partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
time_to_frames
Converts time stamps into STFT frames. Parameters ---------- times : np.ndarray [shape=(n,)] time (in seconds) or vector of time values sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `- n_fft / 2` to counteract windowing effects in STFT. .. note:: This may result in negative frame indices. Returns ------- frames : np.ndarray [shape=(n,), dtype=int] Frame numbers corresponding to the given times: `frames[i] = floor( times[i] * sr / hop_length )` See Also -------- frames_to_time : convert frame indices to time values time_to_samples : convert time values to sample indices Examples -------- Get the frame numbers for every 100ms >>> librosa.time_to_frames(np.arange(0, 1, 0.1), ... sr=22050, hop_length=512) array([ 0, 4, 8, 12, 17, 21, 25, 30, 34, 38])
librosa/core/time_frequency.py
def time_to_frames(times, sr=22050, hop_length=512, n_fft=None): """Converts time stamps into STFT frames. Parameters ---------- times : np.ndarray [shape=(n,)] time (in seconds) or vector of time values sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `- n_fft / 2` to counteract windowing effects in STFT. .. note:: This may result in negative frame indices. Returns ------- frames : np.ndarray [shape=(n,), dtype=int] Frame numbers corresponding to the given times: `frames[i] = floor( times[i] * sr / hop_length )` See Also -------- frames_to_time : convert frame indices to time values time_to_samples : convert time values to sample indices Examples -------- Get the frame numbers for every 100ms >>> librosa.time_to_frames(np.arange(0, 1, 0.1), ... sr=22050, hop_length=512) array([ 0, 4, 8, 12, 17, 21, 25, 30, 34, 38]) """ samples = time_to_samples(times, sr=sr) return samples_to_frames(samples, hop_length=hop_length, n_fft=n_fft)
def time_to_frames(times, sr=22050, hop_length=512, n_fft=None): """Converts time stamps into STFT frames. Parameters ---------- times : np.ndarray [shape=(n,)] time (in seconds) or vector of time values sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `- n_fft / 2` to counteract windowing effects in STFT. .. note:: This may result in negative frame indices. Returns ------- frames : np.ndarray [shape=(n,), dtype=int] Frame numbers corresponding to the given times: `frames[i] = floor( times[i] * sr / hop_length )` See Also -------- frames_to_time : convert frame indices to time values time_to_samples : convert time values to sample indices Examples -------- Get the frame numbers for every 100ms >>> librosa.time_to_frames(np.arange(0, 1, 0.1), ... sr=22050, hop_length=512) array([ 0, 4, 8, 12, 17, 21, 25, 30, 34, 38]) """ samples = time_to_samples(times, sr=sr) return samples_to_frames(samples, hop_length=hop_length, n_fft=n_fft)
[ "Converts", "time", "stamps", "into", "STFT", "frames", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L165-L209
[ "def", "time_to_frames", "(", "times", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "n_fft", "=", "None", ")", ":", "samples", "=", "time_to_samples", "(", "times", ",", "sr", "=", "sr", ")", "return", "samples_to_frames", "(", "samples", ",", "hop_length", "=", "hop_length", ",", "n_fft", "=", "n_fft", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
note_to_midi
Convert one or more spelled notes to MIDI number(s). Notes may be spelled out with optional accidentals or octave numbers. The leading note name is case-insensitive. Sharps are indicated with ``#``, flats may be indicated with ``!`` or ``b``. Parameters ---------- note : str or iterable of str One or more note names. round_midi : bool - If `True`, allow for fractional midi notes - Otherwise, round cent deviations to the nearest note Returns ------- midi : float or np.array Midi note numbers corresponding to inputs. Raises ------ ParameterError If the input is not in valid note format See Also -------- midi_to_note note_to_hz Examples -------- >>> librosa.note_to_midi('C') 12 >>> librosa.note_to_midi('C#3') 49 >>> librosa.note_to_midi('f4') 65 >>> librosa.note_to_midi('Bb-1') 10 >>> librosa.note_to_midi('A!8') 116 >>> # Lists of notes also work >>> librosa.note_to_midi(['C', 'E', 'G']) array([12, 16, 19])
librosa/core/time_frequency.py
