partition
stringclasses 3
values | func_name
stringlengths 1
134
| docstring
stringlengths 1
46.9k
| path
stringlengths 4
223
| original_string
stringlengths 75
104k
| code
stringlengths 75
104k
| docstring_tokens
listlengths 1
1.97k
| repo
stringlengths 7
55
| language
stringclasses 1
value | url
stringlengths 87
315
| code_tokens
listlengths 19
28.4k
| sha
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|---|
test
|
DataFrame.sort
|
Return a sorted DataFrame, sorted by the expression 'by'
{note_copy}
{note_filter}
Example:
>>> import vaex, numpy as np
>>> df = vaex.from_arrays(s=np.array(['a', 'b', 'c', 'd']), x=np.arange(1,5))
>>> df['y'] = (df.x-1.8)**2
>>> df
# s x y
0 a 1 0.64
1 b 2 0.04
2 c 3 1.44
3 d 4 4.84
>>> df.sort('y', ascending=False) # Note: passing '(x-1.8)**2' gives the same result
# s x y
0 d 4 4.84
1 c 3 1.44
2 a 1 0.64
3 b 2 0.04
:param str or expression by: expression to sort by
:param bool ascending: ascending (default, True) or descending (False)
:param str kind: kind of algorithm to use (passed to numpy.argsort)
|
packages/vaex-core/vaex/dataframe.py
|
def sort(self, by, ascending=True, kind='quicksort'):
'''Return a sorted DataFrame, sorted by the expression 'by'
{note_copy}
{note_filter}
Example:
>>> import vaex, numpy as np
>>> df = vaex.from_arrays(s=np.array(['a', 'b', 'c', 'd']), x=np.arange(1,5))
>>> df['y'] = (df.x-1.8)**2
>>> df
# s x y
0 a 1 0.64
1 b 2 0.04
2 c 3 1.44
3 d 4 4.84
>>> df.sort('y', ascending=False) # Note: passing '(x-1.8)**2' gives the same result
# s x y
0 d 4 4.84
1 c 3 1.44
2 a 1 0.64
3 b 2 0.04
:param str or expression by: expression to sort by
:param bool ascending: ascending (default, True) or descending (False)
:param str kind: kind of algorithm to use (passed to numpy.argsort)
'''
self = self.trim()
values = self.evaluate(by, filtered=False)
indices = np.argsort(values, kind=kind)
if not ascending:
indices = indices[::-1].copy() # this may be used a lot, so copy for performance
return self.take(indices)
|
def sort(self, by, ascending=True, kind='quicksort'):
'''Return a sorted DataFrame, sorted by the expression 'by'
{note_copy}
{note_filter}
Example:
>>> import vaex, numpy as np
>>> df = vaex.from_arrays(s=np.array(['a', 'b', 'c', 'd']), x=np.arange(1,5))
>>> df['y'] = (df.x-1.8)**2
>>> df
# s x y
0 a 1 0.64
1 b 2 0.04
2 c 3 1.44
3 d 4 4.84
>>> df.sort('y', ascending=False) # Note: passing '(x-1.8)**2' gives the same result
# s x y
0 d 4 4.84
1 c 3 1.44
2 a 1 0.64
3 b 2 0.04
:param str or expression by: expression to sort by
:param bool ascending: ascending (default, True) or descending (False)
:param str kind: kind of algorithm to use (passed to numpy.argsort)
'''
self = self.trim()
values = self.evaluate(by, filtered=False)
indices = np.argsort(values, kind=kind)
if not ascending:
indices = indices[::-1].copy() # this may be used a lot, so copy for performance
return self.take(indices)
|
[
"Return",
"a",
"sorted",
"DataFrame",
"sorted",
"by",
"the",
"expression",
"by"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L3969-L4003
|
[
"def",
"sort",
"(",
"self",
",",
"by",
",",
"ascending",
"=",
"True",
",",
"kind",
"=",
"'quicksort'",
")",
":",
"self",
"=",
"self",
".",
"trim",
"(",
")",
"values",
"=",
"self",
".",
"evaluate",
"(",
"by",
",",
"filtered",
"=",
"False",
")",
"indices",
"=",
"np",
".",
"argsort",
"(",
"values",
",",
"kind",
"=",
"kind",
")",
"if",
"not",
"ascending",
":",
"indices",
"=",
"indices",
"[",
":",
":",
"-",
"1",
"]",
".",
"copy",
"(",
")",
"# this may be used a lot, so copy for performance",
"return",
"self",
".",
"take",
"(",
"indices",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.fillna
|
Return a DataFrame, where missing values/NaN are filled with 'value'.
The original columns will be renamed, and by default they will be hidden columns. No data is lost.
{note_copy}
{note_filter}
Example:
>>> import vaex
>>> import numpy as np
>>> x = np.array([3, 1, np.nan, 10, np.nan])
>>> df = vaex.from_arrays(x=x)
>>> df_filled = df.fillna(value=-1, column_names=['x'])
>>> df_filled
# x
0 3
1 1
2 -1
3 10
4 -1
:param float value: The value to use for filling nan or masked values.
:param bool fill_na: If True, fill np.nan values with `value`.
:param bool fill_masked: If True, fill masked values with `values`.
:param list column_names: List of column names in which to fill missing values.
:param str prefix: The prefix to give the original columns.
:param inplace: {inplace}
|
packages/vaex-core/vaex/dataframe.py
|
def fillna(self, value, fill_nan=True, fill_masked=True, column_names=None, prefix='__original_', inplace=False):
'''Return a DataFrame, where missing values/NaN are filled with 'value'.
The original columns will be renamed, and by default they will be hidden columns. No data is lost.
{note_copy}
{note_filter}
Example:
>>> import vaex
>>> import numpy as np
>>> x = np.array([3, 1, np.nan, 10, np.nan])
>>> df = vaex.from_arrays(x=x)
>>> df_filled = df.fillna(value=-1, column_names=['x'])
>>> df_filled
# x
0 3
1 1
2 -1
3 10
4 -1
:param float value: The value to use for filling nan or masked values.
:param bool fill_na: If True, fill np.nan values with `value`.
:param bool fill_masked: If True, fill masked values with `values`.
:param list column_names: List of column names in which to fill missing values.
:param str prefix: The prefix to give the original columns.
:param inplace: {inplace}
'''
df = self.trim(inplace=inplace)
column_names = column_names or list(self)
for name in column_names:
column = df.columns.get(name)
if column is not None:
new_name = df.rename_column(name, prefix + name)
expr = df[new_name]
df[name] = df.func.fillna(expr, value, fill_nan=fill_nan, fill_masked=fill_masked)
else:
df[name] = df.func.fillna(df[name], value, fill_nan=fill_nan, fill_masked=fill_masked)
return df
|
def fillna(self, value, fill_nan=True, fill_masked=True, column_names=None, prefix='__original_', inplace=False):
'''Return a DataFrame, where missing values/NaN are filled with 'value'.
The original columns will be renamed, and by default they will be hidden columns. No data is lost.
{note_copy}
{note_filter}
Example:
>>> import vaex
>>> import numpy as np
>>> x = np.array([3, 1, np.nan, 10, np.nan])
>>> df = vaex.from_arrays(x=x)
>>> df_filled = df.fillna(value=-1, column_names=['x'])
>>> df_filled
# x
0 3
1 1
2 -1
3 10
4 -1
:param float value: The value to use for filling nan or masked values.
:param bool fill_na: If True, fill np.nan values with `value`.
:param bool fill_masked: If True, fill masked values with `values`.
:param list column_names: List of column names in which to fill missing values.
:param str prefix: The prefix to give the original columns.
:param inplace: {inplace}
'''
df = self.trim(inplace=inplace)
column_names = column_names or list(self)
for name in column_names:
column = df.columns.get(name)
if column is not None:
new_name = df.rename_column(name, prefix + name)
expr = df[new_name]
df[name] = df.func.fillna(expr, value, fill_nan=fill_nan, fill_masked=fill_masked)
else:
df[name] = df.func.fillna(df[name], value, fill_nan=fill_nan, fill_masked=fill_masked)
return df
|
[
"Return",
"a",
"DataFrame",
"where",
"missing",
"values",
"/",
"NaN",
"are",
"filled",
"with",
"value",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4006-L4047
|
[
"def",
"fillna",
"(",
"self",
",",
"value",
",",
"fill_nan",
"=",
"True",
",",
"fill_masked",
"=",
"True",
",",
"column_names",
"=",
"None",
",",
"prefix",
"=",
"'__original_'",
",",
"inplace",
"=",
"False",
")",
":",
"df",
"=",
"self",
".",
"trim",
"(",
"inplace",
"=",
"inplace",
")",
"column_names",
"=",
"column_names",
"or",
"list",
"(",
"self",
")",
"for",
"name",
"in",
"column_names",
":",
"column",
"=",
"df",
".",
"columns",
".",
"get",
"(",
"name",
")",
"if",
"column",
"is",
"not",
"None",
":",
"new_name",
"=",
"df",
".",
"rename_column",
"(",
"name",
",",
"prefix",
"+",
"name",
")",
"expr",
"=",
"df",
"[",
"new_name",
"]",
"df",
"[",
"name",
"]",
"=",
"df",
".",
"func",
".",
"fillna",
"(",
"expr",
",",
"value",
",",
"fill_nan",
"=",
"fill_nan",
",",
"fill_masked",
"=",
"fill_masked",
")",
"else",
":",
"df",
"[",
"name",
"]",
"=",
"df",
".",
"func",
".",
"fillna",
"(",
"df",
"[",
"name",
"]",
",",
"value",
",",
"fill_nan",
"=",
"fill_nan",
",",
"fill_masked",
"=",
"fill_masked",
")",
"return",
"df"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.materialize
|
Returns a new DataFrame where the virtual column is turned into an in memory numpy array.
Example:
>>> x = np.arange(1,4)
>>> y = np.arange(2,5)
>>> df = vaex.from_arrays(x=x, y=y)
>>> df['r'] = (df.x**2 + df.y**2)**0.5 # 'r' is a virtual column (computed on the fly)
>>> df = df.materialize('r') # now 'r' is a 'real' column (i.e. a numpy array)
:param inplace: {inplace}
|
packages/vaex-core/vaex/dataframe.py
|
def materialize(self, virtual_column, inplace=False):
'''Returns a new DataFrame where the virtual column is turned into an in memory numpy array.
Example:
>>> x = np.arange(1,4)
>>> y = np.arange(2,5)
>>> df = vaex.from_arrays(x=x, y=y)
>>> df['r'] = (df.x**2 + df.y**2)**0.5 # 'r' is a virtual column (computed on the fly)
>>> df = df.materialize('r') # now 'r' is a 'real' column (i.e. a numpy array)
:param inplace: {inplace}
'''
df = self.trim(inplace=inplace)
virtual_column = _ensure_string_from_expression(virtual_column)
if virtual_column not in df.virtual_columns:
raise KeyError('Virtual column not found: %r' % virtual_column)
ar = df.evaluate(virtual_column, filtered=False)
del df[virtual_column]
df.add_column(virtual_column, ar)
return df
|
def materialize(self, virtual_column, inplace=False):
'''Returns a new DataFrame where the virtual column is turned into an in memory numpy array.
Example:
>>> x = np.arange(1,4)
>>> y = np.arange(2,5)
>>> df = vaex.from_arrays(x=x, y=y)
>>> df['r'] = (df.x**2 + df.y**2)**0.5 # 'r' is a virtual column (computed on the fly)
>>> df = df.materialize('r') # now 'r' is a 'real' column (i.e. a numpy array)
:param inplace: {inplace}
'''
df = self.trim(inplace=inplace)
virtual_column = _ensure_string_from_expression(virtual_column)
if virtual_column not in df.virtual_columns:
raise KeyError('Virtual column not found: %r' % virtual_column)
ar = df.evaluate(virtual_column, filtered=False)
del df[virtual_column]
df.add_column(virtual_column, ar)
return df
|
[
"Returns",
"a",
"new",
"DataFrame",
"where",
"the",
"virtual",
"column",
"is",
"turned",
"into",
"an",
"in",
"memory",
"numpy",
"array",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4049-L4069
|
[
"def",
"materialize",
"(",
"self",
",",
"virtual_column",
",",
"inplace",
"=",
"False",
")",
":",
"df",
"=",
"self",
".",
"trim",
"(",
"inplace",
"=",
"inplace",
")",
"virtual_column",
"=",
"_ensure_string_from_expression",
"(",
"virtual_column",
")",
"if",
"virtual_column",
"not",
"in",
"df",
".",
"virtual_columns",
":",
"raise",
"KeyError",
"(",
"'Virtual column not found: %r'",
"%",
"virtual_column",
")",
"ar",
"=",
"df",
".",
"evaluate",
"(",
"virtual_column",
",",
"filtered",
"=",
"False",
")",
"del",
"df",
"[",
"virtual_column",
"]",
"df",
".",
"add_column",
"(",
"virtual_column",
",",
"ar",
")",
"return",
"df"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.get_selection
|
Get the current selection object (mostly for internal use atm).
|
packages/vaex-core/vaex/dataframe.py
|
def get_selection(self, name="default"):
"""Get the current selection object (mostly for internal use atm)."""
name = _normalize_selection_name(name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
if index == -1:
return None
else:
return selection_history[index]
|
def get_selection(self, name="default"):
"""Get the current selection object (mostly for internal use atm)."""
name = _normalize_selection_name(name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
if index == -1:
return None
else:
return selection_history[index]
|
[
"Get",
"the",
"current",
"selection",
"object",
"(",
"mostly",
"for",
"internal",
"use",
"atm",
")",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4071-L4079
|
[
"def",
"get_selection",
"(",
"self",
",",
"name",
"=",
"\"default\"",
")",
":",
"name",
"=",
"_normalize_selection_name",
"(",
"name",
")",
"selection_history",
"=",
"self",
".",
"selection_histories",
"[",
"name",
"]",
"index",
"=",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"if",
"index",
"==",
"-",
"1",
":",
"return",
"None",
"else",
":",
"return",
"selection_history",
"[",
"index",
"]"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.selection_undo
|
Undo selection, for the name.
|
packages/vaex-core/vaex/dataframe.py
|
def selection_undo(self, name="default", executor=None):
"""Undo selection, for the name."""
logger.debug("undo")
executor = executor or self.executor
assert self.selection_can_undo(name=name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
self.selection_history_indices[name] -= 1
self.signal_selection_changed.emit(self)
logger.debug("undo: selection history is %r, index is %r", selection_history, self.selection_history_indices[name])
|
def selection_undo(self, name="default", executor=None):
"""Undo selection, for the name."""
logger.debug("undo")
executor = executor or self.executor
assert self.selection_can_undo(name=name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
self.selection_history_indices[name] -= 1
self.signal_selection_changed.emit(self)
logger.debug("undo: selection history is %r, index is %r", selection_history, self.selection_history_indices[name])
|
[
"Undo",
"selection",
"for",
"the",
"name",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4081-L4090
|
[
"def",
"selection_undo",
"(",
"self",
",",
"name",
"=",
"\"default\"",
",",
"executor",
"=",
"None",
")",
":",
"logger",
".",
"debug",
"(",
"\"undo\"",
")",
"executor",
"=",
"executor",
"or",
"self",
".",
"executor",
"assert",
"self",
".",
"selection_can_undo",
"(",
"name",
"=",
"name",
")",
"selection_history",
"=",
"self",
".",
"selection_histories",
"[",
"name",
"]",
"index",
"=",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"-=",
"1",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"logger",
".",
"debug",
"(",
"\"undo: selection history is %r, index is %r\"",
",",
"selection_history",
",",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.selection_redo
|
Redo selection, for the name.
|
packages/vaex-core/vaex/dataframe.py
|
def selection_redo(self, name="default", executor=None):
"""Redo selection, for the name."""
logger.debug("redo")
executor = executor or self.executor
assert self.selection_can_redo(name=name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
next = selection_history[index + 1]
self.selection_history_indices[name] += 1
self.signal_selection_changed.emit(self)
logger.debug("redo: selection history is %r, index is %r", selection_history, index)
|
def selection_redo(self, name="default", executor=None):
"""Redo selection, for the name."""
logger.debug("redo")
executor = executor or self.executor
assert self.selection_can_redo(name=name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
next = selection_history[index + 1]
self.selection_history_indices[name] += 1
self.signal_selection_changed.emit(self)
logger.debug("redo: selection history is %r, index is %r", selection_history, index)
|
[
"Redo",
"selection",
"for",
"the",
"name",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4092-L4102
|
[
"def",
"selection_redo",
"(",
"self",
",",
"name",
"=",
"\"default\"",
",",
"executor",
"=",
"None",
")",
":",
"logger",
".",
"debug",
"(",
"\"redo\"",
")",
"executor",
"=",
"executor",
"or",
"self",
".",
"executor",
"assert",
"self",
".",
"selection_can_redo",
"(",
"name",
"=",
"name",
")",
"selection_history",
"=",
"self",
".",
"selection_histories",
"[",
"name",
"]",
"index",
"=",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"next",
"=",
"selection_history",
"[",
"index",
"+",
"1",
"]",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"+=",
"1",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"logger",
".",
"debug",
"(",
"\"redo: selection history is %r, index is %r\"",
",",
"selection_history",
",",
"index",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.selection_can_redo
|
Can selection name be redone?
|
packages/vaex-core/vaex/dataframe.py
|
def selection_can_redo(self, name="default"):
"""Can selection name be redone?"""
return (self.selection_history_indices[name] + 1) < len(self.selection_histories[name])
|
def selection_can_redo(self, name="default"):
"""Can selection name be redone?"""
return (self.selection_history_indices[name] + 1) < len(self.selection_histories[name])
|
[
"Can",
"selection",
"name",
"be",
"redone?"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4108-L4110
|
[
"def",
"selection_can_redo",
"(",
"self",
",",
"name",
"=",
"\"default\"",
")",
":",
"return",
"(",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"+",
"1",
")",
"<",
"len",
"(",
"self",
".",
"selection_histories",
"[",
"name",
"]",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select
|
Perform a selection, defined by the boolean expression, and combined with the previous selection using the given mode.
Selections are recorded in a history tree, per name, undo/redo can be done for them separately.
:param str boolean_expression: Any valid column expression, with comparison operators
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name: history tree or selection 'slot' to use
:param executor:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select(self, boolean_expression, mode="replace", name="default", executor=None):
"""Perform a selection, defined by the boolean expression, and combined with the previous selection using the given mode.
Selections are recorded in a history tree, per name, undo/redo can be done for them separately.
:param str boolean_expression: Any valid column expression, with comparison operators
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name: history tree or selection 'slot' to use
:param executor:
:return:
"""
boolean_expression = _ensure_string_from_expression(boolean_expression)
if boolean_expression is None and not self.has_selection(name=name):
pass # we don't want to pollute the history with many None selections
self.signal_selection_changed.emit(self) # TODO: unittest want to know, does this make sense?
else:
def create(current):
return selections.SelectionExpression(boolean_expression, current, mode) if boolean_expression else None
self._selection(create, name)
|
def select(self, boolean_expression, mode="replace", name="default", executor=None):
"""Perform a selection, defined by the boolean expression, and combined with the previous selection using the given mode.
Selections are recorded in a history tree, per name, undo/redo can be done for them separately.
:param str boolean_expression: Any valid column expression, with comparison operators
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name: history tree or selection 'slot' to use
:param executor:
:return:
"""
boolean_expression = _ensure_string_from_expression(boolean_expression)
if boolean_expression is None and not self.has_selection(name=name):
pass # we don't want to pollute the history with many None selections
self.signal_selection_changed.emit(self) # TODO: unittest want to know, does this make sense?
else:
def create(current):
return selections.SelectionExpression(boolean_expression, current, mode) if boolean_expression else None
self._selection(create, name)
|
[
"Perform",
"a",
"selection",
"defined",
"by",
"the",
"boolean",
"expression",
"and",
"combined",
"with",
"the",
"previous",
"selection",
"using",
"the",
"given",
"mode",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4112-L4130
|
[
"def",
"select",
"(",
"self",
",",
"boolean_expression",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
",",
"executor",
"=",
"None",
")",
":",
"boolean_expression",
"=",
"_ensure_string_from_expression",
"(",
"boolean_expression",
")",
"if",
"boolean_expression",
"is",
"None",
"and",
"not",
"self",
".",
"has_selection",
"(",
"name",
"=",
"name",
")",
":",
"pass",
"# we don't want to pollute the history with many None selections",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"# TODO: unittest want to know, does this make sense?",
"else",
":",
"def",
"create",
"(",
"current",
")",
":",
"return",
"selections",
".",
"SelectionExpression",
"(",
"boolean_expression",
",",
"current",
",",
"mode",
")",
"if",
"boolean_expression",
"else",
"None",
"self",
".",
"_selection",
"(",
"create",
",",
"name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_non_missing
|
Create a selection that selects rows having non missing values for all columns in column_names.
The name reflect Panda's, no rows are really dropped, but a mask is kept to keep track of the selection
:param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values)
:param drop_masked: drop rows when there is a masked value in any of the columns
:param column_names: The columns to consider, default: all (real, non-virtual) columns
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name: history tree or selection 'slot' to use
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select_non_missing(self, drop_nan=True, drop_masked=True, column_names=None, mode="replace", name="default"):
"""Create a selection that selects rows having non missing values for all columns in column_names.
The name reflect Panda's, no rows are really dropped, but a mask is kept to keep track of the selection
:param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values)
:param drop_masked: drop rows when there is a masked value in any of the columns
:param column_names: The columns to consider, default: all (real, non-virtual) columns
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name: history tree or selection 'slot' to use
:return:
"""
column_names = column_names or self.get_column_names(virtual=False)
def create(current):
return selections.SelectionDropNa(drop_nan, drop_masked, column_names, current, mode)
self._selection(create, name)
|
def select_non_missing(self, drop_nan=True, drop_masked=True, column_names=None, mode="replace", name="default"):
"""Create a selection that selects rows having non missing values for all columns in column_names.
The name reflect Panda's, no rows are really dropped, but a mask is kept to keep track of the selection
:param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values)
:param drop_masked: drop rows when there is a masked value in any of the columns
:param column_names: The columns to consider, default: all (real, non-virtual) columns
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name: history tree or selection 'slot' to use
:return:
"""
column_names = column_names or self.get_column_names(virtual=False)
def create(current):
return selections.SelectionDropNa(drop_nan, drop_masked, column_names, current, mode)
self._selection(create, name)
|
[
"Create",
"a",
"selection",
"that",
"selects",
"rows",
"having",
"non",
"missing",
"values",
"for",
"all",
"columns",
"in",
"column_names",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4132-L4148
|
[
"def",
"select_non_missing",
"(",
"self",
",",
"drop_nan",
"=",
"True",
",",
"drop_masked",
"=",
"True",
",",
"column_names",
"=",
"None",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
")",
":",
"column_names",
"=",
"column_names",
"or",
"self",
".",
"get_column_names",
"(",
"virtual",
"=",
"False",
")",
"def",
"create",
"(",
"current",
")",
":",
"return",
"selections",
".",
"SelectionDropNa",
"(",
"drop_nan",
",",
"drop_masked",
",",
"column_names",
",",
"current",
",",
"mode",
")",
"self",
".",
"_selection",
"(",
"create",
",",
"name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.dropna
|
Create a shallow copy of a DataFrame, with filtering set using select_non_missing.
:param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values)
:param drop_masked: drop rows when there is a masked value in any of the columns
:param column_names: The columns to consider, default: all (real, non-virtual) columns
:rtype: DataFrame
|
packages/vaex-core/vaex/dataframe.py
|
def dropna(self, drop_nan=True, drop_masked=True, column_names=None):
"""Create a shallow copy of a DataFrame, with filtering set using select_non_missing.
:param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values)
:param drop_masked: drop rows when there is a masked value in any of the columns
:param column_names: The columns to consider, default: all (real, non-virtual) columns
:rtype: DataFrame
"""
copy = self.copy()
copy.select_non_missing(drop_nan=drop_nan, drop_masked=drop_masked, column_names=column_names,
name=FILTER_SELECTION_NAME, mode='and')
return copy
|
def dropna(self, drop_nan=True, drop_masked=True, column_names=None):
"""Create a shallow copy of a DataFrame, with filtering set using select_non_missing.
:param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values)
:param drop_masked: drop rows when there is a masked value in any of the columns
:param column_names: The columns to consider, default: all (real, non-virtual) columns
:rtype: DataFrame
"""
copy = self.copy()
copy.select_non_missing(drop_nan=drop_nan, drop_masked=drop_masked, column_names=column_names,
name=FILTER_SELECTION_NAME, mode='and')
return copy
|
[
"Create",
"a",
"shallow",
"copy",
"of",
"a",
"DataFrame",
"with",
"filtering",
"set",
"using",
"select_non_missing",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4150-L4161
|
[
"def",
"dropna",
"(",
"self",
",",
"drop_nan",
"=",
"True",
",",
"drop_masked",
"=",
"True",
",",
"column_names",
"=",
"None",
")",
":",
"copy",
"=",
"self",
".",
"copy",
"(",
")",
"copy",
".",
"select_non_missing",
"(",
"drop_nan",
"=",
"drop_nan",
",",
"drop_masked",
"=",
"drop_masked",
",",
"column_names",
"=",
"column_names",
",",
"name",
"=",
"FILTER_SELECTION_NAME",
",",
"mode",
"=",
"'and'",
")",
"return",
"copy"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_rectangle
|
Select a 2d rectangular box in the space given by x and y, bounds by limits.
Example:
>>> df.select_box('x', 'y', [(0, 10), (0, 1)])
:param x: expression for the x space
:param y: expression fo the y space
:param limits: sequence of shape [(x1, x2), (y1, y2)]
:param mode:
|
packages/vaex-core/vaex/dataframe.py
|
def select_rectangle(self, x, y, limits, mode="replace", name="default"):
"""Select a 2d rectangular box in the space given by x and y, bounds by limits.
Example:
>>> df.select_box('x', 'y', [(0, 10), (0, 1)])
:param x: expression for the x space
:param y: expression fo the y space
:param limits: sequence of shape [(x1, x2), (y1, y2)]
:param mode:
"""
self.select_box([x, y], limits, mode=mode, name=name)
|
def select_rectangle(self, x, y, limits, mode="replace", name="default"):
"""Select a 2d rectangular box in the space given by x and y, bounds by limits.
Example:
>>> df.select_box('x', 'y', [(0, 10), (0, 1)])
:param x: expression for the x space
:param y: expression fo the y space
:param limits: sequence of shape [(x1, x2), (y1, y2)]
:param mode:
"""
self.select_box([x, y], limits, mode=mode, name=name)
|
[
"Select",
"a",
"2d",
"rectangular",
"box",
"in",
"the",
"space",
"given",
"by",
"x",
"and",
"y",
"bounds",
"by",
"limits",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4169-L4181
|
[
"def",
"select_rectangle",
"(",
"self",
",",
"x",
",",
"y",
",",
"limits",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
")",
":",
"self",
".",
"select_box",
"(",
"[",
"x",
",",
"y",
"]",
",",
"limits",
",",
"mode",
"=",
"mode",
",",
"name",
"=",
"name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_box
|
Select a n-dimensional rectangular box bounded by limits.
The following examples are equivalent:
>>> df.select_box(['x', 'y'], [(0, 10), (0, 1)])
>>> df.select_rectangle('x', 'y', [(0, 10), (0, 1)])
:param spaces: list of expressions
:param limits: sequence of shape [(x1, x2), (y1, y2)]
:param mode:
:param name:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select_box(self, spaces, limits, mode="replace", name="default"):
"""Select a n-dimensional rectangular box bounded by limits.
The following examples are equivalent:
>>> df.select_box(['x', 'y'], [(0, 10), (0, 1)])
>>> df.select_rectangle('x', 'y', [(0, 10), (0, 1)])
:param spaces: list of expressions
:param limits: sequence of shape [(x1, x2), (y1, y2)]
:param mode:
:param name:
:return:
"""
sorted_limits = [(min(l), max(l)) for l in limits]
expressions = ["((%s) >= %f) & ((%s) <= %f)" % (expression, lmin, expression, lmax) for
(expression, (lmin, lmax)) in zip(spaces, sorted_limits)]
self.select("&".join(expressions), mode=mode, name=name)
|
def select_box(self, spaces, limits, mode="replace", name="default"):
"""Select a n-dimensional rectangular box bounded by limits.
The following examples are equivalent:
>>> df.select_box(['x', 'y'], [(0, 10), (0, 1)])
>>> df.select_rectangle('x', 'y', [(0, 10), (0, 1)])
:param spaces: list of expressions
:param limits: sequence of shape [(x1, x2), (y1, y2)]
:param mode:
:param name:
:return:
"""
sorted_limits = [(min(l), max(l)) for l in limits]
expressions = ["((%s) >= %f) & ((%s) <= %f)" % (expression, lmin, expression, lmax) for
(expression, (lmin, lmax)) in zip(spaces, sorted_limits)]
self.select("&".join(expressions), mode=mode, name=name)
|
[
"Select",
"a",
"n",
"-",
"dimensional",
"rectangular",
"box",
"bounded",
"by",
"limits",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4183-L4200
|
[
"def",
"select_box",
"(",
"self",
",",
"spaces",
",",
"limits",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
")",
":",
"sorted_limits",
"=",
"[",
"(",
"min",
"(",
"l",
")",
",",
"max",
"(",
"l",
")",
")",
"for",
"l",
"in",
"limits",
"]",
"expressions",
"=",
"[",
"\"((%s) >= %f) & ((%s) <= %f)\"",
"%",
"(",
"expression",
",",
"lmin",
",",
"expression",
",",
"lmax",
")",
"for",
"(",
"expression",
",",
"(",
"lmin",
",",
"lmax",
")",
")",
"in",
"zip",
"(",
"spaces",
",",
"sorted_limits",
")",
"]",
"self",
".",
"select",
"(",
"\"&\"",
".",
"join",
"(",
"expressions",
")",
",",
"mode",
"=",
"mode",
",",
"name",
"=",
"name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_circle
|
Select a circular region centred on xc, yc, with a radius of r.
Example:
>>> df.select_circle('x','y',2,3,1)
:param x: expression for the x space
:param y: expression for the y space
:param xc: location of the centre of the circle in x
:param yc: location of the centre of the circle in y
:param r: the radius of the circle
:param name: name of the selection
:param mode:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select_circle(self, x, y, xc, yc, r, mode="replace", name="default", inclusive=True):
"""
Select a circular region centred on xc, yc, with a radius of r.
Example:
>>> df.select_circle('x','y',2,3,1)
:param x: expression for the x space
:param y: expression for the y space
:param xc: location of the centre of the circle in x
:param yc: location of the centre of the circle in y
:param r: the radius of the circle
:param name: name of the selection
:param mode:
:return:
"""
# expr = "({x}-{xc})**2 + ({y}-{yc})**2 <={r}**2".format(**locals())
if inclusive:
expr = (self[x] - xc)**2 + (self[y] - yc)**2 <= r**2
else:
expr = (self[x] - xc)**2 + (self[y] - yc)**2 < r**2
self.select(boolean_expression=expr, mode=mode, name=name)
|
def select_circle(self, x, y, xc, yc, r, mode="replace", name="default", inclusive=True):
"""
Select a circular region centred on xc, yc, with a radius of r.
Example:
>>> df.select_circle('x','y',2,3,1)
:param x: expression for the x space
:param y: expression for the y space
:param xc: location of the centre of the circle in x
:param yc: location of the centre of the circle in y
:param r: the radius of the circle
:param name: name of the selection
:param mode:
:return:
"""
# expr = "({x}-{xc})**2 + ({y}-{yc})**2 <={r}**2".format(**locals())
if inclusive:
expr = (self[x] - xc)**2 + (self[y] - yc)**2 <= r**2
else:
expr = (self[x] - xc)**2 + (self[y] - yc)**2 < r**2
self.select(boolean_expression=expr, mode=mode, name=name)
|
[
"Select",
"a",
"circular",
"region",
"centred",
"on",
"xc",
"yc",
"with",
"a",
"radius",
"of",
"r",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4202-L4226
|
[
"def",
"select_circle",
"(",
"self",
",",
"x",
",",
"y",
",",
"xc",
",",
"yc",
",",
"r",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
",",
"inclusive",
"=",
"True",
")",
":",
"# expr = \"({x}-{xc})**2 + ({y}-{yc})**2 <={r}**2\".format(**locals())",
"if",
"inclusive",
":",
"expr",
"=",
"(",
"self",
"[",
"x",
"]",
"-",
"xc",
")",
"**",
"2",
"+",
"(",
"self",
"[",
"y",
"]",
"-",
"yc",
")",
"**",
"2",
"<=",
"r",
"**",
"2",
"else",
":",
"expr",
"=",
"(",
"self",
"[",
"x",
"]",
"-",
"xc",
")",
"**",
"2",
"+",
"(",
"self",
"[",
"y",
"]",
"-",
"yc",
")",
"**",
"2",
"<",
"r",
"**",
"2",
"self",
".",
"select",
"(",
"boolean_expression",
"=",
"expr",
",",
"mode",
"=",
"mode",
",",
"name",
"=",
"name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_ellipse
|
Select an elliptical region centred on xc, yc, with a certain width, height
and angle.
Example:
>>> df.select_ellipse('x','y', 2, -1, 5,1, 30, name='my_ellipse')
:param x: expression for the x space
:param y: expression for the y space
:param xc: location of the centre of the ellipse in x
:param yc: location of the centre of the ellipse in y
:param width: the width of the ellipse (diameter)
:param height: the width of the ellipse (diameter)
:param angle: (degrees) orientation of the ellipse, counter-clockwise
measured from the y axis
:param name: name of the selection
:param mode:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select_ellipse(self, x, y, xc, yc, width, height, angle=0, mode="replace", name="default", radians=False, inclusive=True):
"""
Select an elliptical region centred on xc, yc, with a certain width, height
and angle.
Example:
>>> df.select_ellipse('x','y', 2, -1, 5,1, 30, name='my_ellipse')
:param x: expression for the x space
:param y: expression for the y space
:param xc: location of the centre of the ellipse in x
:param yc: location of the centre of the ellipse in y
:param width: the width of the ellipse (diameter)
:param height: the width of the ellipse (diameter)
:param angle: (degrees) orientation of the ellipse, counter-clockwise
measured from the y axis
:param name: name of the selection
:param mode:
:return:
"""
# Computing the properties of the ellipse prior to selection
if radians:
pass
else:
alpha = np.deg2rad(angle)
xr = width / 2
yr = height / 2
r = max(xr, yr)
a = xr / r
b = yr / r
expr = "(({x}-{xc})*cos({alpha})+({y}-{yc})*sin({alpha}))**2/{a}**2 + (({x}-{xc})*sin({alpha})-({y}-{yc})*cos({alpha}))**2/{b}**2 <= {r}**2".format(**locals())
if inclusive:
expr = ((self[x] - xc) * np.cos(alpha) + (self[y] - yc) * np.sin(alpha))**2 / a**2 + ((self[x] - xc) * np.sin(alpha) - (self[y] - yc) * np.cos(alpha))**2 / b**2 <= r**2
else:
expr = ((self[x] - xc) * np.cos(alpha) + (self[y] - yc) * np.sin(alpha))**2 / a**2 + ((self[x] - xc) * np.sin(alpha) - (self[y] - yc) * np.cos(alpha))**2 / b**2 < r**2
self.select(boolean_expression=expr, mode=mode, name=name)
|
def select_ellipse(self, x, y, xc, yc, width, height, angle=0, mode="replace", name="default", radians=False, inclusive=True):
"""
Select an elliptical region centred on xc, yc, with a certain width, height
and angle.
Example:
>>> df.select_ellipse('x','y', 2, -1, 5,1, 30, name='my_ellipse')
:param x: expression for the x space
:param y: expression for the y space
:param xc: location of the centre of the ellipse in x
:param yc: location of the centre of the ellipse in y
:param width: the width of the ellipse (diameter)
:param height: the width of the ellipse (diameter)
:param angle: (degrees) orientation of the ellipse, counter-clockwise
measured from the y axis
:param name: name of the selection
:param mode:
:return:
"""
# Computing the properties of the ellipse prior to selection
if radians:
pass
else:
alpha = np.deg2rad(angle)
xr = width / 2
yr = height / 2
r = max(xr, yr)
a = xr / r
b = yr / r
expr = "(({x}-{xc})*cos({alpha})+({y}-{yc})*sin({alpha}))**2/{a}**2 + (({x}-{xc})*sin({alpha})-({y}-{yc})*cos({alpha}))**2/{b}**2 <= {r}**2".format(**locals())
if inclusive:
expr = ((self[x] - xc) * np.cos(alpha) + (self[y] - yc) * np.sin(alpha))**2 / a**2 + ((self[x] - xc) * np.sin(alpha) - (self[y] - yc) * np.cos(alpha))**2 / b**2 <= r**2
else:
expr = ((self[x] - xc) * np.cos(alpha) + (self[y] - yc) * np.sin(alpha))**2 / a**2 + ((self[x] - xc) * np.sin(alpha) - (self[y] - yc) * np.cos(alpha))**2 / b**2 < r**2
self.select(boolean_expression=expr, mode=mode, name=name)
|
[
"Select",
"an",
"elliptical",
"region",
"centred",
"on",
"xc",
"yc",
"with",
"a",
"certain",
"width",
"height",
"and",
"angle",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4228-L4269
|
[
"def",
"select_ellipse",
"(",
"self",
",",
"x",
",",
"y",
",",
"xc",
",",
"yc",
",",
"width",
",",
"height",
",",
"angle",
"=",
"0",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
",",
"radians",
"=",
"False",
",",
"inclusive",
"=",
"True",
")",
":",
"# Computing the properties of the ellipse prior to selection",
"if",
"radians",
":",
"pass",
"else",
":",
"alpha",
"=",
"np",
".",
"deg2rad",
"(",
"angle",
")",
"xr",
"=",
"width",
"/",
"2",
"yr",
"=",
"height",
"/",
"2",
"r",
"=",
"max",
"(",
"xr",
",",
"yr",
")",
"a",
"=",
"xr",
"/",
"r",
"b",
"=",
"yr",
"/",
"r",
"expr",
"=",
"\"(({x}-{xc})*cos({alpha})+({y}-{yc})*sin({alpha}))**2/{a}**2 + (({x}-{xc})*sin({alpha})-({y}-{yc})*cos({alpha}))**2/{b}**2 <= {r}**2\"",
".",
"format",
"(",
"*",
"*",
"locals",
"(",
")",
")",
"if",
"inclusive",
":",
"expr",
"=",
"(",
"(",
"self",
"[",
"x",
"]",
"-",
"xc",
")",
"*",
"np",
".",
"cos",
"(",
"alpha",
")",
"+",
"(",
"self",
"[",
"y",
"]",
"-",
"yc",
")",
"*",
"np",
".",
"sin",
"(",
"alpha",
")",
")",
"**",
"2",
"/",
"a",
"**",
"2",
"+",
"(",
"(",
"self",
"[",
"x",
"]",
"-",
"xc",
")",
"*",
"np",
".",
"sin",
"(",
"alpha",
")",
"-",
"(",
"self",
"[",
"y",
"]",
"-",
"yc",
")",
"*",
"np",
".",
"cos",
"(",
"alpha",
")",
")",
"**",
"2",
"/",
"b",
"**",
"2",
"<=",
"r",
"**",
"2",
"else",
":",
"expr",
"=",
"(",
"(",
"self",
"[",
"x",
"]",
"-",
"xc",
")",
"*",
"np",
".",
"cos",
"(",
"alpha",
")",
"+",
"(",
"self",
"[",
"y",
"]",
"-",
"yc",
")",
"*",
"np",
".",
"sin",
"(",
"alpha",
")",
")",
"**",
"2",
"/",
"a",
"**",
"2",
"+",
"(",
"(",
"self",
"[",
"x",
"]",
"-",
"xc",
")",
"*",
"np",
".",
"sin",
"(",
"alpha",
")",
"-",
"(",
"self",
"[",
"y",
"]",
"-",
"yc",
")",
"*",
"np",
".",
"cos",
"(",
"alpha",
")",
")",
"**",
"2",
"/",
"b",
"**",
"2",
"<",
"r",
"**",
"2",
"self",
".",
"select",
"(",
"boolean_expression",
"=",
"expr",
",",
"mode",
"=",
"mode",
",",
"name",
"=",
"name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_lasso
|
For performance reasons, a lasso selection is handled differently.
:param str expression_x: Name/expression for the x coordinate
:param str expression_y: Name/expression for the y coordinate
:param xsequence: list of x numbers defining the lasso, together with y
:param ysequence:
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name:
:param executor:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select_lasso(self, expression_x, expression_y, xsequence, ysequence, mode="replace", name="default", executor=None):
"""For performance reasons, a lasso selection is handled differently.
:param str expression_x: Name/expression for the x coordinate
:param str expression_y: Name/expression for the y coordinate
:param xsequence: list of x numbers defining the lasso, together with y
:param ysequence:
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name:
:param executor:
:return:
"""
def create(current):
return selections.SelectionLasso(expression_x, expression_y, xsequence, ysequence, current, mode)
self._selection(create, name, executor=executor)
|
def select_lasso(self, expression_x, expression_y, xsequence, ysequence, mode="replace", name="default", executor=None):
"""For performance reasons, a lasso selection is handled differently.
:param str expression_x: Name/expression for the x coordinate
:param str expression_y: Name/expression for the y coordinate
:param xsequence: list of x numbers defining the lasso, together with y
:param ysequence:
:param str mode: Possible boolean operator: replace/and/or/xor/subtract
:param str name:
:param executor:
:return:
"""
def create(current):
return selections.SelectionLasso(expression_x, expression_y, xsequence, ysequence, current, mode)
self._selection(create, name, executor=executor)
|
[
"For",
"performance",
"reasons",
"a",
"lasso",
"selection",
"is",
"handled",
"differently",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4271-L4286
|
[
"def",
"select_lasso",
"(",
"self",
",",
"expression_x",
",",
"expression_y",
",",
"xsequence",
",",
"ysequence",
",",
"mode",
"=",
"\"replace\"",
",",
"name",
"=",
"\"default\"",
",",
"executor",
"=",
"None",
")",
":",
"def",
"create",
"(",
"current",
")",
":",
"return",
"selections",
".",
"SelectionLasso",
"(",
"expression_x",
",",
"expression_y",
",",
"xsequence",
",",
"ysequence",
",",
"current",
",",
"mode",
")",
"self",
".",
"_selection",
"(",
"create",
",",
"name",
",",
"executor",
"=",
"executor",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.select_inverse
|
Invert the selection, i.e. what is selected will not be, and vice versa
:param str name:
:param executor:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def select_inverse(self, name="default", executor=None):
"""Invert the selection, i.e. what is selected will not be, and vice versa
:param str name:
:param executor:
:return:
"""
def create(current):
return selections.SelectionInvert(current)
self._selection(create, name, executor=executor)
|
def select_inverse(self, name="default", executor=None):
"""Invert the selection, i.e. what is selected will not be, and vice versa
:param str name:
:param executor:
:return:
"""
def create(current):
return selections.SelectionInvert(current)
self._selection(create, name, executor=executor)
|
[
"Invert",
"the",
"selection",
"i",
".",
"e",
".",
"what",
"is",
"selected",
"will",
"not",
"be",
"and",
"vice",
"versa"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4288-L4298
|
[
"def",
"select_inverse",
"(",
"self",
",",
"name",
"=",
"\"default\"",
",",
"executor",
"=",
"None",
")",
":",
"def",
"create",
"(",
"current",
")",
":",
"return",
"selections",
".",
"SelectionInvert",
"(",
"current",
")",
"self",
".",
"_selection",
"(",
"create",
",",
"name",
",",
"executor",
"=",
"executor",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.set_selection
|
Sets the selection object
:param selection: Selection object
:param name: selection 'slot'
:param executor:
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def set_selection(self, selection, name="default", executor=None):
"""Sets the selection object
:param selection: Selection object
:param name: selection 'slot'
:param executor:
:return:
"""
def create(current):
return selection
self._selection(create, name, executor=executor, execute_fully=True)
|
def set_selection(self, selection, name="default", executor=None):
"""Sets the selection object
:param selection: Selection object
:param name: selection 'slot'
:param executor:
:return:
"""
def create(current):
return selection
self._selection(create, name, executor=executor, execute_fully=True)
|
[
"Sets",
"the",
"selection",
"object"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4300-L4310
|
[
"def",
"set_selection",
"(",
"self",
",",
"selection",
",",
"name",
"=",
"\"default\"",
",",
"executor",
"=",
"None",
")",
":",
"def",
"create",
"(",
"current",
")",
":",
"return",
"selection",
"self",
".",
"_selection",
"(",
"create",
",",
"name",
",",
"executor",
"=",
"executor",
",",
"execute_fully",
"=",
"True",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame._selection
|
select_lasso and select almost share the same code
|
packages/vaex-core/vaex/dataframe.py
|
def _selection(self, create_selection, name, executor=None, execute_fully=False):
"""select_lasso and select almost share the same code"""
selection_history = self.selection_histories[name]
previous_index = self.selection_history_indices[name]
current = selection_history[previous_index] if selection_history else None
selection = create_selection(current)
executor = executor or self.executor
selection_history.append(selection)
self.selection_history_indices[name] += 1
# clip any redo history
del selection_history[self.selection_history_indices[name]:-1]
if 0:
if self.is_local():
if selection:
# result = selection.execute(executor=executor, execute_fully=execute_fully)
result = vaex.promise.Promise.fulfilled(None)
self.signal_selection_changed.emit(self)
else:
result = vaex.promise.Promise.fulfilled(None)
self.signal_selection_changed.emit(self)
else:
self.signal_selection_changed.emit(self)
result = vaex.promise.Promise.fulfilled(None)
self.signal_selection_changed.emit(self)
result = vaex.promise.Promise.fulfilled(None)
logger.debug("select selection history is %r, index is %r", selection_history, self.selection_history_indices[name])
return result
|
def _selection(self, create_selection, name, executor=None, execute_fully=False):
"""select_lasso and select almost share the same code"""
selection_history = self.selection_histories[name]
previous_index = self.selection_history_indices[name]
current = selection_history[previous_index] if selection_history else None
selection = create_selection(current)
executor = executor or self.executor
selection_history.append(selection)
self.selection_history_indices[name] += 1
# clip any redo history
del selection_history[self.selection_history_indices[name]:-1]
if 0:
if self.is_local():
if selection:
# result = selection.execute(executor=executor, execute_fully=execute_fully)
result = vaex.promise.Promise.fulfilled(None)
self.signal_selection_changed.emit(self)
else:
result = vaex.promise.Promise.fulfilled(None)
self.signal_selection_changed.emit(self)
else:
self.signal_selection_changed.emit(self)
result = vaex.promise.Promise.fulfilled(None)
self.signal_selection_changed.emit(self)
result = vaex.promise.Promise.fulfilled(None)
logger.debug("select selection history is %r, index is %r", selection_history, self.selection_history_indices[name])
return result
|
[
"select_lasso",
"and",
"select",
"almost",
"share",
"the",
"same",
"code"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4312-L4338
|
[
"def",
"_selection",
"(",
"self",
",",
"create_selection",
",",
"name",
",",
"executor",
"=",
"None",
",",
"execute_fully",
"=",
"False",
")",
":",
"selection_history",
"=",
"self",
".",
"selection_histories",
"[",
"name",
"]",
"previous_index",
"=",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"current",
"=",
"selection_history",
"[",
"previous_index",
"]",
"if",
"selection_history",
"else",
"None",
"selection",
"=",
"create_selection",
"(",
"current",
")",
"executor",
"=",
"executor",
"or",
"self",
".",
"executor",
"selection_history",
".",
"append",
"(",
"selection",
")",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
"+=",
"1",
"# clip any redo history",
"del",
"selection_history",
"[",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
":",
"-",
"1",
"]",
"if",
"0",
":",
"if",
"self",
".",
"is_local",
"(",
")",
":",
"if",
"selection",
":",
"# result = selection.execute(executor=executor, execute_fully=execute_fully)",
"result",
"=",
"vaex",
".",
"promise",
".",
"Promise",
".",
"fulfilled",
"(",
"None",
")",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"else",
":",
"result",
"=",
"vaex",
".",
"promise",
".",
"Promise",
".",
"fulfilled",
"(",
"None",
")",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"else",
":",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"result",
"=",
"vaex",
".",
"promise",
".",
"Promise",
".",
"fulfilled",
"(",
"None",
")",
"self",
".",
"signal_selection_changed",
".",
"emit",
"(",
"self",
")",
"result",
"=",
"vaex",
".",
"promise",
".",
"Promise",
".",
"fulfilled",
"(",
"None",
")",
"logger",
".",
"debug",
"(",
"\"select selection history is %r, index is %r\"",
",",
"selection_history",
",",
"self",
".",
"selection_history_indices",
"[",
"name",
"]",
")",
"return",
"result"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame.drop
|
Drop columns (or a single column).
:param columns: List of columns or a single column name
:param inplace: {inplace}
:param check: When true, it will check if the column is used in virtual columns or the filter, and hide it instead.
|
packages/vaex-core/vaex/dataframe.py
|
def drop(self, columns, inplace=False, check=True):
"""Drop columns (or a single column).
:param columns: List of columns or a single column name
:param inplace: {inplace}
:param check: When true, it will check if the column is used in virtual columns or the filter, and hide it instead.
"""
columns = _ensure_list(columns)
columns = _ensure_strings_from_expressions(columns)
df = self if inplace else self.copy()
depending_columns = df._depending_columns(columns_exclude=columns)
for column in columns:
if check and column in depending_columns:
df._hide_column(column)
else:
del df[column]
return df
|
def drop(self, columns, inplace=False, check=True):
"""Drop columns (or a single column).
:param columns: List of columns or a single column name
:param inplace: {inplace}
:param check: When true, it will check if the column is used in virtual columns or the filter, and hide it instead.
