1, 2, 3, 1, 1) , lowerCamelCase__=5_1_2 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , lowerCamelCase__=5_0_4 , **lowerCamelCase__ , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _lowerCamelCase = hidden_size _lowerCamelCase = feat_extract_norm _lowerCamelCase = feat_extract_activation _lowerCamelCase = list(_A ) _lowerCamelCase = list(_A ) _lowerCamelCase = list(_A ) _lowerCamelCase = conv_bias _lowerCamelCase = num_conv_pos_embeddings _lowerCamelCase = num_conv_pos_embedding_groups _lowerCamelCase = len(self.conv_dim ) _lowerCamelCase = num_hidden_layers _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = feat_proj_dropout _lowerCamelCase = final_dropout _lowerCamelCase = layerdrop _lowerCamelCase = layer_norm_eps _lowerCamelCase = initializer_range _lowerCamelCase = vocab_size _lowerCamelCase = num_clusters _lowerCamelCase = do_stable_layer_norm _lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase = apply_spec_augment _lowerCamelCase = mask_time_prob _lowerCamelCase = mask_time_length _lowerCamelCase = mask_time_min_masks _lowerCamelCase = mask_feature_prob _lowerCamelCase = mask_feature_length _lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase = num_codevectors_per_group _lowerCamelCase = num_codevector_groups _lowerCamelCase = contrastive_logits_temperature _lowerCamelCase = feat_quantizer_dropout _lowerCamelCase = num_negatives _lowerCamelCase = codevector_dim _lowerCamelCase = proj_codevector_dim _lowerCamelCase = diversity_loss_weight # ctc loss _lowerCamelCase = ctc_loss_reduction _lowerCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase = list(_A ) _lowerCamelCase = list(_A ) _lowerCamelCase = list(_A ) _lowerCamelCase = xvector_output_dim @property def snake_case__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): __a = None def _UpperCAmelCase ( __lowerCamelCase : "pyspark.sql.DataFrame" , __lowerCamelCase : List[int] , ) -> Optional[int]: import pyspark def generate_fn(): _snake_case = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _snake_case = df_with_partition_id.select('''*''' ).where(f'''part_id = {partition_id}''' ).drop('''part_id''' ) _snake_case = partition_df.collect() _snake_case = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class lowerCAmelCase__ ( _BaseExamplesIterable ): def __init__( self : Optional[int] , _lowerCamelCase : "pyspark.sql.DataFrame" , _lowerCamelCase : List[Any]=None , ): _snake_case = df _snake_case = partition_order or range(self.df.rdd.getNumPartitions() ) _snake_case = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ): yield from self.generate_examples_fn() def lowercase ( self : Any , _lowerCamelCase : np.random.Generator ): _snake_case = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=_lowerCamelCase ) def lowercase ( self : List[Any] , _lowerCamelCase : int , _lowerCamelCase : int ): _snake_case = self.split_shard_indices_by_worker(_lowerCamelCase , _lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=_lowerCamelCase ) @property def lowercase ( self : List[str] ): return len(self.partition_order ) class lowerCAmelCase__ ( datasets.DatasetBuilder ): __a = SparkConfig def __init__( self : str , _lowerCamelCase : "pyspark.sql.DataFrame" , _lowerCamelCase : str = None , _lowerCamelCase : str = None , **_lowerCamelCase : List[str] , ): import pyspark _snake_case = pyspark.sql.SparkSession.builder.getOrCreate() _snake_case = df _snake_case = working_dir super().__init__( cache_dir=_lowerCamelCase , config_name=str(self.df.semanticHash() ) , **_lowerCamelCase , ) def lowercase ( self : str ): # Returns the path of the created file. def create_cache_and_write_probe(_lowerCamelCase : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_lowerCamelCase ) _snake_case = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_lowerCamelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _snake_case = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_lowerCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def lowercase ( self : Dict ): return datasets.DatasetInfo(features=self.config.features ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase ( self : Dict , _lowerCamelCase : List[Any] ): import pyspark def get_arrow_batch_size(_lowerCamelCase : List[Any] ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _snake_case = self.df.count() _snake_case = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _snake_case = ( self.df.limit(_lowerCamelCase ) .repartition(1 ) .mapInArrow(_lowerCamelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _snake_case = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _snake_case = min(_lowerCamelCase , int(approx_total_size / max_shard_size ) ) _snake_case = self.df.repartition(_lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , ): import pyspark _snake_case = ParquetWriter if file_format == '''parquet''' else ArrowWriter _snake_case = os.path.join(self._working_dir , os.path.basename(_lowerCamelCase ) ) if self._working_dir else fpath _snake_case = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _snake_case = self.config.features _snake_case = self._writer_batch_size _snake_case = self._fs.storage_options def write_arrow(_lowerCamelCase : Tuple ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _snake_case = pyspark.TaskContext().taskAttemptId() _snake_case = next(_lowerCamelCase , _lowerCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _snake_case = 0 _snake_case = writer_class( features=_lowerCamelCase , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=_lowerCamelCase , storage_options=_lowerCamelCase , embed_local_files=_lowerCamelCase , ) _snake_case = pa.Table.from_batches([first_batch] ) writer.write_table(_lowerCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _snake_case , _snake_case = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _snake_case = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=_lowerCamelCase , storage_options=_lowerCamelCase , embed_local_files=_lowerCamelCase , ) _snake_case = pa.Table.from_batches([batch] ) writer.write_table(_lowerCamelCase ) if writer._num_bytes > 0: _snake_case , _snake_case = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_lowerCamelCase ) ): _snake_case = os.path.join(os.path.dirname(_lowerCamelCase ) , os.path.basename(_lowerCamelCase ) ) shutil.move(_lowerCamelCase , _lowerCamelCase ) _snake_case = ( self.df.mapInArrow(_lowerCamelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase ( self : int , _lowerCamelCase : "datasets.SplitGenerator" , _lowerCamelCase : str = "arrow" , _lowerCamelCase : Optional[Union[str, int]] = None , _lowerCamelCase : Optional[int] = None , **_lowerCamelCase : List[Any] , ): self._validate_cache_dir() _snake_case = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_lowerCamelCase ) _snake_case = not is_remote_filesystem(self._fs ) _snake_case = os.path.join if is_local else posixpath.join _snake_case = '''-TTTTT-SSSSS-of-NNNNN''' _snake_case = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _snake_case = path_join(self._output_dir , _lowerCamelCase ) _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = [] _snake_case = [] for task_id, content in self._prepare_split_single(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_lowerCamelCase ) _snake_case = total_num_examples _snake_case = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: _snake_case = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _snake_case = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , ): rename( _lowerCamelCase , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) _snake_case = [] _snake_case = 0 for i in range(len(_lowerCamelCase ) ): _snake_case , _snake_case = task_id_and_num_shards[i] for shard_id in range(_lowerCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_lowerCamelCase , len(_lowerCamelCase ) ).map(lambda _lowerCamelCase : _rename_shard(*_lowerCamelCase ) ).collect() else: # don't use any pattern _snake_case = 0 _snake_case = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(_lowerCamelCase , '''''' ) , ) def lowercase ( self : List[str] , _lowerCamelCase : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
288
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( A_ ): __a = """masked_bert""" def __init__( self : Union[str, Any] , _lowerCamelCase : Any=30522 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Tuple=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : str=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : int=0.0_2 , _lowerCamelCase : Union[str, Any]=1e-12 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : List[str]="topK" , _lowerCamelCase : Optional[Any]="constant" , _lowerCamelCase : Optional[Any]=0.0 , **_lowerCamelCase : str , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = pruning_method _snake_case = mask_init _snake_case = mask_scale
288
1
"""simple docstring""" from PIL import Image def lowerCamelCase__ ( __snake_case, __snake_case ) -> Image: """simple docstring""" def brightness(__snake_case ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _a = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
100
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a = get_logger(__name__) class _UpperCAmelCase: def __init__( self , __a = None) -> List[str]: '''simple docstring''' _UpperCamelCase = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__a) return os.path.join(self.extract_dir , hash_url_to_filename(__a)) def UpperCAmelCase ( self , __a , __a) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a) and not (os.path.isdir(__a) and os.listdir(__a)) ) def UpperCAmelCase ( self , __a , __a = False) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(__a) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__a) if self._do_extract(__a , __a): self.extractor.extract(__a , __a , __a) return output_path class _UpperCAmelCase( lowerCamelCase ): @classmethod @abstractmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' ... class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = [] @staticmethod def UpperCAmelCase ( __a , __a) -> Any: '''simple docstring''' with open(__a , '''rb''') as f: return f.read(__a) @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(__a) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__a , __a) except OSError: return False return any(magic_number.startswith(__a) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase( lowerCamelCase ): @classmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' def resolved(__a) -> str: return os.path.realpath(os.path.abspath(__a)) def badpath(__a , __a) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a)).startswith(__a) def badlink(__a , __a) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__a , os.path.dirname(info.name))) return badpath(info.linkname , base=__a) _UpperCamelCase = resolved(__a) for finfo in members: if badpath(finfo.name , __a): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) _UpperCamelCase = tarfile.open(__a) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a)) tar_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x1F\x8B'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with gzip.open(__a , '''rb''') as gzip_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , '''rb''') as fp: _UpperCamelCase = _EndRecData(__a) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__a) # CD is where we expect it to be if len(__a) == sizeCentralDir: _UpperCamelCase = struct.unpack(__a , __a) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) with zipfile.ZipFile(__a , '''r''') as zip_file: zip_file.extractall(__a) zip_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with lzma.open(__a) as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(__a , exist_ok=__a) _UpperCamelCase = rarfile.RarFile(__a) rf.extractall(__a) rf.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__a , '''rb''') as ifh, open(__a , '''wb''') as ofh: dctx.copy_stream(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x42\x5A\x68'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with bza.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(__a , exist_ok=__a) with pyazr.SevenZipFile(__a , '''r''') as archive: archive.extractall(__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> Any: '''simple docstring''' return max( len(__a) for extractor in cls.extractors.values() if issubclass(__a , __a) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __a , __a = False) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = cls.infer_extractor_format(__a) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __a) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__a , __a) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a): return extractor_format @classmethod def UpperCAmelCase ( cls , __a , __a , __a = None , __a = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a) , exist_ok=__a) # Prevent parallel extractions _UpperCamelCase = str(Path(__a).with_suffix('''.lock''')) with FileLock(__a): shutil.rmtree(__a , ignore_errors=__a) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__a , __a) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a): return extractor.extract(__a , __a)