def note_to_midi(note, round_midi=True): '''Convert one or more spelled notes to MIDI number(s). Notes may be spelled out with optional accidentals or octave numbers. The leading note name is case-insensitive. Sharps are indicated with ``#``, flats may be indicated with ``!`` or ``b``. Parameters ---------- note : str or iterable of str One or more note names. round_midi : bool - If `True`, allow for fractional midi notes - Otherwise, round cent deviations to the nearest note Returns ------- midi : float or np.array Midi note numbers corresponding to inputs. Raises ------ ParameterError If the input is not in valid note format See Also -------- midi_to_note note_to_hz Examples -------- >>> librosa.note_to_midi('C') 12 >>> librosa.note_to_midi('C#3') 49 >>> librosa.note_to_midi('f4') 65 >>> librosa.note_to_midi('Bb-1') 10 >>> librosa.note_to_midi('A!8') 116 >>> # Lists of notes also work >>> librosa.note_to_midi(['C', 'E', 'G']) array([12, 16, 19]) ''' if not isinstance(note, six.string_types): return np.array([note_to_midi(n, round_midi=round_midi) for n in note]) pitch_map = {'C': 0, 'D': 2, 'E': 4, 'F': 5, 'G': 7, 'A': 9, 'B': 11} acc_map = {'#': 1, '': 0, 'b': -1, '!': -1} match = re.match(r'^(?P<note>[A-Ga-g])' r'(?P<accidental>[#b!]*)' r'(?P<octave>[+-]?\d+)?' r'(?P<cents>[+-]\d+)?$', note) if not match: raise ParameterError('Improper note format: {:s}'.format(note)) pitch = match.group('note').upper() offset = np.sum([acc_map[o] for o in match.group('accidental')]) octave = match.group('octave') cents = match.group('cents') if not octave: octave = 0 else: octave = int(octave) if not cents: cents = 0 else: cents = int(cents) * 1e-2 note_value = 12 * (octave + 1) + pitch_map[pitch] + offset + cents if round_midi: note_value = int(np.round(note_value)) return note_value
def note_to_midi(note, round_midi=True): '''Convert one or more spelled notes to MIDI number(s). Notes may be spelled out with optional accidentals or octave numbers. The leading note name is case-insensitive. Sharps are indicated with ``#``, flats may be indicated with ``!`` or ``b``. Parameters ---------- note : str or iterable of str One or more note names. round_midi : bool - If `True`, allow for fractional midi notes - Otherwise, round cent deviations to the nearest note Returns ------- midi : float or np.array Midi note numbers corresponding to inputs. Raises ------ ParameterError If the input is not in valid note format See Also -------- midi_to_note note_to_hz Examples -------- >>> librosa.note_to_midi('C') 12 >>> librosa.note_to_midi('C#3') 49 >>> librosa.note_to_midi('f4') 65 >>> librosa.note_to_midi('Bb-1') 10 >>> librosa.note_to_midi('A!8') 116 >>> # Lists of notes also work >>> librosa.note_to_midi(['C', 'E', 'G']) array([12, 16, 19]) ''' if not isinstance(note, six.string_types): return np.array([note_to_midi(n, round_midi=round_midi) for n in note]) pitch_map = {'C': 0, 'D': 2, 'E': 4, 'F': 5, 'G': 7, 'A': 9, 'B': 11} acc_map = {'#': 1, '': 0, 'b': -1, '!': -1} match = re.match(r'^(?P<note>[A-Ga-g])' r'(?P<accidental>[#b!]*)' r'(?P<octave>[+-]?\d+)?' r'(?P<cents>[+-]\d+)?$', note) if not match: raise ParameterError('Improper note format: {:s}'.format(note)) pitch = match.group('note').upper() offset = np.sum([acc_map[o] for o in match.group('accidental')]) octave = match.group('octave') cents = match.group('cents') if not octave: octave = 0 else: octave = int(octave) if not cents: cents = 0 else: cents = int(cents) * 1e-2 note_value = 12 * (octave + 1) + pitch_map[pitch] + offset + cents if round_midi: note_value = int(np.round(note_value)) return note_value
[ "Convert", "one", "or", "more", "spelled", "notes", "to", "MIDI", "number", "(", "s", ")", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L319-L404
[ "def", "note_to_midi", "(", "note", ",", "round_midi", "=", "True", ")", ":", "if", "not", "isinstance", "(", "note", ",", "six", ".", "string_types", ")", ":", "return", "np", ".", "array", "(", "[", "note_to_midi", "(", "n", ",", "round_midi", "=", "round_midi", ")", "for", "n", "in", "note", "]", ")", "pitch_map", "=", "{", "'C'", ":", "0", ",", "'D'", ":", "2", ",", "'E'", ":", "4", ",", "'F'", ":", "5", ",", "'G'", ":", "7", ",", "'A'", ":", "9", ",", "'B'", ":", "11", "}", "acc_map", "=", "{", "'#'", ":", "1", ",", "''", ":", "0", ",", "'b'", ":", "-", "1", ",", "'!'", ":", "-", "1", "}", "match", "=", "re", ".", "match", "(", "r'^(?P<note>[A-Ga-g])'", "r'(?P<accidental>[#b!]*)'", "r'(?P<octave>[+-]?\\d+)?'", "r'(?P<cents>[+-]\\d+)?$'", ",", "note", ")", "if", "not", "match", ":", "raise", "ParameterError", "(", "'Improper note format: {:s}'", ".", "format", "(", "note", ")", ")", "pitch", "=", "match", ".", "group", "(", "'note'", ")", ".", "upper", "(", ")", "offset", "=", "np", ".", "sum", "(", "[", "acc_map", "[", "o", "]", "for", "o", "in", "match", ".", "group", "(", "'accidental'", ")", "]", ")", "octave", "=", "match", ".", "group", "(", "'octave'", ")", "cents", "=", "match", ".", "group", "(", "'cents'", ")", "if", "not", "octave", ":", "octave", "=", "0", "else", ":", "octave", "=", "int", "(", "octave", ")", "if", "not", "cents", ":", "cents", "=", "0", "else", ":", "cents", "=", "int", "(", "cents", ")", "*", "1e-2", "note_value", "=", "12", "*", "(", "octave", "+", "1", ")", "+", "pitch_map", "[", "pitch", "]", "+", "offset", "+", "cents", "if", "round_midi", ":", "note_value", "=", "int", "(", "np", ".", "round", "(", "note_value", ")", ")", "return", "note_value" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
