|
|
""" |
|
|
Shape Polygons Dataset - Usage Examples |
|
|
|
|
|
This script demonstrates various ways to load and use the Shape Polygons Dataset. |
|
|
""" |
|
|
|
|
|
import os |
|
|
import pandas as pd |
|
|
import matplotlib.pyplot as plt |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_dataset(data_dir=".", split="train"): |
|
|
"""Load metadata and return as pandas DataFrame.""" |
|
|
metadata_path = os.path.join(data_dir, split, "metadata.csv") |
|
|
return pd.read_csv(metadata_path) |
|
|
|
|
|
|
|
|
def load_image(data_dir, split, filename): |
|
|
"""Load a single image from the dataset.""" |
|
|
img_path = os.path.join(data_dir, split, "images", filename) |
|
|
return Image.open(img_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def explore_statistics(data_dir="."): |
|
|
"""Print dataset statistics.""" |
|
|
print("=" * 50) |
|
|
print("Shape Polygons Dataset Statistics") |
|
|
print("=" * 50) |
|
|
|
|
|
for split in ["train", "test"]: |
|
|
df = load_dataset(data_dir, split) |
|
|
print(f"\n{split.upper()} Split:") |
|
|
print(f" Total images: {len(df)}") |
|
|
print(f"\n Vertices distribution:") |
|
|
for v in range(3, 9): |
|
|
count = len(df[df["vertices"] == v]) |
|
|
print(f" {v} vertices: {count} ({count/len(df)*100:.1f}%)") |
|
|
|
|
|
print(f"\n Size statistics:") |
|
|
print(f" Min: {df['size'].min():.4f}") |
|
|
print(f" Max: {df['size'].max():.4f}") |
|
|
print(f" Mean: {df['size'].mean():.4f}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def visualize_samples(data_dir=".", n_samples=12, split="train"): |
|
|
"""Visualize random samples from the dataset.""" |
|
|
df = load_dataset(data_dir, split) |
|
|
samples = df.sample(n=min(n_samples, len(df))) |
|
|
|
|
|
n_cols = 4 |
|
|
n_rows = (len(samples) + n_cols - 1) // n_cols |
|
|
|
|
|
fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 3 * n_rows)) |
|
|
axes = axes.flatten() if n_samples > 1 else [axes] |
|
|
|
|
|
for idx, (_, row) in enumerate(samples.iterrows()): |
|
|
img = load_image(data_dir, split, row["filename"]) |
|
|
axes[idx].imshow(img) |
|
|
axes[idx].set_title(f"{row['vertices']} vertices\nsize={row['size']:.2f}") |
|
|
axes[idx].axis("off") |
|
|
|
|
|
|
|
|
for idx in range(len(samples), len(axes)): |
|
|
axes[idx].axis("off") |
|
|
|
|
|
plt.tight_layout() |
|
|
plt.savefig("samples_visualization.png", dpi=150, bbox_inches="tight") |
|
|
print(f"Saved visualization to 'samples_visualization.png'") |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def visualize_by_shape_type(data_dir=".", split="train"): |
|
|
"""Show one example of each shape type.""" |
|
|
df = load_dataset(data_dir, split) |
|
|
shape_names = { |
|
|
3: "Triangle", |
|
|
4: "Quadrilateral", |
|
|
5: "Pentagon", |
|
|
6: "Hexagon", |
|
|
7: "Heptagon", |
|
|
8: "Octagon" |
|
|
} |
|
|
|
|
|
fig, axes = plt.subplots(2, 3, figsize=(12, 8)) |
|
|
axes = axes.flatten() |
|
|
|
|
|
for idx, vertices in enumerate(range(3, 9)): |
|
|
sample = df[df["vertices"] == vertices].iloc[0] |
|
|
img = load_image(data_dir, split, sample["filename"]) |
|
|
axes[idx].imshow(img) |
|
|
axes[idx].set_title(f"{shape_names[vertices]}\n({vertices} vertices)") |
|
|
axes[idx].axis("off") |
|
|
|
|
|
plt.suptitle("Shape Types in Dataset", fontsize=14, fontweight="bold") |
|
|
plt.tight_layout() |
|
|
plt.savefig("shape_types.png", dpi=150, bbox_inches="tight") |
|
|
print(f"Saved visualization to 'shape_types.png'") |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
import torch |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
from torchvision import transforms |
|
|
PYTORCH_AVAILABLE = True |
|
|
except ImportError: |
|
|
PYTORCH_AVAILABLE = False |
|
|
|
|
|
|
|
|
class ShapePolygonsDataset: |
|
|
"""PyTorch Dataset for Shape Polygons. |
|
|
|
|
|
Requires: torch, torchvision |
|
|
""" |
|
|
|
|
|
def __init__(self, root_dir, split="train", transform=None, task="classification"): |
|
|
""" |
|
|
Args: |
|
|
root_dir: Root directory of the dataset |
|
|
split: "train" or "test" |
|
|
transform: Optional torchvision transforms |
|
|
task: "classification" for vertex count, "regression" for size prediction, "multi" for all properties |
|
|
""" |
|
|
if not PYTORCH_AVAILABLE: |
|
|
raise ImportError("PyTorch is required. Install with: pip install torch torchvision") |