100
1
"""simple docstring""" # Lint as: python3 import itertools import os import re A : Dict = re.compile(R"([A-Z]+)([A-Z][a-z])") A : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") A : Any = re.compile(R"(?<!_)_(?!_)") A : List[Any] = re.compile(R"(_{2,})") A : Union[str, Any] = R"^\w+(\.\w+)*$" A : Union[str, Any] = R"<>:/\|?*" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = _uppercase_uppercase_re.sub(R"\1_\2" , _UpperCamelCase ) __lowerCAmelCase = _lowercase_uppercase_re.sub(R"\1_\2" , _UpperCamelCase ) return name.lower() def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = _single_underscore_re.split(_UpperCamelCase ) __lowerCAmelCase = [_multiple_underscores_re.split(_UpperCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_UpperCamelCase ) if n != "" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if os.path.basename(_UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if os.path.basename(_UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , _UpperCamelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(_UpperCamelCase )}-{split}" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = filename_prefix_for_split(_UpperCamelCase , _UpperCamelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" __lowerCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) return f"{filepath}*" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = filename_prefix_for_split(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) if shard_lengths: __lowerCAmelCase = len(_UpperCamelCase ) __lowerCAmelCase = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_UpperCamelCase )] if filetype_suffix: __lowerCAmelCase = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: __lowerCAmelCase = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
57
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if hor == 1_28: A_ : List[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Tuple = (32, 1_28, 2_56) A_ : Optional[int] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A_ : Union[str, Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A_ : Any = (32, 64, 1_28, 2_56) A_ : int = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A_ : List[str] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A_ : List[Any] = model.state_dict() A_ : List[str] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[Any] = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : Optional[int] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Any = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A_ : Union[str, Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A_ : List[Any] = model A_ : Union[str, Any] = UNetaDModel(**__lowercase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A_ : Optional[int] = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A_ : List[str] = state_dict.pop(__lowercase ) hf_value_function.load_state_dict(__lowercase ) torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f: json.dump(__lowercase ,__lowercase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
140
0
"""simple docstring""" from __future__ import annotations import requests __lowerCAmelCase : Dict =set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "new" , lowerCAmelCase__ :list | None = None ) -> dict: '''simple docstring''' lowercase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase__ ) - valid_terms ) ): lowercase = f'Invalid search term: {invalid_search_terms}' raise ValueError(lowerCAmelCase__ ) lowercase = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase__ )} lowercase = {} for id_ in range(lowerCAmelCase__ ): lowercase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( A_ ): a__ : torch.FloatTensor a__ : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Tuple=0.999 , snake_case_ : Optional[Any]="cosine" , ) -> Any: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ = [] for i in range(__lowerCamelCase ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ) , __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase , dtype=torch.floataa ) class __A ( A_ , A_ ): @register_to_config def __init__(self : str , __a : int = 1000 , __a : str = "fixed_small_log" , __a : bool = True , __a : Optional[float] = 1.0 , __a : str = "epsilon" , __a : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase_ = betas_for_alpha_bar(snake_case__ ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase_ = 1.0 # setable values UpperCAmelCase_ = None UpperCAmelCase_ = torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) UpperCAmelCase_ = variance_type def _lowercase (self : int , __a : torch.FloatTensor , __a : Optional[int] = None ): return sample def _lowercase (self : Optional[int] , __a : int , __a : Union[str, torch.device] = None ): UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase_ = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase_ = torch.from_numpy(snake_case__ ).to(snake_case__ ) def _lowercase (self : Optional[int] , __a : Dict , __a : Union[str, Any]=None , __a : Optional[Any]=None , __a : Tuple=None ): if prev_timestep is None: UpperCAmelCase_ = t - 1 UpperCAmelCase_ = self.alphas_cumprod[t] UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ = self.betas[t] else: UpperCAmelCase_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase_ = torch.log(torch.clamp(snake_case__ , min=1E-20 ) ) UpperCAmelCase_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase_ = variance.log() UpperCAmelCase_ = beta.log() UpperCAmelCase_ = (predicted_variance + 1) / 2 UpperCAmelCase_ = frac * max_log + (1 - frac) * min_log return variance def _lowercase (self : List[str] , __a : torch.FloatTensor , __a : int , __a : torch.FloatTensor , __a : Optional[int] = None , __a : int=None , __a : bool = True , ): UpperCAmelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase_ = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: UpperCAmelCase_ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase_ = t - 1 UpperCAmelCase_ = self.alphas_cumprod[t] UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ = self.betas[t] UpperCAmelCase_ = self.alphas[t] else: UpperCAmelCase_ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ = torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ = 0 if t > 0: UpperCAmelCase_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) UpperCAmelCase_ = self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase_ = variance elif self.variance_type == "learned_range": UpperCAmelCase_ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase_ = variance * variance_noise UpperCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _lowercase (self : Dict , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.IntTensor , ): UpperCAmelCase_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase_ = timesteps.to(original_samples.device ) UpperCAmelCase_ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
1
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"text": Value("string" )} ) snake_case_ = Features({"summary": Value("string" )} ) snake_case_ = "text" snake_case_ = "summary" @property def lowerCAmelCase ( self : List[str] )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
357
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None _lowercase : Optional[int] = namedtuple("CoinsDistribResult", "moves excess") def snake_case_ ( __SCREAMING_SNAKE_CASE : TreeNode | None ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__SCREAMING_SNAKE_CASE ) != count_coins(__SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase_ , lowercase_ : Tuple = get_distrib(node.left ) lowercase_ , lowercase_ : Dict = get_distrib(node.right ) lowercase_ : Dict = 1 - left_distrib_excess lowercase_ : Optional[int] = 1 - right_distrib_excess lowercase_ : Tuple = ( left_distrib_moves + right_distrib_moves + abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return get_distrib(__SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
93
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : List[Any] = '''AutoImageProcessor''' _UpperCAmelCase : Dict = '''AutoTokenizer''' def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Union[str, Any] = kwargs.pop('feature_extractor') __lowerCamelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.image_processor __lowerCamelCase : Optional[int] = False def __call__( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = kwargs.pop('images' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = kwargs.pop('text' ,SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __lowerCamelCase : int = args[0] __lowerCamelCase : List[str] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: __lowerCamelCase : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None: __lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase : Optional[Any] = encodings['input_ids'] return inputs def lowerCAmelCase ( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Any): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @contextmanager def lowerCAmelCase ( self : Tuple): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.') __lowerCamelCase : List[Any] = True __lowerCamelCase : str = self.tokenizer yield __lowerCamelCase : Tuple = self.image_processor __lowerCamelCase : Tuple = False def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : List[Any]=None): if added_vocab is None: __lowerCamelCase : str = self.tokenizer.get_added_vocab() __lowerCamelCase : Union[str, Any] = {} while tokens: __lowerCamelCase : Tuple = re.search(R'<s_(.*?)>' ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) if start_token is None: break __lowerCamelCase : Dict = start_token.group(1) __lowerCamelCase : List[str] = re.search(RF"</s_{key}>" ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) __lowerCamelCase : Optional[int] = start_token.group() if end_token is None: __lowerCamelCase : List[Any] = tokens.replace(SCREAMING_SNAKE_CASE__ ,'') else: __lowerCamelCase : Tuple = end_token.group() __lowerCamelCase : int = re.escape(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = re.escape(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = re.search(F"{start_token_escaped}(.*?){end_token_escaped}" ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) if content is not None: __lowerCamelCase : List[Any] = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCamelCase : str = self.tokenajson(SCREAMING_SNAKE_CASE__ ,is_inner_value=SCREAMING_SNAKE_CASE__ ,added_vocab=SCREAMING_SNAKE_CASE__) if value: if len(SCREAMING_SNAKE_CASE__) == 1: __lowerCamelCase : Tuple = value[0] __lowerCamelCase : int = value else: # leaf nodes __lowerCamelCase : Tuple = [] for leaf in content.split(R'<sep/>'): __lowerCamelCase : List[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCamelCase : str = leaf[1:-2] # for categorical special tokens output[key].append(SCREAMING_SNAKE_CASE__) if len(output[key]) == 1: __lowerCamelCase : Dict = output[key][0] __lowerCamelCase : Dict = tokens[tokens.find(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=SCREAMING_SNAKE_CASE__ ,added_vocab=SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCAmelCase ( self : List[str]): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor_class @property def lowerCAmelCase ( self : List[Any]): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor
73
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)]) def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' _UpperCAmelCase : List[str] =GenerationConfig( do_sample=snake_case , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case , config_name=snake_case) _UpperCAmelCase : str =GenerationConfig.from_pretrained(snake_case , config_name=snake_case) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , snake_case) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , snake_case) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple =AutoConfig.from_pretrained('gpt2') _UpperCAmelCase : Optional[int] =GenerationConfig.from_model_config(snake_case) _UpperCAmelCase : str =GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(snake_case , snake_case) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =GenerationConfig() _UpperCAmelCase : Any ={ 'max_new_tokens': 1_0_2_4, 'foo': 'bar', } _UpperCAmelCase : Dict =copy.deepcopy(snake_case) _UpperCAmelCase : Tuple =generation_config.update(**snake_case) # update_kwargs was not modified (no side effects) self.assertEqual(snake_case , snake_case) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(snake_case , {'foo': 'bar'}) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =GenerationConfig() _UpperCAmelCase : Dict ='bar' with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir: generation_config.save_pretrained(snake_case) _UpperCAmelCase : Optional[int] =GenerationConfig.from_pretrained(snake_case) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar') _UpperCAmelCase : List[Any] =GenerationConfig.from_model_config(snake_case) assert not hasattr(snake_case , 'foo') # no new kwargs should be initialized if from config def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Any =GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , snake_case) self.assertEqual(default_config.num_beams , 1) _UpperCAmelCase : str =GenerationConfig( do_sample=snake_case , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , snake_case) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case) _UpperCAmelCase : str =GenerationConfig.from_pretrained(snake_case , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , snake_case) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def lowerCAmelCase ( cls) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] =TOKEN HfFolder.save_token(snake_case) @classmethod def lowerCAmelCase ( cls) -> Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org') except HTTPError: pass def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] =GenerationConfig( do_sample=snake_case , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token) _UpperCAmelCase : Dict =GenerationConfig.from_pretrained(f"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case)) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case , repo_id='test-generation-config' , push_to_hub=snake_case , use_auth_token=self._token) _UpperCAmelCase : Any =GenerationConfig.from_pretrained(f"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case)) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : str =GenerationConfig( do_sample=snake_case , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token) _UpperCAmelCase : Union[str, Any] =GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case , repo_id='valid_org/test-generation-config-org' , push_to_hub=snake_case , use_auth_token=self._token) _UpperCAmelCase : Union[str, Any] =GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case))
371
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Dict ='ZinengTang/tvlt-base' _UpperCAmelCase : Dict =tempfile.mkdtemp() def lowerCAmelCase ( self , **snake_case) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case) def lowerCAmelCase ( self , **snake_case) -> Dict: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case) def lowerCAmelCase ( self) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.get_image_processor() _UpperCAmelCase : Optional[Any] =self.get_feature_extractor() _UpperCAmelCase : str =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase : str =TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , snake_case) self.assertIsInstance(processor.image_processor , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str =self.get_image_processor() _UpperCAmelCase : List[Any] =self.get_feature_extractor() _UpperCAmelCase : str =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Optional[int] =np.ones([1_2_0_0_0]) _UpperCAmelCase : str =feature_extractor(snake_case , return_tensors='np') _UpperCAmelCase : Dict =processor(audio=snake_case , return_tensors='np') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Dict =self.get_image_processor() _UpperCAmelCase : int =self.get_feature_extractor() _UpperCAmelCase : int =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Union[str, Any] =np.ones([3, 2_2_4, 2_2_4]) _UpperCAmelCase : Optional[Any] =image_processor(snake_case , return_tensors='np') _UpperCAmelCase : List[Any] =processor(images=snake_case , return_tensors='np') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] =self.get_image_processor() _UpperCAmelCase : Dict =self.get_feature_extractor() _UpperCAmelCase : Optional[int] =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Optional[int] =np.ones([1_2_0_0_0]) _UpperCAmelCase : str =np.ones([3, 2_2_4, 2_2_4]) _UpperCAmelCase : Optional[int] =processor(audio=snake_case , images=snake_case) self.assertListEqual(list(inputs.keys()) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask']) # test if it raises when no input is passed with pytest.raises(snake_case): processor() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.get_image_processor() _UpperCAmelCase : Tuple =self.get_feature_extractor() _UpperCAmelCase : Dict =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
242
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Dict = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __lowercase : str = '''CIDAS/clipseg-rd64-refined''' __lowercase : List[Any] = '''image_segmenter''' __lowercase : str = CLIPSegForImageSegmentation __lowercase : Dict = ['''image''', '''text'''] __lowercase : Union[str, Any] = ['''image'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""vision"""]) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): return self.pre_processor(text=[label] , images=[image] , padding=lowerCAmelCase__ , return_tensors="""pt""") def snake_case_ ( self , lowerCAmelCase__): with torch.no_grad(): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__).logits return logits def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = outputs.cpu().detach().numpy() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
100
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) @add_end_docstrings( __a , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__) else: raise ValueError("""Unsupported framework""") return masked_index def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.get_masked_index(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.prod(masked_index.shape) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ ( self , lowerCAmelCase__): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__): if return_tensors is None: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) self.ensure_exactly_one_mask_token(lowerCAmelCase__) return model_inputs def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""] return model_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE = target_ids.shape[0] __SCREAMING_SNAKE_CASE = model_outputs["""input_ids"""][0] __SCREAMING_SNAKE_CASE = model_outputs["""logits"""] if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __SCREAMING_SNAKE_CASE = outputs.numpy() __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = stable_softmax(lowerCAmelCase__ , axis=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0) , target_ids.reshape(-1 , 1)) __SCREAMING_SNAKE_CASE = tf.expand_dims(lowerCAmelCase__ , 0) __SCREAMING_SNAKE_CASE = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = probs[..., target_ids] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = probs.topk(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __SCREAMING_SNAKE_CASE = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE = target_ids[p].tolist() __SCREAMING_SNAKE_CASE = p # Filter padding out: __SCREAMING_SNAKE_CASE = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p]), """sequence""": sequence} row.append(lowerCAmelCase__) result.append(lowerCAmelCase__) if single_mask: return result[0] return result def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [targets] try: __SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] for target in targets: __SCREAMING_SNAKE_CASE = vocab.get(lowerCAmelCase__ , lowerCAmelCase__) if id_ is None: __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )["""input_ids"""] if len(lowerCAmelCase__) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""") continue __SCREAMING_SNAKE_CASE = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) __SCREAMING_SNAKE_CASE = list(set(lowerCAmelCase__)) if len(lowerCAmelCase__) == 0: raise ValueError("""At least one target must be provided when passed.""") __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase__) return target_ids def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = {} if targets is not None: __SCREAMING_SNAKE_CASE = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""") return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs
100
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ): if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) lowerCAmelCase : Tuple = number_of_bytes // partitions lowerCAmelCase : str = [] for i in range(_snake_case ): lowerCAmelCase : List[str] = i * bytes_per_partition + 1 lowerCAmelCase : str = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