midi_to_note
Convert one or more MIDI numbers to note strings. MIDI numbers will be rounded to the nearest integer. Notes will be of the format 'C0', 'C#0', 'D0', ... Examples -------- >>> librosa.midi_to_note(0) 'C-1' >>> librosa.midi_to_note(37) 'C#2' >>> librosa.midi_to_note(-2) 'A#-2' >>> librosa.midi_to_note(104.7) 'A7' >>> librosa.midi_to_note(104.7, cents=True) 'A7-30' >>> librosa.midi_to_note(list(range(12, 24))) ['C0', 'C#0', 'D0', 'D#0', 'E0', 'F0', 'F#0', 'G0', 'G#0', 'A0', 'A#0', 'B0'] Parameters ---------- midi : int or iterable of int Midi numbers to convert. octave: bool If True, include the octave number cents: bool If true, cent markers will be appended for fractional notes. Eg, `midi_to_note(69.3, cents=True)` == `A4+03` Returns ------- notes : str or iterable of str Strings describing each midi note. Raises ------ ParameterError if `cents` is True and `octave` is False See Also -------- midi_to_hz note_to_midi hz_to_note
librosa/core/time_frequency.py
def midi_to_note(midi, octave=True, cents=False): '''Convert one or more MIDI numbers to note strings. MIDI numbers will be rounded to the nearest integer. Notes will be of the format 'C0', 'C#0', 'D0', ... Examples -------- >>> librosa.midi_to_note(0) 'C-1' >>> librosa.midi_to_note(37) 'C#2' >>> librosa.midi_to_note(-2) 'A#-2' >>> librosa.midi_to_note(104.7) 'A7' >>> librosa.midi_to_note(104.7, cents=True) 'A7-30' >>> librosa.midi_to_note(list(range(12, 24))) ['C0', 'C#0', 'D0', 'D#0', 'E0', 'F0', 'F#0', 'G0', 'G#0', 'A0', 'A#0', 'B0'] Parameters ---------- midi : int or iterable of int Midi numbers to convert. octave: bool If True, include the octave number cents: bool If true, cent markers will be appended for fractional notes. Eg, `midi_to_note(69.3, cents=True)` == `A4+03` Returns ------- notes : str or iterable of str Strings describing each midi note. Raises ------ ParameterError if `cents` is True and `octave` is False See Also -------- midi_to_hz note_to_midi hz_to_note ''' if cents and not octave: raise ParameterError('Cannot encode cents without octave information.') if not np.isscalar(midi): return [midi_to_note(x, octave=octave, cents=cents) for x in midi] note_map = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] note_num = int(np.round(midi)) note_cents = int(100 * np.around(midi - note_num, 2)) note = note_map[note_num % 12] if octave: note = '{:s}{:0d}'.format(note, int(note_num / 12) - 1) if cents: note = '{:s}{:+02d}'.format(note, note_cents) return note
def midi_to_note(midi, octave=True, cents=False): '''Convert one or more MIDI numbers to note strings. MIDI numbers will be rounded to the nearest integer. Notes will be of the format 'C0', 'C#0', 'D0', ... Examples -------- >>> librosa.midi_to_note(0) 'C-1' >>> librosa.midi_to_note(37) 'C#2' >>> librosa.midi_to_note(-2) 'A#-2' >>> librosa.midi_to_note(104.7) 'A7' >>> librosa.midi_to_note(104.7, cents=True) 'A7-30' >>> librosa.midi_to_note(list(range(12, 24))) ['C0', 'C#0', 'D0', 'D#0', 'E0', 'F0', 'F#0', 'G0', 'G#0', 'A0', 'A#0', 'B0'] Parameters ---------- midi : int or iterable of int Midi numbers to convert. octave: bool If True, include the octave number cents: bool If true, cent markers will be appended for fractional notes. Eg, `midi_to_note(69.3, cents=True)` == `A4+03` Returns ------- notes : str or iterable of str Strings describing each midi note. Raises ------ ParameterError if `cents` is True and `octave` is False See Also -------- midi_to_hz note_to_midi hz_to_note ''' if cents and not octave: raise ParameterError('Cannot encode cents without octave information.') if not np.isscalar(midi): return [midi_to_note(x, octave=octave, cents=cents) for x in midi] note_map = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] note_num = int(np.round(midi)) note_cents = int(100 * np.around(midi - note_num, 2)) note = note_map[note_num % 12] if octave: note = '{:s}{:0d}'.format(note, int(note_num / 12) - 1) if cents: note = '{:s}{:+02d}'.format(note, note_cents) return note
[ "Convert", "one", "or", "more", "MIDI", "numbers", "to", "note", "strings", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L407-L478