"""
columns = _ensure_list(columns)
columns = _ensure_strings_from_expressions(columns)
df = self if inplace else self.copy()
depending_columns = df._depending_columns(columns_exclude=columns)
for column in columns:
if check and column in depending_columns:
df._hide_column(column)
else:
del df[column]
return df
|
[
"Drop",
"columns",
"(",
"or",
"a",
"single",
"column",
")",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4429-L4445
|
[
"def",
"drop",
"(",
"self",
",",
"columns",
",",
"inplace",
"=",
"False",
",",
"check",
"=",
"True",
")",
":",
"columns",
"=",
"_ensure_list",
"(",
"columns",
")",
"columns",
"=",
"_ensure_strings_from_expressions",
"(",
"columns",
")",
"df",
"=",
"self",
"if",
"inplace",
"else",
"self",
".",
"copy",
"(",
")",
"depending_columns",
"=",
"df",
".",
"_depending_columns",
"(",
"columns_exclude",
"=",
"columns",
")",
"for",
"column",
"in",
"columns",
":",
"if",
"check",
"and",
"column",
"in",
"depending_columns",
":",
"df",
".",
"_hide_column",
"(",
"column",
")",
"else",
":",
"del",
"df",
"[",
"column",
"]",
"return",
"df"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame._hide_column
|
Hides a column by prefixing the name with \'__\
|
packages/vaex-core/vaex/dataframe.py
|
def _hide_column(self, column):
'''Hides a column by prefixing the name with \'__\''''
column = _ensure_string_from_expression(column)
new_name = self._find_valid_name('__' + column)
self._rename(column, new_name)
|
def _hide_column(self, column):
'''Hides a column by prefixing the name with \'__\''''
column = _ensure_string_from_expression(column)
new_name = self._find_valid_name('__' + column)
self._rename(column, new_name)
|
[
"Hides",
"a",
"column",
"by",
"prefixing",
"the",
"name",
"with",
"\\",
"__",
"\\"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4447-L4451
|
[
"def",
"_hide_column",
"(",
"self",
",",
"column",
")",
":",
"column",
"=",
"_ensure_string_from_expression",
"(",
"column",
")",
"new_name",
"=",
"self",
".",
"_find_valid_name",
"(",
"'__'",
"+",
"column",
")",
"self",
".",
"_rename",
"(",
"column",
",",
"new_name",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame._find_valid_name
|
Finds a non-colliding name by optional postfixing
|
packages/vaex-core/vaex/dataframe.py
|
def _find_valid_name(self, initial_name):
'''Finds a non-colliding name by optional postfixing'''
return vaex.utils.find_valid_name(initial_name, used=self.get_column_names(hidden=True))
|
def _find_valid_name(self, initial_name):
'''Finds a non-colliding name by optional postfixing'''
return vaex.utils.find_valid_name(initial_name, used=self.get_column_names(hidden=True))
|
[
"Finds",
"a",
"non",
"-",
"colliding",
"name",
"by",
"optional",
"postfixing"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4453-L4455
|
[
"def",
"_find_valid_name",
"(",
"self",
",",
"initial_name",
")",
":",
"return",
"vaex",
".",
"utils",
".",
"find_valid_name",
"(",
"initial_name",
",",
"used",
"=",
"self",
".",
"get_column_names",
"(",
"hidden",
"=",
"True",
")",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame._depending_columns
|
Find all depending column for a set of column (default all), minus the excluded ones
|
packages/vaex-core/vaex/dataframe.py
|
def _depending_columns(self, columns=None, columns_exclude=None, check_filter=True):
'''Find all depending column for a set of column (default all), minus the excluded ones'''
columns = set(columns or self.get_column_names(hidden=True))
if columns_exclude:
columns -= set(columns_exclude)
depending_columns = set()
for column in columns:
expression = self._expr(column)
depending_columns |= expression.variables()
depending_columns -= set(columns)
if check_filter:
if self.filtered:
selection = self.get_selection(FILTER_SELECTION_NAME)
depending_columns |= selection._depending_columns(self)
return depending_columns
|
def _depending_columns(self, columns=None, columns_exclude=None, check_filter=True):
'''Find all depending column for a set of column (default all), minus the excluded ones'''
columns = set(columns or self.get_column_names(hidden=True))
if columns_exclude:
columns -= set(columns_exclude)
depending_columns = set()
for column in columns:
expression = self._expr(column)
depending_columns |= expression.variables()
depending_columns -= set(columns)
if check_filter:
if self.filtered:
selection = self.get_selection(FILTER_SELECTION_NAME)
depending_columns |= selection._depending_columns(self)
return depending_columns
|
[
"Find",
"all",
"depending",
"column",
"for",
"a",
"set",
"of",
"column",
"(",
"default",
"all",
")",
"minus",
"the",
"excluded",
"ones"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4457-L4471
|
[
"def",
"_depending_columns",
"(",
"self",
",",
"columns",
"=",
"None",
",",
"columns_exclude",
"=",
"None",
",",
"check_filter",
"=",
"True",
")",
":",
"columns",
"=",
"set",
"(",
"columns",
"or",
"self",
".",
"get_column_names",
"(",
"hidden",
"=",
"True",
")",
")",
"if",
"columns_exclude",
":",
"columns",
"-=",
"set",
"(",
"columns_exclude",
")",
"depending_columns",
"=",
"set",
"(",
")",
"for",
"column",
"in",
"columns",
":",
"expression",
"=",
"self",
".",
"_expr",
"(",
"column",
")",
"depending_columns",
"|=",
"expression",
".",
"variables",
"(",
")",
"depending_columns",
"-=",
"set",
"(",
"columns",
")",
"if",
"check_filter",
":",
"if",
"self",
".",
"filtered",
":",
"selection",
"=",
"self",
".",
"get_selection",
"(",
"FILTER_SELECTION_NAME",
")",
"depending_columns",
"|=",
"selection",
".",
"_depending_columns",
"(",
"self",
")",
"return",
"depending_columns"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame._root_nodes
|
Returns a list of string which are the virtual columns that are not used in any other virtual column.
|
packages/vaex-core/vaex/dataframe.py
|
def _root_nodes(self):
"""Returns a list of string which are the virtual columns that are not used in any other virtual column."""
# these lists (~used as ordered set) keep track of leafes and root nodes
# root nodes
root_nodes = []
leafes = []
def walk(node):
# this function recursively walks the expression graph
if isinstance(node, six.string_types):
# we end up at a leaf
leafes.append(node)
if node in root_nodes: # so it cannot be a root node
root_nodes.remove(node)
else:
node_repr, fname, fobj, deps = node
if node_repr in self.virtual_columns:
# we encountered a virtual column, similar behaviour as leaf
leafes.append(node_repr)
if node_repr in root_nodes:
root_nodes.remove(node_repr)
# resursive part
for dep in deps:
walk(dep)
for column in self.virtual_columns.keys():
if column not in leafes:
root_nodes.append(column)
node = self[column]._graph()
# we don't do the virtual column itself, just it's depedencies
node_repr, fname, fobj, deps = node
for dep in deps:
walk(dep)
return root_nodes
|
def _root_nodes(self):
"""Returns a list of string which are the virtual columns that are not used in any other virtual column."""
# these lists (~used as ordered set) keep track of leafes and root nodes
# root nodes
root_nodes = []
leafes = []
def walk(node):
# this function recursively walks the expression graph
if isinstance(node, six.string_types):
# we end up at a leaf
leafes.append(node)
if node in root_nodes: # so it cannot be a root node
root_nodes.remove(node)
else:
node_repr, fname, fobj, deps = node
if node_repr in self.virtual_columns:
# we encountered a virtual column, similar behaviour as leaf
leafes.append(node_repr)
if node_repr in root_nodes:
root_nodes.remove(node_repr)
# resursive part
for dep in deps:
walk(dep)
for column in self.virtual_columns.keys():
if column not in leafes:
root_nodes.append(column)
node = self[column]._graph()
# we don't do the virtual column itself, just it's depedencies
node_repr, fname, fobj, deps = node
for dep in deps:
walk(dep)
return root_nodes
|
[
"Returns",
"a",
"list",
"of",
"string",
"which",
"are",
"the",
"virtual",
"columns",
"that",
"are",
"not",
"used",
"in",
"any",
"other",
"virtual",
"column",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4483-L4514
|
[
"def",
"_root_nodes",
"(",
"self",
")",
":",
"# these lists (~used as ordered set) keep track of leafes and root nodes",
"# root nodes",
"root_nodes",
"=",
"[",
"]",
"leafes",
"=",
"[",
"]",
"def",
"walk",
"(",
"node",
")",
":",
"# this function recursively walks the expression graph",
"if",
"isinstance",
"(",
"node",
",",
"six",
".",
"string_types",
")",
":",
"# we end up at a leaf",
"leafes",
".",
"append",
"(",
"node",
")",
"if",
"node",
"in",
"root_nodes",
":",
"# so it cannot be a root node",
"root_nodes",
".",
"remove",
"(",
"node",
")",
"else",
":",
"node_repr",
",",
"fname",
",",
"fobj",
",",
"deps",
"=",
"node",
"if",
"node_repr",
"in",
"self",
".",
"virtual_columns",
":",
"# we encountered a virtual column, similar behaviour as leaf",
"leafes",
".",
"append",
"(",
"node_repr",
")",
"if",
"node_repr",
"in",
"root_nodes",
":",
"root_nodes",
".",
"remove",
"(",
"node_repr",
")",
"# resursive part",
"for",
"dep",
"in",
"deps",
":",
"walk",
"(",
"dep",
")",
"for",
"column",
"in",
"self",
".",
"virtual_columns",
".",
"keys",
"(",
")",
":",
"if",
"column",
"not",
"in",
"leafes",
":",
"root_nodes",
".",
"append",
"(",
"column",
")",
"node",
"=",
"self",
"[",
"column",
"]",
".",
"_graph",
"(",
")",
"# we don't do the virtual column itself, just it's depedencies",
"node_repr",
",",
"fname",
",",
"fobj",
",",
"deps",
"=",
"node",
"for",
"dep",
"in",
"deps",
":",
"walk",
"(",
"dep",
")",
"return",
"root_nodes"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrame._graphviz
|
Return a graphviz.Digraph object with a graph of all virtual columns
|
packages/vaex-core/vaex/dataframe.py
|
def _graphviz(self, dot=None):
"""Return a graphviz.Digraph object with a graph of all virtual columns"""
from graphviz import Digraph
dot = dot or Digraph(comment='whole dataframe')
root_nodes = self._root_nodes()
for column in root_nodes:
self[column]._graphviz(dot=dot)
return dot
|
def _graphviz(self, dot=None):
"""Return a graphviz.Digraph object with a graph of all virtual columns"""
from graphviz import Digraph
dot = dot or Digraph(comment='whole dataframe')
root_nodes = self._root_nodes()
for column in root_nodes:
self[column]._graphviz(dot=dot)
return dot
|
[
"Return",
"a",
"graphviz",
".",
"Digraph",
"object",
"with",
"a",
"graph",
"of",
"all",
"virtual",
"columns"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4516-L4523
|
[
"def",
"_graphviz",
"(",
"self",
",",
"dot",
"=",
"None",
")",
":",
"from",
"graphviz",
"import",
"Digraph",
"dot",
"=",
"dot",
"or",
"Digraph",
"(",
"comment",
"=",
"'whole dataframe'",
")",
"root_nodes",
"=",
"self",
".",
"_root_nodes",
"(",
")",
"for",
"column",
"in",
"root_nodes",
":",
"self",
"[",
"column",
"]",
".",
"_graphviz",
"(",
"dot",
"=",
"dot",
")",
"return",
"dot"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.categorize
|
Mark column as categorical, with given labels, assuming zero indexing
|
packages/vaex-core/vaex/dataframe.py
|
def categorize(self, column, labels=None, check=True):
"""Mark column as categorical, with given labels, assuming zero indexing"""
column = _ensure_string_from_expression(column)
if check:
vmin, vmax = self.minmax(column)
if labels is None:
N = int(vmax + 1)
labels = list(map(str, range(N)))
if (vmax - vmin) >= len(labels):
raise ValueError('value of {} found, which is larger than number of labels {}'.format(vmax, len(labels)))
self._categories[column] = dict(labels=labels, N=len(labels))
|
def categorize(self, column, labels=None, check=True):
"""Mark column as categorical, with given labels, assuming zero indexing"""
column = _ensure_string_from_expression(column)
if check:
vmin, vmax = self.minmax(column)
if labels is None:
N = int(vmax + 1)
labels = list(map(str, range(N)))
if (vmax - vmin) >= len(labels):
raise ValueError('value of {} found, which is larger than number of labels {}'.format(vmax, len(labels)))
self._categories[column] = dict(labels=labels, N=len(labels))
|
[
"Mark",
"column",
"as",
"categorical",
"with",
"given",
"labels",
"assuming",
"zero",
"indexing"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4557-L4567
|
[
"def",
"categorize",
"(",
"self",
",",
"column",
",",
"labels",
"=",
"None",
",",
"check",
"=",
"True",
")",
":",
"column",
"=",
"_ensure_string_from_expression",
"(",
"column",
")",
"if",
"check",
":",
"vmin",
",",
"vmax",
"=",
"self",
".",
"minmax",
"(",
"column",
")",
"if",
"labels",
"is",
"None",
":",
"N",
"=",
"int",
"(",
"vmax",
"+",
"1",
")",
"labels",
"=",
"list",
"(",
"map",
"(",
"str",
",",
"range",
"(",
"N",
")",
")",
")",
"if",
"(",
"vmax",
"-",
"vmin",
")",
">=",
"len",
"(",
"labels",
")",
":",
"raise",
"ValueError",
"(",
"'value of {} found, which is larger than number of labels {}'",
".",
"format",
"(",
"vmax",
",",
"len",
"(",
"labels",
")",
")",
")",
"self",
".",
"_categories",
"[",
"column",
"]",
"=",
"dict",
"(",
"labels",
"=",
"labels",
",",
"N",
"=",
"len",
"(",
"labels",
")",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.ordinal_encode
|
Encode column as ordinal values and mark it as categorical.
The existing column is renamed to a hidden column and replaced by a numerical columns
with values between [0, len(values)-1].
|
packages/vaex-core/vaex/dataframe.py
|
def ordinal_encode(self, column, values=None, inplace=False):
"""Encode column as ordinal values and mark it as categorical.
The existing column is renamed to a hidden column and replaced by a numerical columns
with values between [0, len(values)-1].
"""
column = _ensure_string_from_expression(column)
df = self if inplace else self.copy()
# for the codes, we need to work on the unfiltered dataset, since the filter
# may change, and we also cannot add an array that is smaller in length
df_unfiltered = df.copy()
# maybe we need some filter manipulation methods
df_unfiltered.select_nothing(name=FILTER_SELECTION_NAME)
df_unfiltered._length_unfiltered = df._length_original
df_unfiltered.set_active_range(0, df._length_original)
# codes point to the index of found_values
# meaning: found_values[codes[0]] == ds[column].values[0]
found_values, codes = df_unfiltered.unique(column, return_inverse=True)
if values is None:
values = found_values
else:
# we have specified which values we should support, anything
# not found will be masked
translation = np.zeros(len(found_values), dtype=np.uint64)
# mark values that are in the column, but not in values with a special value
missing_value = len(found_values)
for i, found_value in enumerate(found_values):
try:
found_value = found_value.decode('ascii')
except:
pass
if found_value not in values: # not present, we need a missing value
translation[i] = missing_value
else:
translation[i] = values.index(found_value)
codes = translation[codes]
if missing_value in translation:
# all special values will be marked as missing
codes = np.ma.masked_array(codes, codes==missing_value)
original_column = df.rename_column(column, '__original_' + column, unique=True)
labels = [str(k) for k in values]
df.add_column(column, codes)
df._categories[column] = dict(labels=labels, N=len(values), values=values)
return df
|
def ordinal_encode(self, column, values=None, inplace=False):
"""Encode column as ordinal values and mark it as categorical.
The existing column is renamed to a hidden column and replaced by a numerical columns
with values between [0, len(values)-1].
"""
column = _ensure_string_from_expression(column)
df = self if inplace else self.copy()
# for the codes, we need to work on the unfiltered dataset, since the filter
# may change, and we also cannot add an array that is smaller in length
df_unfiltered = df.copy()
# maybe we need some filter manipulation methods
df_unfiltered.select_nothing(name=FILTER_SELECTION_NAME)
df_unfiltered._length_unfiltered = df._length_original
df_unfiltered.set_active_range(0, df._length_original)
# codes point to the index of found_values
# meaning: found_values[codes[0]] == ds[column].values[0]
found_values, codes = df_unfiltered.unique(column, return_inverse=True)
if values is None:
values = found_values
else:
# we have specified which values we should support, anything
# not found will be masked
translation = np.zeros(len(found_values), dtype=np.uint64)
# mark values that are in the column, but not in values with a special value
missing_value = len(found_values)
for i, found_value in enumerate(found_values):
try:
found_value = found_value.decode('ascii')
except:
pass
if found_value not in values: # not present, we need a missing value
translation[i] = missing_value
else:
translation[i] = values.index(found_value)
codes = translation[codes]
if missing_value in translation:
# all special values will be marked as missing
codes = np.ma.masked_array(codes, codes==missing_value)
original_column = df.rename_column(column, '__original_' + column, unique=True)
labels = [str(k) for k in values]
df.add_column(column, codes)
df._categories[column] = dict(labels=labels, N=len(values), values=values)
return df
|
[
"Encode",
"column",
"as",
"ordinal",
"values",
"and",
"mark",
"it",
"as",
"categorical",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4569-L4613
|
[
"def",
"ordinal_encode",
"(",
"self",
",",
"column",
",",
"values",
"=",
"None",
",",
"inplace",
"=",
"False",
")",
":",
"column",
"=",
"_ensure_string_from_expression",
"(",
"column",
")",
"df",
"=",
"self",
"if",
"inplace",
"else",
"self",
".",
"copy",
"(",
")",
"# for the codes, we need to work on the unfiltered dataset, since the filter",
"# may change, and we also cannot add an array that is smaller in length",
"df_unfiltered",
"=",
"df",
".",
"copy",
"(",
")",
"# maybe we need some filter manipulation methods",
"df_unfiltered",
".",
"select_nothing",
"(",
"name",
"=",
"FILTER_SELECTION_NAME",
")",
"df_unfiltered",
".",
"_length_unfiltered",
"=",
"df",
".",
"_length_original",
"df_unfiltered",
".",
"set_active_range",
"(",
"0",
",",
"df",
".",
"_length_original",
")",
"# codes point to the index of found_values",
"# meaning: found_values[codes[0]] == ds[column].values[0]",
"found_values",
",",
"codes",
"=",
"df_unfiltered",
".",
"unique",
"(",
"column",
",",
"return_inverse",
"=",
"True",
")",
"if",
"values",
"is",
"None",
":",
"values",
"=",
"found_values",
"else",
":",
"# we have specified which values we should support, anything",
"# not found will be masked",
"translation",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"found_values",
")",
",",
"dtype",
"=",
"np",
".",
"uint64",
")",
"# mark values that are in the column, but not in values with a special value",
"missing_value",
"=",
"len",
"(",
"found_values",
")",
"for",
"i",
",",
"found_value",
"in",
"enumerate",
"(",
"found_values",
")",
":",
"try",
":",
"found_value",
"=",
"found_value",
".",
"decode",
"(",
"'ascii'",
")",
"except",
":",
"pass",
"if",
"found_value",
"not",
"in",
"values",
":",
"# not present, we need a missing value",
"translation",
"[",
"i",
"]",
"=",
"missing_value",
"else",
":",
"translation",
"[",
"i",
"]",
"=",
"values",
".",
"index",
"(",
"found_value",
")",
"codes",
"=",
"translation",
"[",
"codes",
"]",
"if",
"missing_value",
"in",
"translation",
":",
"# all special values will be marked as missing",
"codes",
"=",
"np",
".",
"ma",
".",
"masked_array",
"(",
"codes",
",",
"codes",
"==",
"missing_value",
")",
"original_column",
"=",
"df",
".",
"rename_column",
"(",
"column",
",",
"'__original_'",
"+",
"column",
",",
"unique",
"=",
"True",
")",
"labels",
"=",
"[",
"str",
"(",
"k",
")",
"for",
"k",
"in",
"values",
"]",
"df",
".",
"add_column",
"(",
"column",
",",
"codes",
")",
"df",
".",
"_categories",
"[",
"column",
"]",
"=",
"dict",
"(",
"labels",
"=",
"labels",
",",
"N",
"=",
"len",
"(",
"values",
")",
",",
"values",
"=",
"values",
")",
"return",
"df"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.data
|
Gives direct access to the data as numpy arrays.
Convenient when working with IPython in combination with small DataFrames, since this gives tab-completion.
Only real columns (i.e. no virtual) columns can be accessed, for getting the data from virtual columns, use
DataFrame.evalulate(...).
Columns can be accesed by there names, which are attributes. The attribues are of type numpy.ndarray.
Example:
>>> df = vaex.example()
>>> r = np.sqrt(df.data.x**2 + df.data.y**2)
|
packages/vaex-core/vaex/dataframe.py
|
def data(self):
"""Gives direct access to the data as numpy arrays.
Convenient when working with IPython in combination with small DataFrames, since this gives tab-completion.
Only real columns (i.e. no virtual) columns can be accessed, for getting the data from virtual columns, use
DataFrame.evalulate(...).
Columns can be accesed by there names, which are attributes. The attribues are of type numpy.ndarray.
Example:
>>> df = vaex.example()
>>> r = np.sqrt(df.data.x**2 + df.data.y**2)
"""
class Datas(object):
pass
datas = Datas()
for name, array in self.columns.items():
setattr(datas, name, array)
return datas
|
def data(self):
"""Gives direct access to the data as numpy arrays.
Convenient when working with IPython in combination with small DataFrames, since this gives tab-completion.
Only real columns (i.e. no virtual) columns can be accessed, for getting the data from virtual columns, use
DataFrame.evalulate(...).
Columns can be accesed by there names, which are attributes. The attribues are of type numpy.ndarray.
Example:
>>> df = vaex.example()
>>> r = np.sqrt(df.data.x**2 + df.data.y**2)
"""
class Datas(object):
pass
datas = Datas()
for name, array in self.columns.items():
setattr(datas, name, array)
return datas
|
[
"Gives",
"direct",
"access",
"to",
"the",
"data",
"as",
"numpy",
"arrays",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4619-L4640
|
[
"def",
"data",
"(",
"self",
")",
":",
"class",
"Datas",
"(",
"object",
")",
":",
"pass",
"datas",
"=",
"Datas",
"(",
")",
"for",
"name",
",",
"array",
"in",
"self",
".",
"columns",
".",
"items",
"(",
")",
":",
"setattr",
"(",
"datas",
",",
"name",
",",
"array",
")",
"return",
"datas"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.shallow_copy
|
Creates a (shallow) copy of the DataFrame.
It will link to the same data, but will have its own state, e.g. virtual columns, variables, selection etc.
|
packages/vaex-core/vaex/dataframe.py
|
def shallow_copy(self, virtual=True, variables=True):
"""Creates a (shallow) copy of the DataFrame.
It will link to the same data, but will have its own state, e.g. virtual columns, variables, selection etc.
"""
df = DataFrameLocal(self.name, self.path, self.column_names)
df.columns.update(self.columns)
df._length_unfiltered = self._length_unfiltered
df._length_original = self._length_original
df._index_end = self._index_end
df._index_start = self._index_start
df._active_fraction = self._active_fraction
if virtual:
df.virtual_columns.update(self.virtual_columns)
if variables:
df.variables.update(self.variables)
# half shallow/deep copy
# for key, value in self.selection_histories.items():
# df.selection_histories[key] = list(value)
# for key, value in self.selection_history_indices.items():
# df.selection_history_indices[key] = value
return df
|
def shallow_copy(self, virtual=True, variables=True):
"""Creates a (shallow) copy of the DataFrame.
It will link to the same data, but will have its own state, e.g. virtual columns, variables, selection etc.
"""
df = DataFrameLocal(self.name, self.path, self.column_names)
df.columns.update(self.columns)
df._length_unfiltered = self._length_unfiltered
df._length_original = self._length_original
df._index_end = self._index_end
df._index_start = self._index_start
df._active_fraction = self._active_fraction
if virtual:
df.virtual_columns.update(self.virtual_columns)
if variables:
df.variables.update(self.variables)
# half shallow/deep copy
# for key, value in self.selection_histories.items():
# df.selection_histories[key] = list(value)
# for key, value in self.selection_history_indices.items():
# df.selection_history_indices[key] = value
return df
|
[
"Creates",
"a",
"(",
"shallow",
")",
"copy",
"of",
"the",
"DataFrame",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4694-L4716
|
[
"def",
"shallow_copy",
"(",
"self",
",",
"virtual",
"=",
"True",
",",
"variables",
"=",
"True",
")",
":",
"df",
"=",
"DataFrameLocal",
"(",
"self",
".",
"name",
",",
"self",
".",
"path",
",",
"self",
".",
"column_names",
")",
"df",
".",
"columns",
".",
"update",
"(",
"self",
".",
"columns",
")",
"df",
".",
"_length_unfiltered",
"=",
"self",
".",
"_length_unfiltered",
"df",
".",
"_length_original",
"=",
"self",
".",
"_length_original",
"df",
".",
"_index_end",
"=",
"self",
".",
"_index_end",
"df",
".",
"_index_start",
"=",
"self",
".",
"_index_start",
"df",
".",
"_active_fraction",
"=",
"self",
".",
"_active_fraction",
"if",
"virtual",
":",
"df",
".",
"virtual_columns",
".",
"update",
"(",
"self",
".",
"virtual_columns",
")",
"if",
"variables",
":",
"df",
".",
"variables",
".",
"update",
"(",
"self",
".",
"variables",
")",
"# half shallow/deep copy",
"# for key, value in self.selection_histories.items():",
"# df.selection_histories[key] = list(value)",
"# for key, value in self.selection_history_indices.items():",
"# df.selection_history_indices[key] = value",
"return",
"df"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.length
|
Get the length of the DataFrames, for the selection of the whole DataFrame.
If selection is False, it returns len(df).
TODO: Implement this in DataFrameRemote, and move the method up in :func:`DataFrame.length`
:param selection: When True, will return the number of selected rows
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def length(self, selection=False):
"""Get the length of the DataFrames, for the selection of the whole DataFrame.
If selection is False, it returns len(df).
TODO: Implement this in DataFrameRemote, and move the method up in :func:`DataFrame.length`
:param selection: When True, will return the number of selected rows
:return:
"""
if selection:
return 0 if self.mask is None else np.sum(self.mask)
else:
return len(self)
|
def length(self, selection=False):
"""Get the length of the DataFrames, for the selection of the whole DataFrame.
If selection is False, it returns len(df).
TODO: Implement this in DataFrameRemote, and move the method up in :func:`DataFrame.length`
:param selection: When True, will return the number of selected rows
:return:
"""
if selection:
return 0 if self.mask is None else np.sum(self.mask)
else:
return len(self)
|
[
"Get",
"the",
"length",
"of",
"the",
"DataFrames",
"for",
"the",
"selection",
"of",
"the",
"whole",
"DataFrame",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4722-L4735
|
[
"def",
"length",
"(",
"self",
",",
"selection",
"=",
"False",
")",
":",
"if",
"selection",
":",
"return",
"0",
"if",
"self",
".",
"mask",
"is",
"None",
"else",
"np",
".",
"sum",
"(",
"self",
".",
"mask",
")",
"else",
":",
"return",
"len",
"(",
"self",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal._hstack
|
Join the columns of the other DataFrame to this one, assuming the ordering is the same
|
packages/vaex-core/vaex/dataframe.py
|
def _hstack(self, other, prefix=None):
"""Join the columns of the other DataFrame to this one, assuming the ordering is the same"""
assert len(self) == len(other), "does not make sense to horizontally stack DataFrames with different lengths"
for name in other.get_column_names():
if prefix:
new_name = prefix + name
else:
new_name = name
self.add_column(new_name, other.columns[name])
|
def _hstack(self, other, prefix=None):
"""Join the columns of the other DataFrame to this one, assuming the ordering is the same"""
assert len(self) == len(other), "does not make sense to horizontally stack DataFrames with different lengths"
for name in other.get_column_names():
if prefix:
new_name = prefix + name
else:
new_name = name
self.add_column(new_name, other.columns[name])
|
[
"Join",
"the",
"columns",
"of",
"the",
"other",
"DataFrame",
"to",
"this",
"one",
"assuming",
"the",
"ordering",
"is",
"the",
"same"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4767-L4775
|
[
"def",
"_hstack",
"(",
"self",
",",
"other",
",",
"prefix",
"=",
"None",
")",
":",
"assert",
"len",
"(",
"self",
")",
"==",
"len",
"(",
"other",
")",
",",
"\"does not make sense to horizontally stack DataFrames with different lengths\"",
"for",
"name",
"in",
"other",
".",
"get_column_names",
"(",
")",
":",
"if",
"prefix",
":",
"new_name",
"=",
"prefix",
"+",
"name",
"else",
":",
"new_name",
"=",
"name",
"self",
".",
"add_column",
"(",
"new_name",
",",
"other",
".",
"columns",
"[",
"name",
"]",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.concat
|
Concatenates two DataFrames, adding the rows of one the other DataFrame to the current, returned in a new DataFrame.
No copy of the data is made.
:param other: The other DataFrame that is concatenated with this DataFrame
:return: New DataFrame with the rows concatenated
:rtype: DataFrameConcatenated
|
packages/vaex-core/vaex/dataframe.py
|
def concat(self, other):
"""Concatenates two DataFrames, adding the rows of one the other DataFrame to the current, returned in a new DataFrame.
No copy of the data is made.
:param other: The other DataFrame that is concatenated with this DataFrame
:return: New DataFrame with the rows concatenated
:rtype: DataFrameConcatenated
"""
dfs = []
if isinstance(self, DataFrameConcatenated):
dfs.extend(self.dfs)
else:
dfs.extend([self])
if isinstance(other, DataFrameConcatenated):
dfs.extend(other.dfs)
else:
dfs.extend([other])
return DataFrameConcatenated(dfs)
|
def concat(self, other):
"""Concatenates two DataFrames, adding the rows of one the other DataFrame to the current, returned in a new DataFrame.
No copy of the data is made.
:param other: The other DataFrame that is concatenated with this DataFrame
:return: New DataFrame with the rows concatenated
:rtype: DataFrameConcatenated
"""
dfs = []
if isinstance(self, DataFrameConcatenated):
dfs.extend(self.dfs)
else:
dfs.extend([self])
if isinstance(other, DataFrameConcatenated):
dfs.extend(other.dfs)
else:
dfs.extend([other])
return DataFrameConcatenated(dfs)
|
[
"Concatenates",
"two",
"DataFrames",
"adding",
"the",
"rows",
"of",
"one",
"the",
"other",
"DataFrame",
"to",
"the",
"current",
"returned",
"in",
"a",
"new",
"DataFrame",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4777-L4795
|
[
"def",
"concat",
"(",
"self",
",",
"other",
")",
":",
"dfs",
"=",
"[",
"]",
"if",
"isinstance",
"(",
"self",
",",
"DataFrameConcatenated",
")",
":",
"dfs",
".",
"extend",
"(",
"self",
".",
"dfs",
")",
"else",
":",
"dfs",
".",
"extend",
"(",
"[",
"self",
"]",
")",
"if",
"isinstance",
"(",
"other",
",",
"DataFrameConcatenated",
")",
":",
"dfs",
".",
"extend",
"(",
"other",
".",
"dfs",
")",
"else",
":",
"dfs",
".",
"extend",
"(",
"[",
"other",
"]",
")",
"return",
"DataFrameConcatenated",
"(",
"dfs",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.evaluate
|
The local implementation of :func:`DataFrame.evaluate`
|
packages/vaex-core/vaex/dataframe.py
|
def evaluate(self, expression, i1=None, i2=None, out=None, selection=None, filtered=True, internal=False):
"""The local implementation of :func:`DataFrame.evaluate`"""
expression = _ensure_string_from_expression(expression)
selection = _ensure_strings_from_expressions(selection)
i1 = i1 or 0
i2 = i2 or (len(self) if (self.filtered and filtered) else self.length_unfiltered())
mask = None
if self.filtered and filtered: # if we filter, i1:i2 has a different meaning
indices = self._filtered_range_to_unfiltered_indices(i1, i2)
i1 = indices[0]
i2 = indices[-1] + 1 # +1 to make it inclusive
# for both a selection or filtering we have a mask
if selection is not None or (self.filtered and filtered):
mask = self.evaluate_selection_mask(selection, i1, i2)
scope = scopes._BlockScope(self, i1, i2, mask=mask, **self.variables)
# value = value[mask]
if out is not None:
scope.buffers[expression] = out
value = scope.evaluate(expression)
if isinstance(value, ColumnString) and not internal:
value = value.to_numpy()
return value
|
def evaluate(self, expression, i1=None, i2=None, out=None, selection=None, filtered=True, internal=False):
"""The local implementation of :func:`DataFrame.evaluate`"""
expression = _ensure_string_from_expression(expression)
selection = _ensure_strings_from_expressions(selection)
i1 = i1 or 0
i2 = i2 or (len(self) if (self.filtered and filtered) else self.length_unfiltered())
mask = None
if self.filtered and filtered: # if we filter, i1:i2 has a different meaning
indices = self._filtered_range_to_unfiltered_indices(i1, i2)
i1 = indices[0]
i2 = indices[-1] + 1 # +1 to make it inclusive
# for both a selection or filtering we have a mask
if selection is not None or (self.filtered and filtered):
mask = self.evaluate_selection_mask(selection, i1, i2)
scope = scopes._BlockScope(self, i1, i2, mask=mask, **self.variables)
# value = value[mask]
if out is not None:
scope.buffers[expression] = out
value = scope.evaluate(expression)
if isinstance(value, ColumnString) and not internal:
value = value.to_numpy()
return value
|
[
"The",
"local",
"implementation",
"of",
":",
"func",
":",
"DataFrame",
".",
"evaluate"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4839-L4861
|
[
"def",
"evaluate",
"(",
"self",
",",
"expression",
",",
"i1",
"=",
"None",
",",
"i2",
"=",
"None",
",",
"out",
"=",
"None",
",",
"selection",
"=",
"None",
",",
"filtered",
"=",
"True",
",",
"internal",
"=",
"False",
")",
":",
"expression",
"=",
"_ensure_string_from_expression",
"(",
"expression",
")",
"selection",
"=",
"_ensure_strings_from_expressions",
"(",
"selection",
")",
"i1",
"=",
"i1",
"or",
"0",
"i2",
"=",
"i2",
"or",
"(",
"len",
"(",
"self",
")",
"if",
"(",
"self",
".",
"filtered",
"and",
"filtered",
")",
"else",
"self",
".",
"length_unfiltered",
"(",
")",
")",
"mask",
"=",
"None",
"if",
"self",
".",
"filtered",
"and",
"filtered",
":",
"# if we filter, i1:i2 has a different meaning",
"indices",
"=",
"self",
".",
"_filtered_range_to_unfiltered_indices",
"(",
"i1",
",",
"i2",
")",
"i1",
"=",
"indices",
"[",
"0",
"]",
"i2",
"=",
"indices",
"[",
"-",
"1",
"]",
"+",
"1",
"# +1 to make it inclusive",
"# for both a selection or filtering we have a mask",
"if",
"selection",
"is",
"not",
"None",
"or",
"(",
"self",
".",
"filtered",
"and",
"filtered",
")",
":",
"mask",
"=",
"self",
".",
"evaluate_selection_mask",
"(",
"selection",
",",
"i1",
",",
"i2",
")",
"scope",
"=",
"scopes",
".",
"_BlockScope",
"(",
"self",
",",
"i1",
",",
"i2",
",",
"mask",
"=",
"mask",
",",
"*",
"*",
"self",
".",
"variables",
")",
"# value = value[mask]",
"if",
"out",
"is",
"not",
"None",
":",
"scope",
".",
"buffers",
"[",
"expression",
"]",
"=",
"out",
"value",
"=",
"scope",
".",
"evaluate",
"(",
"expression",
")",
"if",
"isinstance",
"(",
"value",
",",
"ColumnString",
")",
"and",
"not",
"internal",
":",
"value",
"=",
"value",
".",
"to_numpy",
"(",
")",
"return",
"value"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.compare
|
Compare two DataFrames and report their difference, use with care for large DataFrames
|
packages/vaex-core/vaex/dataframe.py
|
def compare(self, other, report_missing=True, report_difference=False, show=10, orderby=None, column_names=None):
"""Compare two DataFrames and report their difference, use with care for large DataFrames"""
if column_names is None:
column_names = self.get_column_names(virtual=False)
for other_column_name in other.get_column_names(virtual=False):
if other_column_name not in column_names:
column_names.append(other_column_name)
different_values = []
missing = []
type_mismatch = []
meta_mismatch = []
assert len(self) == len(other)
if orderby:
index1 = np.argsort(self.columns[orderby])
index2 = np.argsort(other.columns[orderby])
for column_name in column_names:
if column_name not in self.get_column_names(virtual=False):
missing.append(column_name)
if report_missing:
print("%s missing from this DataFrame" % column_name)
elif column_name not in other.get_column_names(virtual=False):
missing.append(column_name)
if report_missing:
print("%s missing from other DataFrame" % column_name)
else:
ucd1 = self.ucds.get(column_name)
ucd2 = other.ucds.get(column_name)
if ucd1 != ucd2:
print("ucd mismatch : %r vs %r for %s" % (ucd1, ucd2, column_name))
meta_mismatch.append(column_name)
unit1 = self.units.get(column_name)
unit2 = other.units.get(column_name)
if unit1 != unit2:
print("unit mismatch : %r vs %r for %s" % (unit1, unit2, column_name))
meta_mismatch.append(column_name)
type1 = self.dtype(column_name)
if type1 != str_type:
type1 = type1.type
type2 = other.dtype(column_name)
if type2 != str_type:
type2 = type2.type
if type1 != type2:
print("different dtypes: %s vs %s for %s" % (self.dtype(column_name), other.dtype(column_name), column_name))
type_mismatch.append(column_name)
else:
# a = self.columns[column_name]
# b = other.columns[column_name]
# if self.filtered:
# a = a[self.evaluate_selection_mask(None)]
# if other.filtered:
# b = b[other.evaluate_selection_mask(None)]
a = self.evaluate(column_name)
b = other.evaluate(column_name)
if orderby:
a = a[index1]
b = b[index2]
def normalize(ar):
if ar.dtype == str_type:
return ar
if ar.dtype.kind == "f" and hasattr(ar, "mask"):
mask = ar.mask
ar = ar.copy()
ar[mask] = np.nan
if ar.dtype.kind in "SU":
if hasattr(ar, "mask"):
data = ar.data
else:
data = ar
values = [value.strip() for value in data.tolist()]
if hasattr(ar, "mask"):
ar = np.ma.masked_array(values, ar.mask)
else:
ar = np.array(values)
return ar
def equal_mask(a, b):
a = normalize(a)
b = normalize(b)
boolean_mask = (a == b)
if self.dtype(column_name) != str_type and self.dtype(column_name).kind == 'f': # floats with nan won't equal itself, i.e. NaN != NaN
boolean_mask |= (np.isnan(a) & np.isnan(b))
return boolean_mask
boolean_mask = equal_mask(a, b)
all_equal = np.all(boolean_mask)
if not all_equal:
count = np.sum(~boolean_mask)
print("%s does not match for both DataFrames, %d rows are diffent out of %d" % (column_name, count, len(self)))
different_values.append(column_name)
if report_difference:
indices = np.arange(len(self))[~boolean_mask]
values1 = self.columns[column_name][:][~boolean_mask]
values2 = other.columns[column_name][:][~boolean_mask]
print("\tshowing difference for the first 10")
for i in range(min(len(values1), show)):
try:
diff = values1[i] - values2[i]
except:
diff = "does not exists"
print("%s[%d] == %s != %s other.%s[%d] (diff = %s)" % (column_name, indices[i], values1[i], values2[i], column_name, indices[i], diff))
return different_values, missing, type_mismatch, meta_mismatch
|
def compare(self, other, report_missing=True, report_difference=False, show=10, orderby=None, column_names=None):
"""Compare two DataFrames and report their difference, use with care for large DataFrames"""
if column_names is None:
column_names = self.get_column_names(virtual=False)
for other_column_name in other.get_column_names(virtual=False):
if other_column_name not in column_names:
column_names.append(other_column_name)
different_values = []
missing = []
type_mismatch = []
meta_mismatch = []
assert len(self) == len(other)
if orderby:
index1 = np.argsort(self.columns[orderby])
index2 = np.argsort(other.columns[orderby])
for column_name in column_names:
if column_name not in self.get_column_names(virtual=False):
missing.append(column_name)
if report_missing:
print("%s missing from this DataFrame" % column_name)
elif column_name not in other.get_column_names(virtual=False):
missing.append(column_name)
if report_missing:
print("%s missing from other DataFrame" % column_name)
else:
ucd1 = self.ucds.get(column_name)
ucd2 = other.ucds.get(column_name)
if ucd1 != ucd2:
print("ucd mismatch : %r vs %r for %s" % (ucd1, ucd2, column_name))
meta_mismatch.append(column_name)
unit1 = self.units.get(column_name)
unit2 = other.units.get(column_name)
if unit1 != unit2:
print("unit mismatch : %r vs %r for %s" % (unit1, unit2, column_name))
meta_mismatch.append(column_name)
type1 = self.dtype(column_name)
if type1 != str_type:
type1 = type1.type
type2 = other.dtype(column_name)
if type2 != str_type:
type2 = type2.type
if type1 != type2:
print("different dtypes: %s vs %s for %s" % (self.dtype(column_name), other.dtype(column_name), column_name))
type_mismatch.append(column_name)
else:
# a = self.columns[column_name]
# b = other.columns[column_name]
# if self.filtered:
# a = a[self.evaluate_selection_mask(None)]
# if other.filtered:
# b = b[other.evaluate_selection_mask(None)]
a = self.evaluate(column_name)
b = other.evaluate(column_name)
if orderby:
a = a[index1]
b = b[index2]
def normalize(ar):
if ar.dtype == str_type:
return ar
if ar.dtype.kind == "f" and hasattr(ar, "mask"):
mask = ar.mask
ar = ar.copy()
ar[mask] = np.nan
if ar.dtype.kind in "SU":
if hasattr(ar, "mask"):
data = ar.data
else:
data = ar
values = [value.strip() for value in data.tolist()]
if hasattr(ar, "mask"):
ar = np.ma.masked_array(values, ar.mask)
else:
ar = np.array(values)
return ar
def equal_mask(a, b):
a = normalize(a)
b = normalize(b)
boolean_mask = (a == b)
if self.dtype(column_name) != str_type and self.dtype(column_name).kind == 'f': # floats with nan won't equal itself, i.e. NaN != NaN
boolean_mask |= (np.isnan(a) & np.isnan(b))
return boolean_mask
boolean_mask = equal_mask(a, b)
all_equal = np.all(boolean_mask)
if not all_equal:
count = np.sum(~boolean_mask)
print("%s does not match for both DataFrames, %d rows are diffent out of %d" % (column_name, count, len(self)))
different_values.append(column_name)
if report_difference:
indices = np.arange(len(self))[~boolean_mask]
values1 = self.columns[column_name][:][~boolean_mask]
values2 = other.columns[column_name][:][~boolean_mask]
print("\tshowing difference for the first 10")
for i in range(min(len(values1), show)):
try:
diff = values1[i] - values2[i]
except:
diff = "does not exists"
print("%s[%d] == %s != %s other.%s[%d] (diff = %s)" % (column_name, indices[i], values1[i], values2[i], column_name, indices[i], diff))
return different_values, missing, type_mismatch, meta_mismatch
|
[
"Compare",
"two",
"DataFrames",
"and",
"report",
"their",
"difference",
"use",
"with",
"care",
"for",
"large",
"DataFrames"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4867-L4967
|
[
"def",
"compare",
"(",
"self",
",",
"other",
",",
"report_missing",
"=",
"True",
",",
"report_difference",
"=",
"False",
",",
"show",
"=",
"10",
",",
"orderby",
"=",
"None",
",",
"column_names",
"=",
"None",
")",
":",
"if",
"column_names",
"is",
"None",
":",
"column_names",
"=",
"self",
".",
"get_column_names",
"(",
"virtual",
"=",
"False",
")",
"for",
"other_column_name",
"in",
"other",
".",
"get_column_names",
"(",
"virtual",
"=",
"False",
")",
":",
"if",
"other_column_name",
"not",
"in",
"column_names",
":",
"column_names",
".",
"append",
"(",
"other_column_name",
")",
"different_values",
"=",
"[",
"]",
"missing",
"=",
"[",
"]",
"type_mismatch",
"=",
"[",
"]",
"meta_mismatch",
"=",
"[",
"]",
"assert",
"len",
"(",
"self",
")",
"==",
"len",
"(",
"other",
")",
"if",
"orderby",
":",
"index1",
"=",
"np",
".",
"argsort",
"(",
"self",
".",
"columns",
"[",
"orderby",
"]",
")",
"index2",
"=",
"np",
".",
"argsort",
"(",
"other",
".",
"columns",
"[",
"orderby",
"]",
")",
"for",
"column_name",
"in",
"column_names",
":",
"if",
"column_name",
"not",
"in",
"self",
".",
"get_column_names",
"(",
"virtual",
"=",
"False",
")",
":",
"missing",
".",
"append",
"(",
"column_name",
")",
"if",
"report_missing",
":",
"print",
"(",
"\"%s missing from this DataFrame\"",
"%",
"column_name",
")",
"elif",
"column_name",
"not",
"in",
"other",
".",
"get_column_names",
"(",
"virtual",
"=",
"False",
")",
":",
"missing",
".",
"append",
"(",
"column_name",
")",
"if",
"report_missing",
":",
"print",
"(",
"\"%s missing from other DataFrame\"",
"%",
"column_name",
")",
"else",
":",
"ucd1",
"=",
"self",
".",
"ucds",
".",
"get",
"(",
"column_name",
")",
"ucd2",
"=",
"other",
".",
"ucds",
".",
"get",
"(",
"column_name",
")",
"if",
"ucd1",
"!=",
"ucd2",
":",
"print",
"(",
"\"ucd mismatch : %r vs %r for %s\"",
"%",
"(",
"ucd1",
",",
"ucd2",
",",
"column_name",
")",
")",
"meta_mismatch",
".",
"append",
"(",
"column_name",
")",
"unit1",
"=",
"self",
".",
"units",
".",
"get",
"(",
"column_name",
")",
"unit2",
"=",
"other",
".",
"units",
".",
"get",
"(",
"column_name",
")",
"if",
"unit1",
"!=",
"unit2",
":",
"print",
"(",
"\"unit mismatch : %r vs %r for %s\"",
"%",
"(",
"unit1",
",",
"unit2",
",",
"column_name",
")",
")",
"meta_mismatch",
".",
"append",
"(",
"column_name",
")",
"type1",
"=",
"self",
".",
"dtype",
"(",
"column_name",
")",
"if",
"type1",
"!=",
"str_type",
":",
"type1",
"=",
"type1",
".",
"type",
"type2",
"=",
"other",
".",
"dtype",
"(",
"column_name",
")",
"if",
"type2",
"!=",
"str_type",
":",
"type2",
"=",
"type2",
".",
"type",
"if",
"type1",
"!=",
"type2",
":",
"print",
"(",
"\"different dtypes: %s vs %s for %s\"",
"%",
"(",
"self",
".",
"dtype",
"(",
"column_name",
")",
",",
"other",
".",
"dtype",
"(",
"column_name",
")",
",",
"column_name",
")",
")",
"type_mismatch",
".",
"append",
"(",
"column_name",
")",
"else",
":",
"# a = self.columns[column_name]",
"# b = other.columns[column_name]",
"# if self.filtered:",
"# a = a[self.evaluate_selection_mask(None)]",
"# if other.filtered:",
"# b = b[other.evaluate_selection_mask(None)]",
"a",
"=",
"self",
".",
"evaluate",
"(",
"column_name",
")",
"b",
"=",
"other",
".",
"evaluate",
"(",
"column_name",
")",
"if",
"orderby",
":",
"a",
"=",
"a",
"[",
"index1",
"]",
"b",
"=",
"b",
"[",
"index2",
"]",
"def",
"normalize",
"(",
"ar",
")",
":",
"if",
"ar",
".",
"dtype",
"==",
"str_type",
":",
"return",
"ar",
"if",
"ar",
".",
"dtype",
".",
"kind",
"==",
"\"f\"",
"and",
"hasattr",
"(",
"ar",
",",
"\"mask\"",
")",
":",
"mask",
"=",
"ar",
".",
"mask",
"ar",
"=",
"ar",
".",
"copy",
"(",
")",
"ar",
"[",
"mask",
"]",
"=",
"np",
".",
"nan",
"if",
"ar",
".",
"dtype",
".",
"kind",
"in",
"\"SU\"",
":",
"if",
"hasattr",
"(",
"ar",
",",
"\"mask\"",
")",
":",
"data",
"=",
"ar",
".",
"data",
"else",
":",
"data",
"=",
"ar",
"values",
"=",
"[",
"value",
".",
"strip",
"(",
")",
"for",
"value",
"in",
"data",
".",
"tolist",
"(",
")",
"]",
"if",
"hasattr",
"(",
"ar",
",",
"\"mask\"",
")",
":",
"ar",
"=",
"np",
".",
"ma",
".",
"masked_array",
"(",
"values",
",",
"ar",
".",
"mask",
")",
"else",
":",
"ar",
"=",
"np",
".",
"array",
"(",
"values",
")",
"return",
"ar",
"def",
"equal_mask",
"(",
"a",
",",
"b",
")",
":",
"a",
"=",
"normalize",
"(",
"a",
")",
"b",
"=",
"normalize",
"(",
"b",
")",
"boolean_mask",
"=",
"(",
"a",
"==",
"b",
")",
"if",
"self",
".",
"dtype",
"(",
"column_name",
")",
"!=",
"str_type",
"and",
"self",
".",
"dtype",
"(",
"column_name",
")",
".",
"kind",
"==",
"'f'",
":",
"# floats with nan won't equal itself, i.e. NaN != NaN",
"boolean_mask",
"|=",
"(",
"np",
".",
"isnan",
"(",
"a",
")",
"&",
"np",
".",
"isnan",
"(",
"b",
")",
")",
"return",
"boolean_mask",
"boolean_mask",
"=",
"equal_mask",
"(",
"a",
",",
"b",
")",
"all_equal",
"=",
"np",
".",
"all",
"(",
"boolean_mask",
")",
"if",
"not",
"all_equal",
":",
"count",
"=",
"np",
".",
"sum",
"(",
"~",
"boolean_mask",
")",
"print",
"(",
"\"%s does not match for both DataFrames, %d rows are diffent out of %d\"",
"%",
"(",
"column_name",
",",
"count",
",",
"len",
"(",
"self",
")",
")",
")",
"different_values",
".",
"append",
"(",
"column_name",
")",
"if",
"report_difference",
":",
"indices",
"=",
"np",
".",
"arange",
"(",
"len",
"(",
"self",
")",
")",
"[",
"~",
"boolean_mask",
"]",
"values1",
"=",
"self",
".",
"columns",
"[",
"column_name",
"]",
"[",
":",
"]",
"[",
"~",
"boolean_mask",
"]",
"values2",
"=",
"other",
".",
"columns",
"[",
"column_name",
"]",
"[",
":",
"]",
"[",
"~",
"boolean_mask",
"]",
"print",
"(",
"\"\\tshowing difference for the first 10\"",
")",
"for",
"i",
"in",
"range",
"(",
"min",
"(",
"len",
"(",
"values1",
")",
",",
"show",
")",
")",
":",
"try",
":",
"diff",
"=",
"values1",
"[",
"i",
"]",
"-",
"values2",
"[",
"i",
"]",
"except",
":",
"diff",
"=",
"\"does not exists\"",
"print",
"(",
"\"%s[%d] == %s != %s other.%s[%d] (diff = %s)\"",
"%",
"(",
"column_name",
",",
"indices",
"[",
"i",
"]",
",",
"values1",
"[",
"i",
"]",
",",
"values2",
"[",
"i",
"]",
",",
"column_name",
",",
"indices",
"[",
"i",
"]",
",",
"diff",
")",
")",
"return",
"different_values",
",",
"missing",
",",
"type_mismatch",
",",
"meta_mismatch"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.join
|
Return a DataFrame joined with other DataFrames, matched by columns/expression on/left_on/right_on
If neither on/left_on/right_on is given, the join is done by simply adding the columns (i.e. on the implicit
row index).