import math import sys def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = '' try: with open(__A , '''rb''' ) as binary_file: snake_case__ : int = binary_file.read() for dat in data: snake_case__ : Dict = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : List[Any] = {'0': '0', '1': '1'} snake_case__ : Dict = '', '' snake_case__ : Optional[Any] = len(__A ) for i in range(len(__A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case__ : str = lexicon[curr_string] result += last_match_id snake_case__ : List[Any] = last_match_id + '0' if math.loga(__A ).is_integer(): snake_case__ : List[Any] = {} for curr_key in list(__A ): snake_case__ : Tuple = lexicon.pop(__A ) snake_case__ : List[Any] = new_lex snake_case__ : str = last_match_id + '1' index += 1 snake_case__ : int = '' return result def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Any = 8 try: with open(__A , '''wb''' ) as opened_file: snake_case__ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__A ) , __A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 snake_case__ : Any = data_bits[counter:] snake_case__ : List[Any] = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ : Dict = read_file_binary(__A ) snake_case__ : Any = remove_prefix(__A ) snake_case__ : Dict = decompress_data(__A ) write_file_binary(__A , __A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
230
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = 'T5Config' def SCREAMING_SNAKE_CASE_ ( __A : jnp.array , __A : int , __A : int ) -> jnp.ndarray: """simple docstring""" a_ : Dict = jnp.zeros_like(__A ) a_ : Dict = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) a_ : str = shifted_input_ids.at[:, 0].set(__A ) a_ : int = jnp.where(shifted_input_ids == -1_00 , __A , __A ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[Any] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[str] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mt5''' snake_case__ : Union[str, Any] = MTaConfig
32
0
def lowerCamelCase_ (UpperCamelCase__ : list[int] ): _UpperCAmelCase : Tuple = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if numbers[j] < numbers[i]: _UpperCAmelCase : Optional[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase :List[Any] = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase :Optional[int] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
358
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase :Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
68
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__snake_case ): _a : Any= ["transformers", "torch", "note_seq"] def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(self ,["""transformers""", """torch""", """note_seq"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""transformers""", """torch""", """note_seq"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""transformers""", """torch""", """note_seq"""] )
20
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if return_pvalue: A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
3
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __A = logging.get_logger(__name__) __A = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class __lowerCAmelCase ( a__ ): """simple docstring""" snake_case_ = '''van''' def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=3 , lowerCamelCase__=[7, 3, 3, 3] , lowerCamelCase__=[4, 2, 2, 2] , lowerCamelCase__=[64, 128, 320, 512] , lowerCamelCase__=[3, 3, 12, 3] , lowerCamelCase__=[8, 8, 4, 4] , lowerCamelCase__="gelu" , lowerCamelCase__=0.02 , lowerCamelCase__=1e-6 , lowerCamelCase__=1e-2 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = mlp_ratios __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = layer_scale_init_value __lowerCamelCase = drop_path_rate __lowerCamelCase = dropout_rate
354
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase ,__UpperCAmelCase ) def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase__(__snake_case ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = {} for old_key in state_dict.keys(): lowerCamelCase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase__ = key.replace('''moe_layer.experts.0''' ,F'ffn.experts.expert_{expert_idx}' ) else: lowerCamelCase__ = key.replace('''moe_layer.experts.''' ,'''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase__ = key.replace('''.moe_layer.gate.wg''' ,'''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase__ = key.replace('''.fc2.''' ,'''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase__ = key.replace('''.fc1.''' ,'''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase__ = key.replace('''.encoder_attn.''' ,'''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase__ = key.replace('''encoder_attn_layer_norm''' ,'''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase__ = key.replace('''final_layer_norm''' ,'''ff_layer_norm''' ) lowerCamelCase__ = state_dict[old_key] return new_dict def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case = WEIGHTS_NAME ) -> int: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = 0 os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) for expert in range(__UpperCAmelCase ): lowerCamelCase__ = switch_checkpoint_path + F'-rank-{expert}.pt' if os.path.isfile(__UpperCAmelCase ): lowerCamelCase__ = torch.load(__UpperCAmelCase )["""model"""] remove_ignore_keys_(__UpperCAmelCase ) lowerCamelCase__ = rename_fairseq_keys(__UpperCAmelCase ,__UpperCAmelCase ) lowerCamelCase__ = os.path.join( __UpperCAmelCase ,weights_name.replace('''.bin''' ,F'-{len(__UpperCAmelCase )+1:05d}-of-???.bin' ) ) torch.save(__UpperCAmelCase ,__UpperCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__UpperCAmelCase )[0]].dtype ) # Add the last block lowerCamelCase__ = os.path.join(__UpperCAmelCase ,weights_name.replace('''.bin''' ,F'-{len(__UpperCAmelCase )+1:05d}-of-???.bin' ) ) lowerCamelCase__ = torch.load(switch_checkpoint_path + '''-shared.pt''' )["""model"""] remove_ignore_keys_(__UpperCAmelCase ) lowerCamelCase__ = rename_fairseq_keys(__UpperCAmelCase ,__UpperCAmelCase ) lowerCamelCase__ = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__UpperCAmelCase ) == 1: lowerCamelCase__ = os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) torch.save(__UpperCAmelCase ,__UpperCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__UpperCAmelCase ,__UpperCAmelCase ) # Otherwise, let's build the index lowerCamelCase__ = {} for idx, shard in enumerate(__UpperCAmelCase ): lowerCamelCase__ = weights_name.replace('''.bin''' ,F'-{idx+1:05d}-of-{len(__UpperCAmelCase ):05d}.bin' ) lowerCamelCase__ = os.path.join(__UpperCAmelCase ,weights_name.replace('''.bin''' ,F'-{idx+1:05d}-of-???.bin' ) ) os.rename(__UpperCAmelCase ,os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) ) for key in shard: lowerCamelCase__ = shard_file # Add the metadata lowerCamelCase__ = {"""total_size""": total_size} lowerCamelCase__ = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) ,'''w''' ,encoding='''utf-8''' ) as f: lowerCamelCase__ = json.dumps(__UpperCAmelCase ,indent=2 ,sort_keys=__UpperCAmelCase ) + """\n""" f.write(__UpperCAmelCase ) return metadata, index if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _a = parser.parse_args() _a , _a = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _a = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
209
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase_ ( __UpperCAmelCase ) -> tuple: return (data["data"], data["target"]) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: lowerCAmelCase__ : List[Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__UpperCAmelCase , __UpperCAmelCase ) # Predict target for test data lowerCAmelCase__ : Dict = xgb.predict(__UpperCAmelCase ) lowerCAmelCase__ : Any = predictions.reshape(len(__UpperCAmelCase ) , 1 ) return predictions def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[Any] = fetch_california_housing() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = data_handling(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = train_test_split( __UpperCAmelCase , __UpperCAmelCase , test_size=0.25 , random_state=1 ) lowerCAmelCase__ : Optional[Any] = xgboost(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(__UpperCAmelCase , __UpperCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(__UpperCAmelCase , __UpperCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
242
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase ) for i, tensor in enumerate(__lowerCAmelCase ): if padding_side == "right": if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE__ : Any = tensor[:sequence_length] else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE__ : List[Any] = tensor[:sequence_length] return out_tensor.tolist() def _lowercase ( __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = ord(__lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True SCREAMING_SNAKE_CASE__ : List[Any] = unicodedata.category(__lowerCAmelCase ) if cat.startswith("""P""" ): return True return False @dataclass class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :PreTrainedTokenizerBase _SCREAMING_SNAKE_CASE :Union[bool, str, PaddingStrategy] = True _SCREAMING_SNAKE_CASE :Optional[int] = None _SCREAMING_SNAKE_CASE :Optional[int] = None _SCREAMING_SNAKE_CASE :int = -1_00 _SCREAMING_SNAKE_CASE :str = "pt" def _a ( self , _a ) -> int: """simple docstring""" import torch SCREAMING_SNAKE_CASE__ : Tuple = """label""" if """label""" in features[0].keys() else """labels""" SCREAMING_SNAKE_CASE__ : int = [feature[label_name] for feature in features] if label_name in features[0].keys() else None SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(batch["""entity_ids"""] ).shape[1] SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.padding_side if padding_side == "right": SCREAMING_SNAKE_CASE__ : Any = [ list(_a ) + [self.label_pad_token_id] * (sequence_length - len(_a )) for label in labels ] else: SCREAMING_SNAKE_CASE__ : List[str] = [ [self.label_pad_token_id] * (sequence_length - len(_a )) + list(_a ) for label in labels ] SCREAMING_SNAKE_CASE__ : List[str] = [feature["""ner_tags"""] for feature in features] SCREAMING_SNAKE_CASE__ : List[str] = padding_tensor(_a , -1 , _a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = [feature["""original_entity_spans"""] for feature in features] SCREAMING_SNAKE_CASE__ : Tuple = padding_tensor(_a , (-1, -1) , _a , _a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {k: torch.tensor(_a , dtype=torch.intaa ) for k, v in batch.items()} return batch
56
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a :Dict = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :List[str] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = 1 , _lowercase = 1 , _lowercase = 1.0e4 , _lowercase = False , _lowercase = 1.0 , ) -> Dict: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' UpperCAmelCase : Optional[int] = float(embedding_dim // 2 ) UpperCAmelCase : Optional[Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase : str = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase : int = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings UpperCAmelCase : List[str] = scale * emb if flip_sin_to_cos: UpperCAmelCase : Optional[int] = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: UpperCAmelCase : Optional[Any] = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) UpperCAmelCase : Dict = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class UpperCamelCase_ ( nn.Module ): lowercase = 32 lowercase = jnp.floataa @nn.compact def __call__( self , A ) -> str: UpperCAmelCase : Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(__lowerCamelCase ) UpperCAmelCase : Union[str, Any] = nn.silu(__lowerCamelCase ) UpperCAmelCase : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(__lowerCamelCase ) return temb class UpperCamelCase_ ( nn.Module ): lowercase = 32 lowercase = False lowercase = 1 @nn.compact def __call__( self , A ) -> List[str]: return get_sinusoidal_embeddings( __lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
265