[ "def", "midi_to_note", "(", "midi", ",", "octave", "=", "True", ",", "cents", "=", "False", ")", ":", "if", "cents", "and", "not", "octave", ":", "raise", "ParameterError", "(", "'Cannot encode cents without octave information.'", ")", "if", "not", "np", ".", "isscalar", "(", "midi", ")", ":", "return", "[", "midi_to_note", "(", "x", ",", "octave", "=", "octave", ",", "cents", "=", "cents", ")", "for", "x", "in", "midi", "]", "note_map", "=", "[", "'C'", ",", "'C#'", ",", "'D'", ",", "'D#'", ",", "'E'", ",", "'F'", ",", "'F#'", ",", "'G'", ",", "'G#'", ",", "'A'", ",", "'A#'", ",", "'B'", "]", "note_num", "=", "int", "(", "np", ".", "round", "(", "midi", ")", ")", "note_cents", "=", "int", "(", "100", "*", "np", ".", "around", "(", "midi", "-", "note_num", ",", "2", ")", ")", "note", "=", "note_map", "[", "note_num", "%", "12", "]", "if", "octave", ":", "note", "=", "'{:s}{:0d}'", ".", "format", "(", "note", ",", "int", "(", "note_num", "/", "12", ")", "-", "1", ")", "if", "cents", ":", "note", "=", "'{:s}{:+02d}'", ".", "format", "(", "note", ",", "note_cents", ")", "return", "note" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hz_to_mel
Convert Hz to Mels Examples -------- >>> librosa.hz_to_mel(60) 0.9 >>> librosa.hz_to_mel([110, 220, 440]) array([ 1.65, 3.3 , 6.6 ]) Parameters ---------- frequencies : number or np.ndarray [shape=(n,)] , float scalar or array of frequencies htk : bool use HTK formula instead of Slaney Returns ------- mels : number or np.ndarray [shape=(n,)] input frequencies in Mels See Also -------- mel_to_hz
librosa/core/time_frequency.py
def hz_to_mel(frequencies, htk=False): """Convert Hz to Mels Examples -------- >>> librosa.hz_to_mel(60) 0.9 >>> librosa.hz_to_mel([110, 220, 440]) array([ 1.65, 3.3 , 6.6 ]) Parameters ---------- frequencies : number or np.ndarray [shape=(n,)] , float scalar or array of frequencies htk : bool use HTK formula instead of Slaney Returns ------- mels : number or np.ndarray [shape=(n,)] input frequencies in Mels See Also -------- mel_to_hz """ frequencies = np.asanyarray(frequencies) if htk: return 2595.0 * np.log10(1.0 + frequencies / 700.0) # Fill in the linear part f_min = 0.0 f_sp = 200.0 / 3 mels = (frequencies - f_min) / f_sp # Fill in the log-scale part min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if frequencies.ndim: # If we have array data, vectorize log_t = (frequencies >= min_log_hz) mels[log_t] = min_log_mel + np.log(frequencies[log_t]/min_log_hz) / logstep elif frequencies >= min_log_hz: # If we have scalar data, heck directly mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep return mels
def hz_to_mel(frequencies, htk=False): """Convert Hz to Mels Examples -------- >>> librosa.hz_to_mel(60) 0.9 >>> librosa.hz_to_mel([110, 220, 440]) array([ 1.65, 3.3 , 6.6 ]) Parameters ---------- frequencies : number or np.ndarray [shape=(n,)] , float scalar or array of frequencies htk : bool use HTK formula instead of Slaney Returns ------- mels : number or np.ndarray [shape=(n,)] input frequencies in Mels See Also -------- mel_to_hz """ frequencies = np.asanyarray(frequencies) if htk: return 2595.0 * np.log10(1.0 + frequencies / 700.0) # Fill in the linear part f_min = 0.0 f_sp = 200.0 / 3 mels = (frequencies - f_min) / f_sp # Fill in the log-scale part min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if frequencies.ndim: # If we have array data, vectorize log_t = (frequencies >= min_log_hz) mels[log_t] = min_log_mel + np.log(frequencies[log_t]/min_log_hz) / logstep elif frequencies >= min_log_hz: # If we have scalar data, heck directly mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep return mels
[ "Convert", "Hz", "to", "Mels" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L591-L643
[ "def", "hz_to_mel", "(", "frequencies", ",", "htk", "=", "False", ")", ":", "frequencies", "=", "np", ".", "asanyarray", "(", "frequencies", ")", "if", "htk", ":", "return", "2595.0", "*", "np", ".", "log10", "(", "1.0", "+", "frequencies", "/", "700.0", ")", "# Fill in the linear part", "f_min", "=", "0.0", "f_sp", "=", "200.0", "/", "3", "mels", "=", "(", "frequencies", "-", "f_min", ")", "/", "f_sp", "# Fill in the log-scale part", "min_log_hz", "=", "1000.0", "# beginning of log region (Hz)", "min_log_mel", "=", "(", "min_log_hz", "-", "f_min", ")", "/", "f_sp", "# same (Mels)", "logstep", "=", "np", ".", "log", "(", "6.4", ")", "/", "27.0", "# step size for log region", "if", "frequencies", ".", "ndim", ":", "# If we have array data, vectorize", "log_t", "=", "(", "frequencies", ">=", "min_log_hz", ")", "mels", "[", "log_t", "]", "=", "min_log_mel", "+", "np", ".", "log", "(", "frequencies", "[", "log_t", "]", "/", "min_log_hz", ")", "/", "logstep", "elif", "frequencies", ">=", "min_log_hz", ":", "# If we have scalar data, heck directly", "mels", "=", "min_log_mel", "+", "np", ".", "log", "(", "frequencies", "/", "min_log_hz", ")", "/", "logstep", "return", "mels" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