|
|
|
|
|
self.root_dir = root_dir |
|
|
self.split = split |
|
|
self.transform = transform |
|
|
self.task = task |
|
|
self.metadata = pd.read_csv(os.path.join(root_dir, split, "metadata.csv")) |
|
|
|
|
|
if self.transform is None: |
|
|
self.transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
|
]) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.metadata) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
row = self.metadata.iloc[idx] |
|
|
img_path = os.path.join(self.root_dir, self.split, "images", row["filename"]) |
|
|
image = Image.open(img_path).convert("RGB") |
|
|
|
|
|
if self.transform: |
|
|
image = self.transform(image) |
|
|
|
|
|
if self.task == "classification": |
|
|
|
|
|
label = torch.tensor(row["vertices"] - 3, dtype=torch.long) |
|
|
elif self.task == "regression": |
|
|
|
|
|
label = torch.tensor(row["size"], dtype=torch.float32) |
|
|
elif self.task == "multi": |
|
|
|
|
|
label = { |
|
|
"vertices": torch.tensor(row["vertices"] - 3, dtype=torch.long), |
|
|
"size": torch.tensor(row["size"], dtype=torch.float32), |
|
|
"angle": torch.tensor(row["angle"], dtype=torch.float32), |
|
|
"center": torch.tensor([row["center_x"], row["center_y"]], dtype=torch.float32), |
|
|
"color": torch.tensor([row["color_r"], row["color_g"], row["color_b"]], dtype=torch.float32) |
|
|
} |
|
|
else: |
|
|
raise ValueError(f"Unknown task: {self.task}") |
|
|
|
|
|
return image, label |
|
|
|
|
|
|
|
|
def demo_pytorch_dataloader(data_dir="."): |
|
|
"""Demonstrate PyTorch DataLoader usage.""" |
|
|
if not PYTORCH_AVAILABLE: |
|
|
print("PyTorch is not installed. Install with: pip install torch torchvision") |
|
|
return |
|
|
|
|
|
print("Creating PyTorch Dataset and DataLoader...") |
|
|
dataset = ShapePolygonsDataset(data_dir, split="train", task="classification") |
|
|
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=0) |
|
|
|
|
|
|
|
|
images, labels = next(iter(dataloader)) |
|
|
print(f"Batch shape: {images.shape}") |
|
|
print(f"Labels shape: {labels.shape}") |
|
|
print(f"Label values (vertices - 3): {labels[:10].tolist()}") |
|
|
print(f"Actual vertex counts: {[l + 3 for l in labels[:10].tolist()]}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_colors(data_dir=".", split="train"): |
|
|
"""Analyze color distribution in the dataset.""" |
|
|
df = load_dataset(data_dir, split) |
|
|
|
|
|
fig, axes = plt.subplots(1, 3, figsize=(15, 4)) |
|
|
colors = ["red", "green", "blue"] |
|
|
columns = ["color_r", "color_g", "color_b"] |
|
|
|
|
|
for idx, (color, col) in enumerate(zip(colors, columns)): |
|
|
axes[idx].hist(df[col], bins=50, color=color, alpha=0.7, edgecolor="black") |
|
|
axes[idx].set_xlabel(f"{color.capitalize()} Value") |
|
|
axes[idx].set_ylabel("Frequency") |
|
|
axes[idx].set_title(f"{color.capitalize()} Channel Distribution") |
|
|
|
|
|
plt.suptitle(f"Color Distribution in {split.capitalize()} Set", fontsize=14, fontweight="bold") |
|
|
plt.tight_layout() |
|
|
plt.savefig("color_distribution.png", dpi=150, bbox_inches="tight") |
|
|
print(f"Saved visualization to 'color_distribution.png'") |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Shape Polygons Dataset Examples") |
|
|
parser.add_argument("--data-dir", type=str, default=".", help="Path to dataset root") |
|
|
parser.add_argument( |
|
|
"--example", |
|
|
type=str, |
|
|
choices=["stats", "samples", "shapes", "pytorch", "colors", "all"], |
|
|
default="all", |
|
|
help="Which example to run" |
|
|
) |
|
|
args = parser.parse_args() |
|
|
|
|
|
examples = { |
|
|
"stats": ("Dataset Statistics", lambda: explore_statistics(args.data_dir)), |
|
|
"samples": ("Sample Visualization", lambda: visualize_samples(args.data_dir)), |
|
|
"shapes": ("Shape Types", lambda: visualize_by_shape_type(args.data_dir)), |
|
|
"pytorch": ("PyTorch DataLoader Demo", lambda: demo_pytorch_dataloader(args.data_dir)), |
|
|
"colors": ("Color Analysis", lambda: analyze_colors(args.data_dir)), |
|
|
} |
|
|
|
|
|
if args.example == "all": |
|
|
for name, (desc, func) in examples.items(): |
|
|
print(f"\n{'=' * 50}") |
|
|
print(f"Example: {desc}") |
|
|
print("=" * 50) |
|
|
func() |
|
|
else: |
|
|
name = args.example |
|
|
desc, func = examples[name] |
|
|
print(f"Running Example: {desc}") |
|
|
func() |
|
|
|
|
|
|