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = (boundary[1] - boundary[0]) / steps _UpperCAmelCase = boundary[0] _UpperCAmelCase = boundary[1] _UpperCAmelCase = make_points(_A , _A , _A ) _UpperCAmelCase = 0.0 y += (h / 2.0) * f(_A ) for i in x_i: # print(i) y += h * f(_A ) y += (h / 2.0) * f(_A ) return y def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = a + h while x < (b - h): yield x _UpperCAmelCase = x + h def lowercase ( _SCREAMING_SNAKE_CASE : int ): # enter your function here '''simple docstring''' _UpperCAmelCase = (x - 0) * (x - 0) return y def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 0.0 # Lower bound of integration _UpperCAmelCase = 1.0 # Upper bound of integration _UpperCAmelCase = 10.0 # define number of steps or resolution _UpperCAmelCase = [a, b] # define boundary of integration _UpperCAmelCase = method_a(_A , _A ) print(f'y = {y}' ) if __name__ == "__main__": main()
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase_ ( __UpperCAmelCase ) -> Dict: def decorator(__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , SCREAMING_SNAKE_CASE_ ) return func return decorator def lowercase_ ( *__UpperCAmelCase ) -> Any: def decorator(__UpperCAmelCase ): lowerCAmelCase__ : Any = getattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , SCREAMING_SNAKE_CASE_ ) return func return decorator class _lowerCamelCase ( a_ ): def __new__( cls : int , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = super().__new__(cls , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if not hasattr(UpperCamelCase , """key_handler""" ): setattr(UpperCamelCase , """key_handler""" , {} ) setattr(UpperCamelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): lowerCAmelCase__ : int = getattr(UpperCamelCase , """handle_key""" , [] ) for key in handled_keys: lowerCAmelCase__ : List[str] = value return new_cls @staticmethod def _lowerCAmelCase ( cls : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = get_character() if char != KEYMAP["undefined"]: lowerCAmelCase__ : Union[str, Any] = ord(UpperCamelCase ) lowerCAmelCase__ : Dict = cls.key_handler.get(UpperCamelCase ) if handler: lowerCAmelCase__ : Dict = char return handler(cls ) else: return None def lowercase_ ( cls ) -> Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
242
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = CLIPConfig __lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(lowercase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(lowercase ): A__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) A__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) A__ = cosine_distance(lowercase , self.special_care_embeds ) A__ = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
68
0
'''simple docstring''' def a_ ( __snake_case : str ) -> bool: """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def a_ ( __snake_case : str ) -> bool: """simple docstring""" lowerCamelCase_ =credit_card_number lowerCamelCase_ =0 lowerCamelCase_ =len(__snake_case ) - 2 for i in range(__snake_case , -1 , -2 ): # double the value of every second digit lowerCamelCase_ =int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCamelCase_ =cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__snake_case ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def a_ ( __snake_case : str ) -> bool: """simple docstring""" lowerCamelCase_ =F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(__snake_case ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(__snake_case ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__snake_case ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
6
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
0
def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] = 10_00 ): __UpperCamelCase : int = 1, 1 __UpperCamelCase : Optional[Any] = 2 while True: __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Optional[Any] = fa + fa __UpperCamelCase : Dict = fa, f index += 1 for _ in str(lowerCamelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
368
def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00 ): __UpperCamelCase : Tuple = n * (n + 1) * (2 * n + 1) / 6 __UpperCamelCase : List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
171
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def A_ ( self : Dict ): super().setUp() # fmt: off snake_case_ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) def A_ ( self : List[str] , **lowercase_ : Optional[Any] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : int , lowercase_ : Any ): snake_case_ = '''tester''' snake_case_ = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def A_ ( self : Union[str, Any] ): pass def A_ ( self : int ): snake_case_ = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): snake_case_ = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) snake_case_ = tokenizer.encode([special_token] , add_special_tokens=lowercase_ ) self.assertEqual(len(lowercase_ ) , 1 ) snake_case_ = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertTrue(special_token not in decoded ) def A_ ( self : Any ): snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): snake_case_ ,snake_case_ = self.get_input_output_texts(lowercase_ ) snake_case_ = tokenizer.tokenize(lowercase_ ) snake_case_ = tokenizer.convert_tokens_to_ids(lowercase_ ) snake_case_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertNotEqual(len(lowercase_ ) , 0 ) snake_case_ = tokenizer.decode(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , lowercase_ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def A_ ( self : Tuple ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def A_ ( self : Tuple ): pass
56
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=_lowerCamelCase ): snake_case_ = ["transformers", "torch", "note_seq"] def __init__( self : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : int ): requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A_ ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A_ ( cls : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
56
1
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) a_ = 'CIDAS/clipseg-rd64-refined' a_ = 'image_segmenter' a_ = CLIPSegForImageSegmentation a_ = ['image', 'text'] a_ = ['image'] def __init__( self : List[str] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ['vision'] ) super().__init__(*_a , **_a ) def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: return self.pre_processor(text=[label] , images=[image] , padding=_a , return_tensors='pt' ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Any: with torch.no_grad(): __lowerCAmelCase = self.model(**_a ).logits return logits def lowercase ( self : Dict , lowerCAmelCase_ : List[str] ) -> Optional[int]: __lowerCAmelCase = outputs.cpu().detach().numpy() __lowerCAmelCase = 0 __lowerCAmelCase = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
361
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[str] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : int=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = ViTConfig() __lowerCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowerCAmelCase = True __lowerCAmelCase = int(vit_name[-12:-10] ) __lowerCAmelCase = int(vit_name[-9:-6] ) else: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = int(vit_name[-6:-4] ) __lowerCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): __lowerCAmelCase = 192 __lowerCAmelCase = 768 __lowerCAmelCase = 12 __lowerCAmelCase = 3 elif vit_name[9:].startswith('small' ): __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 else: pass else: if vit_name[4:].startswith('small' ): __lowerCAmelCase = 768 __lowerCAmelCase = 2304 __lowerCAmelCase = 8 __lowerCAmelCase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif vit_name[4:].startswith('huge' ): __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 # load original model from timm __lowerCAmelCase = timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowerCAmelCase = ViTModel(lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowerCAmelCase = DeiTImageProcessor(size=config.image_size ) else: __lowerCAmelCase = ViTImageProcessor(size=config.image_size ) __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_, outputs.pooler_output, atol=1E-3 ) else: __lowerCAmelCase = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _snake_case : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
207
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Union[str, Any]=30 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : int=10 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : List[str]=0.6 , UpperCamelCase__ : Dict=None , ) -> str: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = mask_ratio __magic_name__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected sequence length = num_patches __magic_name__ = (self.image_size // self.patch_size) ** 2 __magic_name__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ = 1 __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) __magic_name__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = TFViTMAEModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = outputs_dict[0].numpy() __magic_name__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase__ : int ): __magic_name__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase__ ): __magic_name__ = v.numpy() else: __magic_name__ = np.array(UpperCamelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = prepare_numpy_arrays(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.constant(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ = tf_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCamelCase__ , UpperCamelCase__ ),) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase__ , """_keras_serializable""" , UpperCamelCase__ ) } __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.convert_to_tensor(UpperCamelCase__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ = main_layer_class(UpperCamelCase__ ) __magic_name__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ = tf.keras.Model(UpperCamelCase__ , outputs=main_layer(UpperCamelCase__ ) ) __magic_name__ = model(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """keras_model.h5""" ) model.save(UpperCamelCase__ ) __magic_name__ = tf.keras.models.load_model( UpperCamelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase__ , tf.keras.Model ) __magic_name__ = model(UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = outputs.last_hidden_state.numpy() __magic_name__ = 0 else: __magic_name__ = outputs.logits.numpy() __magic_name__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) __magic_name__ = model_class.from_pretrained(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = after_outputs["""last_hidden_state"""].numpy() __magic_name__ = 0 else: __magic_name__ = after_outputs["""logits"""].numpy() __magic_name__ = 0 __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase__ ) __magic_name__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ = model_class.from_config(model.config ) __magic_name__ = new_model(UpperCamelCase__ ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ = new_model(UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @slow def _lowercase ( self : Any ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowercase ( self : Dict ) -> int: """simple docstring""" np.random.seed(2 ) __magic_name__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ = ViTMAEConfig() __magic_name__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) # verify the logits __magic_name__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __magic_name__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
88