mel_to_hz
Convert mel bin numbers to frequencies Examples -------- >>> librosa.mel_to_hz(3) 200. >>> librosa.mel_to_hz([1,2,3,4,5]) array([ 66.667, 133.333, 200. , 266.667, 333.333]) Parameters ---------- mels : np.ndarray [shape=(n,)], float mel bins to convert htk : bool use HTK formula instead of Slaney Returns ------- frequencies : np.ndarray [shape=(n,)] input mels in Hz See Also -------- hz_to_mel
librosa/core/time_frequency.py
def mel_to_hz(mels, htk=False): """Convert mel bin numbers to frequencies Examples -------- >>> librosa.mel_to_hz(3) 200. >>> librosa.mel_to_hz([1,2,3,4,5]) array([ 66.667, 133.333, 200. , 266.667, 333.333]) Parameters ---------- mels : np.ndarray [shape=(n,)], float mel bins to convert htk : bool use HTK formula instead of Slaney Returns ------- frequencies : np.ndarray [shape=(n,)] input mels in Hz See Also -------- hz_to_mel """ mels = np.asanyarray(mels) if htk: return 700.0 * (10.0**(mels / 2595.0) - 1.0) # Fill in the linear scale f_min = 0.0 f_sp = 200.0 / 3 freqs = f_min + f_sp * mels # And now the nonlinear scale min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if mels.ndim: # If we have vector data, vectorize log_t = (mels >= min_log_mel) freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel)) elif mels >= min_log_mel: # If we have scalar data, check directly freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel)) return freqs
def mel_to_hz(mels, htk=False): """Convert mel bin numbers to frequencies Examples -------- >>> librosa.mel_to_hz(3) 200. >>> librosa.mel_to_hz([1,2,3,4,5]) array([ 66.667, 133.333, 200. , 266.667, 333.333]) Parameters ---------- mels : np.ndarray [shape=(n,)], float mel bins to convert htk : bool use HTK formula instead of Slaney Returns ------- frequencies : np.ndarray [shape=(n,)] input mels in Hz See Also -------- hz_to_mel """ mels = np.asanyarray(mels) if htk: return 700.0 * (10.0**(mels / 2595.0) - 1.0) # Fill in the linear scale f_min = 0.0 f_sp = 200.0 / 3 freqs = f_min + f_sp * mels # And now the nonlinear scale min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if mels.ndim: # If we have vector data, vectorize log_t = (mels >= min_log_mel) freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel)) elif mels >= min_log_mel: # If we have scalar data, check directly freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel)) return freqs
[ "Convert", "mel", "bin", "numbers", "to", "frequencies" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L646-L697
[ "def", "mel_to_hz", "(", "mels", ",", "htk", "=", "False", ")", ":", "mels", "=", "np", ".", "asanyarray", "(", "mels", ")", "if", "htk", ":", "return", "700.0", "*", "(", "10.0", "**", "(", "mels", "/", "2595.0", ")", "-", "1.0", ")", "# Fill in the linear scale", "f_min", "=", "0.0", "f_sp", "=", "200.0", "/", "3", "freqs", "=", "f_min", "+", "f_sp", "*", "mels", "# And now the nonlinear scale", "min_log_hz", "=", "1000.0", "# beginning of log region (Hz)", "min_log_mel", "=", "(", "min_log_hz", "-", "f_min", ")", "/", "f_sp", "# same (Mels)", "logstep", "=", "np", ".", "log", "(", "6.4", ")", "/", "27.0", "# step size for log region", "if", "mels", ".", "ndim", ":", "# If we have vector data, vectorize", "log_t", "=", "(", "mels", ">=", "min_log_mel", ")", "freqs", "[", "log_t", "]", "=", "min_log_hz", "*", "np", ".", "exp", "(", "logstep", "*", "(", "mels", "[", "log_t", "]", "-", "min_log_mel", ")", ")", "elif", "mels", ">=", "min_log_mel", ":", "# If we have scalar data, check directly", "freqs", "=", "min_log_hz", "*", "np", ".", "exp", "(", "logstep", "*", "(", "mels", "-", "min_log_mel", ")", ")", "return", "freqs" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hz_to_octs
Convert frequencies (Hz) to (fractional) octave numbers. Examples -------- >>> librosa.hz_to_octs(440.0) 4. >>> librosa.hz_to_octs([32, 64, 128, 256]) array([ 0.219, 1.219, 2.219, 3.219]) Parameters ---------- frequencies : number >0 or np.ndarray [shape=(n,)] or float scalar or vector of frequencies A440 : float frequency of A440 (in Hz) Returns ------- octaves : number or np.ndarray [shape=(n,)] octave number for each frequency See Also -------- octs_to_hz
librosa/core/time_frequency.py