Note: The filters will be ignored when joining, the full DataFrame will be joined (since filters may
change). If either DataFrame is heavily filtered (contains just a small number of rows) consider running
:func:`DataFrame.extract` first.
Example:
>>> a = np.array(['a', 'b', 'c'])
>>> x = np.arange(1,4)
>>> ds1 = vaex.from_arrays(a=a, x=x)
>>> b = np.array(['a', 'b', 'd'])
>>> y = x**2
>>> ds2 = vaex.from_arrays(b=b, y=y)
>>> ds1.join(ds2, left_on='a', right_on='b')
:param other: Other DataFrame to join with (the right side)
:param on: default key for the left table (self)
:param left_on: key for the left table (self), overrides on
:param right_on: default key for the right table (other), overrides on
:param lsuffix: suffix to add to the left column names in case of a name collision
:param rsuffix: similar for the right
:param how: how to join, 'left' keeps all rows on the left, and adds columns (with possible missing values)
'right' is similar with self and other swapped.
:param inplace: {inplace}
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def join(self, other, on=None, left_on=None, right_on=None, lsuffix='', rsuffix='', how='left', inplace=False):
"""Return a DataFrame joined with other DataFrames, matched by columns/expression on/left_on/right_on
If neither on/left_on/right_on is given, the join is done by simply adding the columns (i.e. on the implicit
row index).
Note: The filters will be ignored when joining, the full DataFrame will be joined (since filters may
change). If either DataFrame is heavily filtered (contains just a small number of rows) consider running
:func:`DataFrame.extract` first.
Example:
>>> a = np.array(['a', 'b', 'c'])
>>> x = np.arange(1,4)
>>> ds1 = vaex.from_arrays(a=a, x=x)
>>> b = np.array(['a', 'b', 'd'])
>>> y = x**2
>>> ds2 = vaex.from_arrays(b=b, y=y)
>>> ds1.join(ds2, left_on='a', right_on='b')
:param other: Other DataFrame to join with (the right side)
:param on: default key for the left table (self)
:param left_on: key for the left table (self), overrides on
:param right_on: default key for the right table (other), overrides on
:param lsuffix: suffix to add to the left column names in case of a name collision
:param rsuffix: similar for the right
:param how: how to join, 'left' keeps all rows on the left, and adds columns (with possible missing values)
'right' is similar with self and other swapped.
:param inplace: {inplace}
:return:
"""
ds = self if inplace else self.copy()
if how == 'left':
left = ds
right = other
elif how == 'right':
left = other
right = ds
lsuffix, rsuffix = rsuffix, lsuffix
left_on, right_on = right_on, left_on
else:
raise ValueError('join type not supported: {}, only left and right'.format(how))
for name in right:
if name in left and name + rsuffix == name + lsuffix:
raise ValueError('column name collision: {} exists in both column, and no proper suffix given'
.format(name))
right = right.extract() # get rid of filters and active_range
assert left.length_unfiltered() == left.length_original()
N = left.length_unfiltered()
N_other = len(right)
left_on = left_on or on
right_on = right_on or on
if left_on is None and right_on is None:
for name in right:
right_name = name
if name in left:
left.rename_column(name, name + lsuffix)
right_name = name + rsuffix
if name in right.virtual_columns:
left.add_virtual_column(right_name, right.virtual_columns[name])
else:
left.add_column(right_name, right.columns[name])
else:
left_values = left.evaluate(left_on, filtered=False)
right_values = right.evaluate(right_on)
# maps from the left_values to row #
if np.ma.isMaskedArray(left_values):
mask = ~left_values.mask
left_values = left_values.data
index_left = dict(zip(left_values[mask], np.arange(N)[mask]))
else:
index_left = dict(zip(left_values, np.arange(N)))
# idem for right
if np.ma.isMaskedArray(right_values):
mask = ~right_values.mask
right_values = right_values.data
index_other = dict(zip(right_values[mask], np.arange(N_other)[mask]))
else:
index_other = dict(zip(right_values, np.arange(N_other)))
# we do a left join, find all rows of the right DataFrame
# that has an entry on the left
# for each row in the right
# find which row it needs to go to in the right
# from_indices = np.zeros(N_other, dtype=np.int64) # row # of right
# to_indices = np.zeros(N_other, dtype=np.int64) # goes to row # on the left
# keep a boolean mask of which rows are found
left_mask = np.ones(N, dtype=np.bool)
# and which row they point to in the right
left_row_to_right = np.zeros(N, dtype=np.int64) - 1
for i in range(N_other):
left_row = index_left.get(right_values[i])
if left_row is not None:
left_mask[left_row] = False # unmask, it exists
left_row_to_right[left_row] = i
lookup = np.ma.array(left_row_to_right, mask=left_mask)
for name in right:
right_name = name
if name in left:
left.rename_column(name, name + lsuffix)
right_name = name + rsuffix
if name in right.virtual_columns:
left.add_virtual_column(right_name, right.virtual_columns[name])
else:
left.add_column(right_name, ColumnIndexed(right, lookup, name))
return left
|
def join(self, other, on=None, left_on=None, right_on=None, lsuffix='', rsuffix='', how='left', inplace=False):
"""Return a DataFrame joined with other DataFrames, matched by columns/expression on/left_on/right_on
If neither on/left_on/right_on is given, the join is done by simply adding the columns (i.e. on the implicit
row index).
Note: The filters will be ignored when joining, the full DataFrame will be joined (since filters may
change). If either DataFrame is heavily filtered (contains just a small number of rows) consider running
:func:`DataFrame.extract` first.
Example:
>>> a = np.array(['a', 'b', 'c'])
>>> x = np.arange(1,4)
>>> ds1 = vaex.from_arrays(a=a, x=x)
>>> b = np.array(['a', 'b', 'd'])
>>> y = x**2
>>> ds2 = vaex.from_arrays(b=b, y=y)
>>> ds1.join(ds2, left_on='a', right_on='b')
:param other: Other DataFrame to join with (the right side)
:param on: default key for the left table (self)
:param left_on: key for the left table (self), overrides on
:param right_on: default key for the right table (other), overrides on
:param lsuffix: suffix to add to the left column names in case of a name collision
:param rsuffix: similar for the right
:param how: how to join, 'left' keeps all rows on the left, and adds columns (with possible missing values)
'right' is similar with self and other swapped.
:param inplace: {inplace}
:return:
"""
ds = self if inplace else self.copy()
if how == 'left':
left = ds
right = other
elif how == 'right':
left = other
right = ds
lsuffix, rsuffix = rsuffix, lsuffix
left_on, right_on = right_on, left_on
else:
raise ValueError('join type not supported: {}, only left and right'.format(how))
for name in right:
if name in left and name + rsuffix == name + lsuffix:
raise ValueError('column name collision: {} exists in both column, and no proper suffix given'
.format(name))
right = right.extract() # get rid of filters and active_range
assert left.length_unfiltered() == left.length_original()
N = left.length_unfiltered()
N_other = len(right)
left_on = left_on or on
right_on = right_on or on
if left_on is None and right_on is None:
for name in right:
right_name = name
if name in left:
left.rename_column(name, name + lsuffix)
right_name = name + rsuffix
if name in right.virtual_columns:
left.add_virtual_column(right_name, right.virtual_columns[name])
else:
left.add_column(right_name, right.columns[name])
else:
left_values = left.evaluate(left_on, filtered=False)
right_values = right.evaluate(right_on)
# maps from the left_values to row #
if np.ma.isMaskedArray(left_values):
mask = ~left_values.mask
left_values = left_values.data
index_left = dict(zip(left_values[mask], np.arange(N)[mask]))
else:
index_left = dict(zip(left_values, np.arange(N)))
# idem for right
if np.ma.isMaskedArray(right_values):
mask = ~right_values.mask
right_values = right_values.data
index_other = dict(zip(right_values[mask], np.arange(N_other)[mask]))
else:
index_other = dict(zip(right_values, np.arange(N_other)))
# we do a left join, find all rows of the right DataFrame
# that has an entry on the left
# for each row in the right
# find which row it needs to go to in the right
# from_indices = np.zeros(N_other, dtype=np.int64) # row # of right
# to_indices = np.zeros(N_other, dtype=np.int64) # goes to row # on the left
# keep a boolean mask of which rows are found
left_mask = np.ones(N, dtype=np.bool)
# and which row they point to in the right
left_row_to_right = np.zeros(N, dtype=np.int64) - 1
for i in range(N_other):
left_row = index_left.get(right_values[i])
if left_row is not None:
left_mask[left_row] = False # unmask, it exists
left_row_to_right[left_row] = i
lookup = np.ma.array(left_row_to_right, mask=left_mask)
for name in right:
right_name = name
if name in left:
left.rename_column(name, name + lsuffix)
right_name = name + rsuffix
if name in right.virtual_columns:
left.add_virtual_column(right_name, right.virtual_columns[name])
else:
left.add_column(right_name, ColumnIndexed(right, lookup, name))
return left
|
[
"Return",
"a",
"DataFrame",
"joined",
"with",
"other",
"DataFrames",
"matched",
"by",
"columns",
"/",
"expression",
"on",
"/",
"left_on",
"/",
"right_on"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4970-L5078
|
[
"def",
"join",
"(",
"self",
",",
"other",
",",
"on",
"=",
"None",
",",
"left_on",
"=",
"None",
",",
"right_on",
"=",
"None",
",",
"lsuffix",
"=",
"''",
",",
"rsuffix",
"=",
"''",
",",
"how",
"=",
"'left'",
",",
"inplace",
"=",
"False",
")",
":",
"ds",
"=",
"self",
"if",
"inplace",
"else",
"self",
".",
"copy",
"(",
")",
"if",
"how",
"==",
"'left'",
":",
"left",
"=",
"ds",
"right",
"=",
"other",
"elif",
"how",
"==",
"'right'",
":",
"left",
"=",
"other",
"right",
"=",
"ds",
"lsuffix",
",",
"rsuffix",
"=",
"rsuffix",
",",
"lsuffix",
"left_on",
",",
"right_on",
"=",
"right_on",
",",
"left_on",
"else",
":",
"raise",
"ValueError",
"(",
"'join type not supported: {}, only left and right'",
".",
"format",
"(",
"how",
")",
")",
"for",
"name",
"in",
"right",
":",
"if",
"name",
"in",
"left",
"and",
"name",
"+",
"rsuffix",
"==",
"name",
"+",
"lsuffix",
":",
"raise",
"ValueError",
"(",
"'column name collision: {} exists in both column, and no proper suffix given'",
".",
"format",
"(",
"name",
")",
")",
"right",
"=",
"right",
".",
"extract",
"(",
")",
"# get rid of filters and active_range",
"assert",
"left",
".",
"length_unfiltered",
"(",
")",
"==",
"left",
".",
"length_original",
"(",
")",
"N",
"=",
"left",
".",
"length_unfiltered",
"(",
")",
"N_other",
"=",
"len",
"(",
"right",
")",
"left_on",
"=",
"left_on",
"or",
"on",
"right_on",
"=",
"right_on",
"or",
"on",
"if",
"left_on",
"is",
"None",
"and",
"right_on",
"is",
"None",
":",
"for",
"name",
"in",
"right",
":",
"right_name",
"=",
"name",
"if",
"name",
"in",
"left",
":",
"left",
".",
"rename_column",
"(",
"name",
",",
"name",
"+",
"lsuffix",
")",
"right_name",
"=",
"name",
"+",
"rsuffix",
"if",
"name",
"in",
"right",
".",
"virtual_columns",
":",
"left",
".",
"add_virtual_column",
"(",
"right_name",
",",
"right",
".",
"virtual_columns",
"[",
"name",
"]",
")",
"else",
":",
"left",
".",
"add_column",
"(",
"right_name",
",",
"right",
".",
"columns",
"[",
"name",
"]",
")",
"else",
":",
"left_values",
"=",
"left",
".",
"evaluate",
"(",
"left_on",
",",
"filtered",
"=",
"False",
")",
"right_values",
"=",
"right",
".",
"evaluate",
"(",
"right_on",
")",
"# maps from the left_values to row #",
"if",
"np",
".",
"ma",
".",
"isMaskedArray",
"(",
"left_values",
")",
":",
"mask",
"=",
"~",
"left_values",
".",
"mask",
"left_values",
"=",
"left_values",
".",
"data",
"index_left",
"=",
"dict",
"(",
"zip",
"(",
"left_values",
"[",
"mask",
"]",
",",
"np",
".",
"arange",
"(",
"N",
")",
"[",
"mask",
"]",
")",
")",
"else",
":",
"index_left",
"=",
"dict",
"(",
"zip",
"(",
"left_values",
",",
"np",
".",
"arange",
"(",
"N",
")",
")",
")",
"# idem for right",
"if",
"np",
".",
"ma",
".",
"isMaskedArray",
"(",
"right_values",
")",
":",
"mask",
"=",
"~",
"right_values",
".",
"mask",
"right_values",
"=",
"right_values",
".",
"data",
"index_other",
"=",
"dict",
"(",
"zip",
"(",
"right_values",
"[",
"mask",
"]",
",",
"np",
".",
"arange",
"(",
"N_other",
")",
"[",
"mask",
"]",
")",
")",
"else",
":",
"index_other",
"=",
"dict",
"(",
"zip",
"(",
"right_values",
",",
"np",
".",
"arange",
"(",
"N_other",
")",
")",
")",
"# we do a left join, find all rows of the right DataFrame",
"# that has an entry on the left",
"# for each row in the right",
"# find which row it needs to go to in the right",
"# from_indices = np.zeros(N_other, dtype=np.int64) # row # of right",
"# to_indices = np.zeros(N_other, dtype=np.int64) # goes to row # on the left",
"# keep a boolean mask of which rows are found",
"left_mask",
"=",
"np",
".",
"ones",
"(",
"N",
",",
"dtype",
"=",
"np",
".",
"bool",
")",
"# and which row they point to in the right",
"left_row_to_right",
"=",
"np",
".",
"zeros",
"(",
"N",
",",
"dtype",
"=",
"np",
".",
"int64",
")",
"-",
"1",
"for",
"i",
"in",
"range",
"(",
"N_other",
")",
":",
"left_row",
"=",
"index_left",
".",
"get",
"(",
"right_values",
"[",
"i",
"]",
")",
"if",
"left_row",
"is",
"not",
"None",
":",
"left_mask",
"[",
"left_row",
"]",
"=",
"False",
"# unmask, it exists",
"left_row_to_right",
"[",
"left_row",
"]",
"=",
"i",
"lookup",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"left_row_to_right",
",",
"mask",
"=",
"left_mask",
")",
"for",
"name",
"in",
"right",
":",
"right_name",
"=",
"name",
"if",
"name",
"in",
"left",
":",
"left",
".",
"rename_column",
"(",
"name",
",",
"name",
"+",
"lsuffix",
")",
"right_name",
"=",
"name",
"+",
"rsuffix",
"if",
"name",
"in",
"right",
".",
"virtual_columns",
":",
"left",
".",
"add_virtual_column",
"(",
"right_name",
",",
"right",
".",
"virtual_columns",
"[",
"name",
"]",
")",
"else",
":",
"left",
".",
"add_column",
"(",
"right_name",
",",
"ColumnIndexed",
"(",
"right",
",",
"lookup",
",",
"name",
")",
")",
"return",
"left"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.export
|
Exports the DataFrame to a file written with arrow
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian (not supported for fits)
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def export(self, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=False, sort=None, ascending=True):
"""Exports the DataFrame to a file written with arrow
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian (not supported for fits)
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
"""
if path.endswith('.arrow'):
self.export_arrow(path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
elif path.endswith('.hdf5'):
self.export_hdf5(path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
elif path.endswith('.fits'):
self.export_fits(path, column_names, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
if path.endswith('.parquet'):
self.export_parquet(path, column_names, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
|
def export(self, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=False, sort=None, ascending=True):
"""Exports the DataFrame to a file written with arrow
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian (not supported for fits)
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
"""
if path.endswith('.arrow'):
self.export_arrow(path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
elif path.endswith('.hdf5'):
self.export_hdf5(path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
elif path.endswith('.fits'):
self.export_fits(path, column_names, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
if path.endswith('.parquet'):
self.export_parquet(path, column_names, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
|
[
"Exports",
"the",
"DataFrame",
"to",
"a",
"file",
"written",
"with",
"arrow"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L5080-L5103
|
[
"def",
"export",
"(",
"self",
",",
"path",
",",
"column_names",
"=",
"None",
",",
"byteorder",
"=",
"\"=\"",
",",
"shuffle",
"=",
"False",
",",
"selection",
"=",
"False",
",",
"progress",
"=",
"None",
",",
"virtual",
"=",
"False",
",",
"sort",
"=",
"None",
",",
"ascending",
"=",
"True",
")",
":",
"if",
"path",
".",
"endswith",
"(",
"'.arrow'",
")",
":",
"self",
".",
"export_arrow",
"(",
"path",
",",
"column_names",
",",
"byteorder",
",",
"shuffle",
",",
"selection",
",",
"progress",
"=",
"progress",
",",
"virtual",
"=",
"virtual",
",",
"sort",
"=",
"sort",
",",
"ascending",
"=",
"ascending",
")",
"elif",
"path",
".",
"endswith",
"(",
"'.hdf5'",
")",
":",
"self",
".",
"export_hdf5",
"(",
"path",
",",
"column_names",
",",
"byteorder",
",",
"shuffle",
",",
"selection",
",",
"progress",
"=",
"progress",
",",
"virtual",
"=",
"virtual",
",",
"sort",
"=",
"sort",
",",
"ascending",
"=",
"ascending",
")",
"elif",
"path",
".",
"endswith",
"(",
"'.fits'",
")",
":",
"self",
".",
"export_fits",
"(",
"path",
",",
"column_names",
",",
"shuffle",
",",
"selection",
",",
"progress",
"=",
"progress",
",",
"virtual",
"=",
"virtual",
",",
"sort",
"=",
"sort",
",",
"ascending",
"=",
"ascending",
")",
"if",
"path",
".",
"endswith",
"(",
"'.parquet'",
")",
":",
"self",
".",
"export_parquet",
"(",
"path",
",",
"column_names",
",",
"shuffle",
",",
"selection",
",",
"progress",
"=",
"progress",
",",
"virtual",
"=",
"virtual",
",",
"sort",
"=",
"sort",
",",
"ascending",
"=",
"ascending",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.export_arrow
|
Exports the DataFrame to a file written with arrow
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def export_arrow(self, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=False, sort=None, ascending=True):
"""Exports the DataFrame to a file written with arrow
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
"""
import vaex_arrow.export
vaex_arrow.export.export(self, path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
|
def export_arrow(self, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=False, sort=None, ascending=True):
"""Exports the DataFrame to a file written with arrow
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
"""
import vaex_arrow.export
vaex_arrow.export.export(self, path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
|
[
"Exports",
"the",
"DataFrame",
"to",
"a",
"file",
"written",
"with",
"arrow"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L5105-L5122
|
[
"def",
"export_arrow",
"(",
"self",
",",
"path",
",",
"column_names",
"=",
"None",
",",
"byteorder",
"=",
"\"=\"",
",",
"shuffle",
"=",
"False",
",",
"selection",
"=",
"False",
",",
"progress",
"=",
"None",
",",
"virtual",
"=",
"False",
",",
"sort",
"=",
"None",
",",
"ascending",
"=",
"True",
")",
":",
"import",
"vaex_arrow",
".",
"export",
"vaex_arrow",
".",
"export",
".",
"export",
"(",
"self",
",",
"path",
",",
"column_names",
",",
"byteorder",
",",
"shuffle",
",",
"selection",
",",
"progress",
"=",
"progress",
",",
"virtual",
"=",
"virtual",
",",
"sort",
"=",
"sort",
",",
"ascending",
"=",
"ascending",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.export_hdf5
|
Exports the DataFrame to a vaex hdf5 file
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
|
packages/vaex-core/vaex/dataframe.py
|
def export_hdf5(self, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=False, sort=None, ascending=True):
"""Exports the DataFrame to a vaex hdf5 file
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
"""
import vaex.export
vaex.export.export_hdf5(self, path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
|
def export_hdf5(self, path, column_names=None, byteorder="=", shuffle=False, selection=False, progress=None, virtual=False, sort=None, ascending=True):
"""Exports the DataFrame to a vaex hdf5 file
:param DataFrameLocal df: DataFrame to export
:param str path: path for file
:param lis[str] column_names: list of column names to export or None for all columns
:param str byteorder: = for native, < for little endian and > for big endian
:param bool shuffle: export rows in random order
:param bool selection: export selection or not
:param progress: progress callback that gets a progress fraction as argument and should return True to continue,
or a default progress bar when progress=True
:param: bool virtual: When True, export virtual columns
:param str sort: expression used for sorting the output
:param bool ascending: sort ascending (True) or descending
:return:
"""
import vaex.export
vaex.export.export_hdf5(self, path, column_names, byteorder, shuffle, selection, progress=progress, virtual=virtual, sort=sort, ascending=ascending)
|
[
"Exports",
"the",
"DataFrame",
"to",
"a",
"vaex",
"hdf5",
"file"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L5143-L5160
|
[
"def",
"export_hdf5",
"(",
"self",
",",
"path",
",",
"column_names",
"=",
"None",
",",
"byteorder",
"=",
"\"=\"",
",",
"shuffle",
"=",
"False",
",",
"selection",
"=",
"False",
",",
"progress",
"=",
"None",
",",
"virtual",
"=",
"False",
",",
"sort",
"=",
"None",
",",
"ascending",
"=",
"True",
")",
":",
"import",
"vaex",
".",
"export",
"vaex",
".",
"export",
".",
"export_hdf5",
"(",
"self",
",",
"path",
",",
"column_names",
",",
"byteorder",
",",
"shuffle",
",",
"selection",
",",
"progress",
"=",
"progress",
",",
"virtual",
"=",
"virtual",
",",
"sort",
"=",
"sort",
",",
"ascending",
"=",
"ascending",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.groupby
|
Return a :class:`GroupBy` or :class:`DataFrame` object when agg is not None
Examples:
>>> import vaex
>>> import numpy as np
>>> np.random.seed(42)
>>> x = np.random.randint(1, 5, 10)
>>> y = x**2
>>> df = vaex.from_arrays(x=x, y=y)
>>> df.groupby(df.x, agg='count')
# x y_count
0 3 4
1 4 2
2 1 3
3 2 1
>>> df.groupby(df.x, agg=[vaex.agg.count('y'), vaex.agg.mean('y')])
# x y_count y_mean
0 3 4 9
1 4 2 16
2 1 3 1
3 2 1 4
>>> df.groupby(df.x, agg={'z': [vaex.agg.count('y'), vaex.agg.mean('y')]})
# x z_count z_mean
0 3 4 9
1 4 2 16
2 1 3 1
3 2 1 4
Example using datetime:
>>> import vaex
>>> import numpy as np
>>> t = np.arange('2015-01-01', '2015-02-01', dtype=np.datetime64)
>>> y = np.arange(len(t))
>>> df = vaex.from_arrays(t=t, y=y)
>>> df.groupby(vaex.BinnerTime.per_week(df.t)).agg({'y' : 'sum'})
# t y
0 2015-01-01 00:00:00 21
1 2015-01-08 00:00:00 70
2 2015-01-15 00:00:00 119
3 2015-01-22 00:00:00 168
4 2015-01-29 00:00:00 87
:param dict, list or agg agg: Aggregate operation in the form of a string, vaex.agg object, a dictionary
where the keys indicate the target column names, and the values the operations, or the a list of aggregates.
When not given, it will return the groupby object.
:return: :class:`DataFrame` or :class:`GroupBy` object.
|
packages/vaex-core/vaex/dataframe.py
|
def groupby(self, by=None, agg=None):
"""Return a :class:`GroupBy` or :class:`DataFrame` object when agg is not None
Examples:
>>> import vaex
>>> import numpy as np
>>> np.random.seed(42)
>>> x = np.random.randint(1, 5, 10)
>>> y = x**2
>>> df = vaex.from_arrays(x=x, y=y)
>>> df.groupby(df.x, agg='count')
# x y_count
0 3 4
1 4 2
2 1 3
3 2 1
>>> df.groupby(df.x, agg=[vaex.agg.count('y'), vaex.agg.mean('y')])
# x y_count y_mean
0 3 4 9
1 4 2 16
2 1 3 1
3 2 1 4
>>> df.groupby(df.x, agg={'z': [vaex.agg.count('y'), vaex.agg.mean('y')]})
# x z_count z_mean
0 3 4 9
1 4 2 16
2 1 3 1
3 2 1 4
Example using datetime:
>>> import vaex
>>> import numpy as np
>>> t = np.arange('2015-01-01', '2015-02-01', dtype=np.datetime64)
>>> y = np.arange(len(t))
>>> df = vaex.from_arrays(t=t, y=y)
>>> df.groupby(vaex.BinnerTime.per_week(df.t)).agg({'y' : 'sum'})
# t y
0 2015-01-01 00:00:00 21
1 2015-01-08 00:00:00 70
2 2015-01-15 00:00:00 119
3 2015-01-22 00:00:00 168
4 2015-01-29 00:00:00 87
:param dict, list or agg agg: Aggregate operation in the form of a string, vaex.agg object, a dictionary
where the keys indicate the target column names, and the values the operations, or the a list of aggregates.
When not given, it will return the groupby object.
:return: :class:`DataFrame` or :class:`GroupBy` object.
"""
from .groupby import GroupBy
groupby = GroupBy(self, by=by)
if agg is None:
return groupby
else:
return groupby.agg(agg)
|
def groupby(self, by=None, agg=None):
"""Return a :class:`GroupBy` or :class:`DataFrame` object when agg is not None
Examples:
>>> import vaex
>>> import numpy as np
>>> np.random.seed(42)
>>> x = np.random.randint(1, 5, 10)
>>> y = x**2
>>> df = vaex.from_arrays(x=x, y=y)
>>> df.groupby(df.x, agg='count')
# x y_count
0 3 4
1 4 2
2 1 3
3 2 1
>>> df.groupby(df.x, agg=[vaex.agg.count('y'), vaex.agg.mean('y')])
# x y_count y_mean
0 3 4 9
1 4 2 16
2 1 3 1
3 2 1 4
>>> df.groupby(df.x, agg={'z': [vaex.agg.count('y'), vaex.agg.mean('y')]})
# x z_count z_mean
0 3 4 9
1 4 2 16
2 1 3 1
3 2 1 4
Example using datetime:
>>> import vaex
>>> import numpy as np
>>> t = np.arange('2015-01-01', '2015-02-01', dtype=np.datetime64)
>>> y = np.arange(len(t))
>>> df = vaex.from_arrays(t=t, y=y)
>>> df.groupby(vaex.BinnerTime.per_week(df.t)).agg({'y' : 'sum'})
# t y
0 2015-01-01 00:00:00 21
1 2015-01-08 00:00:00 70
2 2015-01-15 00:00:00 119
3 2015-01-22 00:00:00 168
4 2015-01-29 00:00:00 87
:param dict, list or agg agg: Aggregate operation in the form of a string, vaex.agg object, a dictionary
where the keys indicate the target column names, and the values the operations, or the a list of aggregates.
When not given, it will return the groupby object.
:return: :class:`DataFrame` or :class:`GroupBy` object.
"""
from .groupby import GroupBy
groupby = GroupBy(self, by=by)
if agg is None:
return groupby
else:
return groupby.agg(agg)
|
[
"Return",
"a",
":",
"class",
":",
"GroupBy",
"or",
":",
"class",
":",
"DataFrame",
"object",
"when",
"agg",
"is",
"not",
"None"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L5202-L5258
|
[
"def",
"groupby",
"(",
"self",
",",
"by",
"=",
"None",
",",
"agg",
"=",
"None",
")",
":",
"from",
".",
"groupby",
"import",
"GroupBy",
"groupby",
"=",
"GroupBy",
"(",
"self",
",",
"by",
"=",
"by",
")",
"if",
"agg",
"is",
"None",
":",
"return",
"groupby",
"else",
":",
"return",
"groupby",
".",
"agg",
"(",
"agg",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameLocal.binby
|
Return a :class:`BinBy` or :class:`DataArray` object when agg is not None
The binby operations does not return a 'flat' DataFrame, instead it returns an N-d grid
in the form of an xarray.
:param dict, list or agg agg: Aggregate operation in the form of a string, vaex.agg object, a dictionary
where the keys indicate the target column names, and the values the operations, or the a list of aggregates.
When not given, it will return the binby object.
:return: :class:`DataArray` or :class:`BinBy` object.
|
packages/vaex-core/vaex/dataframe.py
|
def binby(self, by=None, agg=None):
"""Return a :class:`BinBy` or :class:`DataArray` object when agg is not None
The binby operations does not return a 'flat' DataFrame, instead it returns an N-d grid
in the form of an xarray.
:param dict, list or agg agg: Aggregate operation in the form of a string, vaex.agg object, a dictionary
where the keys indicate the target column names, and the values the operations, or the a list of aggregates.
When not given, it will return the binby object.
:return: :class:`DataArray` or :class:`BinBy` object.
"""
from .groupby import BinBy
binby = BinBy(self, by=by)
if agg is None:
return binby
else:
return binby.agg(agg)
|
def binby(self, by=None, agg=None):
"""Return a :class:`BinBy` or :class:`DataArray` object when agg is not None
The binby operations does not return a 'flat' DataFrame, instead it returns an N-d grid
in the form of an xarray.
:param dict, list or agg agg: Aggregate operation in the form of a string, vaex.agg object, a dictionary
where the keys indicate the target column names, and the values the operations, or the a list of aggregates.
When not given, it will return the binby object.
:return: :class:`DataArray` or :class:`BinBy` object.
"""
from .groupby import BinBy
binby = BinBy(self, by=by)
if agg is None:
return binby
else:
return binby.agg(agg)
|
[
"Return",
"a",
":",
"class",
":",
"BinBy",
"or",
":",
"class",
":",
"DataArray",
"object",
"when",
"agg",
"is",
"not",
"None"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L5260-L5277
|
[
"def",
"binby",
"(",
"self",
",",
"by",
"=",
"None",
",",
"agg",
"=",
"None",
")",
":",
"from",
".",
"groupby",
"import",
"BinBy",
"binby",
"=",
"BinBy",
"(",
"self",
",",
"by",
"=",
"by",
")",
"if",
"agg",
"is",
"None",
":",
"return",
"binby",
"else",
":",
"return",
"binby",
".",
"agg",
"(",
"agg",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
DataFrameArrays.add_column
|
Add a column to the DataFrame
:param str name: name of column
:param data: numpy array with the data
|
packages/vaex-core/vaex/dataframe.py
|
def add_column(self, name, data):
"""Add a column to the DataFrame
:param str name: name of column
:param data: numpy array with the data
"""
# assert _is_array_type_ok(data), "dtype not supported: %r, %r" % (data.dtype, data.dtype.type)
# self._length = len(data)
# if self._length_unfiltered is None:
# self._length_unfiltered = len(data)
# self._length_original = len(data)
# self._index_end = self._length_unfiltered
super(DataFrameArrays, self).add_column(name, data)
self._length_unfiltered = int(round(self._length_original * self._active_fraction))
|
def add_column(self, name, data):
"""Add a column to the DataFrame
:param str name: name of column
:param data: numpy array with the data
"""
# assert _is_array_type_ok(data), "dtype not supported: %r, %r" % (data.dtype, data.dtype.type)
# self._length = len(data)
# if self._length_unfiltered is None:
# self._length_unfiltered = len(data)
# self._length_original = len(data)
# self._index_end = self._length_unfiltered
super(DataFrameArrays, self).add_column(name, data)
self._length_unfiltered = int(round(self._length_original * self._active_fraction))
|
[
"Add",
"a",
"column",
"to",
"the",
"DataFrame"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L5420-L5433
|
[
"def",
"add_column",
"(",
"self",
",",
"name",
",",
"data",
")",
":",
"# assert _is_array_type_ok(data), \"dtype not supported: %r, %r\" % (data.dtype, data.dtype.type)",
"# self._length = len(data)",
"# if self._length_unfiltered is None:",
"# self._length_unfiltered = len(data)",
"# self._length_original = len(data)",
"# self._index_end = self._length_unfiltered",
"super",
"(",
"DataFrameArrays",
",",
"self",
")",
".",
"add_column",
"(",
"name",
",",
"data",
")",
"self",
".",
"_length_unfiltered",
"=",
"int",
"(",
"round",
"(",
"self",
".",
"_length_original",
"*",
"self",
".",
"_active_fraction",
")",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
Promise.then
|
This method takes two optional arguments. The first argument
is used if the "self promise" is fulfilled and the other is
used if the "self promise" is rejected. In either case, this
method returns another promise that effectively represents
the result of either the first of the second argument (in the
case that the "self promise" is fulfilled or rejected,
respectively).
Each argument can be either:
* None - Meaning no action is taken
* A function - which will be called with either the value
of the "self promise" or the reason for rejection of
the "self promise". The function may return:
* A value - which will be used to fulfill the promise
returned by this method.
* A promise - which, when fulfilled or rejected, will
cascade its value or reason to the promise returned
by this method.
* A value - which will be assigned as either the value
or the reason for the promise returned by this method
when the "self promise" is either fulfilled or rejected,
respectively.
:type success: (object) -> object
:type failure: (object) -> object
:rtype : Promise
|
packages/vaex-core/vaex/promise.py
|
def then(self, success=None, failure=None):
"""
This method takes two optional arguments. The first argument
is used if the "self promise" is fulfilled and the other is
used if the "self promise" is rejected. In either case, this
method returns another promise that effectively represents
the result of either the first of the second argument (in the
case that the "self promise" is fulfilled or rejected,
respectively).
Each argument can be either:
* None - Meaning no action is taken
* A function - which will be called with either the value
of the "self promise" or the reason for rejection of
the "self promise". The function may return:
* A value - which will be used to fulfill the promise
returned by this method.
* A promise - which, when fulfilled or rejected, will
cascade its value or reason to the promise returned
by this method.
* A value - which will be assigned as either the value
or the reason for the promise returned by this method
when the "self promise" is either fulfilled or rejected,
respectively.
:type success: (object) -> object
:type failure: (object) -> object
:rtype : Promise
"""
ret = self.create_next()
def callAndFulfill(v):
"""
A callback to be invoked if the "self promise"
is fulfilled.
"""
try:
if aplus._isFunction(success):
ret.fulfill(success(v))
else:
ret.fulfill(v)
except Exception as e:
Promise.last_exc_info = sys.exc_info()
e.exc_info = sys.exc_info()
ret.reject(e)
def callAndReject(r):
"""
A callback to be invoked if the "self promise"
is rejected.
"""
try:
if aplus._isFunction(failure):
ret.fulfill(failure(r))
else:
ret.reject(r)
except Exception as e:
Promise.last_exc_info = sys.exc_info()
e.exc_info = sys.exc_info()
ret.reject(e)
self.done(callAndFulfill, callAndReject)
return ret
|
def then(self, success=None, failure=None):
"""
This method takes two optional arguments. The first argument
is used if the "self promise" is fulfilled and the other is
used if the "self promise" is rejected. In either case, this
method returns another promise that effectively represents
the result of either the first of the second argument (in the
case that the "self promise" is fulfilled or rejected,
respectively).
Each argument can be either:
* None - Meaning no action is taken
* A function - which will be called with either the value
of the "self promise" or the reason for rejection of
the "self promise". The function may return:
* A value - which will be used to fulfill the promise
returned by this method.
* A promise - which, when fulfilled or rejected, will
cascade its value or reason to the promise returned
by this method.
* A value - which will be assigned as either the value
or the reason for the promise returned by this method
when the "self promise" is either fulfilled or rejected,
respectively.
:type success: (object) -> object
:type failure: (object) -> object
:rtype : Promise
"""
ret = self.create_next()
def callAndFulfill(v):
"""
A callback to be invoked if the "self promise"
is fulfilled.
"""
try:
if aplus._isFunction(success):
ret.fulfill(success(v))
else:
ret.fulfill(v)
except Exception as e:
Promise.last_exc_info = sys.exc_info()
e.exc_info = sys.exc_info()
ret.reject(e)
def callAndReject(r):
"""
A callback to be invoked if the "self promise"
is rejected.
"""
try:
if aplus._isFunction(failure):
ret.fulfill(failure(r))
else:
ret.reject(r)
except Exception as e:
Promise.last_exc_info = sys.exc_info()
e.exc_info = sys.exc_info()
ret.reject(e)
self.done(callAndFulfill, callAndReject)
return ret
|
[
"This",
"method",
"takes",
"two",
"optional",
"arguments",
".",
"The",
"first",
"argument",
"is",
"used",
"if",
"the",
"self",
"promise",
"is",
"fulfilled",
"and",
"the",
"other",
"is",
"used",
"if",
"the",
"self",
"promise",
"is",
"rejected",
".",
"In",
"either",
"case",
"this",
"method",
"returns",
"another",
"promise",
"that",
"effectively",
"represents",
"the",
"result",
"of",
"either",
"the",
"first",
"of",
"the",
"second",
"argument",
"(",
"in",
"the",
"case",
"that",
"the",
"self",
"promise",
"is",
"fulfilled",
"or",
"rejected",
"respectively",
")",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/promise.py#L57-L120
|
[
"def",
"then",
"(",
"self",
",",
"success",
"=",
"None",
",",
"failure",
"=",
"None",
")",
":",
"ret",
"=",
"self",
".",
"create_next",
"(",
")",
"def",
"callAndFulfill",
"(",
"v",
")",
":",
"\"\"\"\n A callback to be invoked if the \"self promise\"\n is fulfilled.\n \"\"\"",
"try",
":",
"if",
"aplus",
".",
"_isFunction",
"(",
"success",
")",
":",
"ret",
".",
"fulfill",
"(",
"success",
"(",
"v",
")",
")",
"else",
":",
"ret",
".",
"fulfill",
"(",
"v",
")",
"except",
"Exception",
"as",
"e",
":",
"Promise",
".",
"last_exc_info",
"=",
"sys",
".",
"exc_info",
"(",
")",
"e",
".",
"exc_info",
"=",
"sys",
".",
"exc_info",
"(",
")",
"ret",
".",
"reject",
"(",
"e",
")",
"def",
"callAndReject",
"(",
"r",
")",
":",
"\"\"\"\n A callback to be invoked if the \"self promise\"\n is rejected.\n \"\"\"",
"try",
":",
"if",
"aplus",
".",
"_isFunction",
"(",
"failure",
")",
":",
"ret",
".",
"fulfill",
"(",
"failure",
"(",
"r",
")",
")",
"else",
":",
"ret",
".",
"reject",
"(",
"r",
")",
"except",
"Exception",
"as",
"e",
":",
"Promise",
".",
"last_exc_info",
"=",
"sys",
".",
"exc_info",
"(",
")",
"e",
".",
"exc_info",
"=",
"sys",
".",
"exc_info",
"(",
")",
"ret",
".",
"reject",
"(",
"e",
")",
"self",
".",
"done",
"(",
"callAndFulfill",
",",
"callAndReject",
")",
"return",
"ret"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
patch
|
Adds method f to the DataFrame class
|
packages/vaex-viz/vaex/viz/mpl.py
|
def patch(f):
'''Adds method f to the DataFrame class'''
name = f.__name__
setattr(DataFrame, name, f)
return f
|
def patch(f):
'''Adds method f to the DataFrame class'''
name = f.__name__
setattr(DataFrame, name, f)
return f
|
[
"Adds",
"method",
"f",
"to",
"the",
"DataFrame",
"class"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-viz/vaex/viz/mpl.py#L21-L25
|
[
"def",
"patch",
"(",
"f",
")",
":",
"name",
"=",
"f",
".",
"__name__",
"setattr",
"(",
"DataFrame",
",",
"name",
",",
"f",
")",
"return",
"f"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
plot1d
|
Viz data in 1d (histograms, running means etc)
Example
>>> df.plot1d(df.x)
>>> df.plot1d(df.x, limits=[0, 100], shape=100)
>>> df.plot1d(df.x, what='mean(y)', limits=[0, 100], shape=100)
If you want to do a computation yourself, pass the grid argument, but you are responsible for passing the
same limits arguments:
>>> counts = df.mean(df.y, binby=df.x, limits=[0, 100], shape=100)/100.
>>> df.plot1d(df.x, limits=[0, 100], shape=100, grid=means, label='mean(y)/100')
:param x: Expression to bin in the x direction
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum
:param grid: If the binning is done before by yourself, you can pass it
:param facet: Expression to produce facetted plots ( facet='x:0,1,12' will produce 12 plots with x in a range between 0 and 1)
:param limits: list of [xmin, xmax], or a description such as 'minmax', '99%'
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param n: normalization function, currently only 'normalize' is supported, or None for no normalization
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param normalize_axis:
:param xlabel: String for label on x axis (may contain latex)
:param ylabel: Same for y axis
:param: tight_layout: call pylab.tight_layout or not
:param kwargs: extra argument passed to pylab.plot
:return:
|
packages/vaex-viz/vaex/viz/mpl.py
|
def plot1d(self, x=None, what="count(*)", grid=None, shape=64, facet=None, limits=None, figsize=None, f="identity", n=None, normalize_axis=None,
xlabel=None, ylabel=None, label=None,
selection=None, show=False, tight_layout=True, hardcopy=None,
**kwargs):
"""Viz data in 1d (histograms, running means etc)
Example
>>> df.plot1d(df.x)
>>> df.plot1d(df.x, limits=[0, 100], shape=100)
>>> df.plot1d(df.x, what='mean(y)', limits=[0, 100], shape=100)
If you want to do a computation yourself, pass the grid argument, but you are responsible for passing the
same limits arguments:
>>> counts = df.mean(df.y, binby=df.x, limits=[0, 100], shape=100)/100.
>>> df.plot1d(df.x, limits=[0, 100], shape=100, grid=means, label='mean(y)/100')
:param x: Expression to bin in the x direction
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum
:param grid: If the binning is done before by yourself, you can pass it
:param facet: Expression to produce facetted plots ( facet='x:0,1,12' will produce 12 plots with x in a range between 0 and 1)
:param limits: list of [xmin, xmax], or a description such as 'minmax', '99%'
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param n: normalization function, currently only 'normalize' is supported, or None for no normalization
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param normalize_axis:
:param xlabel: String for label on x axis (may contain latex)
:param ylabel: Same for y axis
:param: tight_layout: call pylab.tight_layout or not
:param kwargs: extra argument passed to pylab.plot
:return:
"""
import pylab
f = _parse_f(f)
n = _parse_n(n)
if type(shape) == int:
shape = (shape,)
binby = []
x = _ensure_strings_from_expressions(x)
for expression in [x]:
if expression is not None:
binby = [expression] + binby
limits = self.limits(binby, limits)
if figsize is not None:
pylab.figure(num=None, figsize=figsize, dpi=80, facecolor='w', edgecolor='k')
fig = pylab.gcf()
import re
if facet is not None:
match = re.match("(.*):(.*),(.*),(.*)", facet)
if match:
groups = match.groups()
facet_expression = groups[0]
facet_limits = [ast.literal_eval(groups[1]), ast.literal_eval(groups[2])]
facet_count = ast.literal_eval(groups[3])
limits.append(facet_limits)
binby.append(facet_expression)
shape = (facet_count,) + shape
else:
raise ValueError("Could not understand 'facet' argument %r, expected something in form: 'column:-1,10:5'" % facet)
if grid is None:
if what:
if isinstance(what, (vaex.stat.Expression)):
grid = what.calculate(self, binby=binby, limits=limits, shape=shape, selection=selection)
else:
what = what.strip()
index = what.index("(")
import re
groups = re.match("(.*)\((.*)\)", what).groups()
if groups and len(groups) == 2:
function = groups[0]
arguments = groups[1].strip()
functions = ["mean", "sum", "std", "count"]
if function in functions:
# grid = getattr(self, function)(arguments, binby, limits=limits, shape=shape, selection=selection)
grid = getattr(vaex.stat, function)(arguments).calculate(self, binby=binby, limits=limits, shape=shape, selection=selection)
elif function == "count" and arguments == "*":
grid = self.count(binby=binby, shape=shape, limits=limits, selection=selection)
elif function == "cumulative" and arguments == "*":
# TODO: comulative should also include the tails outside limits
grid = self.count(binby=binby, shape=shape, limits=limits, selection=selection)
grid = np.cumsum(grid)
else:
raise ValueError("Could not understand method: %s, expected one of %r'" % (function, functions))
else:
raise ValueError("Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'" % what)
else:
grid = self.histogram(binby, size=shape, limits=limits, selection=selection)
fgrid = f(grid)
if n is not None:
# ngrid = n(fgrid, axis=normalize_axis)
ngrid = fgrid / fgrid.sum()
else:
ngrid = fgrid
# reductions = [_parse_reduction(r, colormap, colors) for r in reduce]
# rgrid = ngrid * 1.
# for r in reduce:
# r = _parse_reduction(r, colormap, colors)
# rgrid = r(rgrid)
# grid = self.reduce(grid, )
xmin, xmax = limits[-1]
if facet:
N = len(grid[-1])
else:
N = len(grid)
xexpression = binby[0]
xar = np.arange(N + 1) / (N - 0.) * (xmax - xmin) + xmin
label = str(label or selection or x)
if facet:
import math
rows, columns = int(math.ceil(facet_count / 4.)), 4
values = np.linspace(facet_limits[0], facet_limits[1], facet_count + 1)
for i in range(facet_count):
ax = pylab.subplot(rows, columns, i + 1)
value = ax.plot(xar, ngrid[i], drawstyle="steps-mid", label=label, **kwargs)
v1, v2 = values[i], values[i + 1]
pylab.xlabel(xlabel or x)
pylab.ylabel(ylabel or what)
ax.set_title("%3f <= %s < %3f" % (v1, facet_expression, v2))
if self.iscategory(xexpression):
labels = self.category_labels(xexpression)
step = len(labels) // max_labels
pylab.xticks(range(len(labels))[::step], labels[::step], size='small')
else:
# im = pylab.imshow(rgrid, extent=np.array(limits[:2]).flatten(), origin="lower", aspect=aspect)
pylab.xlabel(xlabel or self.label(x))
pylab.ylabel(ylabel or what)
# print(xar, ngrid)
# repeat the first element, that's how plot/steps likes it..
g = np.concatenate([ngrid[0:1], ngrid])
value = pylab.plot(xar, g, drawstyle="steps-pre", label=label, **kwargs)
if self.iscategory(xexpression):
labels = self.category_labels(xexpression)
step = len(labels) // max_labels
pylab.xticks(range(len(labels))[::step], labels[::step], size='small')
if tight_layout:
pylab.tight_layout()
if hardcopy:
pylab.savefig(hardcopy)
if show:
pylab.show()
return value
|
def plot1d(self, x=None, what="count(*)", grid=None, shape=64, facet=None, limits=None, figsize=None, f="identity", n=None, normalize_axis=None,
xlabel=None, ylabel=None, label=None,
selection=None, show=False, tight_layout=True, hardcopy=None,
**kwargs):
"""Viz data in 1d (histograms, running means etc)
Example
>>> df.plot1d(df.x)
>>> df.plot1d(df.x, limits=[0, 100], shape=100)
>>> df.plot1d(df.x, what='mean(y)', limits=[0, 100], shape=100)
If you want to do a computation yourself, pass the grid argument, but you are responsible for passing the
same limits arguments:
>>> counts = df.mean(df.y, binby=df.x, limits=[0, 100], shape=100)/100.