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE :List[str] = get_logger(__name__) class UpperCAmelCase ( enum.Enum ): '''simple docstring''' snake_case_ = "all_checks" snake_case_ = "basic_checks" snake_case_ = "no_checks" class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCAmelCase ( a_ , a_ , a_=None ) -> Optional[Any]: """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(a_ ) - set(a_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(a_ ) - set(a_ ) ) ) if len(set(a_ ) - set(a_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(a_ ) - set(a_ ) ) ) __A = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __A = " for " + verification_name if verification_name is not None else "" if len(a_ ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(a_ ) - set(a_ ) ) > 0: raise ExpectedMoreSplits(str(set(a_ ) - set(a_ ) ) ) if len(set(a_ ) - set(a_ ) ) > 0: raise UnexpectedSplits(str(set(a_ ) - set(a_ ) ) ) __A = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(a_ ) > 0: raise NonMatchingSplitsSizesError(str(a_ ) ) logger.info("All the splits matched successfully." ) def UpperCAmelCase ( a_ , a_ = True ) -> dict: """simple docstring""" if record_checksum: __A = shaaaa() with open(a_ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"" ): m.update(a_ ) __A = m.hexdigest() else: __A = None return {"num_bytes": os.path.getsize(a_ ), "checksum": checksum} def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
124
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase ( a_ ) -> None: """simple docstring""" __A , __A = analyze_text(a_ ) __A = list(" " + ascii_lowercase ) # what is our total sum of probabilities. __A = sum(single_char_strings.values() ) # one length string __A = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __A = single_char_strings[ch] __A = my_str / all_sum my_fir_sum += prob * math.loga(a_ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __A = sum(two_char_strings.values() ) __A = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __A = cha + cha if sequence in two_char_strings: __A = two_char_strings[sequence] __A = int(a_ ) / all_sum my_sec_sum += prob * math.loga(a_ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def UpperCAmelCase ( a_ ) -> tuple[dict, dict]: """simple docstring""" __A = Counter() # type: ignore __A = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
124
1
def __lowerCAmelCase ( a__ ) -> bool: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def __lowerCAmelCase ( a__ ) -> bool: __a = credit_card_number __a = 0 __a = len(a__ ) - 2 for i in range(a__ , -1 , -2 ): # double the value of every second digit __a = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __a = cc_number[:i] + str(a__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __lowerCAmelCase ( a__ ) -> bool: __a = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(a__ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(a__ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(a__ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
6
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
1
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase__ = logging.get_logger(__name__) class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : int ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Any = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__lowerCAmelCase ) ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : int = [sequences] _lowerCamelCase : Union[str, Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__lowerCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_lowercase) class __snake_case ( _lowercase): def __init__( self : Union[str, Any] , __lowerCAmelCase : str=ZeroShotClassificationArgumentHandler() , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = args_parser super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[Any]=TruncationStrategy.ONLY_FIRST , **__lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) _lowerCamelCase : Optional[Any] = self.tokenizer.eos_token try: _lowerCamelCase : Any = self.tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , ) except Exception as e: if "too short" in str(__lowerCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _lowerCamelCase : Dict = self.tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def SCREAMING_SNAKE_CASE ( self : str , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" if kwargs.get('''multi_class''' , __lowerCAmelCase ) is not None: _lowerCamelCase : List[Any] = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) _lowerCamelCase : List[Any] = {} if "candidate_labels" in kwargs: _lowerCamelCase : Any = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: _lowerCamelCase : Optional[Any] = kwargs['''hypothesis_template'''] _lowerCamelCase : Optional[Any] = {} if "multi_label" in kwargs: _lowerCamelCase : Union[str, Any] = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self : Any , __lowerCAmelCase : Union[str, List[str]] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple , ): """simple docstring""" if len(__lowerCAmelCase ) == 0: pass elif len(__lowerCAmelCase ) == 1 and "candidate_labels" not in kwargs: _lowerCamelCase : Tuple = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : int="This example is {}." ): """simple docstring""" _lowerCamelCase : Any = self._args_parser(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): _lowerCamelCase : Tuple = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__lowerCAmelCase ) - 1, **model_input, } def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : List[str] = inputs['''candidate_label'''] _lowerCamelCase : List[str] = inputs['''sequence'''] _lowerCamelCase : Any = {k: inputs[k] for k in self.tokenizer.model_input_names} _lowerCamelCase : str = self.model(**__lowerCAmelCase ) _lowerCamelCase : Tuple = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=False ): """simple docstring""" _lowerCamelCase : List[str] = [outputs['''candidate_label'''] for outputs in model_outputs] _lowerCamelCase : Optional[int] = [outputs['''sequence'''] for outputs in model_outputs] _lowerCamelCase : Any = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) _lowerCamelCase : Optional[int] = logits.shape[0] _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) _lowerCamelCase : List[str] = N // n _lowerCamelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__lowerCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _lowerCamelCase : Optional[int] = self.entailment_id _lowerCamelCase : Optional[Any] = -1 if entailment_id == 0 else 0 _lowerCamelCase : List[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] _lowerCamelCase : str = np.exp(__lowerCAmelCase ) / np.exp(__lowerCAmelCase ).sum(-1 , keepdims=__lowerCAmelCase ) _lowerCamelCase : Tuple = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _lowerCamelCase : Any = reshaped_outputs[..., self.entailment_id] _lowerCamelCase : Tuple = np.exp(__lowerCAmelCase ) / np.exp(__lowerCAmelCase ).sum(-1 , keepdims=__lowerCAmelCase ) _lowerCamelCase : List[Any] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
358
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def snake_case_ ( A_ : str, A_ : Tuple, A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = state_dict.pop(A_ ) _lowerCamelCase : Union[str, Any] = val def snake_case_ ( A_ : Any ): '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCamelCase : List[Any] = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) _lowerCamelCase : int = value else: _lowerCamelCase : List[str] = value return new_state_dict def snake_case_ ( A_ : Optional[int], A_ : List[str]=False ): '''simple docstring''' _lowerCamelCase : Any = '''''' if is_panoptic: _lowerCamelCase : Optional[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _lowerCamelCase : Dict = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[:2_56, :] _lowerCamelCase : int = in_proj_bias[:2_56] _lowerCamelCase : str = in_proj_weight[2_56:5_12, :] _lowerCamelCase : Optional[Any] = in_proj_bias[2_56:5_12] _lowerCamelCase : List[Any] = in_proj_weight[-2_56:, :] _lowerCamelCase : List[str] = in_proj_bias[-2_56:] def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Any = Image.open(requests.get(A_, stream=A_ ).raw ) return im @torch.no_grad() def snake_case_ ( A_ : Optional[Any], A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _lowerCamelCase : Union[str, Any] = '''resnet101''' if "dc5" in model_name: _lowerCamelCase : Optional[int] = True _lowerCamelCase : Tuple = '''panoptic''' in model_name if is_panoptic: _lowerCamelCase : Optional[int] = 2_50 else: _lowerCamelCase : int = 91 _lowerCamelCase : List[str] = '''huggingface/label-files''' _lowerCamelCase : Any = '''coco-detection-id2label.json''' _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : List[str] = {int(A_ ): v for k, v in idalabel.items()} _lowerCamelCase : List[str] = idalabel _lowerCamelCase : str = {v: k for k, v in idalabel.items()} # load image processor _lowerCamelCase : int = '''coco_panoptic''' if is_panoptic else '''coco_detection''' _lowerCamelCase : Any = ConditionalDetrImageProcessor(format=A_ ) # prepare image _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : str = image_processor(images=A_, return_tensors='''pt''' ) _lowerCamelCase : Union[str, Any] = encoding['''pixel_values'''] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub _lowerCamelCase : int = torch.hub.load('''DeppMeng/ConditionalDETR''', A_, pretrained=A_ ).eval() _lowerCamelCase : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _lowerCamelCase : Optional[Any] = '''conditional_detr.''' + src rename_key(A_, A_, A_ ) _lowerCamelCase : Dict = rename_backbone_keys(A_ ) # query, key and value matrices need special treatment read_in_q_k_v(A_, is_panoptic=A_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase : Optional[int] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): _lowerCamelCase : List[Any] = state_dict.pop(A_ ) _lowerCamelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCamelCase : List[str] = state_dict.pop(A_ ) _lowerCamelCase : Optional[Any] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: _lowerCamelCase : Optional[Any] = state_dict.pop(A_ ) _lowerCamelCase : Any = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _lowerCamelCase : int = state_dict.pop(A_ ) _lowerCamelCase : str = val # finally, create HuggingFace model and load state dict _lowerCamelCase : Dict = ConditionalDetrForSegmentation(A_ ) if is_panoptic else ConditionalDetrForObjectDetection(A_ ) model.load_state_dict(A_ ) model.eval() model.push_to_hub(repo_id=A_, organization='''DepuMeng''', commit_message='''Add model''' ) # verify our conversion _lowerCamelCase : Dict = conditional_detr(A_ ) _lowerCamelCase : Optional[int] = model(A_ ) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1E-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) image_processor.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
175