def hz_to_octs(frequencies, A440=440.0): """Convert frequencies (Hz) to (fractional) octave numbers. Examples -------- >>> librosa.hz_to_octs(440.0) 4. >>> librosa.hz_to_octs([32, 64, 128, 256]) array([ 0.219, 1.219, 2.219, 3.219]) Parameters ---------- frequencies : number >0 or np.ndarray [shape=(n,)] or float scalar or vector of frequencies A440 : float frequency of A440 (in Hz) Returns ------- octaves : number or np.ndarray [shape=(n,)] octave number for each frequency See Also -------- octs_to_hz """ return np.log2(np.asanyarray(frequencies) / (float(A440) / 16))
def hz_to_octs(frequencies, A440=440.0): """Convert frequencies (Hz) to (fractional) octave numbers. Examples -------- >>> librosa.hz_to_octs(440.0) 4. >>> librosa.hz_to_octs([32, 64, 128, 256]) array([ 0.219, 1.219, 2.219, 3.219]) Parameters ---------- frequencies : number >0 or np.ndarray [shape=(n,)] or float scalar or vector of frequencies A440 : float frequency of A440 (in Hz) Returns ------- octaves : number or np.ndarray [shape=(n,)] octave number for each frequency See Also -------- octs_to_hz """ return np.log2(np.asanyarray(frequencies) / (float(A440) / 16))
[ "Convert", "frequencies", "(", "Hz", ")", "to", "(", "fractional", ")", "octave", "numbers", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L700-L726
[ "def", "hz_to_octs", "(", "frequencies", ",", "A440", "=", "440.0", ")", ":", "return", "np", ".", "log2", "(", "np", ".", "asanyarray", "(", "frequencies", ")", "/", "(", "float", "(", "A440", ")", "/", "16", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
fft_frequencies
Alternative implementation of `np.fft.fftfreq` Parameters ---------- sr : number > 0 [scalar] Audio sampling rate n_fft : int > 0 [scalar] FFT window size Returns ------- freqs : np.ndarray [shape=(1 + n_fft/2,)] Frequencies `(0, sr/n_fft, 2*sr/n_fft, ..., sr/2)` Examples -------- >>> librosa.fft_frequencies(sr=22050, n_fft=16) array([ 0. , 1378.125, 2756.25 , 4134.375, 5512.5 , 6890.625, 8268.75 , 9646.875, 11025. ])
librosa/core/time_frequency.py
def fft_frequencies(sr=22050, n_fft=2048): '''Alternative implementation of `np.fft.fftfreq` Parameters ---------- sr : number > 0 [scalar] Audio sampling rate n_fft : int > 0 [scalar] FFT window size Returns ------- freqs : np.ndarray [shape=(1 + n_fft/2,)] Frequencies `(0, sr/n_fft, 2*sr/n_fft, ..., sr/2)` Examples -------- >>> librosa.fft_frequencies(sr=22050, n_fft=16) array([ 0. , 1378.125, 2756.25 , 4134.375, 5512.5 , 6890.625, 8268.75 , 9646.875, 11025. ]) ''' return np.linspace(0, float(sr) / 2, int(1 + n_fft//2), endpoint=True)
def fft_frequencies(sr=22050, n_fft=2048): '''Alternative implementation of `np.fft.fftfreq` Parameters ---------- sr : number > 0 [scalar] Audio sampling rate n_fft : int > 0 [scalar] FFT window size Returns ------- freqs : np.ndarray [shape=(1 + n_fft/2,)] Frequencies `(0, sr/n_fft, 2*sr/n_fft, ..., sr/2)` Examples -------- >>> librosa.fft_frequencies(sr=22050, n_fft=16) array([ 0. , 1378.125, 2756.25 , 4134.375, 5512.5 , 6890.625, 8268.75 , 9646.875, 11025. ]) ''' return np.linspace(0, float(sr) / 2, int(1 + n_fft//2), endpoint=True)
[ "Alternative", "implementation", "of", "np", ".", "fft", ".", "fftfreq" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L760-L789
[ "def", "fft_frequencies", "(", "sr", "=", "22050", ",", "n_fft", "=", "2048", ")", ":", "return", "np", ".", "linspace", "(", "0", ",", "float", "(", "sr", ")", "/", "2", ",", "int", "(", "1", "+", "n_fft", "//", "2", ")", ",", "endpoint", "=", "True", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
cqt_frequencies
Compute the center frequencies of Constant-Q bins. Examples -------- >>> # Get the CQT frequencies for 24 notes, starting at C2 >>> librosa.cqt_frequencies(24, fmin=librosa.note_to_hz('C2')) array([ 65.406, 69.296, 73.416, 77.782, 82.407, 87.307, 92.499, 97.999, 103.826, 110. , 116.541, 123.471, 130.813, 138.591, 146.832, 155.563, 164.814, 174.614, 184.997, 195.998, 207.652, 220. , 233.082, 246.942]) Parameters ---------- n_bins : int > 0 [scalar] Number of constant-Q bins fmin : float > 0 [scalar] Minimum frequency bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` Deviation from A440 tuning in fractional bins (cents) Returns ------- frequencies : np.ndarray [shape=(n_bins,)] Center frequency for each CQT bin
librosa/core/time_frequency.py
def cqt_frequencies(n_bins, fmin, bins_per_octave=12, tuning=0.0): """Compute the center frequencies of Constant-Q bins. Examples -------- >>> # Get the CQT frequencies for 24 notes, starting at C2 >>> librosa.cqt_frequencies(24, fmin=librosa.note_to_hz('C2')) array([ 65.406, 69.296, 73.416, 77.782, 82.407, 87.307, 92.499, 97.999, 103.826, 110. , 116.541, 123.471, 130.813, 138.591, 146.832, 155.563, 164.814, 174.614, 184.997, 195.998, 207.652, 220. , 233.082, 246.942]) Parameters ---------- n_bins : int > 0 [scalar] Number of constant-Q bins fmin : float > 0 [scalar] Minimum frequency bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` Deviation from A440 tuning in fractional bins (cents) Returns ------- frequencies : np.ndarray [shape=(n_bins,)] Center frequency for each CQT bin """ correction = 2.0**(float(tuning) / bins_per_octave) frequencies = 2.0**(np.arange(0, n_bins, dtype=float) / bins_per_octave) return correction * fmin * frequencies