>>> df.plot1d(df.x, limits=[0, 100], shape=100, grid=means, label='mean(y)/100')
:param x: Expression to bin in the x direction
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum
:param grid: If the binning is done before by yourself, you can pass it
:param facet: Expression to produce facetted plots ( facet='x:0,1,12' will produce 12 plots with x in a range between 0 and 1)
:param limits: list of [xmin, xmax], or a description such as 'minmax', '99%'
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param n: normalization function, currently only 'normalize' is supported, or None for no normalization
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param normalize_axis:
:param xlabel: String for label on x axis (may contain latex)
:param ylabel: Same for y axis
:param: tight_layout: call pylab.tight_layout or not
:param kwargs: extra argument passed to pylab.plot
:return:
"""
import pylab
f = _parse_f(f)
n = _parse_n(n)
if type(shape) == int:
shape = (shape,)
binby = []
x = _ensure_strings_from_expressions(x)
for expression in [x]:
if expression is not None:
binby = [expression] + binby
limits = self.limits(binby, limits)
if figsize is not None:
pylab.figure(num=None, figsize=figsize, dpi=80, facecolor='w', edgecolor='k')
fig = pylab.gcf()
import re
if facet is not None:
match = re.match("(.*):(.*),(.*),(.*)", facet)
if match:
groups = match.groups()
facet_expression = groups[0]
facet_limits = [ast.literal_eval(groups[1]), ast.literal_eval(groups[2])]
facet_count = ast.literal_eval(groups[3])
limits.append(facet_limits)
binby.append(facet_expression)
shape = (facet_count,) + shape
else:
raise ValueError("Could not understand 'facet' argument %r, expected something in form: 'column:-1,10:5'" % facet)
if grid is None:
if what:
if isinstance(what, (vaex.stat.Expression)):
grid = what.calculate(self, binby=binby, limits=limits, shape=shape, selection=selection)
else:
what = what.strip()
index = what.index("(")
import re
groups = re.match("(.*)\((.*)\)", what).groups()
if groups and len(groups) == 2:
function = groups[0]
arguments = groups[1].strip()
functions = ["mean", "sum", "std", "count"]
if function in functions:
# grid = getattr(self, function)(arguments, binby, limits=limits, shape=shape, selection=selection)
grid = getattr(vaex.stat, function)(arguments).calculate(self, binby=binby, limits=limits, shape=shape, selection=selection)
elif function == "count" and arguments == "*":
grid = self.count(binby=binby, shape=shape, limits=limits, selection=selection)
elif function == "cumulative" and arguments == "*":
# TODO: comulative should also include the tails outside limits
grid = self.count(binby=binby, shape=shape, limits=limits, selection=selection)
grid = np.cumsum(grid)
else:
raise ValueError("Could not understand method: %s, expected one of %r'" % (function, functions))
else:
raise ValueError("Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'" % what)
else:
grid = self.histogram(binby, size=shape, limits=limits, selection=selection)
fgrid = f(grid)
if n is not None:
# ngrid = n(fgrid, axis=normalize_axis)
ngrid = fgrid / fgrid.sum()
else:
ngrid = fgrid
# reductions = [_parse_reduction(r, colormap, colors) for r in reduce]
# rgrid = ngrid * 1.
# for r in reduce:
# r = _parse_reduction(r, colormap, colors)
# rgrid = r(rgrid)
# grid = self.reduce(grid, )
xmin, xmax = limits[-1]
if facet:
N = len(grid[-1])
else:
N = len(grid)
xexpression = binby[0]
xar = np.arange(N + 1) / (N - 0.) * (xmax - xmin) + xmin
label = str(label or selection or x)
if facet:
import math
rows, columns = int(math.ceil(facet_count / 4.)), 4
values = np.linspace(facet_limits[0], facet_limits[1], facet_count + 1)
for i in range(facet_count):
ax = pylab.subplot(rows, columns, i + 1)
value = ax.plot(xar, ngrid[i], drawstyle="steps-mid", label=label, **kwargs)
v1, v2 = values[i], values[i + 1]
pylab.xlabel(xlabel or x)
pylab.ylabel(ylabel or what)
ax.set_title("%3f <= %s < %3f" % (v1, facet_expression, v2))
if self.iscategory(xexpression):
labels = self.category_labels(xexpression)
step = len(labels) // max_labels
pylab.xticks(range(len(labels))[::step], labels[::step], size='small')
else:
# im = pylab.imshow(rgrid, extent=np.array(limits[:2]).flatten(), origin="lower", aspect=aspect)
pylab.xlabel(xlabel or self.label(x))
pylab.ylabel(ylabel or what)
# print(xar, ngrid)
# repeat the first element, that's how plot/steps likes it..
g = np.concatenate([ngrid[0:1], ngrid])
value = pylab.plot(xar, g, drawstyle="steps-pre", label=label, **kwargs)
if self.iscategory(xexpression):
labels = self.category_labels(xexpression)
step = len(labels) // max_labels
pylab.xticks(range(len(labels))[::step], labels[::step], size='small')
if tight_layout:
pylab.tight_layout()
if hardcopy:
pylab.savefig(hardcopy)
if show:
pylab.show()
return value
|
[
"Viz",
"data",
"in",
"1d",
"(",
"histograms",
"running",
"means",
"etc",
")"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-viz/vaex/viz/mpl.py#L36-L180
|
[
"def",
"plot1d",
"(",
"self",
",",
"x",
"=",
"None",
",",
"what",
"=",
"\"count(*)\"",
",",
"grid",
"=",
"None",
",",
"shape",
"=",
"64",
",",
"facet",
"=",
"None",
",",
"limits",
"=",
"None",
",",
"figsize",
"=",
"None",
",",
"f",
"=",
"\"identity\"",
",",
"n",
"=",
"None",
",",
"normalize_axis",
"=",
"None",
",",
"xlabel",
"=",
"None",
",",
"ylabel",
"=",
"None",
",",
"label",
"=",
"None",
",",
"selection",
"=",
"None",
",",
"show",
"=",
"False",
",",
"tight_layout",
"=",
"True",
",",
"hardcopy",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"import",
"pylab",
"f",
"=",
"_parse_f",
"(",
"f",
")",
"n",
"=",
"_parse_n",
"(",
"n",
")",
"if",
"type",
"(",
"shape",
")",
"==",
"int",
":",
"shape",
"=",
"(",
"shape",
",",
")",
"binby",
"=",
"[",
"]",
"x",
"=",
"_ensure_strings_from_expressions",
"(",
"x",
")",
"for",
"expression",
"in",
"[",
"x",
"]",
":",
"if",
"expression",
"is",
"not",
"None",
":",
"binby",
"=",
"[",
"expression",
"]",
"+",
"binby",
"limits",
"=",
"self",
".",
"limits",
"(",
"binby",
",",
"limits",
")",
"if",
"figsize",
"is",
"not",
"None",
":",
"pylab",
".",
"figure",
"(",
"num",
"=",
"None",
",",
"figsize",
"=",
"figsize",
",",
"dpi",
"=",
"80",
",",
"facecolor",
"=",
"'w'",
",",
"edgecolor",
"=",
"'k'",
")",
"fig",
"=",
"pylab",
".",
"gcf",
"(",
")",
"import",
"re",
"if",
"facet",
"is",
"not",
"None",
":",
"match",
"=",
"re",
".",
"match",
"(",
"\"(.*):(.*),(.*),(.*)\"",
",",
"facet",
")",
"if",
"match",
":",
"groups",
"=",
"match",
".",
"groups",
"(",
")",
"facet_expression",
"=",
"groups",
"[",
"0",
"]",
"facet_limits",
"=",
"[",
"ast",
".",
"literal_eval",
"(",
"groups",
"[",
"1",
"]",
")",
",",
"ast",
".",
"literal_eval",
"(",
"groups",
"[",
"2",
"]",
")",
"]",
"facet_count",
"=",
"ast",
".",
"literal_eval",
"(",
"groups",
"[",
"3",
"]",
")",
"limits",
".",
"append",
"(",
"facet_limits",
")",
"binby",
".",
"append",
"(",
"facet_expression",
")",
"shape",
"=",
"(",
"facet_count",
",",
")",
"+",
"shape",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not understand 'facet' argument %r, expected something in form: 'column:-1,10:5'\"",
"%",
"facet",
")",
"if",
"grid",
"is",
"None",
":",
"if",
"what",
":",
"if",
"isinstance",
"(",
"what",
",",
"(",
"vaex",
".",
"stat",
".",
"Expression",
")",
")",
":",
"grid",
"=",
"what",
".",
"calculate",
"(",
"self",
",",
"binby",
"=",
"binby",
",",
"limits",
"=",
"limits",
",",
"shape",
"=",
"shape",
",",
"selection",
"=",
"selection",
")",
"else",
":",
"what",
"=",
"what",
".",
"strip",
"(",
")",
"index",
"=",
"what",
".",
"index",
"(",
"\"(\"",
")",
"import",
"re",
"groups",
"=",
"re",
".",
"match",
"(",
"\"(.*)\\((.*)\\)\"",
",",
"what",
")",
".",
"groups",
"(",
")",
"if",
"groups",
"and",
"len",
"(",
"groups",
")",
"==",
"2",
":",
"function",
"=",
"groups",
"[",
"0",
"]",
"arguments",
"=",
"groups",
"[",
"1",
"]",
".",
"strip",
"(",
")",
"functions",
"=",
"[",
"\"mean\"",
",",
"\"sum\"",
",",
"\"std\"",
",",
"\"count\"",
"]",
"if",
"function",
"in",
"functions",
":",
"# grid = getattr(self, function)(arguments, binby, limits=limits, shape=shape, selection=selection)",
"grid",
"=",
"getattr",
"(",
"vaex",
".",
"stat",
",",
"function",
")",
"(",
"arguments",
")",
".",
"calculate",
"(",
"self",
",",
"binby",
"=",
"binby",
",",
"limits",
"=",
"limits",
",",
"shape",
"=",
"shape",
",",
"selection",
"=",
"selection",
")",
"elif",
"function",
"==",
"\"count\"",
"and",
"arguments",
"==",
"\"*\"",
":",
"grid",
"=",
"self",
".",
"count",
"(",
"binby",
"=",
"binby",
",",
"shape",
"=",
"shape",
",",
"limits",
"=",
"limits",
",",
"selection",
"=",
"selection",
")",
"elif",
"function",
"==",
"\"cumulative\"",
"and",
"arguments",
"==",
"\"*\"",
":",
"# TODO: comulative should also include the tails outside limits",
"grid",
"=",
"self",
".",
"count",
"(",
"binby",
"=",
"binby",
",",
"shape",
"=",
"shape",
",",
"limits",
"=",
"limits",
",",
"selection",
"=",
"selection",
")",
"grid",
"=",
"np",
".",
"cumsum",
"(",
"grid",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not understand method: %s, expected one of %r'\"",
"%",
"(",
"function",
",",
"functions",
")",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'\"",
"%",
"what",
")",
"else",
":",
"grid",
"=",
"self",
".",
"histogram",
"(",
"binby",
",",
"size",
"=",
"shape",
",",
"limits",
"=",
"limits",
",",
"selection",
"=",
"selection",
")",
"fgrid",
"=",
"f",
"(",
"grid",
")",
"if",
"n",
"is",
"not",
"None",
":",
"# ngrid = n(fgrid, axis=normalize_axis)",
"ngrid",
"=",
"fgrid",
"/",
"fgrid",
".",
"sum",
"(",
")",
"else",
":",
"ngrid",
"=",
"fgrid",
"# reductions = [_parse_reduction(r, colormap, colors) for r in reduce]",
"# rgrid = ngrid * 1.",
"# for r in reduce:",
"# r = _parse_reduction(r, colormap, colors)",
"# rgrid = r(rgrid)",
"# grid = self.reduce(grid, )",
"xmin",
",",
"xmax",
"=",
"limits",
"[",
"-",
"1",
"]",
"if",
"facet",
":",
"N",
"=",
"len",
"(",
"grid",
"[",
"-",
"1",
"]",
")",
"else",
":",
"N",
"=",
"len",
"(",
"grid",
")",
"xexpression",
"=",
"binby",
"[",
"0",
"]",
"xar",
"=",
"np",
".",
"arange",
"(",
"N",
"+",
"1",
")",
"/",
"(",
"N",
"-",
"0.",
")",
"*",
"(",
"xmax",
"-",
"xmin",
")",
"+",
"xmin",
"label",
"=",
"str",
"(",
"label",
"or",
"selection",
"or",
"x",
")",
"if",
"facet",
":",
"import",
"math",
"rows",
",",
"columns",
"=",
"int",
"(",
"math",
".",
"ceil",
"(",
"facet_count",
"/",
"4.",
")",
")",
",",
"4",
"values",
"=",
"np",
".",
"linspace",
"(",
"facet_limits",
"[",
"0",
"]",
",",
"facet_limits",
"[",
"1",
"]",
",",
"facet_count",
"+",
"1",
")",
"for",
"i",
"in",
"range",
"(",
"facet_count",
")",
":",
"ax",
"=",
"pylab",
".",
"subplot",
"(",
"rows",
",",
"columns",
",",
"i",
"+",
"1",
")",
"value",
"=",
"ax",
".",
"plot",
"(",
"xar",
",",
"ngrid",
"[",
"i",
"]",
",",
"drawstyle",
"=",
"\"steps-mid\"",
",",
"label",
"=",
"label",
",",
"*",
"*",
"kwargs",
")",
"v1",
",",
"v2",
"=",
"values",
"[",
"i",
"]",
",",
"values",
"[",
"i",
"+",
"1",
"]",
"pylab",
".",
"xlabel",
"(",
"xlabel",
"or",
"x",
")",
"pylab",
".",
"ylabel",
"(",
"ylabel",
"or",
"what",
")",
"ax",
".",
"set_title",
"(",
"\"%3f <= %s < %3f\"",
"%",
"(",
"v1",
",",
"facet_expression",
",",
"v2",
")",
")",
"if",
"self",
".",
"iscategory",
"(",
"xexpression",
")",
":",
"labels",
"=",
"self",
".",
"category_labels",
"(",
"xexpression",
")",
"step",
"=",
"len",
"(",
"labels",
")",
"//",
"max_labels",
"pylab",
".",
"xticks",
"(",
"range",
"(",
"len",
"(",
"labels",
")",
")",
"[",
":",
":",
"step",
"]",
",",
"labels",
"[",
":",
":",
"step",
"]",
",",
"size",
"=",
"'small'",
")",
"else",
":",
"# im = pylab.imshow(rgrid, extent=np.array(limits[:2]).flatten(), origin=\"lower\", aspect=aspect)",
"pylab",
".",
"xlabel",
"(",
"xlabel",
"or",
"self",
".",
"label",
"(",
"x",
")",
")",
"pylab",
".",
"ylabel",
"(",
"ylabel",
"or",
"what",
")",
"# print(xar, ngrid)",
"# repeat the first element, that's how plot/steps likes it..",
"g",
"=",
"np",
".",
"concatenate",
"(",
"[",
"ngrid",
"[",
"0",
":",
"1",
"]",
",",
"ngrid",
"]",
")",
"value",
"=",
"pylab",
".",
"plot",
"(",
"xar",
",",
"g",
",",
"drawstyle",
"=",
"\"steps-pre\"",
",",
"label",
"=",
"label",
",",
"*",
"*",
"kwargs",
")",
"if",
"self",
".",
"iscategory",
"(",
"xexpression",
")",
":",
"labels",
"=",
"self",
".",
"category_labels",
"(",
"xexpression",
")",
"step",
"=",
"len",
"(",
"labels",
")",
"//",
"max_labels",
"pylab",
".",
"xticks",
"(",
"range",
"(",
"len",
"(",
"labels",
")",
")",
"[",
":",
":",
"step",
"]",
",",
"labels",
"[",
":",
":",
"step",
"]",
",",
"size",
"=",
"'small'",
")",
"if",
"tight_layout",
":",
"pylab",
".",
"tight_layout",
"(",
")",
"if",
"hardcopy",
":",
"pylab",
".",
"savefig",
"(",
"hardcopy",
")",
"if",
"show",
":",
"pylab",
".",
"show",
"(",
")",
"return",
"value"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
scatter
|
Viz (small amounts) of data in 2d using a scatter plot
Convenience wrapper around pylab.scatter when for working with small DataFrames or selections
:param x: Expression for x axis
:param y: Idem for y
:param s_expr: When given, use if for the s (size) argument of pylab.scatter
:param c_expr: When given, use if for the c (color) argument of pylab.scatter
:param labels: Annotate the points with these text values
:param selection: Single selection expression, or None
:param length_limit: maximum number of rows it will plot
:param length_check: should we do the maximum row check or not?
:param label: label for the legend
:param xlabel: label for x axis, if None .label(x) is used
:param ylabel: label for y axis, if None .label(y) is used
:param errorbar_kwargs: extra dict with arguments passed to plt.errorbar
:param kwargs: extra arguments passed to pylab.scatter
:return:
|
packages/vaex-viz/vaex/viz/mpl.py
|
def scatter(self, x, y, xerr=None, yerr=None, cov=None, corr=None, s_expr=None, c_expr=None, labels=None, selection=None, length_limit=50000,
length_check=True, label=None, xlabel=None, ylabel=None, errorbar_kwargs={}, ellipse_kwargs={}, **kwargs):
"""Viz (small amounts) of data in 2d using a scatter plot
Convenience wrapper around pylab.scatter when for working with small DataFrames or selections
:param x: Expression for x axis
:param y: Idem for y
:param s_expr: When given, use if for the s (size) argument of pylab.scatter
:param c_expr: When given, use if for the c (color) argument of pylab.scatter
:param labels: Annotate the points with these text values
:param selection: Single selection expression, or None
:param length_limit: maximum number of rows it will plot
:param length_check: should we do the maximum row check or not?
:param label: label for the legend
:param xlabel: label for x axis, if None .label(x) is used
:param ylabel: label for y axis, if None .label(y) is used
:param errorbar_kwargs: extra dict with arguments passed to plt.errorbar
:param kwargs: extra arguments passed to pylab.scatter
:return:
"""
import pylab as plt
x = _ensure_strings_from_expressions(x)
y = _ensure_strings_from_expressions(y)
label = str(label or selection)
selection = _ensure_strings_from_expressions(selection)
if length_check:
count = self.count(selection=selection)
if count > length_limit:
raise ValueError("the number of rows (%d) is above the limit (%d), pass length_check=False, or increase length_limit" % (count, length_limit))
x_values = self.evaluate(x, selection=selection)
y_values = self.evaluate(y, selection=selection)
if s_expr:
kwargs["s"] = self.evaluate(s_expr, selection=selection)
if c_expr:
kwargs["c"] = self.evaluate(c_expr, selection=selection)
plt.xlabel(xlabel or self.label(x))
plt.ylabel(ylabel or self.label(y))
s = plt.scatter(x_values, y_values, label=label, **kwargs)
if labels:
label_values = self.evaluate(labels, selection=selection)
for i, label_value in enumerate(label_values):
plt.annotate(label_value, (x_values[i], y_values[i]))
xerr_values = None
yerr_values = None
if cov is not None or corr is not None:
from matplotlib.patches import Ellipse
sx = self.evaluate(xerr, selection=selection)
sy = self.evaluate(yerr, selection=selection)
if corr is not None:
sxy = self.evaluate(corr, selection=selection) * sx * sy
elif cov is not None:
sxy = self.evaluate(cov, selection=selection)
cov_matrix = np.zeros((len(sx), 2, 2))
cov_matrix[:,0,0] = sx**2
cov_matrix[:,1,1] = sy**2
cov_matrix[:,0,1] = cov_matrix[:,1,0] = sxy
ax = plt.gca()
ellipse_kwargs = dict(ellipse_kwargs)
ellipse_kwargs['facecolor'] = ellipse_kwargs.get('facecolor', 'none')
ellipse_kwargs['edgecolor'] = ellipse_kwargs.get('edgecolor', 'black')
for i in range(len(sx)):
eigen_values, eigen_vectors = np.linalg.eig(cov_matrix[i])
indices = np.argsort(eigen_values)[::-1]
eigen_values = eigen_values[indices]
eigen_vectors = eigen_vectors[:,indices]
v1 = eigen_vectors[:, 0]
v2 = eigen_vectors[:, 1]
varx = cov_matrix[i, 0, 0]
vary = cov_matrix[i, 1, 1]
angle = np.arctan2(v1[1], v1[0])
# round off errors cause negative values?
if eigen_values[1] < 0 and abs((eigen_values[1]/eigen_values[0])) < 1e-10:
eigen_values[1] = 0
if eigen_values[0] < 0 or eigen_values[1] < 0:
raise ValueError('neg val')
width, height = np.sqrt(np.max(eigen_values)), np.sqrt(np.min(eigen_values))
e = Ellipse(xy=(x_values[i], y_values[i]), width=width, height=height, angle=np.degrees(angle), **ellipse_kwargs)
ax.add_artist(e)
else:
if xerr is not None:
if _issequence(xerr):
assert len(xerr) == 2, "if xerr is a sequence it should be of length 2"
xerr_values = [self.evaluate(xerr[0], selection=selection), self.evaluate(xerr[1], selection=selection)]
else:
xerr_values = self.evaluate(xerr, selection=selection)
if yerr is not None:
if _issequence(yerr):
assert len(yerr) == 2, "if yerr is a sequence it should be of length 2"
yerr_values = [self.evaluate(yerr[0], selection=selection), self.evaluate(yerr[1], selection=selection)]
else:
yerr_values = self.evaluate(yerr, selection=selection)
if xerr_values is not None or yerr_values is not None:
errorbar_kwargs = dict(errorbar_kwargs)
errorbar_kwargs['fmt'] = errorbar_kwargs.get('fmt', 'none')
plt.errorbar(x_values, y_values, yerr=yerr_values, xerr=xerr_values, **errorbar_kwargs)
return s
|
def scatter(self, x, y, xerr=None, yerr=None, cov=None, corr=None, s_expr=None, c_expr=None, labels=None, selection=None, length_limit=50000,
length_check=True, label=None, xlabel=None, ylabel=None, errorbar_kwargs={}, ellipse_kwargs={}, **kwargs):
"""Viz (small amounts) of data in 2d using a scatter plot
Convenience wrapper around pylab.scatter when for working with small DataFrames or selections
:param x: Expression for x axis
:param y: Idem for y
:param s_expr: When given, use if for the s (size) argument of pylab.scatter
:param c_expr: When given, use if for the c (color) argument of pylab.scatter
:param labels: Annotate the points with these text values
:param selection: Single selection expression, or None
:param length_limit: maximum number of rows it will plot
:param length_check: should we do the maximum row check or not?
:param label: label for the legend
:param xlabel: label for x axis, if None .label(x) is used
:param ylabel: label for y axis, if None .label(y) is used
:param errorbar_kwargs: extra dict with arguments passed to plt.errorbar
:param kwargs: extra arguments passed to pylab.scatter
:return:
"""
import pylab as plt
x = _ensure_strings_from_expressions(x)
y = _ensure_strings_from_expressions(y)
label = str(label or selection)
selection = _ensure_strings_from_expressions(selection)
if length_check:
count = self.count(selection=selection)
if count > length_limit:
raise ValueError("the number of rows (%d) is above the limit (%d), pass length_check=False, or increase length_limit" % (count, length_limit))
x_values = self.evaluate(x, selection=selection)
y_values = self.evaluate(y, selection=selection)
if s_expr:
kwargs["s"] = self.evaluate(s_expr, selection=selection)
if c_expr:
kwargs["c"] = self.evaluate(c_expr, selection=selection)
plt.xlabel(xlabel or self.label(x))
plt.ylabel(ylabel or self.label(y))
s = plt.scatter(x_values, y_values, label=label, **kwargs)
if labels:
label_values = self.evaluate(labels, selection=selection)
for i, label_value in enumerate(label_values):
plt.annotate(label_value, (x_values[i], y_values[i]))
xerr_values = None
yerr_values = None
if cov is not None or corr is not None:
from matplotlib.patches import Ellipse
sx = self.evaluate(xerr, selection=selection)
sy = self.evaluate(yerr, selection=selection)
if corr is not None:
sxy = self.evaluate(corr, selection=selection) * sx * sy
elif cov is not None:
sxy = self.evaluate(cov, selection=selection)
cov_matrix = np.zeros((len(sx), 2, 2))
cov_matrix[:,0,0] = sx**2
cov_matrix[:,1,1] = sy**2
cov_matrix[:,0,1] = cov_matrix[:,1,0] = sxy
ax = plt.gca()
ellipse_kwargs = dict(ellipse_kwargs)
ellipse_kwargs['facecolor'] = ellipse_kwargs.get('facecolor', 'none')
ellipse_kwargs['edgecolor'] = ellipse_kwargs.get('edgecolor', 'black')
for i in range(len(sx)):
eigen_values, eigen_vectors = np.linalg.eig(cov_matrix[i])
indices = np.argsort(eigen_values)[::-1]
eigen_values = eigen_values[indices]
eigen_vectors = eigen_vectors[:,indices]
v1 = eigen_vectors[:, 0]
v2 = eigen_vectors[:, 1]
varx = cov_matrix[i, 0, 0]
vary = cov_matrix[i, 1, 1]
angle = np.arctan2(v1[1], v1[0])
# round off errors cause negative values?
if eigen_values[1] < 0 and abs((eigen_values[1]/eigen_values[0])) < 1e-10:
eigen_values[1] = 0
if eigen_values[0] < 0 or eigen_values[1] < 0:
raise ValueError('neg val')
width, height = np.sqrt(np.max(eigen_values)), np.sqrt(np.min(eigen_values))
e = Ellipse(xy=(x_values[i], y_values[i]), width=width, height=height, angle=np.degrees(angle), **ellipse_kwargs)
ax.add_artist(e)
else:
if xerr is not None:
if _issequence(xerr):
assert len(xerr) == 2, "if xerr is a sequence it should be of length 2"
xerr_values = [self.evaluate(xerr[0], selection=selection), self.evaluate(xerr[1], selection=selection)]
else:
xerr_values = self.evaluate(xerr, selection=selection)
if yerr is not None:
if _issequence(yerr):
assert len(yerr) == 2, "if yerr is a sequence it should be of length 2"
yerr_values = [self.evaluate(yerr[0], selection=selection), self.evaluate(yerr[1], selection=selection)]
else:
yerr_values = self.evaluate(yerr, selection=selection)
if xerr_values is not None or yerr_values is not None:
errorbar_kwargs = dict(errorbar_kwargs)
errorbar_kwargs['fmt'] = errorbar_kwargs.get('fmt', 'none')
plt.errorbar(x_values, y_values, yerr=yerr_values, xerr=xerr_values, **errorbar_kwargs)
return s
|
[
"Viz",
"(",
"small",
"amounts",
")",
"of",
"data",
"in",
"2d",
"using",
"a",
"scatter",
"plot"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-viz/vaex/viz/mpl.py#L188-L284
|
[
"def",
"scatter",
"(",
"self",
",",
"x",
",",
"y",
",",
"xerr",
"=",
"None",
",",
"yerr",
"=",
"None",
",",
"cov",
"=",
"None",
",",
"corr",
"=",
"None",
",",
"s_expr",
"=",
"None",
",",
"c_expr",
"=",
"None",
",",
"labels",
"=",
"None",
",",
"selection",
"=",
"None",
",",
"length_limit",
"=",
"50000",
",",
"length_check",
"=",
"True",
",",
"label",
"=",
"None",
",",
"xlabel",
"=",
"None",
",",
"ylabel",
"=",
"None",
",",
"errorbar_kwargs",
"=",
"{",
"}",
",",
"ellipse_kwargs",
"=",
"{",
"}",
",",
"*",
"*",
"kwargs",
")",
":",
"import",
"pylab",
"as",
"plt",
"x",
"=",
"_ensure_strings_from_expressions",
"(",
"x",
")",
"y",
"=",
"_ensure_strings_from_expressions",
"(",
"y",
")",
"label",
"=",
"str",
"(",
"label",
"or",
"selection",
")",
"selection",
"=",
"_ensure_strings_from_expressions",
"(",
"selection",
")",
"if",
"length_check",
":",
"count",
"=",
"self",
".",
"count",
"(",
"selection",
"=",
"selection",
")",
"if",
"count",
">",
"length_limit",
":",
"raise",
"ValueError",
"(",
"\"the number of rows (%d) is above the limit (%d), pass length_check=False, or increase length_limit\"",
"%",
"(",
"count",
",",
"length_limit",
")",
")",
"x_values",
"=",
"self",
".",
"evaluate",
"(",
"x",
",",
"selection",
"=",
"selection",
")",
"y_values",
"=",
"self",
".",
"evaluate",
"(",
"y",
",",
"selection",
"=",
"selection",
")",
"if",
"s_expr",
":",
"kwargs",
"[",
"\"s\"",
"]",
"=",
"self",
".",
"evaluate",
"(",
"s_expr",
",",
"selection",
"=",
"selection",
")",
"if",
"c_expr",
":",
"kwargs",
"[",
"\"c\"",
"]",
"=",
"self",
".",
"evaluate",
"(",
"c_expr",
",",
"selection",
"=",
"selection",
")",
"plt",
".",
"xlabel",
"(",
"xlabel",
"or",
"self",
".",
"label",
"(",
"x",
")",
")",
"plt",
".",
"ylabel",
"(",
"ylabel",
"or",
"self",
".",
"label",
"(",
"y",
")",
")",
"s",
"=",
"plt",
".",
"scatter",
"(",
"x_values",
",",
"y_values",
",",
"label",
"=",
"label",
",",
"*",
"*",
"kwargs",
")",
"if",
"labels",
":",
"label_values",
"=",
"self",
".",
"evaluate",
"(",
"labels",
",",
"selection",
"=",
"selection",
")",
"for",
"i",
",",
"label_value",
"in",
"enumerate",
"(",
"label_values",
")",
":",
"plt",
".",
"annotate",
"(",
"label_value",
",",
"(",
"x_values",
"[",
"i",
"]",
",",
"y_values",
"[",
"i",
"]",
")",
")",
"xerr_values",
"=",
"None",
"yerr_values",
"=",
"None",
"if",
"cov",
"is",
"not",
"None",
"or",
"corr",
"is",
"not",
"None",
":",
"from",
"matplotlib",
".",
"patches",
"import",
"Ellipse",
"sx",
"=",
"self",
".",
"evaluate",
"(",
"xerr",
",",
"selection",
"=",
"selection",
")",
"sy",
"=",
"self",
".",
"evaluate",
"(",
"yerr",
",",
"selection",
"=",
"selection",
")",
"if",
"corr",
"is",
"not",
"None",
":",
"sxy",
"=",
"self",
".",
"evaluate",
"(",
"corr",
",",
"selection",
"=",
"selection",
")",
"*",
"sx",
"*",
"sy",
"elif",
"cov",
"is",
"not",
"None",
":",
"sxy",
"=",
"self",
".",
"evaluate",
"(",
"cov",
",",
"selection",
"=",
"selection",
")",
"cov_matrix",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"sx",
")",
",",
"2",
",",
"2",
")",
")",
"cov_matrix",
"[",
":",
",",
"0",
",",
"0",
"]",
"=",
"sx",
"**",
"2",
"cov_matrix",
"[",
":",
",",
"1",
",",
"1",
"]",
"=",
"sy",
"**",
"2",
"cov_matrix",
"[",
":",
",",
"0",
",",
"1",
"]",
"=",
"cov_matrix",
"[",
":",
",",
"1",
",",
"0",
"]",
"=",
"sxy",
"ax",
"=",
"plt",
".",
"gca",
"(",
")",
"ellipse_kwargs",
"=",
"dict",
"(",
"ellipse_kwargs",
")",
"ellipse_kwargs",
"[",
"'facecolor'",
"]",
"=",
"ellipse_kwargs",
".",
"get",
"(",
"'facecolor'",
",",
"'none'",
")",
"ellipse_kwargs",
"[",
"'edgecolor'",
"]",
"=",
"ellipse_kwargs",
".",
"get",
"(",
"'edgecolor'",
",",
"'black'",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"sx",
")",
")",
":",
"eigen_values",
",",
"eigen_vectors",
"=",
"np",
".",
"linalg",
".",
"eig",
"(",
"cov_matrix",
"[",
"i",
"]",
")",
"indices",
"=",
"np",
".",
"argsort",
"(",
"eigen_values",
")",
"[",
":",
":",
"-",
"1",
"]",
"eigen_values",
"=",
"eigen_values",
"[",
"indices",
"]",
"eigen_vectors",
"=",
"eigen_vectors",
"[",
":",
",",
"indices",
"]",
"v1",
"=",
"eigen_vectors",
"[",
":",
",",
"0",
"]",
"v2",
"=",
"eigen_vectors",
"[",
":",
",",
"1",
"]",
"varx",
"=",
"cov_matrix",
"[",
"i",
",",
"0",
",",
"0",
"]",
"vary",
"=",
"cov_matrix",
"[",
"i",
",",
"1",
",",
"1",
"]",
"angle",
"=",
"np",
".",
"arctan2",
"(",
"v1",
"[",
"1",
"]",
",",
"v1",
"[",
"0",
"]",
")",
"# round off errors cause negative values?",
"if",
"eigen_values",
"[",
"1",
"]",
"<",
"0",
"and",
"abs",
"(",
"(",
"eigen_values",
"[",
"1",
"]",
"/",
"eigen_values",
"[",
"0",
"]",
")",
")",
"<",
"1e-10",
":",
"eigen_values",
"[",
"1",
"]",
"=",
"0",
"if",
"eigen_values",
"[",
"0",
"]",
"<",
"0",
"or",
"eigen_values",
"[",
"1",
"]",
"<",
"0",
":",
"raise",
"ValueError",
"(",
"'neg val'",
")",
"width",
",",
"height",
"=",
"np",
".",
"sqrt",
"(",
"np",
".",
"max",
"(",
"eigen_values",
")",
")",
",",
"np",
".",
"sqrt",
"(",
"np",
".",
"min",
"(",
"eigen_values",
")",
")",
"e",
"=",
"Ellipse",
"(",
"xy",
"=",
"(",
"x_values",
"[",
"i",
"]",
",",
"y_values",
"[",
"i",
"]",
")",
",",
"width",
"=",
"width",
",",
"height",
"=",
"height",
",",
"angle",
"=",
"np",
".",
"degrees",
"(",
"angle",
")",
",",
"*",
"*",
"ellipse_kwargs",
")",
"ax",
".",
"add_artist",
"(",
"e",
")",
"else",
":",
"if",
"xerr",
"is",
"not",
"None",
":",
"if",
"_issequence",
"(",
"xerr",
")",
":",
"assert",
"len",
"(",
"xerr",
")",
"==",
"2",
",",
"\"if xerr is a sequence it should be of length 2\"",
"xerr_values",
"=",
"[",
"self",
".",
"evaluate",
"(",
"xerr",
"[",
"0",
"]",
",",
"selection",
"=",
"selection",
")",
",",
"self",
".",
"evaluate",
"(",
"xerr",
"[",
"1",
"]",
",",
"selection",
"=",
"selection",
")",
"]",
"else",
":",
"xerr_values",
"=",
"self",
".",
"evaluate",
"(",
"xerr",
",",
"selection",
"=",
"selection",
")",
"if",
"yerr",
"is",
"not",
"None",
":",
"if",
"_issequence",
"(",
"yerr",
")",
":",
"assert",
"len",
"(",
"yerr",
")",
"==",
"2",
",",
"\"if yerr is a sequence it should be of length 2\"",
"yerr_values",
"=",
"[",
"self",
".",
"evaluate",
"(",
"yerr",
"[",
"0",
"]",
",",
"selection",
"=",
"selection",
")",
",",
"self",
".",
"evaluate",
"(",
"yerr",
"[",
"1",
"]",
",",
"selection",
"=",
"selection",
")",
"]",
"else",
":",
"yerr_values",
"=",
"self",
".",
"evaluate",
"(",
"yerr",
",",
"selection",
"=",
"selection",
")",
"if",
"xerr_values",
"is",
"not",
"None",
"or",
"yerr_values",
"is",
"not",
"None",
":",
"errorbar_kwargs",
"=",
"dict",
"(",
"errorbar_kwargs",
")",
"errorbar_kwargs",
"[",
"'fmt'",
"]",
"=",
"errorbar_kwargs",
".",
"get",
"(",
"'fmt'",
",",
"'none'",
")",
"plt",
".",
"errorbar",
"(",
"x_values",
",",
"y_values",
",",
"yerr",
"=",
"yerr_values",
",",
"xerr",
"=",
"xerr_values",
",",
"*",
"*",
"errorbar_kwargs",
")",
"return",
"s"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
plot
|
Viz data in a 2d histogram/heatmap.
Declarative plotting of statistical plots using matplotlib, supports subplots, selections, layers.
Instead of passing x and y, pass a list as x argument for multiple panels. Give what a list of options to have multiple
panels. When both are present then will be origanized in a column/row order.
This methods creates a 6 dimensional 'grid', where each dimension can map the a visual dimension.
The grid dimensions are:
* x: shape determined by shape, content by x argument or the first dimension of each space
* y: ,,
* z: related to the z argument
* selection: shape equals length of selection argument
* what: shape equals length of what argument
* space: shape equals length of x argument if multiple values are given
By default, this its shape is (1, 1, 1, 1, shape, shape) (where x is the last dimension)
The visual dimensions are
* x: x coordinate on a plot / image (default maps to grid's x)
* y: y ,, (default maps to grid's y)
* layer: each image in this dimension is blended togeher to one image (default maps to z)
* fade: each image is shown faded after the next image (default mapt to selection)
* row: rows of subplots (default maps to space)
* columns: columns of subplot (default maps to what)
All these mappings can be changes by the visual argument, some examples:
>>> df.plot('x', 'y', what=['mean(x)', 'correlation(vx, vy)'])
Will plot each 'what' as a column.
>>> df.plot('x', 'y', selection=['FeH < -3', '(FeH >= -3) & (FeH < -2)'], visual=dict(column='selection'))
Will plot each selection as a column, instead of a faded on top of each other.
:param x: Expression to bin in the x direction (by default maps to x), or list of pairs, like [['x', 'y'], ['x', 'z']], if multiple pairs are given, this dimension maps to rows by default
:param y: y (by default maps to y)
:param z: Expression to bin in the z direction, followed by a :start,end,shape signature, like 'FeH:-3,1:5' will produce 5 layers between -10 and 10 (by default maps to layer)
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum, std('x') the standard deviation, correlation('vx', 'vy') the correlation coefficient. Can also be a list of values, like ['count(x)', std('vx')], (by default maps to column)
:param reduce:
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param normalize: normalization function, currently only 'normalize' is supported
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param vmin: instead of automatic normalization, (using normalize and normalization_axis) scale the data between vmin and vmax to [0, 1]
:param vmax: see vmin
:param shape: shape/size of the n-D histogram grid
:param limits: list of [[xmin, xmax], [ymin, ymax]], or a description such as 'minmax', '99%'
:param grid: if the binning is done before by yourself, you can pass it
:param colormap: matplotlib colormap to use
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param xlabel:
:param ylabel:
:param aspect:
:param tight_layout: call pylab.tight_layout or not
:param colorbar: plot a colorbar or not
:param interpolation: interpolation for imshow, possible options are: 'nearest', 'bilinear', 'bicubic', see matplotlib for more
:param return_extra:
:return:
|
packages/vaex-viz/vaex/viz/mpl.py
|
def plot(self, x=None, y=None, z=None, what="count(*)", vwhat=None, reduce=["colormap"], f=None,
normalize="normalize", normalize_axis="what",
vmin=None, vmax=None,
shape=256, vshape=32, limits=None, grid=None, colormap="afmhot", # colors=["red", "green", "blue"],
figsize=None, xlabel=None, ylabel=None, aspect="auto", tight_layout=True, interpolation="nearest", show=False,
colorbar=True,
colorbar_label=None,
selection=None, selection_labels=None, title=None,
background_color="white", pre_blend=False, background_alpha=1.,
visual=dict(x="x", y="y", layer="z", fade="selection", row="subspace", column="what"),
smooth_pre=None, smooth_post=None,
wrap=True, wrap_columns=4,
return_extra=False, hardcopy=None):
"""Viz data in a 2d histogram/heatmap.
Declarative plotting of statistical plots using matplotlib, supports subplots, selections, layers.
Instead of passing x and y, pass a list as x argument for multiple panels. Give what a list of options to have multiple
panels. When both are present then will be origanized in a column/row order.
This methods creates a 6 dimensional 'grid', where each dimension can map the a visual dimension.
The grid dimensions are:
* x: shape determined by shape, content by x argument or the first dimension of each space
* y: ,,
* z: related to the z argument
* selection: shape equals length of selection argument
* what: shape equals length of what argument
* space: shape equals length of x argument if multiple values are given
By default, this its shape is (1, 1, 1, 1, shape, shape) (where x is the last dimension)
The visual dimensions are
* x: x coordinate on a plot / image (default maps to grid's x)
* y: y ,, (default maps to grid's y)
* layer: each image in this dimension is blended togeher to one image (default maps to z)
* fade: each image is shown faded after the next image (default mapt to selection)
* row: rows of subplots (default maps to space)
* columns: columns of subplot (default maps to what)
All these mappings can be changes by the visual argument, some examples:
>>> df.plot('x', 'y', what=['mean(x)', 'correlation(vx, vy)'])
Will plot each 'what' as a column.
>>> df.plot('x', 'y', selection=['FeH < -3', '(FeH >= -3) & (FeH < -2)'], visual=dict(column='selection'))
Will plot each selection as a column, instead of a faded on top of each other.
:param x: Expression to bin in the x direction (by default maps to x), or list of pairs, like [['x', 'y'], ['x', 'z']], if multiple pairs are given, this dimension maps to rows by default
:param y: y (by default maps to y)
:param z: Expression to bin in the z direction, followed by a :start,end,shape signature, like 'FeH:-3,1:5' will produce 5 layers between -10 and 10 (by default maps to layer)
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum, std('x') the standard deviation, correlation('vx', 'vy') the correlation coefficient. Can also be a list of values, like ['count(x)', std('vx')], (by default maps to column)
:param reduce:
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param normalize: normalization function, currently only 'normalize' is supported
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param vmin: instead of automatic normalization, (using normalize and normalization_axis) scale the data between vmin and vmax to [0, 1]
:param vmax: see vmin
:param shape: shape/size of the n-D histogram grid
:param limits: list of [[xmin, xmax], [ymin, ymax]], or a description such as 'minmax', '99%'
:param grid: if the binning is done before by yourself, you can pass it
:param colormap: matplotlib colormap to use
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param xlabel:
:param ylabel:
:param aspect:
:param tight_layout: call pylab.tight_layout or not
:param colorbar: plot a colorbar or not
:param interpolation: interpolation for imshow, possible options are: 'nearest', 'bilinear', 'bicubic', see matplotlib for more
:param return_extra:
:return:
"""
import pylab
import matplotlib
n = _parse_n(normalize)
if type(shape) == int:
shape = (shape,) * 2
binby = []
x = _ensure_strings_from_expressions(x)
y = _ensure_strings_from_expressions(y)
for expression in [y, x]:
if expression is not None:
binby = [expression] + binby
fig = pylab.gcf()
if figsize is not None:
fig.set_size_inches(*figsize)
import re
what_units = None
whats = _ensure_list(what)
selections = _ensure_list(selection)
selections = _ensure_strings_from_expressions(selections)
if y is None:
waslist, [x, ] = vaex.utils.listify(x)
else:
waslist, [x, y] = vaex.utils.listify(x, y)
x = list(zip(x, y))
limits = [limits]
# every plot has its own vwhat for now
vwhats = _expand_limits(vwhat, len(x)) # TODO: we're abusing this function..
logger.debug("x: %s", x)
limits, shape = self.limits(x, limits, shape=shape)
shape = shape[0]
logger.debug("limits: %r", limits)
# mapping of a grid axis to a label
labels = {}
shape = _expand_shape(shape, 2)
vshape = _expand_shape(shape, 2)
if z is not None:
match = re.match("(.*):(.*),(.*),(.*)", z)
if match:
groups = match.groups()
import ast
z_expression = groups[0]
logger.debug("found groups: %r", list(groups))
z_limits = [ast.literal_eval(groups[1]), ast.literal_eval(groups[2])]
z_shape = ast.literal_eval(groups[3])
# for pair in x:
x = [[z_expression] + list(k) for k in x]
limits = np.array([[z_limits] + list(k) for k in limits])
shape = (z_shape,) + shape
vshape = (z_shape,) + vshape
logger.debug("x = %r", x)
values = np.linspace(z_limits[0], z_limits[1], num=z_shape + 1)
labels["z"] = list(["%s <= %s < %s" % (v1, z_expression, v2) for v1, v2 in zip(values[:-1], values[1:])])
else:
raise ValueError("Could not understand 'z' argument %r, expected something in form: 'column:-1,10:5'" % facet)
else:
z_shape = 1
# z == 1
if z is None:
total_grid = np.zeros((len(x), len(whats), len(selections), 1) + shape, dtype=float)
total_vgrid = np.zeros((len(x), len(whats), len(selections), 1) + vshape, dtype=float)
else:
total_grid = np.zeros((len(x), len(whats), len(selections)) + shape, dtype=float)
total_vgrid = np.zeros((len(x), len(whats), len(selections)) + vshape, dtype=float)
logger.debug("shape of total grid: %r", total_grid.shape)
axis = dict(plot=0, what=1, selection=2)
xlimits = limits
grid_axes = dict(x=-1, y=-2, z=-3, selection=-4, what=-5, subspace=-6)
visual_axes = dict(x=-1, y=-2, layer=-3, fade=-4, column=-5, row=-6)
# visual_default=dict(x="x", y="y", z="layer", selection="fade", subspace="row", what="column")
# visual: mapping of a plot axis, to a grid axis
visual_default = dict(x="x", y="y", layer="z", fade="selection", row="subspace", column="what")
def invert(x): return dict((v, k) for k, v in x.items())
# visual_default_reverse = invert(visual_default)
# visual_ = visual_default
# visual = dict(visual) # copy for modification
# add entries to avoid mapping multiple times to the same axis
free_visual_axes = list(visual_default.keys())
# visual_reverse = invert(visual)
logger.debug("1: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual.items():
if visual_name in free_visual_axes:
free_visual_axes.remove(visual_name)
else:
raise ValueError("visual axes %s used multiple times" % visual_name)
logger.debug("2: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual_default.items():
if visual_name in free_visual_axes and grid_name not in visual.values():
free_visual_axes.remove(visual_name)
visual[visual_name] = grid_name
logger.debug("3: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual_default.items():
if visual_name not in free_visual_axes and grid_name not in visual.values():
visual[free_visual_axes.pop(0)] = grid_name
logger.debug("4: %r %r", visual, free_visual_axes)
visual_reverse = invert(visual)
# TODO: the meaning of visual and visual_reverse is changed below this line, super confusing
visual, visual_reverse = visual_reverse, visual
# so now, visual: mapping of a grid axis to plot axis
# visual_reverse: mapping of a grid axis to plot axis
move = {}
for grid_name, visual_name in visual.items():
if visual_axes[visual_name] in visual.values():
index = visual.values().find(visual_name)
key = visual.keys()[index]
raise ValueError("trying to map %s to %s while, it is already mapped by %s" % (grid_name, visual_name, key))
move[grid_axes[grid_name]] = visual_axes[visual_name]
# normalize_axis = _ensure_list(normalize_axis)
fs = _expand(f, total_grid.shape[grid_axes[normalize_axis]])
# assert len(vwhat)
# labels["y"] = ylabels
what_labels = []
if grid is None:
grid_of_grids = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
grid_of_grids.append([])
for j, what in enumerate(whats):
if isinstance(what, vaex.stat.Expression):
grid = what.calculate(self, binby=binby, shape=shape, limits=limits, selection=selections, delay=True)
else:
what = what.strip()
index = what.index("(")
import re
groups = re.match("(.*)\((.*)\)", what).groups()
if groups and len(groups) == 2:
function = groups[0]
arguments = groups[1].strip()
if "," in arguments:
arguments = arguments.split(",")
functions = ["mean", "sum", "std", "var", "correlation", "covar", "min", "max", "median_approx"]
unit_expression = None
if function in ["mean", "sum", "std", "min", "max", "median"]:
unit_expression = arguments
if function in ["var"]:
unit_expression = "(%s) * (%s)" % (arguments, arguments)
if function in ["covar"]:
unit_expression = "(%s) * (%s)" % arguments
if unit_expression:
unit = self.unit(unit_expression)
if unit:
what_units = unit.to_string('latex_inline')
if function in functions:
grid = getattr(self, function)(arguments, binby=binby, limits=limits, shape=shape, selection=selections, delay=True)
elif function == "count":
grid = self.count(arguments, binby, shape=shape, limits=limits, selection=selections, delay=True)
else:
raise ValueError("Could not understand method: %s, expected one of %r'" % (function, functions))
else:
raise ValueError("Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'" % what)
if i == 0: # and j == 0:
what_label = str(whats[j])
if what_units:
what_label += " (%s)" % what_units
if fs[j]:
what_label = fs[j] + " " + what_label
what_labels.append(what_label)
grid_of_grids[-1].append(grid)
self.executor.execute()
for i, (binby, limits) in enumerate(zip(x, xlimits)):
for j, what in enumerate(whats):
grid = grid_of_grids[i][j].get()
total_grid[i, j, :, :] = grid[:, None, ...]
labels["what"] = what_labels
else:
dims_left = 6 - len(grid.shape)
total_grid = np.broadcast_to(grid, (1,) * dims_left + grid.shape)
# visual=dict(x="x", y="y", selection="fade", subspace="facet1", what="facet2",)
def _selection_name(name):
if name in [None, False]:
return "selection: all"
elif name in ["default", True]:
return "selection: default"
else:
return "selection: %s" % name
if selection_labels is None:
labels["selection"] = list([_selection_name(k) for k in selections])
else:
labels["selection"] = selection_labels
# visual_grid = np.moveaxis(total_grid, move.keys(), move.values())
# np.moveaxis is in np 1.11 only?, use transpose
axes = [None] * len(move)
for key, value in move.items():
axes[value] = key
visual_grid = np.transpose(total_grid, axes)
logger.debug("grid shape: %r", total_grid.shape)
logger.debug("visual: %r", visual.items())
logger.debug("move: %r", move)
logger.debug("visual grid shape: %r", visual_grid.shape)
xexpressions = []
yexpressions = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
xexpressions.append(binby[0])
yexpressions.append(binby[1])
if xlabel is None:
xlabels = []
ylabels = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
if z is not None:
xlabels.append(self.label(binby[1]))
ylabels.append(self.label(binby[2]))
else:
xlabels.append(self.label(binby[0]))
ylabels.append(self.label(binby[1]))
else:
Nl = visual_grid.shape[visual_axes['row']]
xlabels = _expand(xlabel, Nl)
ylabels = _expand(ylabel, Nl)
#labels[visual["x"]] = (xlabels, ylabels)
labels["x"] = xlabels
labels["y"] = ylabels
# grid = total_grid
# print(grid.shape)
# grid = self.reduce(grid, )
axes = []
# cax = pylab.subplot(1,1,1)
background_color = np.array(matplotlib.colors.colorConverter.to_rgb(background_color))
# if grid.shape[axis["selection"]] > 1:# and not facet:
# rgrid = vaex.image.fade(rgrid)
# finite_mask = np.any(finite_mask, axis=0) # do we really need this
# print(rgrid.shape)
# facet_row_axis = axis["what"]
import math
facet_columns = None
facets = visual_grid.shape[visual_axes["row"]] * visual_grid.shape[visual_axes["column"]]
if visual_grid.shape[visual_axes["column"]] == 1 and wrap:
facet_columns = min(wrap_columns, visual_grid.shape[visual_axes["row"]])
wrapped = True
elif visual_grid.shape[visual_axes["row"]] == 1 and wrap:
facet_columns = min(wrap_columns, visual_grid.shape[visual_axes["column"]])
wrapped = True
else:
wrapped = False
facet_columns = visual_grid.shape[visual_axes["column"]]
facet_rows = int(math.ceil(facets / facet_columns))
logger.debug("facet_rows: %r", facet_rows)
logger.debug("facet_columns: %r", facet_columns)
# if visual_grid.shape[visual_axes["row"]] > 1: # and not wrap:
# #facet_row_axis = axis["what"]
# facet_columns = visual_grid.shape[visual_axes["column"]]
# else:
# facet_columns = min(wrap_columns, facets)
# if grid.shape[axis["plot"]] > 1:# and not facet:
# this loop could be done using axis arguments everywhere
# assert len(normalize_axis) == 1, "currently only 1 normalization axis supported"
grid = visual_grid * 1.
fgrid = visual_grid * 1.
ngrid = visual_grid * 1.