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 1 @register_to_config def __init__( self , __A = 2000 , __A = 0.15 , __A = 0.01 , __A = 1_348.0 , __A = 1E-5 , __A = 1 , ) -> str: # standard deviation of the initial noise distribution a =sigma_max # setable values a =None self.set_sigmas(__A , __A , __A , __A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> torch.FloatTensor: return sample def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None ) -> Union[str, Any]: a =sampling_eps if sampling_eps is not None else self.config.sampling_eps a =torch.linspace(1 , __A , __A , device=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None , __A = None ) -> Union[str, Any]: a =sigma_min if sigma_min is not None else self.config.sigma_min a =sigma_max if sigma_max is not None else self.config.sigma_max a =sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__A , __A ) a =sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) a =torch.exp(torch.linspace(math.log(__A ) , math.log(__A ) , __A ) ) a =torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Any: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , __A = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) a =timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) a =(timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda a =timesteps.to(self.discrete_sigmas.device ) a =self.discrete_sigmas[timesteps].to(sample.device ) a =self.get_adjacent_sigma(__A , __A ).to(sample.device ) a =torch.zeros_like(__A ) a =(sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods a =diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): a =diffusion.unsqueeze(-1 ) a =drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of a =randn_tensor( sample.shape , layout=sample.layout , generator=__A , device=sample.device , dtype=sample.dtype ) a =sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? a =prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__A , prev_sample_mean=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , __A = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction a =randn_tensor(sample.shape , layout=sample.layout , generator=__A ).to(sample.device ) # compute step size from the model_output, the noise, and the snr a =torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() a =torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() a =(self.config.snr * noise_norm / grad_norm) ** 2 * 2 a =step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term a =step_size.flatten() while len(step_size.shape ) < len(sample.shape ): a =step_size.unsqueeze(-1 ) a =sample + step_size * model_output a =prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples a =timesteps.to(original_samples.device ) a =self.discrete_sigmas.to(original_samples.device )[timesteps] a =( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__A ) * sigmas[:, None, None, None] ) a =noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
81
"""simple docstring""" def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Any = len(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCAmelCase__ : int = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCAmelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCAmelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: UpperCAmelCase__ : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
171
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCamelCase : Any =[ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: for pegasus_name, hf_name in PATTERNS: UpperCamelCase__ : Union[str, Any] = k.replace(_UpperCAmelCase , _UpperCAmelCase ) return k def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: UpperCamelCase__ : Any = DEFAULTS.copy() cfg_kwargs.update(_UpperCAmelCase ) UpperCamelCase__ : Tuple = PegasusConfig(**_UpperCAmelCase ) UpperCamelCase__ : str = PegasusForConditionalGeneration(_UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = torch_model.model.state_dict() UpperCamelCase__ : Any = {} for k, v in tf_weights.items(): UpperCamelCase__ : List[str] = rename_state_dict_key(_UpperCAmelCase ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: UpperCamelCase__ : List[str] = v.T UpperCamelCase__ : Any = torch.tensor(_UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected UpperCamelCase__ : Union[str, Any] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) UpperCamelCase__ : List[Any] = mapping['shared.weight'] UpperCamelCase__ : Optional[int] = mapping['shared.weight'] UpperCamelCase__ : Optional[int] = {k: torch.zeros_like(_UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**_UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = torch_model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) UpperCamelCase__ : Optional[int] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def SCREAMING_SNAKE_CASE ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCamelCase__ : Optional[int] = tf.train.list_variables(_UpperCAmelCase ) UpperCamelCase__ : Dict = {} UpperCamelCase__ : str = ['Adafactor', 'global_step'] for name, shape in tqdm(_UpperCAmelCase , desc="converting tf checkpoint to dict" ): UpperCamelCase__ : List[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase__ : Optional[Any] = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase__ : str = array return tf_weights def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: UpperCamelCase__ : Any = Path(_UpperCAmelCase ).parent.name UpperCamelCase__ : int = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] UpperCamelCase__ : List[Any] = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=_UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCAmelCase ) # convert model UpperCamelCase__ : List[Any] = get_tf_weights_as_numpy(_UpperCAmelCase ) UpperCamelCase__ : Optional[int] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": UpperCamelCase__ : int = task_specific_params UpperCamelCase__ : Optional[Any] = convert_pegasus(_UpperCAmelCase , _UpperCAmelCase ) torch_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(_UpperCAmelCase , Path(_UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": lowerCamelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCamelCase : int =parser.parse_args() if args.save_dir is None: lowerCamelCase : int =Path(args.tf_ckpt_path).parent.name lowerCamelCase : str =os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
359
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: if len(__lowerCAmelCase ) == 0: return False UpperCamelCase__ : Any = len(__lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Any =input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase : Dict =[int(item.strip()) for item in user_input.split(''',''')] lowerCamelCase : List[str] =int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase : Union[str, Any] ='''''' if binary_search(sequence, target) else '''not ''' print(F"""{target} was {not_str}found in {sequence}""")
196
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A( a , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ['''image'''] snake_case_ = ['''image'''] snake_case_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __a = CLIPVisionModel(_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=_snake_case , do_normalize=_snake_case , do_resize=_snake_case , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __a = PriorTransformer(**_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __a = ShapERenderer(**_snake_case ) return model def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_image_processor __a = self.dummy_renderer __a = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=_snake_case , clip_sample=_snake_case , clip_sample_range=1.0 , ) __a = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> List[Any]: '''simple docstring''' __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = pipe(**self.get_dummy_inputs(_snake_case ) ) __a = output.images[0] __a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __a = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = torch_device == '''cpu''' __a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_snake_case , relax_max_difference=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = 1 __a = 2 __a = self.get_dummy_inputs(_snake_case ) for key in inputs.keys(): if key in self.batch_params: __a = batch_size * [inputs[key]] __a = pipe(**_snake_case , num_images_per_prompt=_snake_case )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __a = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = torch.Generator(device=_snake_case ).manual_seed(0 ) __a = pipe( _snake_case , generator=_snake_case , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
6
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase__ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) lowercase__ = model.state_dict() def to_tf_var_name(lowerCamelCase_ ): for patt, repl in iter(lowerCamelCase_ ): lowercase__ = name.replace(lowerCamelCase_ , lowerCamelCase_ ) return F"""bert/{name}""" def create_tf_var(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=lowerCamelCase_ , shape=tensor.shape , name=lowerCamelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCamelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(lowerCamelCase_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=lowerCamelCase_ , name=lowerCamelCase_ , session=lowerCamelCase_ ) tf.keras.backend.set_value(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = session.run(lowerCamelCase_ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCamelCase_ , lowerCamelCase_ )}""" ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def a ( lowerCamelCase_=None ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory in which to save tensorflow model''' ) lowercase__ = parser.parse_args(lowerCamelCase_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCamelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
207
0
from __future__ import annotations def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowercase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowercase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
363
lowercase__ :Any = 8.3_144_598 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase__ :Optional[Any] = 300 lowercase__ :List[Any] = 28 lowercase__ :Dict = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
97
0
from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = "cpu" ,lowercase = None ) -> None: snake_case : int = torch.load(lowercase ,map_location=lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowercase ,torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) snake_case : Dict = v.half() if save_path is None: # overwrite src_path snake_case : Optional[Any] = src_path torch.save(lowercase ,lowercase ) if __name__ == "__main__": fire.Fire(convert)
124
from typing import List from .keymap import KEYMAP, get_character def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: def decorator(lowercase ): snake_case : Tuple = getattr(lowercase ,"""handle_key""" ,[] ) handle += [key] setattr(lowercase ,"""handle_key""" ,lowercase ) return func return decorator def SCREAMING_SNAKE_CASE__ ( *lowercase ) -> List[str]: def decorator(lowercase ): snake_case : Optional[int] = getattr(lowercase ,"""handle_key""" ,[] ) handle += keys setattr(lowercase ,"""handle_key""" ,lowercase ) return func return decorator class __lowercase (UpperCamelCase__ ): """simple docstring""" def __new__( cls , A , A , A ) -> str: snake_case : int = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): snake_case : Dict = getattr(A , """handle_key""" , [] ) for key in handled_keys: snake_case : Any = value return new_cls @staticmethod def UpperCAmelCase ( cls ) -> List[str]: snake_case : Tuple = get_character() if char != KEYMAP["undefined"]: snake_case : str = ord(A ) snake_case : Optional[Any] = cls.key_handler.get(A ) if handler: snake_case : Optional[Any] = char return handler(cls ) else: return None def SCREAMING_SNAKE_CASE__ ( cls ) -> Tuple: return KeyHandler(cls.__name__ ,cls.__bases__ ,cls.__dict__.copy() )
124
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ConditionalDetrFeatureExtractor'] lowerCAmelCase_ = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
116
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
116
1