def cqt_frequencies(n_bins, fmin, bins_per_octave=12, tuning=0.0): """Compute the center frequencies of Constant-Q bins. Examples -------- >>> # Get the CQT frequencies for 24 notes, starting at C2 >>> librosa.cqt_frequencies(24, fmin=librosa.note_to_hz('C2')) array([ 65.406, 69.296, 73.416, 77.782, 82.407, 87.307, 92.499, 97.999, 103.826, 110. , 116.541, 123.471, 130.813, 138.591, 146.832, 155.563, 164.814, 174.614, 184.997, 195.998, 207.652, 220. , 233.082, 246.942]) Parameters ---------- n_bins : int > 0 [scalar] Number of constant-Q bins fmin : float > 0 [scalar] Minimum frequency bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` Deviation from A440 tuning in fractional bins (cents) Returns ------- frequencies : np.ndarray [shape=(n_bins,)] Center frequency for each CQT bin """ correction = 2.0**(float(tuning) / bins_per_octave) frequencies = 2.0**(np.arange(0, n_bins, dtype=float) / bins_per_octave) return correction * fmin * frequencies
[ "Compute", "the", "center", "frequencies", "of", "Constant", "-", "Q", "bins", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L792-L827
[ "def", "cqt_frequencies", "(", "n_bins", ",", "fmin", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ")", ":", "correction", "=", "2.0", "**", "(", "float", "(", "tuning", ")", "/", "bins_per_octave", ")", "frequencies", "=", "2.0", "**", "(", "np", ".", "arange", "(", "0", ",", "n_bins", ",", "dtype", "=", "float", ")", "/", "bins_per_octave", ")", "return", "correction", "*", "fmin", "*", "frequencies" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
mel_frequencies
Compute an array of acoustic frequencies tuned to the mel scale. The mel scale is a quasi-logarithmic function of acoustic frequency designed such that perceptually similar pitch intervals (e.g. octaves) appear equal in width over the full hearing range. Because the definition of the mel scale is conditioned by a finite number of subjective psychoaoustical experiments, several implementations coexist in the audio signal processing literature [1]_. By default, librosa replicates the behavior of the well-established MATLAB Auditory Toolbox of Slaney [2]_. According to this default implementation, the conversion from Hertz to mel is linear below 1 kHz and logarithmic above 1 kHz. Another available implementation replicates the Hidden Markov Toolkit [3]_ (HTK) according to the following formula: `mel = 2595.0 * np.log10(1.0 + f / 700.0).` The choice of implementation is determined by the `htk` keyword argument: setting `htk=False` leads to the Auditory toolbox implementation, whereas setting it `htk=True` leads to the HTK implementation. .. [1] Umesh, S., Cohen, L., & Nelson, D. Fitting the mel scale. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 217-220, 1998. .. [2] Slaney, M. Auditory Toolbox: A MATLAB Toolbox for Auditory Modeling Work. Technical Report, version 2, Interval Research Corporation, 1998. .. [3] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P. The HTK book, version 3.4. Cambridge University, March 2009. See Also -------- hz_to_mel mel_to_hz librosa.feature.melspectrogram librosa.feature.mfcc Parameters ---------- n_mels : int > 0 [scalar] Number of mel bins. fmin : float >= 0 [scalar] Minimum frequency (Hz). fmax : float >= 0 [scalar] Maximum frequency (Hz). htk : bool If True, use HTK formula to convert Hz to mel. Otherwise (False), use Slaney's Auditory Toolbox. Returns ------- bin_frequencies : ndarray [shape=(n_mels,)] Vector of n_mels frequencies in Hz which are uniformly spaced on the Mel axis. Examples -------- >>> librosa.mel_frequencies(n_mels=40) array([ 0. , 85.317, 170.635, 255.952, 341.269, 426.586, 511.904, 597.221, 682.538, 767.855, 853.173, 938.49 , 1024.856, 1119.114, 1222.042, 1334.436, 1457.167, 1591.187, 1737.532, 1897.337, 2071.84 , 2262.393, 2470.47 , 2697.686, 2945.799, 3216.731, 3512.582, 3835.643, 4188.417, 4573.636, 4994.285, 5453.621, 5955.205, 6502.92 , 7101.009, 7754.107, 8467.272, 9246.028, 10096.408, 11025. ])
librosa/core/time_frequency.py