# colorgrid = np.zeros(ngrid.shape + (4,), float)
# print "norma", normalize_axis, visual_grid.shape[visual_axes[visual[normalize_axis]]]
vmins = _expand(vmin, visual_grid.shape[visual_axes[visual[normalize_axis]]], type=list)
vmaxs = _expand(vmax, visual_grid.shape[visual_axes[visual[normalize_axis]]], type=list)
# for name in normalize_axis:
visual_grid
if smooth_pre:
grid = vaex.grids.gf(grid, smooth_pre)
if 1:
axis = visual_axes[visual[normalize_axis]]
for i in range(visual_grid.shape[axis]):
item = [slice(None, None, None), ] * len(visual_grid.shape)
item[axis] = i
item = tuple(item)
f = _parse_f(fs[i])
with np.errstate(divide='ignore', invalid='ignore'): # these are fine, we are ok with nan's in vaex
fgrid.__setitem__(item, f(grid.__getitem__(item)))
# print vmins[i], vmaxs[i]
if vmins[i] is not None and vmaxs[i] is not None:
nsubgrid = fgrid.__getitem__(item) * 1
nsubgrid -= vmins[i]
nsubgrid /= (vmaxs[i] - vmins[i])
else:
nsubgrid, vmin, vmax = n(fgrid.__getitem__(item))
vmins[i] = vmin
vmaxs[i] = vmax
# print " ", vmins[i], vmaxs[i]
ngrid.__setitem__(item, nsubgrid)
if 0: # TODO: above should be like the code below, with custom vmin and vmax
grid = visual_grid[i]
f = _parse_f(fs[i])
fgrid = f(grid)
finite_mask = np.isfinite(grid)
finite_mask = np.any(finite_mask, axis=0)
if vmin is not None and vmax is not None:
ngrid = fgrid * 1
ngrid -= vmin
ngrid /= (vmax - vmin)
ngrid = np.clip(ngrid, 0, 1)
else:
ngrid, vmin, vmax = n(fgrid)
# vmin, vmax = np.nanmin(fgrid), np.nanmax(fgrid)
# every 'what', should have its own colorbar, check if what corresponds to
# rows or columns in facets, if so, do a colorbar per row or per column
rows, columns = int(math.ceil(facets / float(facet_columns))), facet_columns
colorbar_location = "individual"
if visual["what"] == "row" and visual_grid.shape[1] == facet_columns:
colorbar_location = "per_row"
if visual["what"] == "column" and visual_grid.shape[0] == facet_rows:
colorbar_location = "per_column"
# values = np.linspace(facet_limits[0], facet_limits[1], facet_count+1)
logger.debug("rows: %r, columns: %r", rows, columns)
import matplotlib.gridspec as gridspec
column_scale = 1
row_scale = 1
row_offset = 0
if facets > 1:
if colorbar_location == "per_row":
column_scale = 4
gs = gridspec.GridSpec(rows, columns * column_scale + 1)
elif colorbar_location == "per_column":
row_offset = 1
row_scale = 4
gs = gridspec.GridSpec(rows * row_scale + 1, columns)
else:
gs = gridspec.GridSpec(rows, columns)
facet_index = 0
fs = _expand(f, len(whats))
colormaps = _expand(colormap, len(whats))
# row
for i in range(visual_grid.shape[0]):
# column
for j in range(visual_grid.shape[1]):
if colorbar and colorbar_location == "per_column" and i == 0:
norm = matplotlib.colors.Normalize(vmins[j], vmaxs[j])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[j])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[0, j])
colorbar = fig.colorbar(sm, cax=ax, orientation="horizontal")
else:
colorbar = fig.colorbar(sm)
if "what" in labels:
label = labels["what"][j]
if facets > 1:
colorbar.ax.set_title(label)
else:
colorbar.ax.set_ylabel(colorbar_label or label)
if colorbar and colorbar_location == "per_row" and j == 0:
norm = matplotlib.colors.Normalize(vmins[i], vmaxs[i])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[i])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[i, -1])
colorbar = fig.colorbar(sm, cax=ax)
else:
colorbar = fig.colorbar(sm)
label = labels["what"][i]
colorbar.ax.set_ylabel(colorbar_label or label)
rgrid = ngrid[i, j] * 1.
# print rgrid.shape
for k in range(rgrid.shape[0]):
for l in range(rgrid.shape[0]):
if smooth_post is not None:
rgrid[k, l] = vaex.grids.gf(rgrid, smooth_post)
if visual["what"] == "column":
what_index = j
elif visual["what"] == "row":
what_index = i
else:
what_index = 0
if visual[normalize_axis] == "column":
normalize_index = j
elif visual[normalize_axis] == "row":
normalize_index = i
else:
normalize_index = 0
for r in reduce:
r = _parse_reduction(r, colormaps[what_index], [])
rgrid = r(rgrid)
row = facet_index // facet_columns
column = facet_index % facet_columns
if colorbar and colorbar_location == "individual":
# visual_grid.shape[visual_axes[visual[normalize_axis]]]
norm = matplotlib.colors.Normalize(vmins[normalize_index], vmaxs[normalize_index])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[what_index])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[row, column])
colorbar = fig.colorbar(sm, ax=ax)
else:
colorbar = fig.colorbar(sm)
label = labels["what"][what_index]
colorbar.ax.set_ylabel(colorbar_label or label)
if facets > 1:
ax = pylab.subplot(gs[row_offset + row * row_scale:row_offset + (row + 1) * row_scale, column * column_scale:(column + 1) * column_scale])
else:
ax = pylab.gca()
axes.append(ax)
logger.debug("rgrid: %r", rgrid.shape)
plot_rgrid = rgrid
assert plot_rgrid.shape[1] == 1, "no layers supported yet"
plot_rgrid = plot_rgrid[:, 0]
if plot_rgrid.shape[0] > 1:
plot_rgrid = vaex.image.fade(plot_rgrid[::-1])
else:
plot_rgrid = plot_rgrid[0]
extend = None
if visual["subspace"] == "row":
subplot_index = i
elif visual["subspace"] == "column":
subplot_index = j
else:
subplot_index = 0
extend = np.array(xlimits[subplot_index][-2:]).flatten()
# extend = np.array(xlimits[i]).flatten()
logger.debug("plot rgrid: %r", plot_rgrid.shape)
plot_rgrid = np.transpose(plot_rgrid, (1, 0, 2))
im = ax.imshow(plot_rgrid, extent=extend.tolist(), origin="lower", aspect=aspect, interpolation=interpolation)
# v1, v2 = values[i], values[i+1]
def label(index, label, expression):
if label and _issequence(label):
return label[i]
else:
return self.label(expression)
if visual_reverse["x"] =='x':
labelsx = labels['x']
pylab.xlabel(labelsx[subplot_index])
if visual_reverse["x"] =='x':
labelsy = labels['y']
pylab.ylabel(labelsy[subplot_index])
if visual["z"] in ['row']:
labelsz = labels['z']
ax.set_title(labelsz[i])
if visual["z"] in ['column']:
labelsz = labels['z']
ax.set_title(labelsz[j])
max_labels = 10
# xexpression = xexpressions[i]
# if self.iscategory(xexpression):
# labels = self.category_labels(xexpression)
# step = len(labels) // max_labels
# pylab.xticks(np.arange(len(labels))[::step], labels[::step], size='small')
# yexpression = yexpressions[i]
# if self.iscategory(yexpression):
# labels = self.category_labels(yexpression)
# step = len(labels) // max_labels
# pylab.yticks(np.arange(len(labels))[::step], labels[::step], size='small')
facet_index += 1
if title:
fig.suptitle(title, fontsize="x-large")
if tight_layout:
if title:
pylab.tight_layout(rect=[0, 0.03, 1, 0.95])
else:
pylab.tight_layout()
if hardcopy:
pylab.savefig(hardcopy)
if show:
pylab.show()
if return_extra:
return im, grid, fgrid, ngrid, rgrid
else:
return im
|
def plot(self, x=None, y=None, z=None, what="count(*)", vwhat=None, reduce=["colormap"], f=None,
normalize="normalize", normalize_axis="what",
vmin=None, vmax=None,
shape=256, vshape=32, limits=None, grid=None, colormap="afmhot", # colors=["red", "green", "blue"],
figsize=None, xlabel=None, ylabel=None, aspect="auto", tight_layout=True, interpolation="nearest", show=False,
colorbar=True,
colorbar_label=None,
selection=None, selection_labels=None, title=None,
background_color="white", pre_blend=False, background_alpha=1.,
visual=dict(x="x", y="y", layer="z", fade="selection", row="subspace", column="what"),
smooth_pre=None, smooth_post=None,
wrap=True, wrap_columns=4,
return_extra=False, hardcopy=None):
"""Viz data in a 2d histogram/heatmap.
Declarative plotting of statistical plots using matplotlib, supports subplots, selections, layers.
Instead of passing x and y, pass a list as x argument for multiple panels. Give what a list of options to have multiple
panels. When both are present then will be origanized in a column/row order.
This methods creates a 6 dimensional 'grid', where each dimension can map the a visual dimension.
The grid dimensions are:
* x: shape determined by shape, content by x argument or the first dimension of each space
* y: ,,
* z: related to the z argument
* selection: shape equals length of selection argument
* what: shape equals length of what argument
* space: shape equals length of x argument if multiple values are given
By default, this its shape is (1, 1, 1, 1, shape, shape) (where x is the last dimension)
The visual dimensions are
* x: x coordinate on a plot / image (default maps to grid's x)
* y: y ,, (default maps to grid's y)
* layer: each image in this dimension is blended togeher to one image (default maps to z)
* fade: each image is shown faded after the next image (default mapt to selection)
* row: rows of subplots (default maps to space)
* columns: columns of subplot (default maps to what)
All these mappings can be changes by the visual argument, some examples:
>>> df.plot('x', 'y', what=['mean(x)', 'correlation(vx, vy)'])
Will plot each 'what' as a column.
>>> df.plot('x', 'y', selection=['FeH < -3', '(FeH >= -3) & (FeH < -2)'], visual=dict(column='selection'))
Will plot each selection as a column, instead of a faded on top of each other.
:param x: Expression to bin in the x direction (by default maps to x), or list of pairs, like [['x', 'y'], ['x', 'z']], if multiple pairs are given, this dimension maps to rows by default
:param y: y (by default maps to y)
:param z: Expression to bin in the z direction, followed by a :start,end,shape signature, like 'FeH:-3,1:5' will produce 5 layers between -10 and 10 (by default maps to layer)
:param what: What to plot, count(*) will show a N-d histogram, mean('x'), the mean of the x column, sum('x') the sum, std('x') the standard deviation, correlation('vx', 'vy') the correlation coefficient. Can also be a list of values, like ['count(x)', std('vx')], (by default maps to column)
:param reduce:
:param f: transform values by: 'identity' does nothing 'log' or 'log10' will show the log of the value
:param normalize: normalization function, currently only 'normalize' is supported
:param normalize_axis: which axes to normalize on, None means normalize by the global maximum.
:param vmin: instead of automatic normalization, (using normalize and normalization_axis) scale the data between vmin and vmax to [0, 1]
:param vmax: see vmin
:param shape: shape/size of the n-D histogram grid
:param limits: list of [[xmin, xmax], [ymin, ymax]], or a description such as 'minmax', '99%'
:param grid: if the binning is done before by yourself, you can pass it
:param colormap: matplotlib colormap to use
:param figsize: (x, y) tuple passed to pylab.figure for setting the figure size
:param xlabel:
:param ylabel:
:param aspect:
:param tight_layout: call pylab.tight_layout or not
:param colorbar: plot a colorbar or not
:param interpolation: interpolation for imshow, possible options are: 'nearest', 'bilinear', 'bicubic', see matplotlib for more
:param return_extra:
:return:
"""
import pylab
import matplotlib
n = _parse_n(normalize)
if type(shape) == int:
shape = (shape,) * 2
binby = []
x = _ensure_strings_from_expressions(x)
y = _ensure_strings_from_expressions(y)
for expression in [y, x]:
if expression is not None:
binby = [expression] + binby
fig = pylab.gcf()
if figsize is not None:
fig.set_size_inches(*figsize)
import re
what_units = None
whats = _ensure_list(what)
selections = _ensure_list(selection)
selections = _ensure_strings_from_expressions(selections)
if y is None:
waslist, [x, ] = vaex.utils.listify(x)
else:
waslist, [x, y] = vaex.utils.listify(x, y)
x = list(zip(x, y))
limits = [limits]
# every plot has its own vwhat for now
vwhats = _expand_limits(vwhat, len(x)) # TODO: we're abusing this function..
logger.debug("x: %s", x)
limits, shape = self.limits(x, limits, shape=shape)
shape = shape[0]
logger.debug("limits: %r", limits)
# mapping of a grid axis to a label
labels = {}
shape = _expand_shape(shape, 2)
vshape = _expand_shape(shape, 2)
if z is not None:
match = re.match("(.*):(.*),(.*),(.*)", z)
if match:
groups = match.groups()
import ast
z_expression = groups[0]
logger.debug("found groups: %r", list(groups))
z_limits = [ast.literal_eval(groups[1]), ast.literal_eval(groups[2])]
z_shape = ast.literal_eval(groups[3])
# for pair in x:
x = [[z_expression] + list(k) for k in x]
limits = np.array([[z_limits] + list(k) for k in limits])
shape = (z_shape,) + shape
vshape = (z_shape,) + vshape
logger.debug("x = %r", x)
values = np.linspace(z_limits[0], z_limits[1], num=z_shape + 1)
labels["z"] = list(["%s <= %s < %s" % (v1, z_expression, v2) for v1, v2 in zip(values[:-1], values[1:])])
else:
raise ValueError("Could not understand 'z' argument %r, expected something in form: 'column:-1,10:5'" % facet)
else:
z_shape = 1
# z == 1
if z is None:
total_grid = np.zeros((len(x), len(whats), len(selections), 1) + shape, dtype=float)
total_vgrid = np.zeros((len(x), len(whats), len(selections), 1) + vshape, dtype=float)
else:
total_grid = np.zeros((len(x), len(whats), len(selections)) + shape, dtype=float)
total_vgrid = np.zeros((len(x), len(whats), len(selections)) + vshape, dtype=float)
logger.debug("shape of total grid: %r", total_grid.shape)
axis = dict(plot=0, what=1, selection=2)
xlimits = limits
grid_axes = dict(x=-1, y=-2, z=-3, selection=-4, what=-5, subspace=-6)
visual_axes = dict(x=-1, y=-2, layer=-3, fade=-4, column=-5, row=-6)
# visual_default=dict(x="x", y="y", z="layer", selection="fade", subspace="row", what="column")
# visual: mapping of a plot axis, to a grid axis
visual_default = dict(x="x", y="y", layer="z", fade="selection", row="subspace", column="what")
def invert(x): return dict((v, k) for k, v in x.items())
# visual_default_reverse = invert(visual_default)
# visual_ = visual_default
# visual = dict(visual) # copy for modification
# add entries to avoid mapping multiple times to the same axis
free_visual_axes = list(visual_default.keys())
# visual_reverse = invert(visual)
logger.debug("1: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual.items():
if visual_name in free_visual_axes:
free_visual_axes.remove(visual_name)
else:
raise ValueError("visual axes %s used multiple times" % visual_name)
logger.debug("2: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual_default.items():
if visual_name in free_visual_axes and grid_name not in visual.values():
free_visual_axes.remove(visual_name)
visual[visual_name] = grid_name
logger.debug("3: %r %r", visual, free_visual_axes)
for visual_name, grid_name in visual_default.items():
if visual_name not in free_visual_axes and grid_name not in visual.values():
visual[free_visual_axes.pop(0)] = grid_name
logger.debug("4: %r %r", visual, free_visual_axes)
visual_reverse = invert(visual)
# TODO: the meaning of visual and visual_reverse is changed below this line, super confusing
visual, visual_reverse = visual_reverse, visual
# so now, visual: mapping of a grid axis to plot axis
# visual_reverse: mapping of a grid axis to plot axis
move = {}
for grid_name, visual_name in visual.items():
if visual_axes[visual_name] in visual.values():
index = visual.values().find(visual_name)
key = visual.keys()[index]
raise ValueError("trying to map %s to %s while, it is already mapped by %s" % (grid_name, visual_name, key))
move[grid_axes[grid_name]] = visual_axes[visual_name]
# normalize_axis = _ensure_list(normalize_axis)
fs = _expand(f, total_grid.shape[grid_axes[normalize_axis]])
# assert len(vwhat)
# labels["y"] = ylabels
what_labels = []
if grid is None:
grid_of_grids = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
grid_of_grids.append([])
for j, what in enumerate(whats):
if isinstance(what, vaex.stat.Expression):
grid = what.calculate(self, binby=binby, shape=shape, limits=limits, selection=selections, delay=True)
else:
what = what.strip()
index = what.index("(")
import re
groups = re.match("(.*)\((.*)\)", what).groups()
if groups and len(groups) == 2:
function = groups[0]
arguments = groups[1].strip()
if "," in arguments:
arguments = arguments.split(",")
functions = ["mean", "sum", "std", "var", "correlation", "covar", "min", "max", "median_approx"]
unit_expression = None
if function in ["mean", "sum", "std", "min", "max", "median"]:
unit_expression = arguments
if function in ["var"]:
unit_expression = "(%s) * (%s)" % (arguments, arguments)
if function in ["covar"]:
unit_expression = "(%s) * (%s)" % arguments
if unit_expression:
unit = self.unit(unit_expression)
if unit:
what_units = unit.to_string('latex_inline')
if function in functions:
grid = getattr(self, function)(arguments, binby=binby, limits=limits, shape=shape, selection=selections, delay=True)
elif function == "count":
grid = self.count(arguments, binby, shape=shape, limits=limits, selection=selections, delay=True)
else:
raise ValueError("Could not understand method: %s, expected one of %r'" % (function, functions))
else:
raise ValueError("Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'" % what)
if i == 0: # and j == 0:
what_label = str(whats[j])
if what_units:
what_label += " (%s)" % what_units
if fs[j]:
what_label = fs[j] + " " + what_label
what_labels.append(what_label)
grid_of_grids[-1].append(grid)
self.executor.execute()
for i, (binby, limits) in enumerate(zip(x, xlimits)):
for j, what in enumerate(whats):
grid = grid_of_grids[i][j].get()
total_grid[i, j, :, :] = grid[:, None, ...]
labels["what"] = what_labels
else:
dims_left = 6 - len(grid.shape)
total_grid = np.broadcast_to(grid, (1,) * dims_left + grid.shape)
# visual=dict(x="x", y="y", selection="fade", subspace="facet1", what="facet2",)
def _selection_name(name):
if name in [None, False]:
return "selection: all"
elif name in ["default", True]:
return "selection: default"
else:
return "selection: %s" % name
if selection_labels is None:
labels["selection"] = list([_selection_name(k) for k in selections])
else:
labels["selection"] = selection_labels
# visual_grid = np.moveaxis(total_grid, move.keys(), move.values())
# np.moveaxis is in np 1.11 only?, use transpose
axes = [None] * len(move)
for key, value in move.items():
axes[value] = key
visual_grid = np.transpose(total_grid, axes)
logger.debug("grid shape: %r", total_grid.shape)
logger.debug("visual: %r", visual.items())
logger.debug("move: %r", move)
logger.debug("visual grid shape: %r", visual_grid.shape)
xexpressions = []
yexpressions = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
xexpressions.append(binby[0])
yexpressions.append(binby[1])
if xlabel is None:
xlabels = []
ylabels = []
for i, (binby, limits) in enumerate(zip(x, xlimits)):
if z is not None:
xlabels.append(self.label(binby[1]))
ylabels.append(self.label(binby[2]))
else:
xlabels.append(self.label(binby[0]))
ylabels.append(self.label(binby[1]))
else:
Nl = visual_grid.shape[visual_axes['row']]
xlabels = _expand(xlabel, Nl)
ylabels = _expand(ylabel, Nl)
#labels[visual["x"]] = (xlabels, ylabels)
labels["x"] = xlabels
labels["y"] = ylabels
# grid = total_grid
# print(grid.shape)
# grid = self.reduce(grid, )
axes = []
# cax = pylab.subplot(1,1,1)
background_color = np.array(matplotlib.colors.colorConverter.to_rgb(background_color))
# if grid.shape[axis["selection"]] > 1:# and not facet:
# rgrid = vaex.image.fade(rgrid)
# finite_mask = np.any(finite_mask, axis=0) # do we really need this
# print(rgrid.shape)
# facet_row_axis = axis["what"]
import math
facet_columns = None
facets = visual_grid.shape[visual_axes["row"]] * visual_grid.shape[visual_axes["column"]]
if visual_grid.shape[visual_axes["column"]] == 1 and wrap:
facet_columns = min(wrap_columns, visual_grid.shape[visual_axes["row"]])
wrapped = True
elif visual_grid.shape[visual_axes["row"]] == 1 and wrap:
facet_columns = min(wrap_columns, visual_grid.shape[visual_axes["column"]])
wrapped = True
else:
wrapped = False
facet_columns = visual_grid.shape[visual_axes["column"]]
facet_rows = int(math.ceil(facets / facet_columns))
logger.debug("facet_rows: %r", facet_rows)
logger.debug("facet_columns: %r", facet_columns)
# if visual_grid.shape[visual_axes["row"]] > 1: # and not wrap:
# #facet_row_axis = axis["what"]
# facet_columns = visual_grid.shape[visual_axes["column"]]
# else:
# facet_columns = min(wrap_columns, facets)
# if grid.shape[axis["plot"]] > 1:# and not facet:
# this loop could be done using axis arguments everywhere
# assert len(normalize_axis) == 1, "currently only 1 normalization axis supported"
grid = visual_grid * 1.
fgrid = visual_grid * 1.
ngrid = visual_grid * 1.
# colorgrid = np.zeros(ngrid.shape + (4,), float)
# print "norma", normalize_axis, visual_grid.shape[visual_axes[visual[normalize_axis]]]
vmins = _expand(vmin, visual_grid.shape[visual_axes[visual[normalize_axis]]], type=list)
vmaxs = _expand(vmax, visual_grid.shape[visual_axes[visual[normalize_axis]]], type=list)
# for name in normalize_axis:
visual_grid
if smooth_pre:
grid = vaex.grids.gf(grid, smooth_pre)
if 1:
axis = visual_axes[visual[normalize_axis]]
for i in range(visual_grid.shape[axis]):
item = [slice(None, None, None), ] * len(visual_grid.shape)
item[axis] = i
item = tuple(item)
f = _parse_f(fs[i])
with np.errstate(divide='ignore', invalid='ignore'): # these are fine, we are ok with nan's in vaex
fgrid.__setitem__(item, f(grid.__getitem__(item)))
# print vmins[i], vmaxs[i]
if vmins[i] is not None and vmaxs[i] is not None:
nsubgrid = fgrid.__getitem__(item) * 1
nsubgrid -= vmins[i]
nsubgrid /= (vmaxs[i] - vmins[i])
else:
nsubgrid, vmin, vmax = n(fgrid.__getitem__(item))
vmins[i] = vmin
vmaxs[i] = vmax
# print " ", vmins[i], vmaxs[i]
ngrid.__setitem__(item, nsubgrid)
if 0: # TODO: above should be like the code below, with custom vmin and vmax
grid = visual_grid[i]
f = _parse_f(fs[i])
fgrid = f(grid)
finite_mask = np.isfinite(grid)
finite_mask = np.any(finite_mask, axis=0)
if vmin is not None and vmax is not None:
ngrid = fgrid * 1
ngrid -= vmin
ngrid /= (vmax - vmin)
ngrid = np.clip(ngrid, 0, 1)
else:
ngrid, vmin, vmax = n(fgrid)
# vmin, vmax = np.nanmin(fgrid), np.nanmax(fgrid)
# every 'what', should have its own colorbar, check if what corresponds to
# rows or columns in facets, if so, do a colorbar per row or per column
rows, columns = int(math.ceil(facets / float(facet_columns))), facet_columns
colorbar_location = "individual"
if visual["what"] == "row" and visual_grid.shape[1] == facet_columns:
colorbar_location = "per_row"
if visual["what"] == "column" and visual_grid.shape[0] == facet_rows:
colorbar_location = "per_column"
# values = np.linspace(facet_limits[0], facet_limits[1], facet_count+1)
logger.debug("rows: %r, columns: %r", rows, columns)
import matplotlib.gridspec as gridspec
column_scale = 1
row_scale = 1
row_offset = 0
if facets > 1:
if colorbar_location == "per_row":
column_scale = 4
gs = gridspec.GridSpec(rows, columns * column_scale + 1)
elif colorbar_location == "per_column":
row_offset = 1
row_scale = 4
gs = gridspec.GridSpec(rows * row_scale + 1, columns)
else:
gs = gridspec.GridSpec(rows, columns)
facet_index = 0
fs = _expand(f, len(whats))
colormaps = _expand(colormap, len(whats))
# row
for i in range(visual_grid.shape[0]):
# column
for j in range(visual_grid.shape[1]):
if colorbar and colorbar_location == "per_column" and i == 0:
norm = matplotlib.colors.Normalize(vmins[j], vmaxs[j])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[j])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[0, j])
colorbar = fig.colorbar(sm, cax=ax, orientation="horizontal")
else:
colorbar = fig.colorbar(sm)
if "what" in labels:
label = labels["what"][j]
if facets > 1:
colorbar.ax.set_title(label)
else:
colorbar.ax.set_ylabel(colorbar_label or label)
if colorbar and colorbar_location == "per_row" and j == 0:
norm = matplotlib.colors.Normalize(vmins[i], vmaxs[i])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[i])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[i, -1])
colorbar = fig.colorbar(sm, cax=ax)
else:
colorbar = fig.colorbar(sm)
label = labels["what"][i]
colorbar.ax.set_ylabel(colorbar_label or label)
rgrid = ngrid[i, j] * 1.
# print rgrid.shape
for k in range(rgrid.shape[0]):
for l in range(rgrid.shape[0]):
if smooth_post is not None:
rgrid[k, l] = vaex.grids.gf(rgrid, smooth_post)
if visual["what"] == "column":
what_index = j
elif visual["what"] == "row":
what_index = i
else:
what_index = 0
if visual[normalize_axis] == "column":
normalize_index = j
elif visual[normalize_axis] == "row":
normalize_index = i
else:
normalize_index = 0
for r in reduce:
r = _parse_reduction(r, colormaps[what_index], [])
rgrid = r(rgrid)
row = facet_index // facet_columns
column = facet_index % facet_columns
if colorbar and colorbar_location == "individual":
# visual_grid.shape[visual_axes[visual[normalize_axis]]]
norm = matplotlib.colors.Normalize(vmins[normalize_index], vmaxs[normalize_index])
sm = matplotlib.cm.ScalarMappable(norm, colormaps[what_index])
sm.set_array(1) # make matplotlib happy (strange behavious)
if facets > 1:
ax = pylab.subplot(gs[row, column])
colorbar = fig.colorbar(sm, ax=ax)
else:
colorbar = fig.colorbar(sm)
label = labels["what"][what_index]
colorbar.ax.set_ylabel(colorbar_label or label)
if facets > 1:
ax = pylab.subplot(gs[row_offset + row * row_scale:row_offset + (row + 1) * row_scale, column * column_scale:(column + 1) * column_scale])
else:
ax = pylab.gca()
axes.append(ax)
logger.debug("rgrid: %r", rgrid.shape)
plot_rgrid = rgrid
assert plot_rgrid.shape[1] == 1, "no layers supported yet"
plot_rgrid = plot_rgrid[:, 0]
if plot_rgrid.shape[0] > 1:
plot_rgrid = vaex.image.fade(plot_rgrid[::-1])
else:
plot_rgrid = plot_rgrid[0]
extend = None
if visual["subspace"] == "row":
subplot_index = i
elif visual["subspace"] == "column":
subplot_index = j
else:
subplot_index = 0
extend = np.array(xlimits[subplot_index][-2:]).flatten()
# extend = np.array(xlimits[i]).flatten()
logger.debug("plot rgrid: %r", plot_rgrid.shape)
plot_rgrid = np.transpose(plot_rgrid, (1, 0, 2))
im = ax.imshow(plot_rgrid, extent=extend.tolist(), origin="lower", aspect=aspect, interpolation=interpolation)
# v1, v2 = values[i], values[i+1]
def label(index, label, expression):
if label and _issequence(label):
return label[i]
else:
return self.label(expression)
if visual_reverse["x"] =='x':
labelsx = labels['x']
pylab.xlabel(labelsx[subplot_index])
if visual_reverse["x"] =='x':
labelsy = labels['y']
pylab.ylabel(labelsy[subplot_index])
if visual["z"] in ['row']:
labelsz = labels['z']
ax.set_title(labelsz[i])
if visual["z"] in ['column']:
labelsz = labels['z']
ax.set_title(labelsz[j])
max_labels = 10
# xexpression = xexpressions[i]
# if self.iscategory(xexpression):
# labels = self.category_labels(xexpression)
# step = len(labels) // max_labels
# pylab.xticks(np.arange(len(labels))[::step], labels[::step], size='small')
# yexpression = yexpressions[i]
# if self.iscategory(yexpression):
# labels = self.category_labels(yexpression)
# step = len(labels) // max_labels
# pylab.yticks(np.arange(len(labels))[::step], labels[::step], size='small')
facet_index += 1
if title:
fig.suptitle(title, fontsize="x-large")
if tight_layout:
if title:
pylab.tight_layout(rect=[0, 0.03, 1, 0.95])
else:
pylab.tight_layout()
if hardcopy:
pylab.savefig(hardcopy)
if show:
pylab.show()
if return_extra:
return im, grid, fgrid, ngrid, rgrid
else:
return im
|
[
"Viz",
"data",
"in",
"a",
"2d",
"histogram",
"/",
"heatmap",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-viz/vaex/viz/mpl.py#L290-L848
|
[
"def",
"plot",
"(",
"self",
",",
"x",
"=",
"None",
",",
"y",
"=",
"None",
",",
"z",
"=",
"None",
",",
"what",
"=",
"\"count(*)\"",
",",
"vwhat",
"=",
"None",
",",
"reduce",
"=",
"[",
"\"colormap\"",
"]",
",",
"f",
"=",
"None",
",",
"normalize",
"=",
"\"normalize\"",
",",
"normalize_axis",
"=",
"\"what\"",
",",
"vmin",
"=",
"None",
",",
"vmax",
"=",
"None",
",",
"shape",
"=",
"256",
",",
"vshape",
"=",
"32",
",",
"limits",
"=",
"None",
",",
"grid",
"=",
"None",
",",
"colormap",
"=",
"\"afmhot\"",
",",
"# colors=[\"red\", \"green\", \"blue\"],",
"figsize",
"=",
"None",
",",
"xlabel",
"=",
"None",
",",
"ylabel",
"=",
"None",
",",
"aspect",
"=",
"\"auto\"",
",",
"tight_layout",
"=",
"True",
",",
"interpolation",
"=",
"\"nearest\"",
",",
"show",
"=",
"False",
",",
"colorbar",
"=",
"True",
",",
"colorbar_label",
"=",
"None",
",",
"selection",
"=",
"None",
",",
"selection_labels",
"=",
"None",
",",
"title",
"=",
"None",
",",
"background_color",
"=",
"\"white\"",
",",
"pre_blend",
"=",
"False",
",",
"background_alpha",
"=",
"1.",
",",
"visual",
"=",
"dict",
"(",
"x",
"=",
"\"x\"",
",",
"y",
"=",
"\"y\"",
",",
"layer",
"=",
"\"z\"",
",",
"fade",
"=",
"\"selection\"",
",",
"row",
"=",
"\"subspace\"",
",",
"column",
"=",
"\"what\"",
")",
",",
"smooth_pre",
"=",
"None",
",",
"smooth_post",
"=",
"None",
",",
"wrap",
"=",
"True",
",",
"wrap_columns",
"=",
"4",
",",
"return_extra",
"=",
"False",
",",
"hardcopy",
"=",
"None",
")",
":",
"import",
"pylab",
"import",
"matplotlib",
"n",
"=",
"_parse_n",
"(",
"normalize",
")",
"if",
"type",
"(",
"shape",
")",
"==",
"int",
":",
"shape",
"=",
"(",
"shape",
",",
")",
"*",
"2",
"binby",
"=",
"[",
"]",
"x",
"=",
"_ensure_strings_from_expressions",
"(",
"x",
")",
"y",
"=",
"_ensure_strings_from_expressions",
"(",
"y",
")",
"for",
"expression",
"in",
"[",
"y",
",",
"x",
"]",
":",
"if",
"expression",
"is",
"not",
"None",
":",
"binby",
"=",
"[",
"expression",
"]",
"+",
"binby",
"fig",
"=",
"pylab",
".",
"gcf",
"(",
")",
"if",
"figsize",
"is",
"not",
"None",
":",
"fig",
".",
"set_size_inches",
"(",
"*",
"figsize",
")",
"import",
"re",
"what_units",
"=",
"None",
"whats",
"=",
"_ensure_list",
"(",
"what",
")",
"selections",
"=",
"_ensure_list",
"(",
"selection",
")",
"selections",
"=",
"_ensure_strings_from_expressions",
"(",
"selections",
")",
"if",
"y",
"is",
"None",
":",
"waslist",
",",
"[",
"x",
",",
"]",
"=",
"vaex",
".",
"utils",
".",
"listify",
"(",
"x",
")",
"else",
":",
"waslist",
",",
"[",
"x",
",",
"y",
"]",
"=",
"vaex",
".",
"utils",
".",
"listify",
"(",
"x",
",",
"y",
")",
"x",
"=",
"list",
"(",
"zip",
"(",
"x",
",",
"y",
")",
")",
"limits",
"=",
"[",
"limits",
"]",
"# every plot has its own vwhat for now",
"vwhats",
"=",
"_expand_limits",
"(",
"vwhat",
",",
"len",
"(",
"x",
")",
")",
"# TODO: we're abusing this function..",
"logger",
".",
"debug",
"(",
"\"x: %s\"",
",",
"x",
")",
"limits",
",",
"shape",
"=",
"self",
".",
"limits",
"(",
"x",
",",
"limits",
",",
"shape",
"=",
"shape",
")",
"shape",
"=",
"shape",
"[",
"0",
"]",
"logger",
".",
"debug",
"(",
"\"limits: %r\"",
",",
"limits",
")",
"# mapping of a grid axis to a label",
"labels",
"=",
"{",
"}",
"shape",
"=",
"_expand_shape",
"(",
"shape",
",",
"2",
")",
"vshape",
"=",
"_expand_shape",
"(",
"shape",
",",
"2",
")",
"if",
"z",
"is",
"not",
"None",
":",
"match",
"=",
"re",
".",
"match",
"(",
"\"(.*):(.*),(.*),(.*)\"",
",",
"z",
")",
"if",
"match",
":",
"groups",
"=",
"match",
".",
"groups",
"(",
")",
"import",
"ast",
"z_expression",
"=",
"groups",
"[",
"0",
"]",
"logger",
".",
"debug",
"(",
"\"found groups: %r\"",
",",
"list",
"(",
"groups",
")",
")",
"z_limits",
"=",
"[",
"ast",
".",
"literal_eval",
"(",
"groups",
"[",
"1",
"]",
")",
",",
"ast",
".",
"literal_eval",
"(",
"groups",
"[",
"2",
"]",
")",
"]",
"z_shape",
"=",
"ast",
".",
"literal_eval",
"(",
"groups",
"[",
"3",
"]",
")",
"# for pair in x:",
"x",
"=",
"[",
"[",
"z_expression",
"]",
"+",
"list",
"(",
"k",
")",
"for",
"k",
"in",
"x",
"]",
"limits",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"z_limits",
"]",
"+",
"list",
"(",
"k",
")",
"for",
"k",
"in",
"limits",
"]",
")",
"shape",
"=",
"(",
"z_shape",
",",
")",
"+",
"shape",
"vshape",
"=",
"(",
"z_shape",
",",
")",
"+",
"vshape",
"logger",
".",
"debug",
"(",
"\"x = %r\"",
",",
"x",
")",
"values",
"=",
"np",
".",
"linspace",
"(",
"z_limits",
"[",
"0",
"]",
",",
"z_limits",
"[",
"1",
"]",
",",
"num",
"=",
"z_shape",
"+",
"1",
")",
"labels",
"[",
"\"z\"",
"]",
"=",
"list",
"(",
"[",
"\"%s <= %s < %s\"",
"%",
"(",
"v1",
",",
"z_expression",
",",
"v2",
")",
"for",
"v1",
",",
"v2",
"in",
"zip",
"(",
"values",
"[",
":",
"-",
"1",
"]",
",",
"values",
"[",
"1",
":",
"]",
")",
"]",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not understand 'z' argument %r, expected something in form: 'column:-1,10:5'\"",
"%",
"facet",
")",
"else",
":",
"z_shape",
"=",
"1",
"# z == 1",
"if",
"z",
"is",
"None",
":",
"total_grid",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"x",
")",
",",
"len",
"(",
"whats",
")",
",",
"len",
"(",
"selections",
")",
",",
"1",
")",
"+",
"shape",
",",
"dtype",
"=",
"float",
")",
"total_vgrid",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"x",
")",
",",
"len",
"(",
"whats",
")",
",",
"len",
"(",
"selections",
")",
",",
"1",
")",
"+",
"vshape",
",",
"dtype",
"=",
"float",
")",
"else",
":",
"total_grid",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"x",
")",
",",
"len",
"(",
"whats",
")",
",",
"len",
"(",
"selections",
")",
")",
"+",
"shape",
",",
"dtype",
"=",
"float",
")",
"total_vgrid",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"x",
")",
",",
"len",
"(",
"whats",
")",
",",
"len",
"(",
"selections",
")",
")",
"+",
"vshape",
",",
"dtype",
"=",
"float",
")",
"logger",
".",
"debug",
"(",
"\"shape of total grid: %r\"",
",",
"total_grid",
".",
"shape",
")",
"axis",
"=",
"dict",
"(",
"plot",
"=",
"0",
",",
"what",
"=",
"1",
",",
"selection",
"=",
"2",
")",
"xlimits",
"=",
"limits",
"grid_axes",
"=",
"dict",
"(",
"x",
"=",
"-",
"1",
",",
"y",
"=",
"-",
"2",
",",
"z",
"=",
"-",
"3",
",",
"selection",
"=",
"-",
"4",
",",
"what",
"=",
"-",
"5",
",",
"subspace",
"=",
"-",
"6",
")",
"visual_axes",
"=",
"dict",
"(",
"x",
"=",
"-",
"1",
",",
"y",
"=",
"-",
"2",
",",
"layer",
"=",
"-",
"3",
",",
"fade",
"=",
"-",
"4",
",",
"column",
"=",
"-",
"5",
",",
"row",
"=",
"-",
"6",
")",
"# visual_default=dict(x=\"x\", y=\"y\", z=\"layer\", selection=\"fade\", subspace=\"row\", what=\"column\")",
"# visual: mapping of a plot axis, to a grid axis",
"visual_default",
"=",
"dict",
"(",
"x",
"=",
"\"x\"",
",",
"y",
"=",
"\"y\"",
",",
"layer",
"=",
"\"z\"",
",",
"fade",
"=",
"\"selection\"",
",",
"row",
"=",
"\"subspace\"",
",",
"column",
"=",
"\"what\"",
")",
"def",
"invert",
"(",
"x",
")",
":",
"return",
"dict",
"(",
"(",
"v",
",",
"k",
")",
"for",
"k",
",",
"v",
"in",
"x",
".",
"items",
"(",
")",
")",
"# visual_default_reverse = invert(visual_default)",
"# visual_ = visual_default",
"# visual = dict(visual) # copy for modification",
"# add entries to avoid mapping multiple times to the same axis",
"free_visual_axes",
"=",
"list",
"(",
"visual_default",
".",
"keys",
"(",
")",
")",
"# visual_reverse = invert(visual)",
"logger",
".",
"debug",
"(",
"\"1: %r %r\"",
",",
"visual",
",",
"free_visual_axes",
")",
"for",
"visual_name",
",",
"grid_name",
"in",
"visual",
".",
"items",
"(",
")",
":",
"if",
"visual_name",
"in",
"free_visual_axes",
":",
"free_visual_axes",
".",
"remove",
"(",
"visual_name",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"visual axes %s used multiple times\"",
"%",
"visual_name",
")",
"logger",
".",
"debug",
"(",
"\"2: %r %r\"",
",",
"visual",
",",
"free_visual_axes",
")",
"for",
"visual_name",
",",
"grid_name",
"in",
"visual_default",
".",
"items",
"(",
")",
":",
"if",
"visual_name",
"in",
"free_visual_axes",
"and",
"grid_name",
"not",
"in",
"visual",
".",
"values",
"(",
")",
":",
"free_visual_axes",
".",
"remove",
"(",
"visual_name",
")",
"visual",
"[",
"visual_name",
"]",
"=",
"grid_name",
"logger",
".",
"debug",
"(",
"\"3: %r %r\"",
",",
"visual",
",",
"free_visual_axes",
")",
"for",
"visual_name",
",",
"grid_name",
"in",
"visual_default",
".",
"items",
"(",
")",
":",
"if",
"visual_name",
"not",
"in",
"free_visual_axes",
"and",
"grid_name",
"not",
"in",
"visual",
".",
"values",
"(",
")",
":",
"visual",
"[",
"free_visual_axes",
".",
"pop",
"(",
"0",
")",
"]",
"=",
"grid_name",
"logger",
".",
"debug",
"(",
"\"4: %r %r\"",
",",
"visual",
",",
"free_visual_axes",
")",
"visual_reverse",
"=",
"invert",
"(",
"visual",
")",
"# TODO: the meaning of visual and visual_reverse is changed below this line, super confusing",
"visual",
",",
"visual_reverse",
"=",
"visual_reverse",
",",
"visual",
"# so now, visual: mapping of a grid axis to plot axis",
"# visual_reverse: mapping of a grid axis to plot axis",
"move",
"=",
"{",
"}",
"for",
"grid_name",
",",
"visual_name",
"in",
"visual",
".",
"items",
"(",
")",
":",
"if",
"visual_axes",
"[",
"visual_name",
"]",
"in",
"visual",
".",
"values",
"(",
")",
":",
"index",
"=",
"visual",
".",
"values",
"(",
")",
".",
"find",
"(",
"visual_name",
")",
"key",
"=",
"visual",
".",
"keys",
"(",
")",
"[",
"index",
"]",
"raise",
"ValueError",
"(",
"\"trying to map %s to %s while, it is already mapped by %s\"",
"%",
"(",
"grid_name",
",",
"visual_name",
",",
"key",
")",
")",
"move",
"[",
"grid_axes",
"[",
"grid_name",
"]",
"]",
"=",
"visual_axes",
"[",
"visual_name",
"]",
"# normalize_axis = _ensure_list(normalize_axis)",
"fs",
"=",
"_expand",
"(",
"f",
",",
"total_grid",
".",
"shape",
"[",
"grid_axes",
"[",
"normalize_axis",
"]",
"]",
")",
"# assert len(vwhat)",
"# labels[\"y\"] = ylabels",
"what_labels",
"=",
"[",
"]",
"if",
"grid",
"is",
"None",
":",
"grid_of_grids",
"=",
"[",
"]",
"for",
"i",
",",
"(",
"binby",
",",
"limits",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"x",
",",
"xlimits",
")",
")",
":",
"grid_of_grids",
".",
"append",
"(",
"[",
"]",
")",
"for",
"j",
",",
"what",
"in",
"enumerate",
"(",
"whats",
")",
":",
"if",
"isinstance",
"(",
"what",
",",
"vaex",
".",
"stat",
".",
"Expression",
")",
":",
"grid",
"=",
"what",
".",
"calculate",
"(",
"self",
",",
"binby",
"=",
"binby",
",",
"shape",
"=",
"shape",
",",
"limits",
"=",
"limits",
",",
"selection",
"=",
"selections",
",",
"delay",
"=",
"True",
")",
"else",
":",
"what",
"=",
"what",
".",
"strip",
"(",
")",
"index",
"=",
"what",
".",
"index",
"(",
"\"(\"",
")",
"import",
"re",
"groups",
"=",
"re",
".",
"match",
"(",
"\"(.*)\\((.*)\\)\"",
",",
"what",
")",
".",
"groups",
"(",
")",
"if",
"groups",
"and",
"len",
"(",
"groups",
")",
"==",
"2",
":",
"function",
"=",
"groups",
"[",
"0",
"]",
"arguments",
"=",
"groups",
"[",
"1",
"]",
".",
"strip",
"(",
")",
"if",
"\",\"",
"in",
"arguments",
":",
"arguments",
"=",
"arguments",
".",
"split",
"(",
"\",\"",
")",
"functions",
"=",
"[",
"\"mean\"",
",",
"\"sum\"",
",",
"\"std\"",
",",
"\"var\"",
",",
"\"correlation\"",
",",
"\"covar\"",
",",
"\"min\"",
",",
"\"max\"",
",",
"\"median_approx\"",
"]",
"unit_expression",
"=",
"None",
"if",
"function",
"in",
"[",
"\"mean\"",
",",
"\"sum\"",
",",
"\"std\"",
",",
"\"min\"",
",",
"\"max\"",
",",
"\"median\"",
"]",
":",
"unit_expression",
"=",
"arguments",
"if",
"function",
"in",
"[",
"\"var\"",
"]",
":",
"unit_expression",
"=",
"\"(%s) * (%s)\"",
"%",
"(",
"arguments",
",",
"arguments",
")",
"if",
"function",
"in",
"[",
"\"covar\"",
"]",
":",
"unit_expression",
"=",
"\"(%s) * (%s)\"",
"%",
"arguments",
"if",
"unit_expression",
":",
"unit",
"=",
"self",
".",
"unit",
"(",
"unit_expression",
")",
"if",
"unit",
":",
"what_units",
"=",
"unit",
".",
"to_string",
"(",
"'latex_inline'",
")",
"if",
"function",
"in",
"functions",
":",
"grid",
"=",
"getattr",
"(",
"self",
",",
"function",
")",
"(",
"arguments",
",",
"binby",
"=",
"binby",
",",
"limits",
"=",
"limits",
",",
"shape",
"=",
"shape",
",",
"selection",
"=",
"selections",
",",
"delay",
"=",
"True",
")",
"elif",
"function",
"==",
"\"count\"",
":",
"grid",
"=",
"self",
".",
"count",
"(",
"arguments",
",",
"binby",
",",
"shape",
"=",
"shape",
",",
"limits",
"=",
"limits",
",",
"selection",
"=",
"selections",
",",
"delay",
"=",
"True",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not understand method: %s, expected one of %r'\"",
"%",
"(",
"function",
",",
"functions",
")",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Could not understand 'what' argument %r, expected something in form: 'count(*)', 'mean(x)'\"",
"%",
"what",
")",
"if",
"i",
"==",
"0",
":",
"# and j == 0:",
"what_label",
"=",
"str",
"(",
"whats",
"[",
"j",
"]",
")",
"if",
"what_units",
":",
"what_label",
"+=",
"\" (%s)\"",
"%",
"what_units",
"if",
"fs",
"[",
"j",
"]",
":",
"what_label",
"=",
"fs",
"[",
"j",
"]",
"+",
"\" \"",
"+",
"what_label",
"what_labels",
".",
"append",
"(",
"what_label",
")",
"grid_of_grids",
"[",
"-",
"1",
"]",
".",
"append",
"(",
"grid",
")",
"self",
".",
"executor",
".",
"execute",
"(",
")",
"for",
"i",
",",
"(",
"binby",
",",
"limits",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"x",
",",
"xlimits",
")",
")",
":",
"for",
"j",
",",
"what",
"in",
"enumerate",
"(",
"whats",
")",
":",
"grid",
"=",
"grid_of_grids",
"[",
"i",
"]",
"[",
"j",
"]",
".",
"get",
"(",
")",
"total_grid",
"[",
"i",
",",
"j",
",",
":",
",",
":",
"]",
"=",
"grid",
"[",
":",
",",
"None",
",",
"...",
"]",
"labels",
"[",
"\"what\"",
"]",
"=",
"what_labels",
"else",
":",
"dims_left",
"=",
"6",
"-",
"len",
"(",
"grid",
".",
"shape",
")",
"total_grid",
"=",
"np",
".",
"broadcast_to",
"(",
"grid",
",",
"(",
"1",
",",
")",
"*",
"dims_left",
"+",
"grid",
".",
"shape",
")",
"# visual=dict(x=\"x\", y=\"y\", selection=\"fade\", subspace=\"facet1\", what=\"facet2\",)",
"def",
"_selection_name",
"(",
"name",
")",
":",
"if",
"name",
"in",
"[",
"None",
",",
"False",
"]",
":",
"return",
"\"selection: all\"",
"elif",
"name",
"in",
"[",
"\"default\"",
",",
"True",
"]",
":",
"return",
"\"selection: default\"",
"else",
":",
"return",
"\"selection: %s\"",
"%",
"name",
"if",
"selection_labels",
"is",
"None",
":",
"labels",
"[",
"\"selection\"",
"]",
"=",
"list",
"(",
"[",
"_selection_name",
"(",
"k",
")",
"for",
"k",
"in",
"selections",
"]",
")",
"else",
":",
"labels",
"[",
"\"selection\"",
"]",
"=",
"selection_labels",
"# visual_grid = np.moveaxis(total_grid, move.keys(), move.values())",
"# np.moveaxis is in np 1.11 only?, use transpose",
"axes",
"=",
"[",
"None",
"]",
"*",
"len",
"(",
"move",
")",
"for",
"key",
",",
"value",
"in",
"move",
".",
"items",
"(",
")",
":",
"axes",
"[",
"value",
"]",
"=",
"key",
"visual_grid",
"=",
"np",
".",
"transpose",
"(",
"total_grid",
",",
"axes",
")",
"logger",
".",
"debug",
"(",
"\"grid shape: %r\"",
",",
"total_grid",
".",
"shape",
")",
"logger",
".",
"debug",
"(",
"\"visual: %r\"",
",",
"visual",
".",
"items",
"(",
")",
")",
"logger",
".",
"debug",
"(",
"\"move: %r\"",
",",
"move",
")",
"logger",
".",
"debug",
"(",
"\"visual grid shape: %r\"",
",",
"visual_grid",
".",
"shape",
")",
"xexpressions",
"=",
"[",
"]",
"yexpressions",
"=",
"[",
"]",
"for",
"i",
",",
"(",
"binby",
",",
"limits",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"x",
",",
"xlimits",
")",
")",
":",
"xexpressions",
".",
"append",
"(",
"binby",
"[",
"0",
"]",
")",
"yexpressions",
".",
"append",
"(",
"binby",
"[",
"1",
"]",
")",
"if",
"xlabel",
"is",
"None",
":",
"xlabels",
"=",
"[",
"]",
"ylabels",
"=",
"[",
"]",
"for",
"i",
",",
"(",
"binby",
",",
"limits",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"x",
",",
"xlimits",
")",
")",
":",
"if",
"z",
"is",
"not",
"None",
":",
"xlabels",
".",
"append",
"(",
"self",
".",
"label",
"(",
"binby",
"[",
"1",
"]",
")",
")",
"ylabels",
".",
"append",
"(",
"self",
".",
"label",
"(",
"binby",
"[",
"2",
"]",
")",
")",
"else",
":",
"xlabels",
".",
"append",
"(",
"self",
".",
"label",
"(",
"binby",
"[",
"0",
"]",
")",
")",
"ylabels",
".",
"append",
"(",
"self",
".",
"label",
"(",
"binby",
"[",
"1",
"]",
")",
")",
"else",
":",
"Nl",
"=",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"'row'",
"]",
"]",
"xlabels",
"=",
"_expand",
"(",
"xlabel",
",",
"Nl",
")",
"ylabels",
"=",
"_expand",
"(",
"ylabel",
",",
"Nl",
")",
"#labels[visual[\"x\"]] = (xlabels, ylabels)",
"labels",
"[",
"\"x\"",
"]",
"=",
"xlabels",
"labels",
"[",
"\"y\"",
"]",
"=",
"ylabels",
"# grid = total_grid",
"# print(grid.shape)",
"# grid = self.reduce(grid, )",
"axes",
"=",
"[",
"]",
"# cax = pylab.subplot(1,1,1)",
"background_color",
"=",
"np",
".",
"array",
"(",
"matplotlib",
".",
"colors",
".",
"colorConverter",
".",
"to_rgb",
"(",
"background_color",
")",
")",
"# if grid.shape[axis[\"selection\"]] > 1:# and not facet:",
"# rgrid = vaex.image.fade(rgrid)",
"# finite_mask = np.any(finite_mask, axis=0) # do we really need this",
"# print(rgrid.shape)",
"# facet_row_axis = axis[\"what\"]",
"import",
"math",
"facet_columns",
"=",
"None",
"facets",
"=",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"row\"",
"]",
"]",
"*",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"column\"",
"]",
"]",
"if",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"column\"",
"]",
"]",
"==",
"1",
"and",
"wrap",
":",
"facet_columns",
"=",
"min",
"(",
"wrap_columns",
",",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"row\"",
"]",
"]",
")",
"wrapped",
"=",
"True",
"elif",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"row\"",
"]",
"]",
"==",
"1",
"and",
"wrap",
":",
"facet_columns",
"=",
"min",
"(",
"wrap_columns",
",",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"column\"",
"]",
"]",
")",
"wrapped",
"=",
"True",
"else",
":",
"wrapped",
"=",
"False",
"facet_columns",
"=",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"\"column\"",
"]",
"]",
"facet_rows",
"=",
"int",
"(",
"math",
".",
"ceil",
"(",
"facets",
"/",
"facet_columns",
")",