"""simple docstring""" def __lowercase ( _a , _a , _a , _a ): # Return True if there is node that has not iterated. snake_case_ : List[str] = [False] * len(_a ) snake_case_ : List[str] = [] queue.append(_a ) snake_case_ : str = True while queue: snake_case_ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) snake_case_ : Union[str, Any] = True snake_case_ : Tuple = u return visited[t] def __lowercase ( _a , _a , _a ): # This array is filled by BFS and to store path snake_case_ : int = [-1] * (len(_a )) snake_case_ : int = 0 while bfs(_a , _a , _a , _a ): snake_case_ : int = float('''Inf''' ) snake_case_ : Any = sink while s != source: # Find the minimum value in select path snake_case_ : int = min(_a , graph[parent[s]][s] ) snake_case_ : Optional[Any] = parent[s] max_flow += path_flow snake_case_ : Any = sink while v != source: snake_case_ : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ : Optional[int] = parent[v] return max_flow lowercase__ : Dict = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowercase__ ,lowercase__ : Dict = 0, 5 print(ford_fulkerson(graph, source, sink))
264
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _lowercase ( datasets.BuilderConfig ): lowercase = None def __lowercase ( lowerCamelCase : "pyspark.sql.DataFrame" , lowerCamelCase : List[int] , ): import pyspark def generate_fn(): UpperCamelCase_ : Dict = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: UpperCamelCase_ : Tuple = df_with_partition_id.select('*' ).where(F"part_id = {partition_id}" ).drop('part_id' ) UpperCamelCase_ : Union[str, Any] = partition_df.collect() UpperCamelCase_ : Any = 0 for row in rows: yield F"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class _lowercase ( _BaseExamplesIterable ): def __init__( self : Optional[int] , snake_case : "pyspark.sql.DataFrame" , snake_case : Tuple=None , ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = df UpperCamelCase_ : int = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCamelCase_ : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ) -> Any: """simple docstring""" yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" UpperCamelCase_ : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case ) return SparkExamplesIterable(self.df , partition_order=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int , snake_case : int ) -> "SparkExamplesIterable": """simple docstring""" UpperCamelCase_ : Tuple = self.split_shard_indices_by_worker(snake_case , snake_case ) return SparkExamplesIterable(self.df , partition_order=snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: """simple docstring""" return len(self.partition_order ) class _lowercase ( datasets.DatasetBuilder ): lowercase = SparkConfig def __init__( self : List[Any] , snake_case : "pyspark.sql.DataFrame" , snake_case : str = None , snake_case : str = None , **snake_case : Optional[Any] , ) -> List[str]: """simple docstring""" import pyspark UpperCamelCase_ : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() UpperCamelCase_ : str = df UpperCamelCase_ : Tuple = working_dir super().__init__( cache_dir=snake_case , config_name=str(self.df.semanticHash() ) , **snake_case , ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: """simple docstring""" def create_cache_and_write_probe(snake_case : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case ) UpperCamelCase_ : Tuple = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCamelCase_ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : datasets.download.download_manager.DownloadManager ) -> Optional[int]: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : Optional[int] ) -> List[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(snake_case : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) UpperCamelCase_ : List[str] = self.df.count() UpperCamelCase_ : Union[str, Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCamelCase_ : str = ( self.df.limit(snake_case ) .repartition(1 ) .mapInArrow(snake_case , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCamelCase_ : Optional[int] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCamelCase_ : Optional[Any] = min(snake_case , int(approx_total_size / max_shard_size ) ) UpperCamelCase_ : int = self.df.repartition(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str , snake_case : str , snake_case : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark UpperCamelCase_ : List[Any] = ParquetWriter if file_format == 'parquet' else ArrowWriter UpperCamelCase_ : List[str] = os.path.join(self._working_dir , os.path.basename(snake_case ) ) if self._working_dir else fpath UpperCamelCase_ : Union[str, Any] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCamelCase_ : Union[str, Any] = self.config.features UpperCamelCase_ : Any = self._writer_batch_size UpperCamelCase_ : Dict = self._fs.storage_options def write_arrow(snake_case : List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCamelCase_ : Any = pyspark.TaskContext().taskAttemptId() UpperCamelCase_ : str = next(snake_case , snake_case ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) UpperCamelCase_ : Any = 0 UpperCamelCase_ : Optional[Any] = writer_class( features=snake_case , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=snake_case , storage_options=snake_case , embed_local_files=snake_case , ) UpperCamelCase_ : str = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCamelCase_, UpperCamelCase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 UpperCamelCase_ : Union[str, Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=snake_case , storage_options=snake_case , embed_local_files=snake_case , ) UpperCamelCase_ : Optional[Any] = pa.Table.from_batches([batch] ) writer.write_table(snake_case ) if writer._num_bytes > 0: UpperCamelCase_, UpperCamelCase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case ) ): UpperCamelCase_ : Dict = os.path.join(os.path.dirname(snake_case ) , os.path.basename(snake_case ) ) shutil.move(snake_case , snake_case ) UpperCamelCase_ : int = ( self.df.mapInArrow(snake_case , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : "datasets.SplitGenerator" , snake_case : str = "arrow" , snake_case : Optional[Union[str, int]] = None , snake_case : Optional[int] = None , **snake_case : Any , ) -> int: """simple docstring""" self._validate_cache_dir() UpperCamelCase_ : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case ) UpperCamelCase_ : List[str] = not is_remote_filesystem(self._fs ) UpperCamelCase_ : List[Any] = os.path.join if is_local else posixpath.join UpperCamelCase_ : Optional[int] = '-TTTTT-SSSSS-of-NNNNN' UpperCamelCase_ : Dict = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" UpperCamelCase_ : int = path_join(self._output_dir , snake_case ) UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : Any = [] for task_id, content in self._prepare_split_single(snake_case , snake_case , snake_case ): ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case ) UpperCamelCase_ : Optional[Any] = total_num_examples UpperCamelCase_ : Any = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards." ) if total_shards > 1: UpperCamelCase_ : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCamelCase_ : int = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( snake_case : int , snake_case : int , snake_case : int , ): rename( snake_case , fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace('TTTTT-SSSSS' , f"{global_shard_id:05d}" ).replace('NNNNN' , f"{total_shards:05d}" ) , ) UpperCamelCase_ : Any = [] UpperCamelCase_ : Optional[int] = 0 for i in range(len(snake_case ) ): UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(snake_case ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case , len(snake_case ) ).map(lambda snake_case : _rename_shard(*snake_case ) ).collect() else: # don't use any pattern UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace(snake_case , '' ) , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
175
0
"""simple docstring""" def a_ ( _lowercase , _lowercase ): _UpperCamelCase : Any = len(_lowercase ) _UpperCamelCase : Tuple = [] for i in range(len(_lowercase ) - pat_len + 1 ): _UpperCamelCase : int = True for j in range(_lowercase ): if s[i + j] != pattern[j]: _UpperCamelCase : Dict = False break if match_found: position.append(_lowercase ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
128
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp UpperCamelCase_ =5 UpperCamelCase_ =10 @require_sentencepiece @require_tokenizers class _a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = SpeechaTextTokenizer UpperCamelCase = False UpperCamelCase = True def snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() _UpperCamelCase : Dict = sp.SentencePieceProcessor() spm_model.Load(lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCAmelCase__ ) )] _UpperCamelCase : Tuple = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__ ) ) ) ) _UpperCamelCase : Dict = Path(self.tmpdirname ) save_json(lowerCAmelCase__, save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__, save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) _UpperCamelCase : List[str] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : str ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = '''<pad>''' _UpperCamelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ), lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ), lowerCAmelCase__ ) def snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-1], '''j''' ) self.assertEqual(len(lowerCAmelCase__ ), 1_0_0_1 ) def snake_case ( self : Any ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_0_0_1 ) def snake_case ( self : List[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[int] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) _UpperCamelCase : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ), [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6], ) _UpperCamelCase : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''], ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) _UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''], ) @slow def snake_case ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Any = {'''input_ids''': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='''facebook/s2t-small-mustc-en-de-st''', revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''', ) @require_sentencepiece class _a ( unittest.TestCase ): UpperCamelCase = '''valhalla/s2t_mustc_multilinguial_medium''' UpperCamelCase = '''C\'est trop cool''' UpperCamelCase = '''Esto es genial''' @classmethod def snake_case ( cls : Dict ) -> str: '''simple docstring''' _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''], 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''], 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''], 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''], 1_1 ) def snake_case ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size, 1_0_0_0_0 ) def snake_case ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__, self.tokenizer.all_special_ids ) _UpperCamelCase : List[Any] = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] _UpperCamelCase : Optional[Any] = self.tokenizer.decode(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__, lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token, lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Dict = '''fr''' _UpperCamelCase : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0], lowerCAmelCase__ ) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id ) def snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE] ) _UpperCamelCase : List[str] = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE] )
128
1