")",
"logger",
".",
"debug",
"(",
"\"facet_rows: %r\"",
",",
"facet_rows",
")",
"logger",
".",
"debug",
"(",
"\"facet_columns: %r\"",
",",
"facet_columns",
")",
"# if visual_grid.shape[visual_axes[\"row\"]] > 1: # and not wrap:",
"# #facet_row_axis = axis[\"what\"]",
"# facet_columns = visual_grid.shape[visual_axes[\"column\"]]",
"# else:",
"# facet_columns = min(wrap_columns, facets)",
"# if grid.shape[axis[\"plot\"]] > 1:# and not facet:",
"# this loop could be done using axis arguments everywhere",
"# assert len(normalize_axis) == 1, \"currently only 1 normalization axis supported\"",
"grid",
"=",
"visual_grid",
"*",
"1.",
"fgrid",
"=",
"visual_grid",
"*",
"1.",
"ngrid",
"=",
"visual_grid",
"*",
"1.",
"# colorgrid = np.zeros(ngrid.shape + (4,), float)",
"# print \"norma\", normalize_axis, visual_grid.shape[visual_axes[visual[normalize_axis]]]",
"vmins",
"=",
"_expand",
"(",
"vmin",
",",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"visual",
"[",
"normalize_axis",
"]",
"]",
"]",
",",
"type",
"=",
"list",
")",
"vmaxs",
"=",
"_expand",
"(",
"vmax",
",",
"visual_grid",
".",
"shape",
"[",
"visual_axes",
"[",
"visual",
"[",
"normalize_axis",
"]",
"]",
"]",
",",
"type",
"=",
"list",
")",
"# for name in normalize_axis:",
"visual_grid",
"if",
"smooth_pre",
":",
"grid",
"=",
"vaex",
".",
"grids",
".",
"gf",
"(",
"grid",
",",
"smooth_pre",
")",
"if",
"1",
":",
"axis",
"=",
"visual_axes",
"[",
"visual",
"[",
"normalize_axis",
"]",
"]",
"for",
"i",
"in",
"range",
"(",
"visual_grid",
".",
"shape",
"[",
"axis",
"]",
")",
":",
"item",
"=",
"[",
"slice",
"(",
"None",
",",
"None",
",",
"None",
")",
",",
"]",
"*",
"len",
"(",
"visual_grid",
".",
"shape",
")",
"item",
"[",
"axis",
"]",
"=",
"i",
"item",
"=",
"tuple",
"(",
"item",
")",
"f",
"=",
"_parse_f",
"(",
"fs",
"[",
"i",
"]",
")",
"with",
"np",
".",
"errstate",
"(",
"divide",
"=",
"'ignore'",
",",
"invalid",
"=",
"'ignore'",
")",
":",
"# these are fine, we are ok with nan's in vaex",
"fgrid",
".",
"__setitem__",
"(",
"item",
",",
"f",
"(",
"grid",
".",
"__getitem__",
"(",
"item",
")",
")",
")",
"# print vmins[i], vmaxs[i]",
"if",
"vmins",
"[",
"i",
"]",
"is",
"not",
"None",
"and",
"vmaxs",
"[",
"i",
"]",
"is",
"not",
"None",
":",
"nsubgrid",
"=",
"fgrid",
".",
"__getitem__",
"(",
"item",
")",
"*",
"1",
"nsubgrid",
"-=",
"vmins",
"[",
"i",
"]",
"nsubgrid",
"/=",
"(",
"vmaxs",
"[",
"i",
"]",
"-",
"vmins",
"[",
"i",
"]",
")",
"else",
":",
"nsubgrid",
",",
"vmin",
",",
"vmax",
"=",
"n",
"(",
"fgrid",
".",
"__getitem__",
"(",
"item",
")",
")",
"vmins",
"[",
"i",
"]",
"=",
"vmin",
"vmaxs",
"[",
"i",
"]",
"=",
"vmax",
"# print \" \", vmins[i], vmaxs[i]",
"ngrid",
".",
"__setitem__",
"(",
"item",
",",
"nsubgrid",
")",
"if",
"0",
":",
"# TODO: above should be like the code below, with custom vmin and vmax",
"grid",
"=",
"visual_grid",
"[",
"i",
"]",
"f",
"=",
"_parse_f",
"(",
"fs",
"[",
"i",
"]",
")",
"fgrid",
"=",
"f",
"(",
"grid",
")",
"finite_mask",
"=",
"np",
".",
"isfinite",
"(",
"grid",
")",
"finite_mask",
"=",
"np",
".",
"any",
"(",
"finite_mask",
",",
"axis",
"=",
"0",
")",
"if",
"vmin",
"is",
"not",
"None",
"and",
"vmax",
"is",
"not",
"None",
":",
"ngrid",
"=",
"fgrid",
"*",
"1",
"ngrid",
"-=",
"vmin",
"ngrid",
"/=",
"(",
"vmax",
"-",
"vmin",
")",
"ngrid",
"=",
"np",
".",
"clip",
"(",
"ngrid",
",",
"0",
",",
"1",
")",
"else",
":",
"ngrid",
",",
"vmin",
",",
"vmax",
"=",
"n",
"(",
"fgrid",
")",
"# vmin, vmax = np.nanmin(fgrid), np.nanmax(fgrid)",
"# every 'what', should have its own colorbar, check if what corresponds to",
"# rows or columns in facets, if so, do a colorbar per row or per column",
"rows",
",",
"columns",
"=",
"int",
"(",
"math",
".",
"ceil",
"(",
"facets",
"/",
"float",
"(",
"facet_columns",
")",
")",
")",
",",
"facet_columns",
"colorbar_location",
"=",
"\"individual\"",
"if",
"visual",
"[",
"\"what\"",
"]",
"==",
"\"row\"",
"and",
"visual_grid",
".",
"shape",
"[",
"1",
"]",
"==",
"facet_columns",
":",
"colorbar_location",
"=",
"\"per_row\"",
"if",
"visual",
"[",
"\"what\"",
"]",
"==",
"\"column\"",
"and",
"visual_grid",
".",
"shape",
"[",
"0",
"]",
"==",
"facet_rows",
":",
"colorbar_location",
"=",
"\"per_column\"",
"# values = np.linspace(facet_limits[0], facet_limits[1], facet_count+1)",
"logger",
".",
"debug",
"(",
"\"rows: %r, columns: %r\"",
",",
"rows",
",",
"columns",
")",
"import",
"matplotlib",
".",
"gridspec",
"as",
"gridspec",
"column_scale",
"=",
"1",
"row_scale",
"=",
"1",
"row_offset",
"=",
"0",
"if",
"facets",
">",
"1",
":",
"if",
"colorbar_location",
"==",
"\"per_row\"",
":",
"column_scale",
"=",
"4",
"gs",
"=",
"gridspec",
".",
"GridSpec",
"(",
"rows",
",",
"columns",
"*",
"column_scale",
"+",
"1",
")",
"elif",
"colorbar_location",
"==",
"\"per_column\"",
":",
"row_offset",
"=",
"1",
"row_scale",
"=",
"4",
"gs",
"=",
"gridspec",
".",
"GridSpec",
"(",
"rows",
"*",
"row_scale",
"+",
"1",
",",
"columns",
")",
"else",
":",
"gs",
"=",
"gridspec",
".",
"GridSpec",
"(",
"rows",
",",
"columns",
")",
"facet_index",
"=",
"0",
"fs",
"=",
"_expand",
"(",
"f",
",",
"len",
"(",
"whats",
")",
")",
"colormaps",
"=",
"_expand",
"(",
"colormap",
",",
"len",
"(",
"whats",
")",
")",
"# row",
"for",
"i",
"in",
"range",
"(",
"visual_grid",
".",
"shape",
"[",
"0",
"]",
")",
":",
"# column",
"for",
"j",
"in",
"range",
"(",
"visual_grid",
".",
"shape",
"[",
"1",
"]",
")",
":",
"if",
"colorbar",
"and",
"colorbar_location",
"==",
"\"per_column\"",
"and",
"i",
"==",
"0",
":",
"norm",
"=",
"matplotlib",
".",
"colors",
".",
"Normalize",
"(",
"vmins",
"[",
"j",
"]",
",",
"vmaxs",
"[",
"j",
"]",
")",
"sm",
"=",
"matplotlib",
".",
"cm",
".",
"ScalarMappable",
"(",
"norm",
",",
"colormaps",
"[",
"j",
"]",
")",
"sm",
".",
"set_array",
"(",
"1",
")",
"# make matplotlib happy (strange behavious)",
"if",
"facets",
">",
"1",
":",
"ax",
"=",
"pylab",
".",
"subplot",
"(",
"gs",
"[",
"0",
",",
"j",
"]",
")",
"colorbar",
"=",
"fig",
".",
"colorbar",
"(",
"sm",
",",
"cax",
"=",
"ax",
",",
"orientation",
"=",
"\"horizontal\"",
")",
"else",
":",
"colorbar",
"=",
"fig",
".",
"colorbar",
"(",
"sm",
")",
"if",
"\"what\"",
"in",
"labels",
":",
"label",
"=",
"labels",
"[",
"\"what\"",
"]",
"[",
"j",
"]",
"if",
"facets",
">",
"1",
":",
"colorbar",
".",
"ax",
".",
"set_title",
"(",
"label",
")",
"else",
":",
"colorbar",
".",
"ax",
".",
"set_ylabel",
"(",
"colorbar_label",
"or",
"label",
")",
"if",
"colorbar",
"and",
"colorbar_location",
"==",
"\"per_row\"",
"and",
"j",
"==",
"0",
":",
"norm",
"=",
"matplotlib",
".",
"colors",
".",
"Normalize",
"(",
"vmins",
"[",
"i",
"]",
",",
"vmaxs",
"[",
"i",
"]",
")",
"sm",
"=",
"matplotlib",
".",
"cm",
".",
"ScalarMappable",
"(",
"norm",
",",
"colormaps",
"[",
"i",
"]",
")",
"sm",
".",
"set_array",
"(",
"1",
")",
"# make matplotlib happy (strange behavious)",
"if",
"facets",
">",
"1",
":",
"ax",
"=",
"pylab",
".",
"subplot",
"(",
"gs",
"[",
"i",
",",
"-",
"1",
"]",
")",
"colorbar",
"=",
"fig",
".",
"colorbar",
"(",
"sm",
",",
"cax",
"=",
"ax",
")",
"else",
":",
"colorbar",
"=",
"fig",
".",
"colorbar",
"(",
"sm",
")",
"label",
"=",
"labels",
"[",
"\"what\"",
"]",
"[",
"i",
"]",
"colorbar",
".",
"ax",
".",
"set_ylabel",
"(",
"colorbar_label",
"or",
"label",
")",
"rgrid",
"=",
"ngrid",
"[",
"i",
",",
"j",
"]",
"*",
"1.",
"# print rgrid.shape",
"for",
"k",
"in",
"range",
"(",
"rgrid",
".",
"shape",
"[",
"0",
"]",
")",
":",
"for",
"l",
"in",
"range",
"(",
"rgrid",
".",
"shape",
"[",
"0",
"]",
")",
":",
"if",
"smooth_post",
"is",
"not",
"None",
":",
"rgrid",
"[",
"k",
",",
"l",
"]",
"=",
"vaex",
".",
"grids",
".",
"gf",
"(",
"rgrid",
",",
"smooth_post",
")",
"if",
"visual",
"[",
"\"what\"",
"]",
"==",
"\"column\"",
":",
"what_index",
"=",
"j",
"elif",
"visual",
"[",
"\"what\"",
"]",
"==",
"\"row\"",
":",
"what_index",
"=",
"i",
"else",
":",
"what_index",
"=",
"0",
"if",
"visual",
"[",
"normalize_axis",
"]",
"==",
"\"column\"",
":",
"normalize_index",
"=",
"j",
"elif",
"visual",
"[",
"normalize_axis",
"]",
"==",
"\"row\"",
":",
"normalize_index",
"=",
"i",
"else",
":",
"normalize_index",
"=",
"0",
"for",
"r",
"in",
"reduce",
":",
"r",
"=",
"_parse_reduction",
"(",
"r",
",",
"colormaps",
"[",
"what_index",
"]",
",",
"[",
"]",
")",
"rgrid",
"=",
"r",
"(",
"rgrid",
")",
"row",
"=",
"facet_index",
"//",
"facet_columns",
"column",
"=",
"facet_index",
"%",
"facet_columns",
"if",
"colorbar",
"and",
"colorbar_location",
"==",
"\"individual\"",
":",
"# visual_grid.shape[visual_axes[visual[normalize_axis]]]",
"norm",
"=",
"matplotlib",
".",
"colors",
".",
"Normalize",
"(",
"vmins",
"[",
"normalize_index",
"]",
",",
"vmaxs",
"[",
"normalize_index",
"]",
")",
"sm",
"=",
"matplotlib",
".",
"cm",
".",
"ScalarMappable",
"(",
"norm",
",",
"colormaps",
"[",
"what_index",
"]",
")",
"sm",
".",
"set_array",
"(",
"1",
")",
"# make matplotlib happy (strange behavious)",
"if",
"facets",
">",
"1",
":",
"ax",
"=",
"pylab",
".",
"subplot",
"(",
"gs",
"[",
"row",
",",
"column",
"]",
")",
"colorbar",
"=",
"fig",
".",
"colorbar",
"(",
"sm",
",",
"ax",
"=",
"ax",
")",
"else",
":",
"colorbar",
"=",
"fig",
".",
"colorbar",
"(",
"sm",
")",
"label",
"=",
"labels",
"[",
"\"what\"",
"]",
"[",
"what_index",
"]",
"colorbar",
".",
"ax",
".",
"set_ylabel",
"(",
"colorbar_label",
"or",
"label",
")",
"if",
"facets",
">",
"1",
":",
"ax",
"=",
"pylab",
".",
"subplot",
"(",
"gs",
"[",
"row_offset",
"+",
"row",
"*",
"row_scale",
":",
"row_offset",
"+",
"(",
"row",
"+",
"1",
")",
"*",
"row_scale",
",",
"column",
"*",
"column_scale",
":",
"(",
"column",
"+",
"1",
")",
"*",
"column_scale",
"]",
")",
"else",
":",
"ax",
"=",
"pylab",
".",
"gca",
"(",
")",
"axes",
".",
"append",
"(",
"ax",
")",
"logger",
".",
"debug",
"(",
"\"rgrid: %r\"",
",",
"rgrid",
".",
"shape",
")",
"plot_rgrid",
"=",
"rgrid",
"assert",
"plot_rgrid",
".",
"shape",
"[",
"1",
"]",
"==",
"1",
",",
"\"no layers supported yet\"",
"plot_rgrid",
"=",
"plot_rgrid",
"[",
":",
",",
"0",
"]",
"if",
"plot_rgrid",
".",
"shape",
"[",
"0",
"]",
">",
"1",
":",
"plot_rgrid",
"=",
"vaex",
".",
"image",
".",
"fade",
"(",
"plot_rgrid",
"[",
":",
":",
"-",
"1",
"]",
")",
"else",
":",
"plot_rgrid",
"=",
"plot_rgrid",
"[",
"0",
"]",
"extend",
"=",
"None",
"if",
"visual",
"[",
"\"subspace\"",
"]",
"==",
"\"row\"",
":",
"subplot_index",
"=",
"i",
"elif",
"visual",
"[",
"\"subspace\"",
"]",
"==",
"\"column\"",
":",
"subplot_index",
"=",
"j",
"else",
":",
"subplot_index",
"=",
"0",
"extend",
"=",
"np",
".",
"array",
"(",
"xlimits",
"[",
"subplot_index",
"]",
"[",
"-",
"2",
":",
"]",
")",
".",
"flatten",
"(",
")",
"# extend = np.array(xlimits[i]).flatten()",
"logger",
".",
"debug",
"(",
"\"plot rgrid: %r\"",
",",
"plot_rgrid",
".",
"shape",
")",
"plot_rgrid",
"=",
"np",
".",
"transpose",
"(",
"plot_rgrid",
",",
"(",
"1",
",",
"0",
",",
"2",
")",
")",
"im",
"=",
"ax",
".",
"imshow",
"(",
"plot_rgrid",
",",
"extent",
"=",
"extend",
".",
"tolist",
"(",
")",
",",
"origin",
"=",
"\"lower\"",
",",
"aspect",
"=",
"aspect",
",",
"interpolation",
"=",
"interpolation",
")",
"# v1, v2 = values[i], values[i+1]",
"def",
"label",
"(",
"index",
",",
"label",
",",
"expression",
")",
":",
"if",
"label",
"and",
"_issequence",
"(",
"label",
")",
":",
"return",
"label",
"[",
"i",
"]",
"else",
":",
"return",
"self",
".",
"label",
"(",
"expression",
")",
"if",
"visual_reverse",
"[",
"\"x\"",
"]",
"==",
"'x'",
":",
"labelsx",
"=",
"labels",
"[",
"'x'",
"]",
"pylab",
".",
"xlabel",
"(",
"labelsx",
"[",
"subplot_index",
"]",
")",
"if",
"visual_reverse",
"[",
"\"x\"",
"]",
"==",
"'x'",
":",
"labelsy",
"=",
"labels",
"[",
"'y'",
"]",
"pylab",
".",
"ylabel",
"(",
"labelsy",
"[",
"subplot_index",
"]",
")",
"if",
"visual",
"[",
"\"z\"",
"]",
"in",
"[",
"'row'",
"]",
":",
"labelsz",
"=",
"labels",
"[",
"'z'",
"]",
"ax",
".",
"set_title",
"(",
"labelsz",
"[",
"i",
"]",
")",
"if",
"visual",
"[",
"\"z\"",
"]",
"in",
"[",
"'column'",
"]",
":",
"labelsz",
"=",
"labels",
"[",
"'z'",
"]",
"ax",
".",
"set_title",
"(",
"labelsz",
"[",
"j",
"]",
")",
"max_labels",
"=",
"10",
"# xexpression = xexpressions[i]",
"# if self.iscategory(xexpression):",
"# labels = self.category_labels(xexpression)",
"# step = len(labels) // max_labels",
"# pylab.xticks(np.arange(len(labels))[::step], labels[::step], size='small')",
"# yexpression = yexpressions[i]",
"# if self.iscategory(yexpression):",
"# labels = self.category_labels(yexpression)",
"# step = len(labels) // max_labels",
"# pylab.yticks(np.arange(len(labels))[::step], labels[::step], size='small')",
"facet_index",
"+=",
"1",
"if",
"title",
":",
"fig",
".",
"suptitle",
"(",
"title",
",",
"fontsize",
"=",
"\"x-large\"",
")",
"if",
"tight_layout",
":",
"if",
"title",
":",
"pylab",
".",
"tight_layout",
"(",
"rect",
"=",
"[",
"0",
",",
"0.03",
",",
"1",
",",
"0.95",
"]",
")",
"else",
":",
"pylab",
".",
"tight_layout",
"(",
")",
"if",
"hardcopy",
":",
"pylab",
".",
"savefig",
"(",
"hardcopy",
")",
"if",
"show",
":",
"pylab",
".",
"show",
"(",
")",
"if",
"return_extra",
":",
"return",
"im",
",",
"grid",
",",
"fgrid",
",",
"ngrid",
",",
"rgrid",
"else",
":",
"return",
"im"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
register_function
|
Decorator to register a new function with vaex.
Example:
>>> import vaex
>>> df = vaex.example()
>>> @vaex.register_function()
>>> def invert(x):
>>> return 1/x
>>> df.x.invert()
>>> import numpy as np
>>> df = vaex.from_arrays(departure=np.arange('2015-01-01', '2015-12-05', dtype='datetime64'))
>>> @vaex.register_function(as_property=True, scope='dt')
>>> def dt_relative_day(x):
>>> return vaex.functions.dt_dayofyear(x)/365.
>>> df.departure.dt.relative_day
|
packages/vaex-core/vaex/functions.py
|
def register_function(scope=None, as_property=False, name=None):
"""Decorator to register a new function with vaex.
Example:
>>> import vaex
>>> df = vaex.example()
>>> @vaex.register_function()
>>> def invert(x):
>>> return 1/x
>>> df.x.invert()
>>> import numpy as np
>>> df = vaex.from_arrays(departure=np.arange('2015-01-01', '2015-12-05', dtype='datetime64'))
>>> @vaex.register_function(as_property=True, scope='dt')
>>> def dt_relative_day(x):
>>> return vaex.functions.dt_dayofyear(x)/365.
>>> df.departure.dt.relative_day
"""
prefix = ''
if scope:
prefix = scope + "_"
if scope not in scopes:
raise KeyError("unknown scope")
def wrapper(f, name=name):
name = name or f.__name__
# remove possible prefix
if name.startswith(prefix):
name = name[len(prefix):]
full_name = prefix + name
if scope:
def closure(name=name, full_name=full_name, function=f):
def wrapper(self, *args, **kwargs):
lazy_func = getattr(self.expression.ds.func, full_name)
args = (self.expression, ) + args
return lazy_func(*args, **kwargs)
return functools.wraps(function)(wrapper)
if as_property:
setattr(scopes[scope], name, property(closure()))
else:
setattr(scopes[scope], name, closure())
else:
def closure(name=name, full_name=full_name, function=f):
def wrapper(self, *args, **kwargs):
lazy_func = getattr(self.ds.func, full_name)
args = (self, ) + args
return lazy_func(*args, **kwargs)
return functools.wraps(function)(wrapper)
setattr(vaex.expression.Expression, name, closure())
vaex.expression.expression_namespace[prefix + name] = f
return f # we leave the original function as is
return wrapper
|
def register_function(scope=None, as_property=False, name=None):
"""Decorator to register a new function with vaex.
Example:
>>> import vaex
>>> df = vaex.example()
>>> @vaex.register_function()
>>> def invert(x):
>>> return 1/x
>>> df.x.invert()
>>> import numpy as np
>>> df = vaex.from_arrays(departure=np.arange('2015-01-01', '2015-12-05', dtype='datetime64'))
>>> @vaex.register_function(as_property=True, scope='dt')
>>> def dt_relative_day(x):
>>> return vaex.functions.dt_dayofyear(x)/365.
>>> df.departure.dt.relative_day
"""
prefix = ''
if scope:
prefix = scope + "_"
if scope not in scopes:
raise KeyError("unknown scope")
def wrapper(f, name=name):
name = name or f.__name__
# remove possible prefix
if name.startswith(prefix):
name = name[len(prefix):]
full_name = prefix + name
if scope:
def closure(name=name, full_name=full_name, function=f):
def wrapper(self, *args, **kwargs):
lazy_func = getattr(self.expression.ds.func, full_name)
args = (self.expression, ) + args
return lazy_func(*args, **kwargs)
return functools.wraps(function)(wrapper)
if as_property:
setattr(scopes[scope], name, property(closure()))
else:
setattr(scopes[scope], name, closure())
else:
def closure(name=name, full_name=full_name, function=f):
def wrapper(self, *args, **kwargs):
lazy_func = getattr(self.ds.func, full_name)
args = (self, ) + args
return lazy_func(*args, **kwargs)
return functools.wraps(function)(wrapper)
setattr(vaex.expression.Expression, name, closure())
vaex.expression.expression_namespace[prefix + name] = f
return f # we leave the original function as is
return wrapper
|
[
"Decorator",
"to",
"register",
"a",
"new",
"function",
"with",
"vaex",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L19-L71
|
[
"def",
"register_function",
"(",
"scope",
"=",
"None",
",",
"as_property",
"=",
"False",
",",
"name",
"=",
"None",
")",
":",
"prefix",
"=",
"''",
"if",
"scope",
":",
"prefix",
"=",
"scope",
"+",
"\"_\"",
"if",
"scope",
"not",
"in",
"scopes",
":",
"raise",
"KeyError",
"(",
"\"unknown scope\"",
")",
"def",
"wrapper",
"(",
"f",
",",
"name",
"=",
"name",
")",
":",
"name",
"=",
"name",
"or",
"f",
".",
"__name__",
"# remove possible prefix",
"if",
"name",
".",
"startswith",
"(",
"prefix",
")",
":",
"name",
"=",
"name",
"[",
"len",
"(",
"prefix",
")",
":",
"]",
"full_name",
"=",
"prefix",
"+",
"name",
"if",
"scope",
":",
"def",
"closure",
"(",
"name",
"=",
"name",
",",
"full_name",
"=",
"full_name",
",",
"function",
"=",
"f",
")",
":",
"def",
"wrapper",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"lazy_func",
"=",
"getattr",
"(",
"self",
".",
"expression",
".",
"ds",
".",
"func",
",",
"full_name",
")",
"args",
"=",
"(",
"self",
".",
"expression",
",",
")",
"+",
"args",
"return",
"lazy_func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"functools",
".",
"wraps",
"(",
"function",
")",
"(",
"wrapper",
")",
"if",
"as_property",
":",
"setattr",
"(",
"scopes",
"[",
"scope",
"]",
",",
"name",
",",
"property",
"(",
"closure",
"(",
")",
")",
")",
"else",
":",
"setattr",
"(",
"scopes",
"[",
"scope",
"]",
",",
"name",
",",
"closure",
"(",
")",
")",
"else",
":",
"def",
"closure",
"(",
"name",
"=",
"name",
",",
"full_name",
"=",
"full_name",
",",
"function",
"=",
"f",
")",
":",
"def",
"wrapper",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"lazy_func",
"=",
"getattr",
"(",
"self",
".",
"ds",
".",
"func",
",",
"full_name",
")",
"args",
"=",
"(",
"self",
",",
")",
"+",
"args",
"return",
"lazy_func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"functools",
".",
"wraps",
"(",
"function",
")",
"(",
"wrapper",
")",
"setattr",
"(",
"vaex",
".",
"expression",
".",
"Expression",
",",
"name",
",",
"closure",
"(",
")",
")",
"vaex",
".",
"expression",
".",
"expression_namespace",
"[",
"prefix",
"+",
"name",
"]",
"=",
"f",
"return",
"f",
"# we leave the original function as is",
"return",
"wrapper"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
fillna
|
Returns an array where missing values are replaced by value.
If the dtype is object, nan values and 'nan' string values
are replaced by value when fill_nan==True.
|
packages/vaex-core/vaex/functions.py
|
def fillna(ar, value, fill_nan=True, fill_masked=True):
'''Returns an array where missing values are replaced by value.
If the dtype is object, nan values and 'nan' string values
are replaced by value when fill_nan==True.
'''
ar = ar if not isinstance(ar, column.Column) else ar.to_numpy()
if ar.dtype.kind in 'O' and fill_nan:
strings = ar.astype(str)
mask = strings == 'nan'
ar = ar.copy()
ar[mask] = value
elif ar.dtype.kind in 'f' and fill_nan:
mask = np.isnan(ar)
if np.any(mask):
ar = ar.copy()
ar[mask] = value
if fill_masked and np.ma.isMaskedArray(ar):
mask = ar.mask
if np.any(mask):
ar = ar.data.copy()
ar[mask] = value
return ar
|
def fillna(ar, value, fill_nan=True, fill_masked=True):
'''Returns an array where missing values are replaced by value.
If the dtype is object, nan values and 'nan' string values
are replaced by value when fill_nan==True.
'''
ar = ar if not isinstance(ar, column.Column) else ar.to_numpy()
if ar.dtype.kind in 'O' and fill_nan:
strings = ar.astype(str)
mask = strings == 'nan'
ar = ar.copy()
ar[mask] = value
elif ar.dtype.kind in 'f' and fill_nan:
mask = np.isnan(ar)
if np.any(mask):
ar = ar.copy()
ar[mask] = value
if fill_masked and np.ma.isMaskedArray(ar):
mask = ar.mask
if np.any(mask):
ar = ar.data.copy()
ar[mask] = value
return ar
|
[
"Returns",
"an",
"array",
"where",
"missing",
"values",
"are",
"replaced",
"by",
"value",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L122-L144
|
[
"def",
"fillna",
"(",
"ar",
",",
"value",
",",
"fill_nan",
"=",
"True",
",",
"fill_masked",
"=",
"True",
")",
":",
"ar",
"=",
"ar",
"if",
"not",
"isinstance",
"(",
"ar",
",",
"column",
".",
"Column",
")",
"else",
"ar",
".",
"to_numpy",
"(",
")",
"if",
"ar",
".",
"dtype",
".",
"kind",
"in",
"'O'",
"and",
"fill_nan",
":",
"strings",
"=",
"ar",
".",
"astype",
"(",
"str",
")",
"mask",
"=",
"strings",
"==",
"'nan'",
"ar",
"=",
"ar",
".",
"copy",
"(",
")",
"ar",
"[",
"mask",
"]",
"=",
"value",
"elif",
"ar",
".",
"dtype",
".",
"kind",
"in",
"'f'",
"and",
"fill_nan",
":",
"mask",
"=",
"np",
".",
"isnan",
"(",
"ar",
")",
"if",
"np",
".",
"any",
"(",
"mask",
")",
":",
"ar",
"=",
"ar",
".",
"copy",
"(",
")",
"ar",
"[",
"mask",
"]",
"=",
"value",
"if",
"fill_masked",
"and",
"np",
".",
"ma",
".",
"isMaskedArray",
"(",
"ar",
")",
":",
"mask",
"=",
"ar",
".",
"mask",
"if",
"np",
".",
"any",
"(",
"mask",
")",
":",
"ar",
"=",
"ar",
".",
"data",
".",
"copy",
"(",
")",
"ar",
"[",
"mask",
"]",
"=",
"value",
"return",
"ar"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_dayofweek
|
Obtain the day of the week with Monday=0 and Sunday=6
:returns: an expression containing the day of week.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.dayofweek
Expression = dt_dayofweek(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 0
1 3
2 3
|
packages/vaex-core/vaex/functions.py
|
def dt_dayofweek(x):
"""Obtain the day of the week with Monday=0 and Sunday=6
:returns: an expression containing the day of week.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.dayofweek
Expression = dt_dayofweek(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 0
1 3
2 3
"""
import pandas as pd
return pd.Series(x).dt.dayofweek.values
|
def dt_dayofweek(x):
"""Obtain the day of the week with Monday=0 and Sunday=6
:returns: an expression containing the day of week.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.dayofweek
Expression = dt_dayofweek(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 0
1 3
2 3
"""
import pandas as pd
return pd.Series(x).dt.dayofweek.values
|
[
"Obtain",
"the",
"day",
"of",
"the",
"week",
"with",
"Monday",
"=",
"0",
"and",
"Sunday",
"=",
"6"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L160-L186
|
[
"def",
"dt_dayofweek",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"dayofweek",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_dayofyear
|
The ordinal day of the year.
:returns: an expression containing the ordinal day of the year.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.dayofyear
Expression = dt_dayofyear(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 285
1 42
2 316
|
packages/vaex-core/vaex/functions.py
|
def dt_dayofyear(x):
"""The ordinal day of the year.
:returns: an expression containing the ordinal day of the year.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.dayofyear
Expression = dt_dayofyear(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 285
1 42
2 316
"""
import pandas as pd
return pd.Series(x).dt.dayofyear.values
|
def dt_dayofyear(x):
"""The ordinal day of the year.
:returns: an expression containing the ordinal day of the year.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.dayofyear
Expression = dt_dayofyear(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 285
1 42
2 316
"""
import pandas as pd
return pd.Series(x).dt.dayofyear.values
|
[
"The",
"ordinal",
"day",
"of",
"the",
"year",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L189-L215
|
[
"def",
"dt_dayofyear",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"dayofyear",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_is_leap_year
|
Check whether a year is a leap year.
:returns: an expression which evaluates to True if a year is a leap year, and to False otherwise.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.is_leap_year
Expression = dt_is_leap_year(date)
Length: 3 dtype: bool (expression)
----------------------------------
0 False
1 True
2 False
|
packages/vaex-core/vaex/functions.py
|
def dt_is_leap_year(x):
"""Check whether a year is a leap year.
:returns: an expression which evaluates to True if a year is a leap year, and to False otherwise.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.is_leap_year
Expression = dt_is_leap_year(date)
Length: 3 dtype: bool (expression)
----------------------------------
0 False
1 True
2 False
"""
import pandas as pd
return pd.Series(x).dt.is_leap_year.values
|
def dt_is_leap_year(x):
"""Check whether a year is a leap year.
:returns: an expression which evaluates to True if a year is a leap year, and to False otherwise.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.is_leap_year
Expression = dt_is_leap_year(date)
Length: 3 dtype: bool (expression)
----------------------------------
0 False
1 True
2 False
"""
import pandas as pd
return pd.Series(x).dt.is_leap_year.values
|
[
"Check",
"whether",
"a",
"year",
"is",
"a",
"leap",
"year",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L218-L244
|
[
"def",
"dt_is_leap_year",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"is_leap_year",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_year
|
Extracts the year out of a datetime sample.
:returns: an expression containing the year extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.year
Expression = dt_year(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 2009
1 2016
2 2015
|
packages/vaex-core/vaex/functions.py
|
def dt_year(x):
"""Extracts the year out of a datetime sample.
:returns: an expression containing the year extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.year
Expression = dt_year(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 2009
1 2016
2 2015
"""
import pandas as pd
return pd.Series(x).dt.year.values
|
def dt_year(x):
"""Extracts the year out of a datetime sample.
:returns: an expression containing the year extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.year
Expression = dt_year(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 2009
1 2016
2 2015
"""
import pandas as pd
return pd.Series(x).dt.year.values
|
[
"Extracts",
"the",
"year",
"out",
"of",
"a",
"datetime",
"sample",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L247-L273
|
[
"def",
"dt_year",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"year",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_month
|
Extracts the month out of a datetime sample.
:returns: an expression containing the month extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.month
Expression = dt_month(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 10
1 2
2 11
|
packages/vaex-core/vaex/functions.py
|
def dt_month(x):
"""Extracts the month out of a datetime sample.
:returns: an expression containing the month extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.month
Expression = dt_month(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 10
1 2
2 11
"""
import pandas as pd
return pd.Series(x).dt.month.values
|
def dt_month(x):
"""Extracts the month out of a datetime sample.
:returns: an expression containing the month extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.month
Expression = dt_month(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 10
1 2
2 11
"""
import pandas as pd
return pd.Series(x).dt.month.values
|
[
"Extracts",
"the",
"month",
"out",
"of",
"a",
"datetime",
"sample",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L276-L302
|
[
"def",
"dt_month",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"month",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_month_name
|
Returns the month names of a datetime sample in English.
:returns: an expression containing the month names extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.month_name
Expression = dt_month_name(date)
Length: 3 dtype: str (expression)
---------------------------------
0 October
1 February
2 November
|
packages/vaex-core/vaex/functions.py
|
def dt_month_name(x):
"""Returns the month names of a datetime sample in English.
:returns: an expression containing the month names extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.month_name
Expression = dt_month_name(date)
Length: 3 dtype: str (expression)
---------------------------------
0 October
1 February
2 November
"""
import pandas as pd
return pd.Series(_pandas_dt_fix(x)).dt.month_name().values.astype(str)
|
def dt_month_name(x):
"""Returns the month names of a datetime sample in English.
:returns: an expression containing the month names extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.month_name
Expression = dt_month_name(date)
Length: 3 dtype: str (expression)
---------------------------------
0 October
1 February
2 November
"""
import pandas as pd
return pd.Series(_pandas_dt_fix(x)).dt.month_name().values.astype(str)
|
[
"Returns",
"the",
"month",
"names",
"of",
"a",
"datetime",
"sample",
"in",
"English",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L305-L331
|
[
"def",
"dt_month_name",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"_pandas_dt_fix",
"(",
"x",
")",
")",
".",
"dt",
".",
"month_name",
"(",
")",
".",
"values",
".",
"astype",
"(",
"str",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_day
|
Extracts the day from a datetime sample.
:returns: an expression containing the day extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.day
Expression = dt_day(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 12
1 11
2 12
|
packages/vaex-core/vaex/functions.py
|
def dt_day(x):
"""Extracts the day from a datetime sample.
:returns: an expression containing the day extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.day
Expression = dt_day(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 12
1 11
2 12
"""
import pandas as pd
return pd.Series(x).dt.day.values
|
def dt_day(x):
"""Extracts the day from a datetime sample.
:returns: an expression containing the day extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.day
Expression = dt_day(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 12
1 11
2 12
"""
import pandas as pd
return pd.Series(x).dt.day.values
|
[
"Extracts",
"the",
"day",
"from",
"a",
"datetime",
"sample",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L334-L360
|
[
"def",
"dt_day",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"day",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_day_name
|
Returns the day names of a datetime sample in English.
:returns: an expression containing the day names extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.day_name
Expression = dt_day_name(date)
Length: 3 dtype: str (expression)
---------------------------------
0 Monday
1 Thursday
2 Thursday
|
packages/vaex-core/vaex/functions.py
|
def dt_day_name(x):
"""Returns the day names of a datetime sample in English.
:returns: an expression containing the day names extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.day_name
Expression = dt_day_name(date)
Length: 3 dtype: str (expression)
---------------------------------
0 Monday
1 Thursday
2 Thursday
"""
import pandas as pd
return pd.Series(_pandas_dt_fix(x)).dt.day_name().values.astype(str)
|
def dt_day_name(x):
"""Returns the day names of a datetime sample in English.
:returns: an expression containing the day names extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.day_name
Expression = dt_day_name(date)
Length: 3 dtype: str (expression)
---------------------------------
0 Monday
1 Thursday
2 Thursday
"""
import pandas as pd
return pd.Series(_pandas_dt_fix(x)).dt.day_name().values.astype(str)
|
[
"Returns",
"the",
"day",
"names",
"of",
"a",
"datetime",
"sample",
"in",
"English",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L363-L389
|
[
"def",
"dt_day_name",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"_pandas_dt_fix",
"(",
"x",
")",
")",
".",
"dt",
".",
"day_name",
"(",
")",
".",
"values",
".",
"astype",
"(",
"str",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_weekofyear
|
Returns the week ordinal of the year.
:returns: an expression containing the week ordinal of the year, extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.weekofyear
Expression = dt_weekofyear(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 42
1 6
2 46
|
packages/vaex-core/vaex/functions.py
|
def dt_weekofyear(x):
"""Returns the week ordinal of the year.
:returns: an expression containing the week ordinal of the year, extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.weekofyear
Expression = dt_weekofyear(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 42
1 6
2 46
"""
import pandas as pd
return pd.Series(x).dt.weekofyear.values
|
def dt_weekofyear(x):
"""Returns the week ordinal of the year.
:returns: an expression containing the week ordinal of the year, extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.weekofyear
Expression = dt_weekofyear(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 42
1 6
2 46
"""
import pandas as pd
return pd.Series(x).dt.weekofyear.values
|
[
"Returns",
"the",
"week",
"ordinal",
"of",
"the",
"year",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L392-L418
|
[
"def",
"dt_weekofyear",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"weekofyear",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_hour
|
Extracts the hour out of a datetime samples.
:returns: an expression containing the hour extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.hour
Expression = dt_hour(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 3
1 10
2 11
|
packages/vaex-core/vaex/functions.py
|
def dt_hour(x):
"""Extracts the hour out of a datetime samples.
:returns: an expression containing the hour extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.hour
Expression = dt_hour(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 3
1 10
2 11
"""
import pandas as pd
return pd.Series(x).dt.hour.values
|
def dt_hour(x):
"""Extracts the hour out of a datetime samples.
:returns: an expression containing the hour extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.hour
Expression = dt_hour(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 3
1 10
2 11
"""
import pandas as pd
return pd.Series(x).dt.hour.values
|
[
"Extracts",
"the",
"hour",
"out",
"of",
"a",
"datetime",
"samples",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L421-L447
|
[
"def",
"dt_hour",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"hour",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_minute
|
Extracts the minute out of a datetime samples.
:returns: an expression containing the minute extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.minute
Expression = dt_minute(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 31
1 17
2 34
|
packages/vaex-core/vaex/functions.py
|
def dt_minute(x):
"""Extracts the minute out of a datetime samples.
:returns: an expression containing the minute extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.minute
Expression = dt_minute(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 31
1 17
2 34
"""
import pandas as pd
return pd.Series(x).dt.minute.values
|
def dt_minute(x):
"""Extracts the minute out of a datetime samples.
:returns: an expression containing the minute extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.minute
Expression = dt_minute(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 31
1 17
2 34
"""
import pandas as pd
return pd.Series(x).dt.minute.values
|
[
"Extracts",
"the",
"minute",
"out",
"of",
"a",
"datetime",
"samples",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L450-L476
|
[
"def",
"dt_minute",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"minute",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
dt_second
|
Extracts the second out of a datetime samples.
:returns: an expression containing the second extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.second
Expression = dt_second(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 0
1 34
2 22
|
packages/vaex-core/vaex/functions.py
|
def dt_second(x):
"""Extracts the second out of a datetime samples.
:returns: an expression containing the second extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.second
Expression = dt_second(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 0
1 34
2 22
"""
import pandas as pd
return pd.Series(x).dt.second.values
|
def dt_second(x):
"""Extracts the second out of a datetime samples.
:returns: an expression containing the second extracted from a datetime column.
Example:
>>> import vaex
>>> import numpy as np
>>> date = np.array(['2009-10-12T03:31:00', '2016-02-11T10:17:34', '2015-11-12T11:34:22'], dtype=np.datetime64)
>>> df = vaex.from_arrays(date=date)
>>> df
# date
0 2009-10-12 03:31:00
1 2016-02-11 10:17:34
2 2015-11-12 11:34:22
>>> df.date.dt.second
Expression = dt_second(date)
Length: 3 dtype: int64 (expression)
-----------------------------------
0 0
1 34
2 22
"""
import pandas as pd
return pd.Series(x).dt.second.values
|
[
"Extracts",
"the",
"second",
"out",
"of",
"a",
"datetime",
"samples",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L479-L505
|
[
"def",
"dt_second",
"(",
"x",
")",
":",
"import",
"pandas",
"as",
"pd",
"return",
"pd",
".",
"Series",
"(",
"x",
")",
".",
"dt",
".",
"second",
".",
"values"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_capitalize
|
Capitalize the first letter of a string sample.
:returns: an expression containing the capitalized strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.capitalize()
Expression = str_capitalize(text)
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 Very pretty
2 Is coming
3 Our
4 Way.
|
packages/vaex-core/vaex/functions.py
|
def str_capitalize(x):
"""Capitalize the first letter of a string sample.
:returns: an expression containing the capitalized strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.capitalize()
Expression = str_capitalize(text)
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 Very pretty
2 Is coming
3 Our
4 Way.
"""
sl = _to_string_sequence(x).capitalize()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_capitalize(x):
"""Capitalize the first letter of a string sample.
:returns: an expression containing the capitalized strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.capitalize()
Expression = str_capitalize(text)
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 Very pretty
2 Is coming
3 Our
4 Way.
"""
sl = _to_string_sequence(x).capitalize()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Capitalize",
"the",
"first",
"letter",
"of",
"a",
"string",
"sample",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L511-L540
|
[
"def",
"str_capitalize",
"(",
"x",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"capitalize",
"(",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_cat
|
Concatenate two string columns on a row-by-row basis.
:param expression other: The expression of the other column to be concatenated.
:returns: an expression containing the concatenated columns.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.cat(df.text)
Expression = str_cat(text, text)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomething
1 very prettyvery pretty
2 is comingis coming
3 ourour
4 way.way.
|
packages/vaex-core/vaex/functions.py
|
def str_cat(x, other):
"""Concatenate two string columns on a row-by-row basis.
:param expression other: The expression of the other column to be concatenated.
:returns: an expression containing the concatenated columns.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.cat(df.text)
Expression = str_cat(text, text)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomething
1 very prettyvery pretty
2 is comingis coming
3 ourour
4 way.way.
"""
sl1 = _to_string_sequence(x)
sl2 = _to_string_sequence(other)
sl = sl1.concat(sl2)
return column.ColumnStringArrow.from_string_sequence(sl)
|
def str_cat(x, other):
"""Concatenate two string columns on a row-by-row basis.
:param expression other: The expression of the other column to be concatenated.
:returns: an expression containing the concatenated columns.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.cat(df.text)
Expression = str_cat(text, text)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomething
1 very prettyvery pretty
2 is comingis coming
3 ourour
4 way.way.
"""
sl1 = _to_string_sequence(x)
sl2 = _to_string_sequence(other)
sl = sl1.concat(sl2)
return column.ColumnStringArrow.from_string_sequence(sl)
|
[
"Concatenate",
"two",
"string",
"columns",
"on",
"a",
"row",
"-",
"by",
"-",
"row",
"basis",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L543-L575
|
[
"def",
"str_cat",
"(",
"x",
",",
"other",
")",
":",
"sl1",
"=",
"_to_string_sequence",
"(",
"x",
")",
"sl2",
"=",
"_to_string_sequence",
"(",
"other",
")",
"sl",
"=",
"sl1",
".",
"concat",
"(",
"sl2",
")",
"return",
"column",
".",
"ColumnStringArrow",
".",
"from_string_sequence",
"(",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_contains
|
Check if a string pattern or regex is contained within a sample of a string column.
:param str pattern: A string or regex pattern
:param bool regex: If True,
:returns: an expression which is evaluated to True if the pattern is found in a given sample, and it is False otherwise.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.contains('very')
Expression = str_contains(text, 'very')
Length: 5 dtype: bool (expression)
----------------------------------
0 False
1 True
2 False
3 False
4 False
|
packages/vaex-core/vaex/functions.py
|
def str_contains(x, pattern, regex=True):
"""Check if a string pattern or regex is contained within a sample of a string column.
:param str pattern: A string or regex pattern
:param bool regex: If True,
:returns: an expression which is evaluated to True if the pattern is found in a given sample, and it is False otherwise.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.contains('very')
Expression = str_contains(text, 'very')
Length: 5 dtype: bool (expression)
----------------------------------
0 False
1 True
2 False
3 False
4 False
"""
return _to_string_sequence(x).search(pattern, regex)
|
def str_contains(x, pattern, regex=True):
"""Check if a string pattern or regex is contained within a sample of a string column.
:param str pattern: A string or regex pattern
:param bool regex: If True,
:returns: an expression which is evaluated to True if the pattern is found in a given sample, and it is False otherwise.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.contains('very')
Expression = str_contains(text, 'very')
Length: 5 dtype: bool (expression)
----------------------------------
0 False
1 True
2 False
3 False
4 False
"""
return _to_string_sequence(x).search(pattern, regex)
|
[
"Check",
"if",
"a",
"string",
"pattern",
"or",
"regex",
"is",
"contained",
"within",
"a",
"sample",
"of",
"a",
"string",
"column",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L612-L642
|
[
"def",
"str_contains",
"(",
"x",
",",
"pattern",
",",
"regex",
"=",
"True",
")",
":",
"return",
"_to_string_sequence",
"(",
"x",
")",
".",
"search",
"(",
"pattern",
",",
"regex",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_count
|
Count the occurences of a pattern in sample of a string column.
:param str pat: A string or regex pattern
:param bool regex: If True,
:returns: an expression containing the number of times a pattern is found in each sample.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.count(pat="et", regex=False)
Expression = str_count(text, pat='et', regex=False)
Length: 5 dtype: int64 (expression)
-----------------------------------
0 1
1 1
2 0
3 0
4 0
|
packages/vaex-core/vaex/functions.py
|
def str_count(x, pat, regex=False):
"""Count the occurences of a pattern in sample of a string column.
:param str pat: A string or regex pattern
:param bool regex: If True,
:returns: an expression containing the number of times a pattern is found in each sample.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.count(pat="et", regex=False)
Expression = str_count(text, pat='et', regex=False)
Length: 5 dtype: int64 (expression)
-----------------------------------
0 1
1 1
2 0
3 0
4 0
"""
return _to_string_sequence(x).count(pat, regex)
|
def str_count(x, pat, regex=False):
"""Count the occurences of a pattern in sample of a string column.
:param str pat: A string or regex pattern
:param bool regex: If True,
:returns: an expression containing the number of times a pattern is found in each sample.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.count(pat="et", regex=False)
Expression = str_count(text, pat='et', regex=False)
Length: 5 dtype: int64 (expression)
-----------------------------------
0 1
1 1
2 0
3 0
4 0
"""
return _to_string_sequence(x).count(pat, regex)
|
[
"Count",
"the",
"occurences",
"of",
"a",
"pattern",
"in",
"sample",
"of",
"a",
"string",
"column",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L646-L676
|
[
"def",
"str_count",
"(",
"x",
",",
"pat",
",",
"regex",
"=",
"False",
")",
":",
"return",
"_to_string_sequence",
"(",
"x",
")",
".",
"count",
"(",
"pat",
",",
"regex",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_find
|
Returns the lowest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the lowest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.find(sub="et")
Expression = str_find(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
|
packages/vaex-core/vaex/functions.py
|
def str_find(x, sub, start=0, end=None):
"""Returns the lowest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the lowest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.find(sub="et")
Expression = str_find(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return _to_string_sequence(x).find(sub, start, 0 if end is None else end, end is None, True)
|
def str_find(x, sub, start=0, end=None):
"""Returns the lowest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the lowest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.find(sub="et")
Expression = str_find(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return _to_string_sequence(x).find(sub, start, 0 if end is None else end, end is None, True)
|
[
"Returns",
"the",
"lowest",
"indices",
"in",
"each",
"string",
"in",
"a",
"column",
"where",
"the",
"provided",
"substring",
"is",
"fully",
"contained",
"between",
"within",
"a",
"sample",
".",
"If",
"the",
"substring",
"is",
"not",
"found",
"-",
"1",
"is",
"returned",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L731-L763
|
[
"def",
"str_find",
"(",
"x",
",",
"sub",
",",
"start",
"=",
"0",
",",
"end",
"=",
"None",
")",
":",
"return",
"_to_string_sequence",
"(",
"x",
")",
".",
"find",
"(",
"sub",
",",
"start",
",",
"0",
"if",
"end",
"is",
"None",
"else",
"end",
",",
"end",
"is",
"None",
",",
"True",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_get
|
Extract a character from each sample at the specified position from a string column.
Note that if the specified position is out of bound of the string sample, this method returns '', while pandas retunrs nan.
:param int i: The index location, at which to extract the character.
:returns: an expression containing the extracted characters.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.get(5)
Expression = str_get(text, 5)
Length: 5 dtype: str (expression)
---------------------------------
0 h
1 p
2 m
3
4
|
packages/vaex-core/vaex/functions.py
|
def str_get(x, i):
"""Extract a character from each sample at the specified position from a string column.
Note that if the specified position is out of bound of the string sample, this method returns '', while pandas retunrs nan.
:param int i: The index location, at which to extract the character.
:returns: an expression containing the extracted characters.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.get(5)
Expression = str_get(text, 5)
Length: 5 dtype: str (expression)
---------------------------------
0 h
1 p
2 m
3
4
"""
x = _to_string_sequence(x)
if i == -1:
sl = x.slice_string_end(-1)
else:
sl = x.slice_string(i, i+1)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_get(x, i):
"""Extract a character from each sample at the specified position from a string column.
Note that if the specified position is out of bound of the string sample, this method returns '', while pandas retunrs nan.
:param int i: The index location, at which to extract the character.
:returns: an expression containing the extracted characters.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.get(5)
Expression = str_get(text, 5)
Length: 5 dtype: str (expression)
---------------------------------
0 h
1 p
2 m
3
4
"""
x = _to_string_sequence(x)
if i == -1:
sl = x.slice_string_end(-1)
else:
sl = x.slice_string(i, i+1)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Extract",
"a",
"character",
"from",
"each",
"sample",
"at",
"the",
"specified",
"position",
"from",
"a",
"string",
"column",
".",
"Note",
"that",
"if",
"the",
"specified",
"position",
"is",
"out",
"of",
"bound",
"of",
"the",
"string",
"sample",
"this",
"method",
"returns",
"while",
"pandas",
"retunrs",
"nan",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L770-L805
|
[
"def",
"str_get",
"(",
"x",
",",
"i",
")",
":",
"x",
"=",
"_to_string_sequence",
"(",
"x",
")",
"if",
"i",
"==",
"-",
"1",
":",
"sl",
"=",
"x",
".",
"slice_string_end",
"(",
"-",
"1",
")",
"else",
":",
"sl",
"=",
"x",
".",
"slice_string",
"(",
"i",
",",
"i",
"+",
"1",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_index
|
Returns the lowest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned. It is the same as `str.find`.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the lowest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.index(sub="et")
Expression = str_find(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
|
packages/vaex-core/vaex/functions.py
|
def str_index(x, sub, start=0, end=None):
"""Returns the lowest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned. It is the same as `str.find`.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the lowest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.index(sub="et")
Expression = str_find(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return str_find(x, sub, start, end)
|
def str_index(x, sub, start=0, end=None):
"""Returns the lowest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned. It is the same as `str.find`.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the lowest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.index(sub="et")
Expression = str_find(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return str_find(x, sub, start, end)
|
[
"Returns",
"the",
"lowest",
"indices",
"in",
"each",
"string",
"in",
"a",
"column",
"where",
"the",
"provided",
"substring",
"is",
"fully",
"contained",
"between",
"within",
"a",
"sample",
".",
"If",
"the",
"substring",
"is",
"not",
"found",
"-",
"1",
"is",
"returned",
".",
"It",
"is",
"the",
"same",
"as",
"str",
".",
"find",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L808-L840
|
[
"def",
"str_index",
"(",
"x",
",",
"sub",
",",
"start",
"=",
"0",
",",
"end",
"=",
"None",
")",
":",
"return",
"str_find",
"(",
"x",
",",
"sub",
",",
"start",
",",
"end",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_join
|
Same as find (difference with pandas is that it does not raise a ValueError)
|
packages/vaex-core/vaex/functions.py
|
def str_join(x, sep):
"""Same as find (difference with pandas is that it does not raise a ValueError)"""
sl = _to_string_list_sequence(x).join(sep)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_join(x, sep):
"""Same as find (difference with pandas is that it does not raise a ValueError)"""
sl = _to_string_list_sequence(x).join(sep)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Same",
"as",
"find",
"(",
"difference",
"with",
"pandas",
"is",
"that",
"it",
"does",
"not",
"raise",
"a",
"ValueError",
")"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L843-L846
|
[
"def",
"str_join",
"(",
"x",
",",
"sep",
")",
":",
"sl",
"=",
"_to_string_list_sequence",
"(",
"x",
")",
".",
"join",
"(",
"sep",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_lower
|
Converts string samples to lower case.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.lower()
Expression = str_lower(text)
Length: 5 dtype: str (expression)
---------------------------------
0 something
1 very pretty
2 is coming
3 our
4 way.
|
packages/vaex-core/vaex/functions.py
|
def str_lower(x):
"""Converts string samples to lower case.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.lower()
Expression = str_lower(text)
Length: 5 dtype: str (expression)
---------------------------------
0 something
1 very pretty
2 is coming
3 our
4 way.
"""
sl = _to_string_sequence(x).lower()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_lower(x):
"""Converts string samples to lower case.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.lower()
Expression = str_lower(text)
Length: 5 dtype: str (expression)
---------------------------------
0 something
1 very pretty
2 is coming
3 our
4 way.
"""
sl = _to_string_sequence(x).lower()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Converts",
"string",
"samples",
"to",
"lower",
"case",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L945-L974
|
[
"def",
"str_lower",
"(",
"x",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"lower",
"(",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_lstrip
|
Remove leading characters from a string sample.
:param str to_strip: The string to be removed
:returns: an expression containing the modified string column.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.lstrip(to_strip='very ')
Expression = str_lstrip(text, to_strip='very ')
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 pretty
2 is coming
3 our
4 way.
|
packages/vaex-core/vaex/functions.py
|
def str_lstrip(x, to_strip=None):
"""Remove leading characters from a string sample.
:param str to_strip: The string to be removed
:returns: an expression containing the modified string column.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.lstrip(to_strip='very ')
Expression = str_lstrip(text, to_strip='very ')
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 pretty
2 is coming
3 our
4 way.
"""
# in c++ we give empty string the same meaning as None
sl = _to_string_sequence(x).lstrip('' if to_strip is None else to_strip) if to_strip != '' else x
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_lstrip(x, to_strip=None):
"""Remove leading characters from a string sample.
:param str to_strip: The string to be removed
:returns: an expression containing the modified string column.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.lstrip(to_strip='very ')
Expression = str_lstrip(text, to_strip='very ')
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 pretty
2 is coming
3 our
4 way.
"""
# in c++ we give empty string the same meaning as None
sl = _to_string_sequence(x).lstrip('' if to_strip is None else to_strip) if to_strip != '' else x
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Remove",
"leading",
"characters",
"from",
"a",
"string",
"sample",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L977-L1008
|
[
"def",
"str_lstrip",
"(",
"x",
",",
"to_strip",
"=",
"None",
")",
":",
"# in c++ we give empty string the same meaning as None",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"lstrip",
"(",
"''",
"if",
"to_strip",
"is",
"None",
"else",
"to_strip",
")",
"if",
"to_strip",
"!=",
"''",
"else",
"x",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_pad
|
Pad strings in a given column.
:param int width: The total width of the string
:param str side: If 'left' than pad on the left, if 'right' than pad on the right side the string.
:param str fillchar: The character used for padding.
:returns: an expression containing the padded strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.pad(width=10, side='left', fillchar='!')
Expression = str_pad(text, width=10, side='left', fillchar='!')
Length: 5 dtype: str (expression)
---------------------------------
0 !Something
1 very pretty
2 !is coming
3 !!!!!!!our
4 !!!!!!way.
|
packages/vaex-core/vaex/functions.py
|
def str_pad(x, width, side='left', fillchar=' '):
"""Pad strings in a given column.
:param int width: The total width of the string
:param str side: If 'left' than pad on the left, if 'right' than pad on the right side the string.
:param str fillchar: The character used for padding.
:returns: an expression containing the padded strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.pad(width=10, side='left', fillchar='!')
Expression = str_pad(text, width=10, side='left', fillchar='!')
Length: 5 dtype: str (expression)
---------------------------------
0 !Something
1 very pretty
2 !is coming
3 !!!!!!!our
4 !!!!!!way.
"""
sl = _to_string_sequence(x).pad(width, fillchar, side in ['left', 'both'], side in ['right', 'both'])
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_pad(x, width, side='left', fillchar=' '):
"""Pad strings in a given column.
:param int width: The total width of the string
:param str side: If 'left' than pad on the left, if 'right' than pad on the right side the string.
:param str fillchar: The character used for padding.
:returns: an expression containing the padded strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.pad(width=10, side='left', fillchar='!')
Expression = str_pad(text, width=10, side='left', fillchar='!')
Length: 5 dtype: str (expression)
---------------------------------
0 !Something
1 very pretty
2 !is coming
3 !!!!!!!our
4 !!!!!!way.
"""
sl = _to_string_sequence(x).pad(width, fillchar, side in ['left', 'both'], side in ['right', 'both'])
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Pad",
"strings",
"in",
"a",
"given",
"column",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1045-L1077
|
[
"def",
"str_pad",
"(",
"x",
",",
"width",
",",
"side",
"=",
"'left'",
",",
"fillchar",
"=",
"' '",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"pad",
"(",
"width",
",",
"fillchar",
",",
"side",
"in",
"[",
"'left'",
",",
"'both'",
"]",
",",
"side",
"in",
"[",
"'right'",
",",
"'both'",
"]",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_repeat
|
Duplicate each string in a column.
:param int repeats: number of times each string sample is to be duplicated.
:returns: an expression containing the duplicated strings
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.repeat(3)
Expression = str_repeat(text, 3)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomethingSomething
1 very prettyvery prettyvery pretty
2 is comingis comingis coming
3 ourourour
4 way.way.way.
|
packages/vaex-core/vaex/functions.py
|
def str_repeat(x, repeats):
"""Duplicate each string in a column.
:param int repeats: number of times each string sample is to be duplicated.
:returns: an expression containing the duplicated strings
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.repeat(3)
Expression = str_repeat(text, 3)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomethingSomething
1 very prettyvery prettyvery pretty
2 is comingis comingis coming
3 ourourour
4 way.way.way.
"""
sl = _to_string_sequence(x).repeat(repeats)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_repeat(x, repeats):
"""Duplicate each string in a column.
:param int repeats: number of times each string sample is to be duplicated.
:returns: an expression containing the duplicated strings
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.repeat(3)
Expression = str_repeat(text, 3)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomethingSomething
1 very prettyvery prettyvery pretty
2 is comingis comingis coming
3 ourourour
4 way.way.way.
"""
sl = _to_string_sequence(x).repeat(repeats)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Duplicate",
"each",
"string",
"in",
"a",
"column",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1080-L1110
|
[
"def",
"str_repeat",
"(",
"x",
",",
"repeats",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"repeat",
"(",
"repeats",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_replace
|
Replace occurences of a pattern/regex in a column with some other string.
:param str pattern: string or a regex pattern
:param str replace: a replacement string
:param int n: number of replacements to be made from the start. If -1 make all replacements.
:param int flags: ??
:param bool regex: If True, ...?
:returns: an expression containing the string replacements.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.replace(pat='et', repl='__')
Expression = str_replace(text, pat='et', repl='__')
Length: 5 dtype: str (expression)
---------------------------------
0 Som__hing
1 very pr__ty
2 is coming
3 our
4 way.
|
packages/vaex-core/vaex/functions.py
|
def str_replace(x, pat, repl, n=-1, flags=0, regex=False):
"""Replace occurences of a pattern/regex in a column with some other string.
:param str pattern: string or a regex pattern
:param str replace: a replacement string
:param int n: number of replacements to be made from the start. If -1 make all replacements.
:param int flags: ??
:param bool regex: If True, ...?
:returns: an expression containing the string replacements.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.replace(pat='et', repl='__')
Expression = str_replace(text, pat='et', repl='__')
Length: 5 dtype: str (expression)
---------------------------------
0 Som__hing
1 very pr__ty
2 is coming
3 our
4 way.
"""
sl = _to_string_sequence(x).replace(pat, repl, n, flags, regex)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_replace(x, pat, repl, n=-1, flags=0, regex=False):
"""Replace occurences of a pattern/regex in a column with some other string.
:param str pattern: string or a regex pattern
:param str replace: a replacement string
:param int n: number of replacements to be made from the start. If -1 make all replacements.
:param int flags: ??
:param bool regex: If True, ...?
:returns: an expression containing the string replacements.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.replace(pat='et', repl='__')
Expression = str_replace(text, pat='et', repl='__')
Length: 5 dtype: str (expression)
---------------------------------
0 Som__hing
1 very pr__ty
2 is coming
3 our
4 way.
"""
sl = _to_string_sequence(x).replace(pat, repl, n, flags, regex)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Replace",
"occurences",
"of",
"a",
"pattern",
"/",
"regex",
"in",
"a",
"column",
"with",
"some",
"other",
"string",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1113-L1147
|
[
"def",
"str_replace",
"(",
"x",
",",
"pat",
",",
"repl",
",",
"n",
"=",
"-",
"1",
",",
"flags",
"=",
"0",
",",
"regex",
"=",
"False",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"replace",
"(",
"pat",
",",
"repl",
",",
"n",
",",
"flags",
",",
"regex",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_rfind
|
Returns the highest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the highest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rfind(sub="et")
Expression = str_rfind(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
|
packages/vaex-core/vaex/functions.py
|
def str_rfind(x, sub, start=0, end=None):
"""Returns the highest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the highest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rfind(sub="et")
Expression = str_rfind(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return _to_string_sequence(x).find(sub, start, 0 if end is None else end, end is None, False)
|
def str_rfind(x, sub, start=0, end=None):
"""Returns the highest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the highest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rfind(sub="et")
Expression = str_rfind(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return _to_string_sequence(x).find(sub, start, 0 if end is None else end, end is None, False)
|
[
"Returns",
"the",
"highest",
"indices",
"in",
"each",
"string",
"in",
"a",
"column",
"where",
"the",
"provided",
"substring",
"is",
"fully",
"contained",
"between",
"within",
"a",
"sample",
".",
"If",
"the",
"substring",
"is",
"not",
"found",
"-",
"1",
"is",
"returned",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1150-L1182
|
[
"def",
"str_rfind",
"(",
"x",
",",
"sub",
",",
"start",
"=",
"0",
",",
"end",
"=",
"None",
")",
":",
"return",
"_to_string_sequence",
"(",
"x",
")",
".",
"find",
"(",
"sub",
",",
"start",
",",
"0",
"if",
"end",
"is",
"None",
"else",
"end",
",",
"end",
"is",
"None",
",",
"False",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_rindex
|
Returns the highest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned. Same as `str.rfind`.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the highest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rindex(sub="et")
Expression = str_rindex(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
|
packages/vaex-core/vaex/functions.py
|
def str_rindex(x, sub, start=0, end=None):
"""Returns the highest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned. Same as `str.rfind`.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the highest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rindex(sub="et")
Expression = str_rindex(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return str_rfind(x, sub, start, end)
|
def str_rindex(x, sub, start=0, end=None):
"""Returns the highest indices in each string in a column, where the provided substring is fully contained between within a
sample. If the substring is not found, -1 is returned. Same as `str.rfind`.
:param str sub: A substring to be found in the samples
:param int start:
:param int end:
:returns: an expression containing the highest indices specifying the start of the substring.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rindex(sub="et")
Expression = str_rindex(text, sub='et')
Length: 5 dtype: int64 (expression)
-----------------------------------
0 3
1 7
2 -1
3 -1
4 -1
"""
return str_rfind(x, sub, start, end)
|
[
"Returns",
"the",
"highest",
"indices",
"in",
"each",
"string",
"in",
"a",
"column",
"where",
"the",
"provided",
"substring",
"is",
"fully",
"contained",
"between",
"within",
"a",
"sample",
".",
"If",
"the",
"substring",
"is",
"not",
"found",
"-",
"1",
"is",
"returned",
".",
"Same",
"as",
"str",
".",
"rfind",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1185-L1217
|
[
"def",
"str_rindex",
"(",
"x",
",",
"sub",
",",
"start",
"=",
"0",
",",
"end",
"=",
"None",
")",
":",
"return",
"str_rfind",
"(",
"x",
",",
"sub",
",",
"start",
",",
"end",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_rjust
|
Fills the left side of string samples with a specified character such that the strings are left-hand justified.
:param int width: The minimal width of the strings.
:param str fillchar: The character used for filling.
:returns: an expression containing the filled strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rjust(width=10, fillchar='!')
Expression = str_rjust(text, width=10, fillchar='!')
Length: 5 dtype: str (expression)
---------------------------------
0 !Something
1 very pretty
2 !is coming
3 !!!!!!!our
4 !!!!!!way.
|
packages/vaex-core/vaex/functions.py
|
def str_rjust(x, width, fillchar=' '):
"""Fills the left side of string samples with a specified character such that the strings are left-hand justified.
:param int width: The minimal width of the strings.
:param str fillchar: The character used for filling.
:returns: an expression containing the filled strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rjust(width=10, fillchar='!')
Expression = str_rjust(text, width=10, fillchar='!')
Length: 5 dtype: str (expression)
---------------------------------
0 !Something
1 very pretty
2 !is coming
3 !!!!!!!our
4 !!!!!!way.
"""
sl = _to_string_sequence(x).pad(width, fillchar, True, False)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_rjust(x, width, fillchar=' '):
"""Fills the left side of string samples with a specified character such that the strings are left-hand justified.
:param int width: The minimal width of the strings.
:param str fillchar: The character used for filling.
:returns: an expression containing the filled strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rjust(width=10, fillchar='!')
Expression = str_rjust(text, width=10, fillchar='!')
Length: 5 dtype: str (expression)
---------------------------------
0 !Something
1 very pretty
2 !is coming
3 !!!!!!!our
4 !!!!!!way.
"""
sl = _to_string_sequence(x).pad(width, fillchar, True, False)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Fills",
"the",
"left",
"side",
"of",
"string",
"samples",
"with",
"a",
"specified",
"character",
"such",
"that",
"the",
"strings",
"are",
"left",
"-",
"hand",
"justified",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1220-L1251
|
[
"def",
"str_rjust",
"(",
"x",
",",
"width",
",",
"fillchar",
"=",
"' '",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"pad",
"(",
"width",
",",
"fillchar",
",",
"True",
",",
"False",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_rstrip
|
Remove trailing characters from a string sample.
:param str to_strip: The string to be removed
:returns: an expression containing the modified string column.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rstrip(to_strip='ing')
Expression = str_rstrip(text, to_strip='ing')
Length: 5 dtype: str (expression)
---------------------------------
0 Someth
1 very pretty
2 is com
3 our
4 way.
|
packages/vaex-core/vaex/functions.py
|
def str_rstrip(x, to_strip=None):
"""Remove trailing characters from a string sample.
:param str to_strip: The string to be removed
:returns: an expression containing the modified string column.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rstrip(to_strip='ing')
Expression = str_rstrip(text, to_strip='ing')
Length: 5 dtype: str (expression)
---------------------------------
0 Someth
1 very pretty
2 is com
3 our
4 way.
"""
# in c++ we give empty string the same meaning as None
sl = _to_string_sequence(x).rstrip('' if to_strip is None else to_strip) if to_strip != '' else x
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_rstrip(x, to_strip=None):
"""Remove trailing characters from a string sample.
:param str to_strip: The string to be removed
:returns: an expression containing the modified string column.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.rstrip(to_strip='ing')
Expression = str_rstrip(text, to_strip='ing')
Length: 5 dtype: str (expression)
---------------------------------
0 Someth
1 very pretty
2 is com
3 our
4 way.
"""
# in c++ we give empty string the same meaning as None
sl = _to_string_sequence(x).rstrip('' if to_strip is None else to_strip) if to_strip != '' else x
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Remove",
"trailing",
"characters",
"from",
"a",
"string",
"sample",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1256-L1287
|
[
"def",
"str_rstrip",
"(",
"x",
",",
"to_strip",
"=",
"None",
")",
":",
"# in c++ we give empty string the same meaning as None",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"rstrip",
"(",
"''",
"if",
"to_strip",
"is",
"None",
"else",
"to_strip",
")",
"if",
"to_strip",
"!=",
"''",
"else",
"x",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_slice
|
Slice substrings from each string element in a column.
:param int start: The start position for the slice operation.
:param int end: The stop position for the slice operation.
:returns: an expression containing the sliced substrings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.slice(start=2, stop=5)
Expression = str_pandas_slice(text, start=2, stop=5)
Length: 5 dtype: str (expression)
---------------------------------
0 met
1 ry
2 co
3 r
4 y.
|
packages/vaex-core/vaex/functions.py
|
def str_slice(x, start=0, stop=None): # TODO: support n
"""Slice substrings from each string element in a column.
:param int start: The start position for the slice operation.
:param int end: The stop position for the slice operation.
:returns: an expression containing the sliced substrings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.slice(start=2, stop=5)
Expression = str_pandas_slice(text, start=2, stop=5)
Length: 5 dtype: str (expression)
---------------------------------
0 met
1 ry
2 co
3 r
4 y.
"""
if stop is None:
sll = _to_string_sequence(x).slice_string_end(start)
else:
sll = _to_string_sequence(x).slice_string(start, stop)
return sll
|
def str_slice(x, start=0, stop=None): # TODO: support n
"""Slice substrings from each string element in a column.
:param int start: The start position for the slice operation.
:param int end: The stop position for the slice operation.
:returns: an expression containing the sliced substrings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.slice(start=2, stop=5)
Expression = str_pandas_slice(text, start=2, stop=5)
Length: 5 dtype: str (expression)
---------------------------------
0 met
1 ry
2 co
3 r
4 y.
"""
if stop is None:
sll = _to_string_sequence(x).slice_string_end(start)
else:
sll = _to_string_sequence(x).slice_string(start, stop)
return sll
|
[
"Slice",
"substrings",
"from",
"each",
"string",
"element",
"in",
"a",
"column",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1290-L1324
|
[
"def",
"str_slice",
"(",
"x",
",",
"start",
"=",
"0",
",",
"stop",
"=",
"None",
")",
":",
"# TODO: support n",
"if",
"stop",
"is",
"None",
":",
"sll",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"slice_string_end",
"(",
"start",
")",
"else",
":",
"sll",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"slice_string",
"(",
"start",
",",
"stop",
")",
"return",
"sll"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_strip
|
Removes leading and trailing characters.
Strips whitespaces (including new lines), or a set of specified
characters from each string saple in a column, both from the left
right sides.
:param str to_strip: The characters to be removed. All combinations of the characters will be removed.
If None, it removes whitespaces.
:param returns: an expression containing the modified string samples.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.strip(to_strip='very')
Expression = str_strip(text, to_strip='very')
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 prett
2 is coming
3 ou
4 way.
|
packages/vaex-core/vaex/functions.py
|
def str_strip(x, to_strip=None):
"""Removes leading and trailing characters.
Strips whitespaces (including new lines), or a set of specified
characters from each string saple in a column, both from the left
right sides.
:param str to_strip: The characters to be removed. All combinations of the characters will be removed.
If None, it removes whitespaces.
:param returns: an expression containing the modified string samples.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.strip(to_strip='very')
Expression = str_strip(text, to_strip='very')
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 prett
2 is coming
3 ou
4 way.
"""
# in c++ we give empty string the same meaning as None
sl = _to_string_sequence(x).strip('' if to_strip is None else to_strip) if to_strip != '' else x
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_strip(x, to_strip=None):
"""Removes leading and trailing characters.
Strips whitespaces (including new lines), or a set of specified
characters from each string saple in a column, both from the left
right sides.
:param str to_strip: The characters to be removed. All combinations of the characters will be removed.
If None, it removes whitespaces.
:param returns: an expression containing the modified string samples.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.strip(to_strip='very')
Expression = str_strip(text, to_strip='very')
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 prett
2 is coming
3 ou
4 way.
"""
# in c++ we give empty string the same meaning as None
sl = _to_string_sequence(x).strip('' if to_strip is None else to_strip) if to_strip != '' else x
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Removes",
"leading",
"and",
"trailing",
"characters",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1371-L1407
|
[
"def",
"str_strip",
"(",
"x",
",",
"to_strip",
"=",
"None",
")",
":",
"# in c++ we give empty string the same meaning as None",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"strip",
"(",
"''",
"if",
"to_strip",
"is",
"None",
"else",
"to_strip",
")",
"if",
"to_strip",
"!=",
"''",
"else",
"x",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_title
|
Converts all string samples to titlecase.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.title()
Expression = str_title(text)
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 Very Pretty
2 Is Coming
3 Our
4 Way.
|
packages/vaex-core/vaex/functions.py
|
def str_title(x):
"""Converts all string samples to titlecase.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.title()
Expression = str_title(text)
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 Very Pretty
2 Is Coming
3 Our
4 Way.
"""
sl = _to_string_sequence(x).title()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_title(x):
"""Converts all string samples to titlecase.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.title()
Expression = str_title(text)
Length: 5 dtype: str (expression)
---------------------------------
0 Something
1 Very Pretty
2 Is Coming
3 Our
4 Way.
"""
sl = _to_string_sequence(x).title()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Converts",
"all",
"string",
"samples",
"to",
"titlecase",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1412-L1441
|
[
"def",
"str_title",
"(",
"x",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"title",
"(",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
str_upper
|
Converts all strings in a column to uppercase.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.upper()
Expression = str_upper(text)
Length: 5 dtype: str (expression)
---------------------------------
0 SOMETHING
1 VERY PRETTY
2 IS COMING
3 OUR
4 WAY.
|
packages/vaex-core/vaex/functions.py
|
def str_upper(x):
"""Converts all strings in a column to uppercase.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.upper()
Expression = str_upper(text)
Length: 5 dtype: str (expression)
---------------------------------
0 SOMETHING
1 VERY PRETTY
2 IS COMING
3 OUR
4 WAY.
"""
sl = _to_string_sequence(x).upper()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def str_upper(x):
"""Converts all strings in a column to uppercase.
:returns: an expression containing the converted strings.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.upper()
Expression = str_upper(text)
Length: 5 dtype: str (expression)
---------------------------------
0 SOMETHING
1 VERY PRETTY
2 IS COMING
3 OUR
4 WAY.
"""
sl = _to_string_sequence(x).upper()
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Converts",
"all",
"strings",
"in",
"a",
"column",
"to",
"uppercase",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1445-L1476
|
[
"def",
"str_upper",
"(",
"x",
")",
":",
"sl",
"=",
"_to_string_sequence",
"(",
"x",
")",
".",
"upper",
"(",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
format
|
Uses http://www.cplusplus.com/reference/string/to_string/ for formatting
|
packages/vaex-core/vaex/functions.py
|
def format(x, format):
"""Uses http://www.cplusplus.com/reference/string/to_string/ for formatting"""
# don't change the dtype, otherwise for each block the dtype may be different (string length)
sl = vaex.strings.format(x, format)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
def format(x, format):
"""Uses http://www.cplusplus.com/reference/string/to_string/ for formatting"""
# don't change the dtype, otherwise for each block the dtype may be different (string length)
sl = vaex.strings.format(x, format)
return column.ColumnStringArrow(sl.bytes, sl.indices, sl.length, sl.offset, string_sequence=sl)
|
[
"Uses",
"http",
":",
"//",
"www",
".",
"cplusplus",
".",
"com",
"/",
"reference",
"/",
"string",
"/",
"to_string",
"/",
"for",
"formatting"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/functions.py#L1720-L1724
|
[
"def",
"format",
"(",
"x",
",",
"format",
")",
":",
"# don't change the dtype, otherwise for each block the dtype may be different (string length)",
"sl",
"=",
"vaex",
".",
"strings",
".",
"format",
"(",
"x",
",",
"format",
")",
"return",
"column",
".",
"ColumnStringArrow",
"(",
"sl",
".",
"bytes",
",",
"sl",
".",
"indices",
",",
"sl",
".",
"length",
",",
"sl",
".",
"offset",
",",
"string_sequence",
"=",
"sl",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
Hdf5MemoryMapped.write_meta
|
ucds, descriptions and units are written as attributes in the hdf5 file, instead of a seperate file as
the default :func:`Dataset.write_meta`.
|
packages/vaex-hdf5/vaex/hdf5/dataset.py
|
def write_meta(self):
"""ucds, descriptions and units are written as attributes in the hdf5 file, instead of a seperate file as
the default :func:`Dataset.write_meta`.
"""
with h5py.File(self.filename, "r+") as h5file_output:
h5table_root = h5file_output[self.h5table_root_name]
if self.description is not None:
h5table_root.attrs["description"] = self.description
h5columns = h5table_root if self._version == 1 else h5table_root['columns']
for column_name in self.columns.keys():
h5dataset = None
if column_name in h5columns:
h5dataset = h5columns[column_name]
else:
for group in h5columns.values():
if 'type' in group.attrs:
if group.attrs['type'] in ['csr_matrix']:
for name, column in group.items():
if name == column_name:
h5dataset = column
if h5dataset is None:
raise ValueError('column {} not found'.format(column_name))
for name, values in [("ucd", self.ucds), ("unit", self.units), ("description", self.descriptions)]:
if column_name in values:
value = ensure_string(values[column_name], cast=True)
h5dataset.attrs[name] = value
else:
if name in h5columns.attrs:
del h5dataset.attrs[name]
|
def write_meta(self):
"""ucds, descriptions and units are written as attributes in the hdf5 file, instead of a seperate file as
the default :func:`Dataset.write_meta`.
"""
with h5py.File(self.filename, "r+") as h5file_output:
h5table_root = h5file_output[self.h5table_root_name]
if self.description is not None:
h5table_root.attrs["description"] = self.description
h5columns = h5table_root if self._version == 1 else h5table_root['columns']
for column_name in self.columns.keys():
h5dataset = None
if column_name in h5columns:
h5dataset = h5columns[column_name]
else:
for group in h5columns.values():
if 'type' in group.attrs:
if group.attrs['type'] in ['csr_matrix']:
for name, column in group.items():
if name == column_name:
h5dataset = column
if h5dataset is None:
raise ValueError('column {} not found'.format(column_name))
for name, values in [("ucd", self.ucds), ("unit", self.units), ("description", self.descriptions)]:
if column_name in values:
value = ensure_string(values[column_name], cast=True)
h5dataset.attrs[name] = value
else:
if name in h5columns.attrs:
del h5dataset.attrs[name]
|
[
"ucds",
"descriptions",
"and",
"units",
"are",
"written",
"as",
"attributes",
"in",
"the",
"hdf5",
"file",
"instead",
"of",
"a",
"seperate",
"file",
"as",
"the",
"default",
":",
"func",
":",
"Dataset",
".",
"write_meta",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-hdf5/vaex/hdf5/dataset.py#L70-L98
|
[
"def",
"write_meta",
"(",
"self",
")",
":",
"with",
"h5py",
".",
"File",
"(",
"self",
".",
"filename",
",",
"\"r+\"",
")",
"as",
"h5file_output",
":",
"h5table_root",
"=",
"h5file_output",
"[",
"self",
".",
"h5table_root_name",
"]",
"if",
"self",
".",
"description",
"is",
"not",
"None",
":",
"h5table_root",
".",
"attrs",
"[",
"\"description\"",
"]",
"=",
"self",
".",
"description",
"h5columns",
"=",
"h5table_root",
"if",
"self",
".",
"_version",
"==",
"1",
"else",
"h5table_root",
"[",
"'columns'",
"]",
"for",
"column_name",
"in",
"self",
".",
"columns",
".",
"keys",
"(",
")",
":",
"h5dataset",
"=",
"None",
"if",
"column_name",
"in",
"h5columns",
":",
"h5dataset",
"=",
"h5columns",
"[",
"column_name",
"]",
"else",
":",
"for",
"group",
"in",
"h5columns",
".",
"values",
"(",
")",
":",
"if",
"'type'",
"in",
"group",
".",
"attrs",
":",
"if",
"group",
".",
"attrs",
"[",
"'type'",
"]",
"in",
"[",
"'csr_matrix'",
"]",
":",
"for",
"name",
",",
"column",
"in",
"group",
".",
"items",
"(",
")",
":",
"if",
"name",
"==",
"column_name",
":",
"h5dataset",
"=",
"column",
"if",
"h5dataset",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"'column {} not found'",
".",
"format",
"(",
"column_name",
")",
")",
"for",
"name",
",",
"values",
"in",
"[",
"(",
"\"ucd\"",
",",
"self",
".",
"ucds",
")",
",",
"(",
"\"unit\"",
",",
"self",
".",
"units",
")",
",",
"(",
"\"description\"",
",",
"self",
".",
"descriptions",
")",
"]",
":",
"if",
"column_name",
"in",
"values",
":",
"value",
"=",
"ensure_string",
"(",
"values",
"[",
"column_name",
"]",
",",
"cast",
"=",
"True",
")",
"h5dataset",
".",
"attrs",
"[",
"name",
"]",
"=",
"value",
"else",
":",
"if",
"name",
"in",
"h5columns",
".",
"attrs",
":",
"del",
"h5dataset",
".",
"attrs",
"[",
"name",
"]"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
Hdf5MemoryMapped.create
|
Create a new (empty) hdf5 file with columns given by column names, of length N
Optionally, numpy dtypes can be passed, default is floats
|
packages/vaex-hdf5/vaex/hdf5/dataset.py
|
def create(cls, path, N, column_names, dtypes=None, write=True):
"""Create a new (empty) hdf5 file with columns given by column names, of length N
Optionally, numpy dtypes can be passed, default is floats
"""
dtypes = dtypes or [np.float] * len(column_names)
if N == 0:
raise ValueError("Cannot export empty table")
with h5py.File(path, "w") as h5file_output:
h5data_output = h5file_output.require_group("data")
for column_name, dtype in zip(column_names, dtypes):
shape = (N,)
print(dtype)
if dtype.type == np.datetime64:
array = h5file_output.require_dataset("/data/%s" % column_name, shape=shape, dtype=np.int64)
array.attrs["dtype"] = dtype.name
else:
array = h5file_output.require_dataset("/data/%s" % column_name, shape=shape, dtype=dtype)
array[0] = array[0] # make sure the array really exists
return Hdf5MemoryMapped(path, write=write)
|
def create(cls, path, N, column_names, dtypes=None, write=True):
"""Create a new (empty) hdf5 file with columns given by column names, of length N
Optionally, numpy dtypes can be passed, default is floats
"""
dtypes = dtypes or [np.float] * len(column_names)
if N == 0:
raise ValueError("Cannot export empty table")
with h5py.File(path, "w") as h5file_output:
h5data_output = h5file_output.require_group("data")
for column_name, dtype in zip(column_names, dtypes):
shape = (N,)
print(dtype)
if dtype.type == np.datetime64:
array = h5file_output.require_dataset("/data/%s" % column_name, shape=shape, dtype=np.int64)
array.attrs["dtype"] = dtype.name
else:
array = h5file_output.require_dataset("/data/%s" % column_name, shape=shape, dtype=dtype)
array[0] = array[0] # make sure the array really exists
return Hdf5MemoryMapped(path, write=write)
|
[
"Create",
"a",
"new",
"(",
"empty",
")",
"hdf5",
"file",
"with",
"columns",
"given",
"by",
"column",
"names",
"of",
"length",
"N"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-hdf5/vaex/hdf5/dataset.py#L101-L122
|
[
"def",
"create",
"(",
"cls",
",",
"path",
",",
"N",
",",
"column_names",
",",
"dtypes",
"=",
"None",
",",
"write",
"=",
"True",
")",
":",
"dtypes",
"=",
"dtypes",
"or",
"[",
"np",
".",
"float",
"]",
"*",
"len",
"(",
"column_names",
")",
"if",
"N",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"\"Cannot export empty table\"",
")",
"with",
"h5py",
".",
"File",
"(",
"path",
",",
"\"w\"",
")",
"as",
"h5file_output",
":",
"h5data_output",
"=",
"h5file_output",
".",
"require_group",
"(",
"\"data\"",
")",
"for",
"column_name",
",",
"dtype",
"in",
"zip",
"(",
"column_names",
",",
"dtypes",
")",
":",
"shape",
"=",
"(",
"N",
",",
")",
"print",
"(",
"dtype",
")",
"if",
"dtype",
".",
"type",
"==",
"np",
".",
"datetime64",
":",
"array",
"=",
"h5file_output",
".",
"require_dataset",
"(",
"\"/data/%s\"",
"%",
"column_name",
",",
"shape",
"=",
"shape",
",",
"dtype",
"=",
"np",
".",
"int64",
")",
"array",
".",
"attrs",
"[",
"\"dtype\"",
"]",
"=",
"dtype",
".",
"name",
"else",
":",
"array",
"=",
"h5file_output",
".",
"require_dataset",
"(",
"\"/data/%s\"",
"%",
"column_name",
",",
"shape",
"=",
"shape",
",",
"dtype",
"=",
"dtype",
")",
"array",
"[",
"0",
"]",
"=",
"array",
"[",
"0",
"]",
"# make sure the array really exists",
"return",
"Hdf5MemoryMapped",
"(",
"path",
",",
"write",
"=",
"write",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
readcol
|
The default return is a two dimensional float array. If you want a list of
columns output instead of a 2D array, pass 'twod=False'. In this case,
each column's data type will be automatically detected.
Example usage:
CASE 1) a table has the format:
X Y Z
0.0 2.4 8.2
1.0 3.4 5.6
0.7 3.2 2.1
...
names,(x,y,z)=readcol("myfile.tbl",names=True,twod=False)
or
x,y,z=readcol("myfile.tbl",skipline=1,twod=False)
or
names,xx = readcol("myfile.tbl",names=True)
or
xxdict = readcol("myfile.tbl",asdict=True)
or
xxstruct = readcol("myfile.tbl",asStruct=True)
CASE 2) no title is contained into the table, then there is
no need to skipline:
x,y,z=readcol("myfile.tbl")
CASE 3) there is a names column and then more descriptive text:
X Y Z
(deg) (deg) (km/s)
0.0 2.4 8.2
1.0 3.4. 5.6
...
then use:
names,x,y,z=readcol("myfile.tbl",names=True,skipline=1,twod=False)
or
x,y,z=readcol("myfile.tbl",skipline=2,twod=False)
INPUTS:
fsep - field separator, e.g. for comma separated value (csv) files
skipline - number of lines to ignore at the start of the file
names - read / don't read in the first line as a list of column names
can specify an integer line number too, though it will be
the line number after skipping lines
twod - two dimensional or one dimensional output
nullval - if specified, all instances of this value will be replaced
with a floating NaN
asdict - zips names with data to create a dict with column headings
tied to column data. If asdict=True, names will be set to True
asStruct - same as asdict, but returns a structure instead of a dictionary
(i.e. you call struct.key instead of struct['key'])
fixedformat - if you have a fixed format file, this is a python list of
column lengths. e.g. the first table above would be [3,5,5]. Note
that if you specify the wrong fixed format, you will get junk; if your
format total is greater than the line length, the last entries will all
be blank but readcol will not report an error.
namecomment - assumed that "Name" row is on a comment line. If it is not -
e.g., it is the first non-comment line, change this to False
removeblanks - remove all blank entries from split lines. This can cause lost
data if you have blank entries on some lines.
header_badchars - remove these characters from a header before parsing it
(helpful for IPAC tables that are delimited with | )
If you get this error: "scipy could not be imported. Your table must have
full rows." it means readcol cannot automatically guess which columns
contain data. If you have scipy and columns of varying length, readcol will
read in all of the rows with length=mode(row lengths).
|
packages/vaex-core/vaex/ext/readcol.py
|
def readcol(filename,skipline=0,skipafter=0,names=False,fsep=None,twod=True,
fixedformat=None,asdict=False,comment='#',verbose=True,nullval=None,
asStruct=False,namecomment=True,removeblanks=False,header_badchars=None,
asRecArray=False):
"""
The default return is a two dimensional float array. If you want a list of
columns output instead of a 2D array, pass 'twod=False'. In this case,
each column's data type will be automatically detected.
Example usage:
CASE 1) a table has the format:
X Y Z
0.0 2.4 8.2
1.0 3.4 5.6
0.7 3.2 2.1
...
names,(x,y,z)=readcol("myfile.tbl",names=True,twod=False)
or
x,y,z=readcol("myfile.tbl",skipline=1,twod=False)
or
names,xx = readcol("myfile.tbl",names=True)
or
xxdict = readcol("myfile.tbl",asdict=True)
or
xxstruct = readcol("myfile.tbl",asStruct=True)
CASE 2) no title is contained into the table, then there is
no need to skipline:
x,y,z=readcol("myfile.tbl")
CASE 3) there is a names column and then more descriptive text:
X Y Z
(deg) (deg) (km/s)
0.0 2.4 8.2
1.0 3.4. 5.6
...
then use:
names,x,y,z=readcol("myfile.tbl",names=True,skipline=1,twod=False)
or
x,y,z=readcol("myfile.tbl",skipline=2,twod=False)
INPUTS:
fsep - field separator, e.g. for comma separated value (csv) files
skipline - number of lines to ignore at the start of the file
names - read / don't read in the first line as a list of column names
can specify an integer line number too, though it will be
the line number after skipping lines
twod - two dimensional or one dimensional output
nullval - if specified, all instances of this value will be replaced
with a floating NaN
asdict - zips names with data to create a dict with column headings
tied to column data. If asdict=True, names will be set to True
asStruct - same as asdict, but returns a structure instead of a dictionary
(i.e. you call struct.key instead of struct['key'])
fixedformat - if you have a fixed format file, this is a python list of
column lengths. e.g. the first table above would be [3,5,5]. Note
that if you specify the wrong fixed format, you will get junk; if your
format total is greater than the line length, the last entries will all
be blank but readcol will not report an error.
namecomment - assumed that "Name" row is on a comment line. If it is not -
e.g., it is the first non-comment line, change this to False
removeblanks - remove all blank entries from split lines. This can cause lost
data if you have blank entries on some lines.
header_badchars - remove these characters from a header before parsing it
(helpful for IPAC tables that are delimited with | )
If you get this error: "scipy could not be imported. Your table must have
full rows." it means readcol cannot automatically guess which columns
contain data. If you have scipy and columns of varying length, readcol will
read in all of the rows with length=mode(row lengths).
"""
with open(filename,'r') as f:
f = f.readlines()
null=[f.pop(0) for i in range(skipline)]
commentfilter = make_commentfilter(comment)
if not asStruct:
asStruct = asRecArray
if namecomment is False and (names or asdict or asStruct):
while 1:
line = f.pop(0)
if line[0] != comment:
nameline = line
if header_badchars:
for c in header_badchars:
nameline = nameline.replace(c,' ')
nms=nameline.split(fsep)
break
elif len(f) == 0:
raise Exception("No uncommented lines found.")
else:
if names or asdict or asStruct:
# can specify name line
if type(names) == type(1):
nameline = f.pop(names)
else:
nameline = f.pop(0)
if nameline[0]==comment:
nameline = nameline[1:]
if header_badchars:
for c in header_badchars:
nameline = nameline.replace(c,' ')
nms=list([name.strip() for name in nameline.split(fsep)])
null=[f.pop(0) for i in range(skipafter)]
if fixedformat:
myreadff = lambda x: readff(x,fixedformat)
splitarr = list(map(myreadff,f))
splitarr = list(filter(commentfilter,splitarr))
else:
fstrip = list(map(str.strip,f))
fseps = [ fsep for i in range(len(f)) ]
splitarr = list(map(str.split,fstrip,fseps))
if removeblanks:
for i in range(splitarr.count([''])):
splitarr.remove([''])
splitarr = list(filter(commentfilter,splitarr))
# check to make sure each line has the same number of columns to avoid
# "ValueError: setting an array element with a sequence."
nperline = list(map(len,splitarr))
if hasmode:
ncols,nrows = mode(nperline)
if nrows != len(splitarr):
if verbose:
print("Removing %i rows that don't match most common length %i. \
\n%i rows read into array." % (len(splitarr) - nrows,ncols,nrows))
for i in range(len(splitarr)-1,-1,-1): # need to go backwards
if nperline[i] != ncols:
splitarr.pop(i)
try:
x = numpy.asarray( splitarr , dtype='float')
except ValueError:
if verbose:
print("WARNING: reading as string array because %s array failed" % 'float')
try:
x = numpy.asarray( splitarr , dtype='S')
except ValueError:
if hasmode:
raise Exception( "ValueError when converting data to array." + \
" You have scipy.mode on your system, so this is " + \
"probably not an issue of differing row lengths." )
else:
raise Exception( "Conversion to array error. You probably " + \
"have different row lengths and scipy.mode was not " + \
"imported." )
if nullval is not None:
x[x==nullval] = numpy.nan
x = get_autotype(x)
if asdict or asStruct:
mydict = OrderedDict(zip(nms,x.T))
for k,v in mydict.items():
mydict[k] = get_autotype(v)
if asdict:
return mydict
elif asRecArray:
return Struct(mydict).as_recarray()
elif asStruct:
return Struct(mydict)
elif names and twod:
return nms,x
elif names:
# if not returning a twod array, try to return each vector as the spec. type
return nms,[ get_autotype(x.T[i]) for i in range(x.shape[1]) ]
else:
if twod:
return x
else:
return [ get_autotype(x.T[i]) for i in range(x.shape[1]) ]
|
def readcol(filename,skipline=0,skipafter=0,names=False,fsep=None,twod=True,
fixedformat=None,asdict=False,comment='#',verbose=True,nullval=None,
asStruct=False,namecomment=True,removeblanks=False,header_badchars=None,
asRecArray=False):
"""
The default return is a two dimensional float array. If you want a list of
columns output instead of a 2D array, pass 'twod=False'. In this case,
each column's data type will be automatically detected.
Example usage:
CASE 1) a table has the format:
X Y Z
0.0 2.4 8.2
1.0 3.4 5.6
0.7 3.2 2.1
...
names,(x,y,z)=readcol("myfile.tbl",names=True,twod=False)
or
x,y,z=readcol("myfile.tbl",skipline=1,twod=False)
or
names,xx = readcol("myfile.tbl",names=True)
or
xxdict = readcol("myfile.tbl",asdict=True)
or
xxstruct = readcol("myfile.tbl",asStruct=True)
CASE 2) no title is contained into the table, then there is
no need to skipline:
x,y,z=readcol("myfile.tbl")
CASE 3) there is a names column and then more descriptive text:
X Y Z
(deg) (deg) (km/s)
0.0 2.4 8.2
1.0 3.4. 5.6
...
then use:
names,x,y,z=readcol("myfile.tbl",names=True,skipline=1,twod=False)
or
x,y,z=readcol("myfile.tbl",skipline=2,twod=False)
INPUTS:
fsep - field separator, e.g. for comma separated value (csv) files
skipline - number of lines to ignore at the start of the file
names - read / don't read in the first line as a list of column names
can specify an integer line number too, though it will be
the line number after skipping lines
twod - two dimensional or one dimensional output
nullval - if specified, all instances of this value will be replaced
with a floating NaN
asdict - zips names with data to create a dict with column headings
tied to column data. If asdict=True, names will be set to True
asStruct - same as asdict, but returns a structure instead of a dictionary
(i.e. you call struct.key instead of struct['key'])
fixedformat - if you have a fixed format file, this is a python list of
column lengths. e.g. the first table above would be [3,5,5]. Note
that if you specify the wrong fixed format, you will get junk; if your
format total is greater than the line length, the last entries will all
be blank but readcol will not report an error.
namecomment - assumed that "Name" row is on a comment line. If it is not -
e.g., it is the first non-comment line, change this to False
removeblanks - remove all blank entries from split lines. This can cause lost
data if you have blank entries on some lines.
header_badchars - remove these characters from a header before parsing it
(helpful for IPAC tables that are delimited with | )
If you get this error: "scipy could not be imported. Your table must have
full rows." it means readcol cannot automatically guess which columns
contain data. If you have scipy and columns of varying length, readcol will
read in all of the rows with length=mode(row lengths).
"""
with open(filename,'r') as f:
f = f.readlines()
null=[f.pop(0) for i in range(skipline)]
commentfilter = make_commentfilter(comment)
if not asStruct:
asStruct = asRecArray
if namecomment is False and (names or asdict or asStruct):
while 1:
line = f.pop(0)
if line[0] != comment:
nameline = line
if header_badchars:
for c in header_badchars:
nameline = nameline.replace(c,' ')
nms=nameline.split(fsep)
break
elif len(f) == 0:
raise Exception("No uncommented lines found.")
else:
if names or asdict or asStruct:
# can specify name line
if type(names) == type(1):
nameline = f.pop(names)
else:
nameline = f.pop(0)
if nameline[0]==comment:
nameline = nameline[1:]
if header_badchars:
for c in header_badchars:
nameline = nameline.replace(c,' ')
nms=list([name.strip() for name in nameline.split(fsep)])
null=[f.pop(0) for i in range(skipafter)]
if fixedformat:
myreadff = lambda x: readff(x,fixedformat)
splitarr = list(map(myreadff,f))
splitarr = list(filter(commentfilter,splitarr))
else:
fstrip = list(map(str.strip,f))
fseps = [ fsep for i in range(len(f)) ]
splitarr = list(map(str.split,fstrip,fseps))
if removeblanks:
for i in range(splitarr.count([''])):
splitarr.remove([''])
splitarr = list(filter(commentfilter,splitarr))
# check to make sure each line has the same number of columns to avoid
# "ValueError: setting an array element with a sequence."
nperline = list(map(len,splitarr))
if hasmode:
ncols,nrows = mode(nperline)
if nrows != len(splitarr):
if verbose:
print("Removing %i rows that don't match most common length %i. \
\n%i rows read into array." % (len(splitarr) - nrows,ncols,nrows))
for i in range(len(splitarr)-1,-1,-1): # need to go backwards
if nperline[i] != ncols:
splitarr.pop(i)
try:
x = numpy.asarray( splitarr , dtype='float')
except ValueError:
if verbose:
print("WARNING: reading as string array because %s array failed" % 'float')
try:
x = numpy.asarray( splitarr , dtype='S')
except ValueError:
if hasmode:
raise Exception( "ValueError when converting data to array." + \
" You have scipy.mode on your system, so this is " + \
"probably not an issue of differing row lengths." )
else:
raise Exception( "Conversion to array error. You probably " + \
"have different row lengths and scipy.mode was not " + \
"imported." )
if nullval is not None:
x[x==nullval] = numpy.nan
x = get_autotype(x)
if asdict or asStruct:
mydict = OrderedDict(zip(nms,x.T))
for k,v in mydict.items():
mydict[k] = get_autotype(v)
if asdict:
return mydict
elif asRecArray:
return Struct(mydict).as_recarray()
elif asStruct:
return Struct(mydict)
elif names and twod:
return nms,x
elif names:
# if not returning a twod array, try to return each vector as the spec. type
return nms,[ get_autotype(x.T[i]) for i in range(x.shape[1]) ]
else:
if twod:
return x
else:
return [ get_autotype(x.T[i]) for i in range(x.shape[1]) ]
|
[
"The",
"default",
"return",
"is",
"a",
"two",
"dimensional",
"float",
"array",
".",
"If",
"you",
"want",
"a",
"list",
"of",
"columns",
"output",
"instead",
"of",
"a",
"2D",
"array",
"pass",
"twod",
"=",
"False",
".",
"In",
"this",
"case",
"each",
"column",
"s",
"data",
"type",
"will",
"be",
"automatically",
"detected",
".",
"Example",
"usage",
":",
"CASE",
"1",
")",
"a",
"table",
"has",
"the",
"format",
":",
"X",
"Y",
"Z",
"0",
".",
"0",
"2",
".",
"4",
"8",
".",
"2",
"1",
".",
"0",
"3",
".",
"4",
"5",
".",
"6",
"0",
".",
"7",
"3",
".",
"2",
"2",
".",
"1",
"...",
"names",
"(",
"x",
"y",
"z",
")",
"=",
"readcol",
"(",
"myfile",
".",
"tbl",
"names",
"=",
"True",
"twod",
"=",
"False",
")",
"or",
"x",
"y",
"z",
"=",
"readcol",
"(",
"myfile",
".",
"tbl",
"skipline",
"=",
"1",
"twod",
"=",
"False",
")",
"or",
"names",
"xx",
"=",
"readcol",
"(",
"myfile",
".",
"tbl",
"names",
"=",
"True",
")",
"or",
"xxdict",
"=",
"readcol",
"(",
"myfile",
".",
"tbl",
"asdict",
"=",
"True",
")",
"or",
"xxstruct",
"=",
"readcol",
"(",
"myfile",
".",
"tbl",
"asStruct",
"=",
"True",
")"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/readcol.py#L45-L221
|
[
"def",
"readcol",
"(",
"filename",
",",
"skipline",
"=",
"0",
",",
"skipafter",
"=",
"0",
",",
"names",
"=",
"False",
",",
"fsep",
"=",
"None",
",",
"twod",
"=",
"True",
",",
"fixedformat",
"=",
"None",
",",
"asdict",
"=",
"False",
",",
"comment",
"=",
"'#'",
",",
"verbose",
"=",
"True",
",",
"nullval",
"=",
"None",
",",
"asStruct",
"=",
"False",
",",
"namecomment",
"=",
"True",
",",
"removeblanks",
"=",
"False",
",",
"header_badchars",
"=",
"None",
",",
"asRecArray",
"=",
"False",
")",
":",
"with",
"open",
"(",
"filename",
",",
"'r'",
")",
"as",
"f",
":",
"f",
"=",
"f",
".",
"readlines",
"(",
")",
"null",
"=",
"[",
"f",
".",
"pop",
"(",
"0",
")",
"for",
"i",
"in",
"range",
"(",
"skipline",
")",
"]",
"commentfilter",
"=",
"make_commentfilter",
"(",
"comment",
")",
"if",
"not",
"asStruct",
":",
"asStruct",
"=",
"asRecArray",
"if",
"namecomment",
"is",
"False",
"and",
"(",
"names",
"or",
"asdict",
"or",
"asStruct",
")",
":",
"while",
"1",
":",
"line",
"=",
"f",
".",
"pop",
"(",
"0",
")",
"if",
"line",
"[",
"0",
"]",
"!=",
"comment",
":",
"nameline",
"=",
"line",
"if",
"header_badchars",
":",
"for",
"c",
"in",
"header_badchars",
":",
"nameline",
"=",
"nameline",
".",
"replace",
"(",
"c",
",",
"' '",
")",
"nms",
"=",
"nameline",
".",
"split",
"(",
"fsep",
")",
"break",
"elif",
"len",
"(",
"f",
")",
"==",
"0",
":",
"raise",
"Exception",
"(",
"\"No uncommented lines found.\"",
")",
"else",
":",
"if",
"names",
"or",
"asdict",
"or",
"asStruct",
":",
"# can specify name line",
"if",
"type",
"(",
"names",
")",
"==",
"type",
"(",
"1",
")",
":",
"nameline",
"=",
"f",
".",
"pop",
"(",
"names",
")",
"else",
":",
"nameline",
"=",
"f",
".",
"pop",
"(",
"0",
")",
"if",
"nameline",
"[",
"0",
"]",
"==",
"comment",
":",
"nameline",
"=",
"nameline",
"[",
"1",
":",
"]",
"if",
"header_badchars",
":",
"for",
"c",
"in",
"header_badchars",
":",
"nameline",
"=",
"nameline",
".",
"replace",
"(",
"c",
",",
"' '",
")",
"nms",
"=",
"list",
"(",
"[",
"name",
".",
"strip",
"(",
")",
"for",
"name",
"in",
"nameline",
".",
"split",
"(",
"fsep",
")",
"]",
")",
"null",
"=",
"[",
"f",
".",
"pop",
"(",
"0",
")",
"for",
"i",
"in",
"range",
"(",
"skipafter",
")",
"]",
"if",
"fixedformat",
":",
"myreadff",
"=",
"lambda",
"x",
":",
"readff",
"(",
"x",
",",
"fixedformat",
")",
"splitarr",
"=",
"list",
"(",
"map",
"(",
"myreadff",
",",
"f",
")",
")",
"splitarr",
"=",
"list",
"(",
"filter",
"(",
"commentfilter",
",",
"splitarr",
")",
")",
"else",
":",
"fstrip",
"=",
"list",
"(",
"map",
"(",
"str",
".",
"strip",
",",
"f",
")",
")",
"fseps",
"=",
"[",
"fsep",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"f",
")",
")",
"]",
"splitarr",
"=",
"list",
"(",
"map",
"(",
"str",
".",
"split",
",",
"fstrip",
",",
"fseps",
")",
")",
"if",
"removeblanks",
":",
"for",
"i",
"in",
"range",
"(",
"splitarr",
".",
"count",
"(",
"[",
"''",
"]",
")",
")",
":",
"splitarr",
".",
"remove",
"(",
"[",
"''",
"]",
")",
"splitarr",
"=",
"list",
"(",
"filter",
"(",
"commentfilter",
",",
"splitarr",
")",
")",
"# check to make sure each line has the same number of columns to avoid",
"# \"ValueError: setting an array element with a sequence.\"",
"nperline",
"=",
"list",
"(",
"map",
"(",
"len",
",",
"splitarr",
")",
")",
"if",
"hasmode",
":",
"ncols",
",",
"nrows",
"=",
"mode",
"(",
"nperline",
")",
"if",
"nrows",
"!=",
"len",
"(",
"splitarr",
")",
":",
"if",
"verbose",
":",
"print",
"(",
"\"Removing %i rows that don't match most common length %i. \\\n \\n%i rows read into array.\"",
"%",
"(",
"len",
"(",
"splitarr",
")",
"-",
"nrows",
",",
"ncols",
",",
"nrows",
")",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"splitarr",
")",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
")",
":",
"# need to go backwards",
"if",
"nperline",
"[",
"i",
"]",
"!=",
"ncols",
":",
"splitarr",
".",
"pop",
"(",
"i",
")",
"try",
":",
"x",
"=",
"numpy",
".",
"asarray",
"(",
"splitarr",
",",
"dtype",
"=",
"'float'",
")",
"except",
"ValueError",
":",
"if",
"verbose",
":",
"print",
"(",
"\"WARNING: reading as string array because %s array failed\"",
"%",
"'float'",
")",
"try",
":",
"x",
"=",
"numpy",
".",
"asarray",
"(",
"splitarr",
",",
"dtype",
"=",
"'S'",
")",
"except",
"ValueError",
":",
"if",
"hasmode",
":",
"raise",
"Exception",
"(",
"\"ValueError when converting data to array.\"",
"+",
"\" You have scipy.mode on your system, so this is \"",
"+",
"\"probably not an issue of differing row lengths.\"",
")",
"else",
":",
"raise",
"Exception",
"(",
"\"Conversion to array error. You probably \"",
"+",
"\"have different row lengths and scipy.mode was not \"",
"+",
"\"imported.\"",
")",
"if",
"nullval",
"is",
"not",
"None",
":",
"x",
"[",
"x",
"==",
"nullval",
"]",
"=",
"numpy",
".",
"nan",
"x",
"=",
"get_autotype",
"(",
"x",
")",
"if",
"asdict",
"or",
"asStruct",
":",
"mydict",
"=",
"OrderedDict",
"(",
"zip",
"(",
"nms",
",",
"x",
".",
"T",
")",
")",
"for",
"k",
",",
"v",
"in",
"mydict",
".",
"items",
"(",
")",
":",
"mydict",
"[",
"k",
"]",
"=",
"get_autotype",
"(",
"v",
")",
"if",
"asdict",
":",
"return",
"mydict",
"elif",
"asRecArray",
":",
"return",
"Struct",
"(",
"mydict",
")",
".",
"as_recarray",
"(",
")",
"elif",
"asStruct",
":",
"return",
"Struct",
"(",
"mydict",
")",
"elif",
"names",
"and",
"twod",
":",
"return",
"nms",
",",
"x",
"elif",
"names",
":",
"# if not returning a twod array, try to return each vector as the spec. type",
"return",
"nms",
",",
"[",
"get_autotype",
"(",
"x",
".",
"T",
"[",
"i",
"]",
")",
"for",
"i",
"in",
"range",
"(",
"x",
".",
"shape",
"[",
"1",
"]",
")",
"]",
"else",
":",
"if",
"twod",
":",
"return",
"x",
"else",
":",
"return",
"[",
"get_autotype",
"(",
"x",
".",
"T",
"[",
"i",
"]",
")",
"for",
"i",
"in",
"range",
"(",
"x",
".",
"shape",
"[",
"1",
"]",
")",
"]"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
get_autotype
|
Attempts to return a numpy array converted to the most sensible dtype
Value errors will be caught and simply return the original array
Tries to make dtype int, then float, then no change
|
packages/vaex-core/vaex/ext/readcol.py
|
def get_autotype(arr):
"""
Attempts to return a numpy array converted to the most sensible dtype
Value errors will be caught and simply return the original array
Tries to make dtype int, then float, then no change
"""
try:
narr = arr.astype('float')
if (narr < sys.maxsize).all() and (narr % 1).sum() == 0:
return narr.astype('int')
else:
return narr
except ValueError:
return arr
|
def get_autotype(arr):
"""
Attempts to return a numpy array converted to the most sensible dtype
Value errors will be caught and simply return the original array
Tries to make dtype int, then float, then no change
"""
try:
narr = arr.astype('float')
if (narr < sys.maxsize).all() and (narr % 1).sum() == 0:
return narr.astype('int')
else:
return narr
except ValueError:
return arr
|
[
"Attempts",
"to",
"return",
"a",
"numpy",
"array",
"converted",
"to",
"the",
"most",
"sensible",
"dtype",
"Value",
"errors",
"will",
"be",
"caught",
"and",
"simply",
"return",
"the",
"original",
"array",
"Tries",
"to",
"make",
"dtype",
"int",
"then",
"float",
"then",
"no",
"change"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/readcol.py#L223-L236
|
[
"def",
"get_autotype",
"(",
"arr",
")",
":",
"try",
":",
"narr",
"=",
"arr",
".",
"astype",
"(",
"'float'",
")",
"if",
"(",
"narr",
"<",
"sys",
".",
"maxsize",
")",
".",
"all",
"(",
")",
"and",
"(",
"narr",
"%",
"1",
")",
".",
"sum",
"(",
")",
"==",
"0",
":",
"return",
"narr",
".",
"astype",
"(",
"'int'",
")",
"else",
":",
"return",
"narr",
"except",
"ValueError",
":",
"return",
"arr"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
readff
|
Fixed-format reader
Pass in a single line string (s) and a format list,
which needs to be a python list of string lengths
|
packages/vaex-core/vaex/ext/readcol.py
|
def readff(s,format):
"""
Fixed-format reader
Pass in a single line string (s) and a format list,
which needs to be a python list of string lengths
"""
F = numpy.array([0]+format).cumsum()
bothF = zip(F[:-1],F[1:])
strarr = [s[l:u] for l,u in bothF]
return strarr
|
def readff(s,format):
"""
Fixed-format reader
Pass in a single line string (s) and a format list,
which needs to be a python list of string lengths
"""
F = numpy.array([0]+format).cumsum()
bothF = zip(F[:-1],F[1:])
strarr = [s[l:u] for l,u in bothF]
return strarr
|
[
"Fixed",
"-",
"format",
"reader",
"Pass",
"in",
"a",
"single",
"line",
"string",
"(",
"s",
")",
"and",
"a",
"format",
"list",
"which",
"needs",
"to",
"be",
"a",
"python",
"list",
"of",
"string",
"lengths"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/readcol.py#L270-L281
|
[
"def",
"readff",
"(",
"s",
",",
"format",
")",
":",
"F",
"=",
"numpy",
".",
"array",
"(",
"[",
"0",
"]",
"+",
"format",
")",
".",
"cumsum",
"(",
")",
"bothF",
"=",
"zip",
"(",
"F",
"[",
":",
"-",
"1",
"]",
",",
"F",
"[",
"1",
":",
"]",
")",
"strarr",
"=",
"[",
"s",
"[",
"l",
":",
"u",
"]",
"for",
"l",
",",
"u",
"in",
"bothF",
"]",
"return",
"strarr"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
Struct.as_recarray
|
Convert into numpy recordarray
|
packages/vaex-core/vaex/ext/readcol.py
|
def as_recarray(self):
""" Convert into numpy recordarray """
dtype = [(k,v.dtype) for k,v in self.__dict__.iteritems()]
R = numpy.recarray(len(self.__dict__[k]),dtype=dtype)
for key in self.__dict__:
R[key] = self.__dict__[key]
return R
|
def as_recarray(self):
""" Convert into numpy recordarray """
dtype = [(k,v.dtype) for k,v in self.__dict__.iteritems()]
R = numpy.recarray(len(self.__dict__[k]),dtype=dtype)
for key in self.__dict__:
R[key] = self.__dict__[key]
return R
|
[
"Convert",
"into",
"numpy",
"recordarray"
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/readcol.py#L259-L265
|
[
"def",
"as_recarray",
"(",
"self",
")",
":",
"dtype",
"=",
"[",
"(",
"k",
",",
"v",
".",
"dtype",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"__dict__",
".",
"iteritems",
"(",
")",
"]",
"R",
"=",
"numpy",
".",
"recarray",
"(",
"len",
"(",
"self",
".",
"__dict__",
"[",
"k",
"]",
")",
",",
"dtype",
"=",
"dtype",
")",
"for",
"key",
"in",
"self",
".",
"__dict__",
":",
"R",
"[",
"key",
"]",
"=",
"self",
".",
"__dict__",
"[",
"key",
"]",
"return",
"R"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
store_properties
|
Writes properties to the file in Java properties format.
:param fh: a writable file-like object
:param props: a mapping (dict) or iterable of key/value pairs
:param comment: comment to write to the beginning of the file
:param timestamp: boolean indicating whether to write a timestamp comment
|
packages/vaex-core/vaex/ext/jprops.py
|
def store_properties(fh, props, comment=None, timestamp=True):
"""
Writes properties to the file in Java properties format.
:param fh: a writable file-like object
:param props: a mapping (dict) or iterable of key/value pairs
:param comment: comment to write to the beginning of the file
:param timestamp: boolean indicating whether to write a timestamp comment
"""
if comment is not None:
write_comment(fh, comment)
if timestamp:
write_comment(fh, time.strftime('%a %b %d %H:%M:%S %Z %Y'))
if hasattr(props, 'keys'):
for key in props:
write_property(fh, key, props[key])
else:
for key, value in props:
write_property(fh, key, value)
|
def store_properties(fh, props, comment=None, timestamp=True):
"""
Writes properties to the file in Java properties format.
:param fh: a writable file-like object
:param props: a mapping (dict) or iterable of key/value pairs
:param comment: comment to write to the beginning of the file
:param timestamp: boolean indicating whether to write a timestamp comment
"""
if comment is not None:
write_comment(fh, comment)
if timestamp:
write_comment(fh, time.strftime('%a %b %d %H:%M:%S %Z %Y'))
if hasattr(props, 'keys'):
for key in props:
write_property(fh, key, props[key])
else:
for key, value in props:
write_property(fh, key, value)
|
[
"Writes",
"properties",
"to",
"the",
"file",
"in",
"Java",
"properties",
"format",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/jprops.py#L33-L53
|
[
"def",
"store_properties",
"(",
"fh",
",",
"props",
",",
"comment",
"=",
"None",
",",
"timestamp",
"=",
"True",
")",
":",
"if",
"comment",
"is",
"not",
"None",
":",
"write_comment",
"(",
"fh",
",",
"comment",
")",
"if",
"timestamp",
":",
"write_comment",
"(",
"fh",
",",
"time",
".",
"strftime",
"(",
"'%a %b %d %H:%M:%S %Z %Y'",
")",
")",
"if",
"hasattr",
"(",
"props",
",",
"'keys'",
")",
":",
"for",
"key",
"in",
"props",
":",
"write_property",
"(",
"fh",
",",
"key",
",",
"props",
"[",
"key",
"]",
")",
"else",
":",
"for",
"key",
",",
"value",
"in",
"props",
":",
"write_property",
"(",
"fh",
",",
"key",
",",
"value",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
write_comment
|
Writes a comment to the file in Java properties format.
Newlines in the comment text are automatically turned into a continuation
of the comment by adding a "#" to the beginning of each line.
:param fh: a writable file-like object
:param comment: comment string to write
|
packages/vaex-core/vaex/ext/jprops.py
|
def write_comment(fh, comment):
"""
Writes a comment to the file in Java properties format.
Newlines in the comment text are automatically turned into a continuation
of the comment by adding a "#" to the beginning of each line.
:param fh: a writable file-like object
:param comment: comment string to write
"""
_require_string(comment, 'comments')
fh.write(_escape_comment(comment))
fh.write(b'\n')
|
def write_comment(fh, comment):
"""
Writes a comment to the file in Java properties format.
Newlines in the comment text are automatically turned into a continuation
of the comment by adding a "#" to the beginning of each line.
:param fh: a writable file-like object
:param comment: comment string to write
"""
_require_string(comment, 'comments')
fh.write(_escape_comment(comment))
fh.write(b'\n')
|
[
"Writes",
"a",
"comment",
"to",
"the",
"file",
"in",
"Java",
"properties",
"format",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/jprops.py#L56-L68
|
[
"def",
"write_comment",
"(",
"fh",
",",
"comment",
")",
":",
"_require_string",
"(",
"comment",
",",
"'comments'",
")",
"fh",
".",
"write",
"(",
"_escape_comment",
"(",
"comment",
")",
")",
"fh",
".",
"write",
"(",
"b'\\n'",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
write_property
|
Write a single property to the file in Java properties format.
:param fh: a writable file-like object
:param key: the key to write
:param value: the value to write
|
packages/vaex-core/vaex/ext/jprops.py
|
def write_property(fh, key, value):
"""
Write a single property to the file in Java properties format.
:param fh: a writable file-like object
:param key: the key to write
:param value: the value to write
"""
if key is COMMENT:
write_comment(fh, value)
return
_require_string(key, 'keys')
_require_string(value, 'values')
fh.write(_escape_key(key))
fh.write(b'=')
fh.write(_escape_value(value))
fh.write(b'\n')
|
def write_property(fh, key, value):
"""
Write a single property to the file in Java properties format.
:param fh: a writable file-like object
:param key: the key to write
:param value: the value to write
"""
if key is COMMENT:
write_comment(fh, value)
return
_require_string(key, 'keys')
_require_string(value, 'values')
fh.write(_escape_key(key))
fh.write(b'=')
fh.write(_escape_value(value))
fh.write(b'\n')
|
[
"Write",
"a",
"single",
"property",
"to",
"the",
"file",
"in",
"Java",
"properties",
"format",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/jprops.py#L80-L98
|
[
"def",
"write_property",
"(",
"fh",
",",
"key",
",",
"value",
")",
":",
"if",
"key",
"is",
"COMMENT",
":",
"write_comment",
"(",
"fh",
",",
"value",
")",
"return",
"_require_string",
"(",
"key",
",",
"'keys'",
")",
"_require_string",
"(",
"value",
",",
"'values'",
")",
"fh",
".",
"write",
"(",
"_escape_key",
"(",
"key",
")",
")",
"fh",
".",
"write",
"(",
"b'='",
")",
"fh",
".",
"write",
"(",
"_escape_value",
"(",
"value",
")",
")",
"fh",
".",
"write",
"(",
"b'\\n'",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
iter_properties
|
Incrementally read properties from a Java .properties file.
Yields tuples of key/value pairs.
If ``comments`` is `True`, comments will be included with ``jprops.COMMENT``
in place of the key.
:param fh: a readable file-like object
:param comments: should include comments (default: False)
|
packages/vaex-core/vaex/ext/jprops.py
|
def iter_properties(fh, comments=False):
"""
Incrementally read properties from a Java .properties file.
Yields tuples of key/value pairs.
If ``comments`` is `True`, comments will be included with ``jprops.COMMENT``
in place of the key.
:param fh: a readable file-like object
:param comments: should include comments (default: False)
"""
for line in _property_lines(fh):
key, value = _split_key_value(line)
if key is not COMMENT:
key = _unescape(key)
elif not comments:
continue
yield key, _unescape(value)
|
def iter_properties(fh, comments=False):
"""
Incrementally read properties from a Java .properties file.
Yields tuples of key/value pairs.
If ``comments`` is `True`, comments will be included with ``jprops.COMMENT``
in place of the key.
:param fh: a readable file-like object
:param comments: should include comments (default: False)
"""
for line in _property_lines(fh):
key, value = _split_key_value(line)
if key is not COMMENT:
key = _unescape(key)
elif not comments:
continue
yield key, _unescape(value)
|
[
"Incrementally",
"read",
"properties",
"from",
"a",
"Java",
".",
"properties",
"file",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/jprops.py#L101-L119
|
[
"def",
"iter_properties",
"(",
"fh",
",",
"comments",
"=",
"False",
")",
":",
"for",
"line",
"in",
"_property_lines",
"(",
"fh",
")",
":",
"key",
",",
"value",
"=",
"_split_key_value",
"(",
"line",
")",
"if",
"key",
"is",
"not",
"COMMENT",
":",
"key",
"=",
"_unescape",
"(",
"key",
")",
"elif",
"not",
"comments",
":",
"continue",
"yield",
"key",
",",
"_unescape",
"(",
"value",
")"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
_universal_newlines
|
Wrap a file to convert newlines regardless of whether the file was opened
with the "universal newlines" option or not.
|
packages/vaex-core/vaex/ext/jprops.py
|
def _universal_newlines(fp):
"""
Wrap a file to convert newlines regardless of whether the file was opened
with the "universal newlines" option or not.
"""
# if file was opened with universal newline support we don't need to convert
if 'U' in getattr(fp, 'mode', ''):
for line in fp:
yield line
else:
for line in fp:
line = line.replace(b'\r\n', b'\n').replace(b'\r', b'\n')
for piece in line.split(b'\n'):
yield piece
|
def _universal_newlines(fp):
"""
Wrap a file to convert newlines regardless of whether the file was opened
with the "universal newlines" option or not.
"""
# if file was opened with universal newline support we don't need to convert
if 'U' in getattr(fp, 'mode', ''):
for line in fp:
yield line
else:
for line in fp:
line = line.replace(b'\r\n', b'\n').replace(b'\r', b'\n')
for piece in line.split(b'\n'):
yield piece
|
[
"Wrap",
"a",
"file",
"to",
"convert",
"newlines",
"regardless",
"of",
"whether",
"the",
"file",
"was",
"opened",
"with",
"the",
"universal",
"newlines",
"option",
"or",
"not",
"."
] |
vaexio/vaex
|
python
|
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/ext/jprops.py#L260-L273
|
[
"def",
"_universal_newlines",
"(",
"fp",
")",
":",
"# if file was opened with universal newline support we don't need to convert",
"if",
"'U'",
"in",
"getattr",
"(",
"fp",
",",
"'mode'",
",",
"''",
")",
":",
"for",
"line",
"in",
"fp",
":",
"yield",
"line",
"else",
":",
"for",
"line",
"in",
"fp",
":",
"line",
"=",
"line",
".",
"replace",
"(",
"b'\\r\\n'",
",",
"b'\\n'",
")",
".",
"replace",
"(",
"b'\\r'",
",",
"b'\\n'",
")",
"for",
"piece",
"in",
"line",
".",
"split",
"(",
"b'\\n'",
")",
":",
"yield",
"piece"
] |
a45b672f8287afca2ada8e36b74b604b9b28dd85
|
test
|
show_versions
|
Return the version information for all librosa dependencies.
|
librosa/version.py
|
def show_versions():
'''Return the version information for all librosa dependencies.'''
core_deps = ['audioread',
'numpy',
'scipy',
'sklearn',
'joblib',
'decorator',
'six',
'soundfile',
'resampy',
'numba']
extra_deps = ['numpydoc',
'sphinx',
'sphinx_rtd_theme',
'sphinxcontrib.versioning',
'sphinx-gallery',
'pytest',
'pytest-mpl',
'pytest-cov',
'matplotlib']
print('INSTALLED VERSIONS')
print('------------------')
print('python: {}\n'.format(sys.version))
print('librosa: {}\n'.format(version))
for dep in core_deps:
print('{}: {}'.format(dep, __get_mod_version(dep)))
print('')
for dep in extra_deps:
print('{}: {}'.format(dep, __get_mod_version(dep)))
pass
|
def show_versions():
'''Return the version information for all librosa dependencies.'''
core_deps = ['audioread',
'numpy',
'scipy',
'sklearn',
'joblib',
'decorator',
'six',
'soundfile',
'resampy',
'numba']
extra_deps = ['numpydoc',
'sphinx',
'sphinx_rtd_theme',
'sphinxcontrib.versioning',
'sphinx-gallery',
'pytest',
'pytest-mpl',
'pytest-cov',
'matplotlib']
print('INSTALLED VERSIONS')
print('------------------')
print('python: {}\n'.format(sys.version))
print('librosa: {}\n'.format(version))
for dep in core_deps:
print('{}: {}'.format(dep, __get_mod_version(dep)))
print('')
for dep in extra_deps:
print('{}: {}'.format(dep, __get_mod_version(dep)))
pass
|
[
"Return",
"the",
"version",
"information",
"for",
"all",
"librosa",
"dependencies",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/version.py#L28-L61
|
[
"def",
"show_versions",
"(",
")",
":",
"core_deps",
"=",
"[",
"'audioread'",
",",
"'numpy'",
",",
"'scipy'",
",",
"'sklearn'",
",",
"'joblib'",
",",
"'decorator'",
",",
"'six'",
",",
"'soundfile'",
",",
"'resampy'",
",",
"'numba'",
"]",
"extra_deps",
"=",
"[",
"'numpydoc'",
",",
"'sphinx'",
",",
"'sphinx_rtd_theme'",
",",
"'sphinxcontrib.versioning'",
",",
"'sphinx-gallery'",
",",
"'pytest'",
",",
"'pytest-mpl'",
",",
"'pytest-cov'",
",",
"'matplotlib'",
"]",
"print",
"(",
"'INSTALLED VERSIONS'",
")",
"print",
"(",
"'------------------'",
")",
"print",
"(",
"'python: {}\\n'",
".",
"format",
"(",
"sys",
".",
"version",
")",
")",
"print",
"(",
"'librosa: {}\\n'",
".",
"format",
"(",
"version",
")",
")",
"for",
"dep",
"in",
"core_deps",
":",
"print",
"(",
"'{}: {}'",
".",
"format",
"(",
"dep",
",",
"__get_mod_version",
"(",
"dep",
")",
")",
")",
"print",
"(",
"''",
")",
"for",
"dep",
"in",
"extra_deps",
":",
"print",
"(",
"'{}: {}'",
".",
"format",
"(",
"dep",
",",
"__get_mod_version",
"(",
"dep",
")",
")",
")",
"pass"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
rename_kw
|
Handle renamed arguments.
Parameters
----------
old_name : str
old_value
The name and value of the old argument
new_name : str
new_value
The name and value of the new argument
version_deprecated : str
The version at which the old name became deprecated
version_removed : str
The version at which the old name will be removed
Returns
-------
value
- `new_value` if `old_value` of type `Deprecated`
- `old_value` otherwise
Warnings
--------
if `old_value` is not of type `Deprecated`
|
librosa/util/deprecation.py
|
def rename_kw(old_name, old_value, new_name, new_value,
version_deprecated, version_removed):
'''Handle renamed arguments.
Parameters
----------
old_name : str
old_value
The name and value of the old argument
new_name : str
new_value
The name and value of the new argument
version_deprecated : str
The version at which the old name became deprecated
version_removed : str
The version at which the old name will be removed
Returns
-------
value
- `new_value` if `old_value` of type `Deprecated`
- `old_value` otherwise
Warnings
--------
if `old_value` is not of type `Deprecated`
'''
if isinstance(old_value, Deprecated):
return new_value
else:
stack = inspect.stack()
dep_func = stack[1]
caller = stack[2]
warnings.warn_explicit("{:s}() keyword argument '{:s}' has been "
"renamed to '{:s}' in version {:}."
"\n\tThis alias will be removed in version "
"{:}.".format(dep_func[3],
old_name, new_name,
version_deprecated,
version_removed),
category=DeprecationWarning,
filename=caller[1],
lineno=caller[2])
return old_value
|
def rename_kw(old_name, old_value, new_name, new_value,
version_deprecated, version_removed):
'''Handle renamed arguments.
Parameters
----------
old_name : str
old_value
The name and value of the old argument
new_name : str
new_value
The name and value of the new argument
version_deprecated : str
The version at which the old name became deprecated
version_removed : str
The version at which the old name will be removed
Returns
-------
value
- `new_value` if `old_value` of type `Deprecated`
- `old_value` otherwise
Warnings
--------
if `old_value` is not of type `Deprecated`
'''
if isinstance(old_value, Deprecated):
return new_value
else:
stack = inspect.stack()
dep_func = stack[1]
caller = stack[2]
warnings.warn_explicit("{:s}() keyword argument '{:s}' has been "
"renamed to '{:s}' in version {:}."
"\n\tThis alias will be removed in version "
"{:}.".format(dep_func[3],
old_name, new_name,
version_deprecated,
version_removed),
category=DeprecationWarning,
filename=caller[1],
lineno=caller[2])
return old_value
|
[
"Handle",
"renamed",
"arguments",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/deprecation.py#L15-L64
|
[
"def",
"rename_kw",
"(",
"old_name",
",",
"old_value",
",",
"new_name",
",",
"new_value",
",",
"version_deprecated",
",",
"version_removed",
")",
":",
"if",
"isinstance",
"(",
"old_value",
",",
"Deprecated",
")",
":",
"return",
"new_value",
"else",
":",
"stack",
"=",
"inspect",
".",
"stack",
"(",
")",
"dep_func",
"=",
"stack",
"[",
"1",
"]",
"caller",
"=",
"stack",
"[",
"2",
"]",
"warnings",
".",
"warn_explicit",
"(",
"\"{:s}() keyword argument '{:s}' has been \"",
"\"renamed to '{:s}' in version {:}.\"",
"\"\\n\\tThis alias will be removed in version \"",
"\"{:}.\"",
".",
"format",
"(",
"dep_func",
"[",
"3",
"]",
",",
"old_name",
",",
"new_name",
",",
"version_deprecated",
",",
"version_removed",
")",
",",
"category",
"=",
"DeprecationWarning",
",",
"filename",
"=",
"caller",
"[",
"1",
"]",
",",
"lineno",
"=",
"caller",
"[",
"2",
"]",
")",
"return",
"old_value"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
set_fftlib
|
Set the FFT library used by librosa.
Parameters
----------
lib : None or module
Must implement an interface compatible with `numpy.fft`.
If `None`, reverts to `numpy.fft`.
Examples
--------
Use `pyfftw`:
>>> import pyfftw
>>> librosa.set_fftlib(pyfftw.interfaces.numpy_fft)
Reset to default `numpy` implementation
>>> librosa.set_fftlib()
|
librosa/core/fft.py
|
def set_fftlib(lib=None):
'''Set the FFT library used by librosa.
Parameters
----------
lib : None or module
Must implement an interface compatible with `numpy.fft`.
If `None`, reverts to `numpy.fft`.
Examples
--------
Use `pyfftw`:
>>> import pyfftw
>>> librosa.set_fftlib(pyfftw.interfaces.numpy_fft)
Reset to default `numpy` implementation
>>> librosa.set_fftlib()
'''
global __FFTLIB
if lib is None:
from numpy import fft
lib = fft
__FFTLIB = lib
|
def set_fftlib(lib=None):
'''Set the FFT library used by librosa.
Parameters
----------
lib : None or module
Must implement an interface compatible with `numpy.fft`.
If `None`, reverts to `numpy.fft`.
Examples
--------
Use `pyfftw`:
>>> import pyfftw
>>> librosa.set_fftlib(pyfftw.interfaces.numpy_fft)
Reset to default `numpy` implementation
>>> librosa.set_fftlib()
'''
global __FFTLIB
if lib is None:
from numpy import fft
lib = fft
__FFTLIB = lib
|
[
"Set",
"the",
"FFT",
"library",
"used",
"by",
"librosa",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/fft.py#L11-L38
|
[
"def",
"set_fftlib",
"(",
"lib",
"=",
"None",
")",
":",
"global",
"__FFTLIB",
"if",
"lib",
"is",
"None",
":",
"from",
"numpy",
"import",
"fft",
"lib",
"=",
"fft",
"__FFTLIB",
"=",
"lib"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
beat_track
|
Beat tracking function
:parameters:
- input_file : str
Path to input audio file (wav, mp3, m4a, flac, etc.)
- output_file : str
Path to save beat event timestamps as a CSV file
|
examples/beat_tracker.py
|
def beat_track(input_file, output_csv):
'''Beat tracking function
:parameters:
- input_file : str
Path to input audio file (wav, mp3, m4a, flac, etc.)
- output_file : str
Path to save beat event timestamps as a CSV file
'''
print('Loading ', input_file)
y, sr = librosa.load(input_file, sr=22050)
# Use a default hop size of 512 samples @ 22KHz ~= 23ms
hop_length = 512
# This is the window length used by default in stft
print('Tracking beats')
tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=hop_length)
print('Estimated tempo: {:0.2f} beats per minute'.format(tempo))
# save output
# 'beats' will contain the frame numbers of beat events.
beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=hop_length)
print('Saving output to ', output_csv)
librosa.output.times_csv(output_csv, beat_times)
print('done!')
|
def beat_track(input_file, output_csv):
'''Beat tracking function
:parameters:
- input_file : str
Path to input audio file (wav, mp3, m4a, flac, etc.)
- output_file : str
Path to save beat event timestamps as a CSV file
'''
print('Loading ', input_file)
y, sr = librosa.load(input_file, sr=22050)
# Use a default hop size of 512 samples @ 22KHz ~= 23ms
hop_length = 512
# This is the window length used by default in stft
print('Tracking beats')
tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=hop_length)
print('Estimated tempo: {:0.2f} beats per minute'.format(tempo))
# save output
# 'beats' will contain the frame numbers of beat events.
beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=hop_length)
print('Saving output to ', output_csv)
librosa.output.times_csv(output_csv, beat_times)
print('done!')
|
[
"Beat",
"tracking",
"function"
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/beat_tracker.py#L16-L45
|
[
"def",
"beat_track",
"(",
"input_file",
",",
"output_csv",
")",
":",
"print",
"(",
"'Loading '",
",",
"input_file",
")",
"y",
",",
"sr",
"=",
"librosa",
".",
"load",
"(",
"input_file",
",",
"sr",
"=",
"22050",
")",
"# Use a default hop size of 512 samples @ 22KHz ~= 23ms",
"hop_length",
"=",
"512",
"# This is the window length used by default in stft",
"print",
"(",
"'Tracking beats'",
")",
"tempo",
",",
"beats",
"=",
"librosa",
".",
"beat",
".",
"beat_track",
"(",
"y",
"=",
"y",
",",
"sr",
"=",
"sr",
",",
"hop_length",
"=",
"hop_length",
")",
"print",
"(",
"'Estimated tempo: {:0.2f} beats per minute'",
".",
"format",
"(",
"tempo",
")",
")",
"# save output",
"# 'beats' will contain the frame numbers of beat events.",
"beat_times",
"=",
"librosa",
".",
"frames_to_time",
"(",
"beats",
",",
"sr",
"=",
"sr",
",",
"hop_length",
"=",
"hop_length",
")",
"print",
"(",
"'Saving output to '",
",",
"output_csv",
")",
"librosa",
".",
"output",
".",
"times_csv",
"(",
"output_csv",
",",
"beat_times",
")",
"print",
"(",
"'done!'",
")"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
adjust_tuning
|
Load audio, estimate tuning, apply pitch correction, and save.
|
examples/adjust_tuning.py
|
def adjust_tuning(input_file, output_file):
'''Load audio, estimate tuning, apply pitch correction, and save.'''
print('Loading ', input_file)
y, sr = librosa.load(input_file)
print('Separating harmonic component ... ')
y_harm = librosa.effects.harmonic(y)
print('Estimating tuning ... ')
# Just track the pitches associated with high magnitude
tuning = librosa.estimate_tuning(y=y_harm, sr=sr)
print('{:+0.2f} cents'.format(100 * tuning))
print('Applying pitch-correction of {:+0.2f} cents'.format(-100 * tuning))
y_tuned = librosa.effects.pitch_shift(y, sr, -tuning)
print('Saving tuned audio to: ', output_file)
librosa.output.write_wav(output_file, y_tuned, sr)
|
def adjust_tuning(input_file, output_file):
'''Load audio, estimate tuning, apply pitch correction, and save.'''
print('Loading ', input_file)
y, sr = librosa.load(input_file)
print('Separating harmonic component ... ')
y_harm = librosa.effects.harmonic(y)
print('Estimating tuning ... ')
# Just track the pitches associated with high magnitude
tuning = librosa.estimate_tuning(y=y_harm, sr=sr)
print('{:+0.2f} cents'.format(100 * tuning))
print('Applying pitch-correction of {:+0.2f} cents'.format(-100 * tuning))
y_tuned = librosa.effects.pitch_shift(y, sr, -tuning)
print('Saving tuned audio to: ', output_file)
librosa.output.write_wav(output_file, y_tuned, sr)
|
[
"Load",
"audio",
"estimate",
"tuning",
"apply",
"pitch",
"correction",
"and",
"save",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/adjust_tuning.py#L15-L32
|
[
"def",
"adjust_tuning",
"(",
"input_file",
",",
"output_file",
")",
":",
"print",
"(",
"'Loading '",
",",
"input_file",
")",
"y",
",",
"sr",
"=",
"librosa",
".",
"load",
"(",
"input_file",
")",
"print",
"(",
"'Separating harmonic component ... '",
")",
"y_harm",
"=",
"librosa",
".",
"effects",
".",
"harmonic",
"(",
"y",
")",
"print",
"(",
"'Estimating tuning ... '",
")",
"# Just track the pitches associated with high magnitude",
"tuning",
"=",
"librosa",
".",
"estimate_tuning",
"(",
"y",
"=",
"y_harm",
",",
"sr",
"=",
"sr",
")",
"print",
"(",
"'{:+0.2f} cents'",
".",
"format",
"(",
"100",
"*",
"tuning",
")",
")",
"print",
"(",
"'Applying pitch-correction of {:+0.2f} cents'",
".",
"format",
"(",
"-",
"100",
"*",
"tuning",
")",
")",
"y_tuned",
"=",
"librosa",
".",
"effects",
".",
"pitch_shift",
"(",
"y",
",",
"sr",
",",
"-",
"tuning",
")",
"print",
"(",
"'Saving tuned audio to: '",
",",
"output_file",
")",
"librosa",
".",
"output",
".",
"write_wav",
"(",
"output_file",
",",
"y_tuned",
",",
"sr",
")"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
frames_to_samples
|
Converts frame indices to audio sample indices.
Parameters
----------
frames : number or np.ndarray [shape=(n,)]
frame index or vector of frame indices
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `n_fft / 2`
to counteract windowing effects when using a non-centered STFT.
Returns
-------
times : number or np.ndarray
time (in samples) of each given frame number:
`times[i] = frames[i] * hop_length`
See Also
--------
frames_to_time : convert frame indices to time values
samples_to_frames : convert sample indices to frame indices
Examples
--------
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
>>> beat_samples = librosa.frames_to_samples(beats)
|
librosa/core/time_frequency.py
|
def frames_to_samples(frames, hop_length=512, n_fft=None):
"""Converts frame indices to audio sample indices.
Parameters
----------
frames : number or np.ndarray [shape=(n,)]
frame index or vector of frame indices
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `n_fft / 2`
to counteract windowing effects when using a non-centered STFT.
Returns
-------
times : number or np.ndarray
time (in samples) of each given frame number:
`times[i] = frames[i] * hop_length`
See Also
--------
frames_to_time : convert frame indices to time values
samples_to_frames : convert sample indices to frame indices
Examples
--------
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
>>> beat_samples = librosa.frames_to_samples(beats)
"""
offset = 0
if n_fft is not None:
offset = int(n_fft // 2)
return (np.asanyarray(frames) * hop_length + offset).astype(int)
|
def frames_to_samples(frames, hop_length=512, n_fft=None):
"""Converts frame indices to audio sample indices.
Parameters
----------
frames : number or np.ndarray [shape=(n,)]
frame index or vector of frame indices
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `n_fft / 2`
to counteract windowing effects when using a non-centered STFT.
Returns
-------
times : number or np.ndarray
time (in samples) of each given frame number:
`times[i] = frames[i] * hop_length`
See Also
--------
frames_to_time : convert frame indices to time values
samples_to_frames : convert sample indices to frame indices
Examples
--------
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
>>> beat_samples = librosa.frames_to_samples(beats)
"""
offset = 0
if n_fft is not None:
offset = int(n_fft // 2)
return (np.asanyarray(frames) * hop_length + offset).astype(int)
|
[
"Converts",
"frame",
"indices",
"to",
"audio",
"sample",
"indices",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L30-L68
|
[
"def",
"frames_to_samples",
"(",
"frames",
",",
"hop_length",
"=",
"512",
",",
"n_fft",
"=",
"None",
")",
":",
"offset",
"=",
"0",
"if",
"n_fft",
"is",
"not",
"None",
":",
"offset",
"=",
"int",
"(",
"n_fft",
"//",
"2",
")",
"return",
"(",
"np",
".",
"asanyarray",
"(",
"frames",
")",
"*",
"hop_length",
"+",
"offset",
")",
".",
"astype",
"(",
"int",
")"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
samples_to_frames
|
Converts sample indices into STFT frames.
Examples
--------
>>> # Get the frame numbers for every 256 samples
>>> librosa.samples_to_frames(np.arange(0, 22050, 256))
array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34,
35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41,
42, 42, 43])
Parameters
----------
samples : int or np.ndarray [shape=(n,)]
sample index or vector of sample indices
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `- n_fft / 2`
to counteract windowing effects in STFT.
.. note:: This may result in negative frame indices.
Returns
-------
frames : int or np.ndarray [shape=(n,), dtype=int]
Frame numbers corresponding to the given times:
`frames[i] = floor( samples[i] / hop_length )`
See Also
--------
samples_to_time : convert sample indices to time values
frames_to_samples : convert frame indices to sample indices
|
librosa/core/time_frequency.py
|
def samples_to_frames(samples, hop_length=512, n_fft=None):
"""Converts sample indices into STFT frames.
Examples
--------
>>> # Get the frame numbers for every 256 samples
>>> librosa.samples_to_frames(np.arange(0, 22050, 256))
array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34,
35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41,
42, 42, 43])
Parameters
----------
samples : int or np.ndarray [shape=(n,)]
sample index or vector of sample indices
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `- n_fft / 2`
to counteract windowing effects in STFT.
.. note:: This may result in negative frame indices.
Returns
-------
frames : int or np.ndarray [shape=(n,), dtype=int]
Frame numbers corresponding to the given times:
`frames[i] = floor( samples[i] / hop_length )`
See Also
--------
samples_to_time : convert sample indices to time values
frames_to_samples : convert frame indices to sample indices
"""
offset = 0
if n_fft is not None:
offset = int(n_fft // 2)
samples = np.asanyarray(samples)
return np.floor((samples - offset) // hop_length).astype(int)
|
def samples_to_frames(samples, hop_length=512, n_fft=None):
"""Converts sample indices into STFT frames.
Examples
--------
>>> # Get the frame numbers for every 256 samples
>>> librosa.samples_to_frames(np.arange(0, 22050, 256))
array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34,
35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41,
42, 42, 43])
Parameters
----------
samples : int or np.ndarray [shape=(n,)]
sample index or vector of sample indices
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `- n_fft / 2`
to counteract windowing effects in STFT.
.. note:: This may result in negative frame indices.
Returns
-------
frames : int or np.ndarray [shape=(n,), dtype=int]
Frame numbers corresponding to the given times:
`frames[i] = floor( samples[i] / hop_length )`
See Also
--------
samples_to_time : convert sample indices to time values
frames_to_samples : convert frame indices to sample indices
"""
offset = 0
if n_fft is not None:
offset = int(n_fft // 2)
samples = np.asanyarray(samples)
return np.floor((samples - offset) // hop_length).astype(int)
|
[
"Converts",
"sample",
"indices",
"into",
"STFT",
"frames",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L71-L118
|
[
"def",
"samples_to_frames",
"(",
"samples",
",",
"hop_length",
"=",
"512",
",",
"n_fft",
"=",
"None",
")",
":",
"offset",
"=",
"0",
"if",
"n_fft",
"is",
"not",
"None",
":",
"offset",
"=",
"int",
"(",
"n_fft",
"//",
"2",
")",
"samples",
"=",
"np",
".",
"asanyarray",
"(",
"samples",
")",
"return",
"np",
".",
"floor",
"(",
"(",
"samples",
"-",
"offset",
")",
"//",
"hop_length",
")",
".",
"astype",
"(",
"int",
")"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
test
|
frames_to_time
|
Converts frame counts to time (seconds).
Parameters
----------
frames : np.ndarray [shape=(n,)]
frame index or vector of frame indices
sr : number > 0 [scalar]
audio sampling rate
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `n_fft / 2`
to counteract windowing effects when using a non-centered STFT.
Returns
-------
times : np.ndarray [shape=(n,)]
time (in seconds) of each given frame number:
`times[i] = frames[i] * hop_length / sr`
See Also
--------
time_to_frames : convert time values to frame indices
frames_to_samples : convert frame indices to sample indices
Examples
--------
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
>>> beat_times = librosa.frames_to_time(beats, sr=sr)
|
librosa/core/time_frequency.py
|
def frames_to_time(frames, sr=22050, hop_length=512, n_fft=None):
"""Converts frame counts to time (seconds).
Parameters
----------
frames : np.ndarray [shape=(n,)]
frame index or vector of frame indices
sr : number > 0 [scalar]
audio sampling rate
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `n_fft / 2`
to counteract windowing effects when using a non-centered STFT.
Returns
-------
times : np.ndarray [shape=(n,)]
time (in seconds) of each given frame number:
`times[i] = frames[i] * hop_length / sr`
See Also
--------
time_to_frames : convert time values to frame indices
frames_to_samples : convert frame indices to sample indices
Examples
--------
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
>>> beat_times = librosa.frames_to_time(beats, sr=sr)
"""
samples = frames_to_samples(frames,
hop_length=hop_length,
n_fft=n_fft)
return samples_to_time(samples, sr=sr)
|
def frames_to_time(frames, sr=22050, hop_length=512, n_fft=None):
"""Converts frame counts to time (seconds).
Parameters
----------
frames : np.ndarray [shape=(n,)]
frame index or vector of frame indices
sr : number > 0 [scalar]
audio sampling rate
hop_length : int > 0 [scalar]
number of samples between successive frames
n_fft : None or int > 0 [scalar]
Optional: length of the FFT window.
If given, time conversion will include an offset of `n_fft / 2`
to counteract windowing effects when using a non-centered STFT.
Returns
-------
times : np.ndarray [shape=(n,)]
time (in seconds) of each given frame number:
`times[i] = frames[i] * hop_length / sr`
See Also
--------
time_to_frames : convert time values to frame indices
frames_to_samples : convert frame indices to sample indices
Examples
--------
>>> y, sr = librosa.load(librosa.util.example_audio_file())
>>> tempo, beats = librosa.beat.beat_track(y, sr=sr)
>>> beat_times = librosa.frames_to_time(beats, sr=sr)
"""
samples = frames_to_samples(frames,
hop_length=hop_length,
n_fft=n_fft)
return samples_to_time(samples, sr=sr)
|
[
"Converts",
"frame",
"counts",
"to",
"time",
"(",
"seconds",
")",
"."
] |
librosa/librosa
|
python
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L121-L162
|
[
"def",
"frames_to_time",
"(",
"frames",
",",
"sr",
"=",
"22050",
",",
"hop_length",
"=",
"512",
",",
"n_fft",
"=",
"None",
")",
":",
"samples",
"=",
"frames_to_samples",
"(",
"frames",
",",
"hop_length",
"=",
"hop_length",
",",
"n_fft",
"=",
"n_fft",
")",
"return",
"samples_to_time",
"(",
"samples",
",",
"sr",
"=",
"sr",
")"
] |
180e8e6eb8f958fa6b20b8cba389f7945d508247
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.