def mel_frequencies(n_mels=128, fmin=0.0, fmax=11025.0, htk=False): """Compute an array of acoustic frequencies tuned to the mel scale. The mel scale is a quasi-logarithmic function of acoustic frequency designed such that perceptually similar pitch intervals (e.g. octaves) appear equal in width over the full hearing range. Because the definition of the mel scale is conditioned by a finite number of subjective psychoaoustical experiments, several implementations coexist in the audio signal processing literature [1]_. By default, librosa replicates the behavior of the well-established MATLAB Auditory Toolbox of Slaney [2]_. According to this default implementation, the conversion from Hertz to mel is linear below 1 kHz and logarithmic above 1 kHz. Another available implementation replicates the Hidden Markov Toolkit [3]_ (HTK) according to the following formula: `mel = 2595.0 * np.log10(1.0 + f / 700.0).` The choice of implementation is determined by the `htk` keyword argument: setting `htk=False` leads to the Auditory toolbox implementation, whereas setting it `htk=True` leads to the HTK implementation. .. [1] Umesh, S., Cohen, L., & Nelson, D. Fitting the mel scale. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 217-220, 1998. .. [2] Slaney, M. Auditory Toolbox: A MATLAB Toolbox for Auditory Modeling Work. Technical Report, version 2, Interval Research Corporation, 1998. .. [3] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P. The HTK book, version 3.4. Cambridge University, March 2009. See Also -------- hz_to_mel mel_to_hz librosa.feature.melspectrogram librosa.feature.mfcc Parameters ---------- n_mels : int > 0 [scalar] Number of mel bins. fmin : float >= 0 [scalar] Minimum frequency (Hz). fmax : float >= 0 [scalar] Maximum frequency (Hz). htk : bool If True, use HTK formula to convert Hz to mel. Otherwise (False), use Slaney's Auditory Toolbox. Returns ------- bin_frequencies : ndarray [shape=(n_mels,)] Vector of n_mels frequencies in Hz which are uniformly spaced on the Mel axis. Examples -------- >>> librosa.mel_frequencies(n_mels=40) array([ 0. , 85.317, 170.635, 255.952, 341.269, 426.586, 511.904, 597.221, 682.538, 767.855, 853.173, 938.49 , 1024.856, 1119.114, 1222.042, 1334.436, 1457.167, 1591.187, 1737.532, 1897.337, 2071.84 , 2262.393, 2470.47 , 2697.686, 2945.799, 3216.731, 3512.582, 3835.643, 4188.417, 4573.636, 4994.285, 5453.621, 5955.205, 6502.92 , 7101.009, 7754.107, 8467.272, 9246.028, 10096.408, 11025. ]) """ # 'Center freqs' of mel bands - uniformly spaced between limits min_mel = hz_to_mel(fmin, htk=htk) max_mel = hz_to_mel(fmax, htk=htk) mels = np.linspace(min_mel, max_mel, n_mels) return mel_to_hz(mels, htk=htk)
def mel_frequencies(n_mels=128, fmin=0.0, fmax=11025.0, htk=False): """Compute an array of acoustic frequencies tuned to the mel scale. The mel scale is a quasi-logarithmic function of acoustic frequency designed such that perceptually similar pitch intervals (e.g. octaves) appear equal in width over the full hearing range. Because the definition of the mel scale is conditioned by a finite number of subjective psychoaoustical experiments, several implementations coexist in the audio signal processing literature [1]_. By default, librosa replicates the behavior of the well-established MATLAB Auditory Toolbox of Slaney [2]_. According to this default implementation, the conversion from Hertz to mel is linear below 1 kHz and logarithmic above 1 kHz. Another available implementation replicates the Hidden Markov Toolkit [3]_ (HTK) according to the following formula: `mel = 2595.0 * np.log10(1.0 + f / 700.0).` The choice of implementation is determined by the `htk` keyword argument: setting `htk=False` leads to the Auditory toolbox implementation, whereas setting it `htk=True` leads to the HTK implementation. .. [1] Umesh, S., Cohen, L., & Nelson, D. Fitting the mel scale. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 217-220, 1998. .. [2] Slaney, M. Auditory Toolbox: A MATLAB Toolbox for Auditory Modeling Work. Technical Report, version 2, Interval Research Corporation, 1998. .. [3] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P. The HTK book, version 3.4. Cambridge University, March 2009. See Also -------- hz_to_mel mel_to_hz librosa.feature.melspectrogram librosa.feature.mfcc Parameters ---------- n_mels : int > 0 [scalar] Number of mel bins. fmin : float >= 0 [scalar] Minimum frequency (Hz). fmax : float >= 0 [scalar] Maximum frequency (Hz). htk : bool If True, use HTK formula to convert Hz to mel. Otherwise (False), use Slaney's Auditory Toolbox. Returns ------- bin_frequencies : ndarray [shape=(n_mels,)] Vector of n_mels frequencies in Hz which are uniformly spaced on the Mel axis. Examples -------- >>> librosa.mel_frequencies(n_mels=40) array([ 0. , 85.317, 170.635, 255.952, 341.269, 426.586, 511.904, 597.221, 682.538, 767.855, 853.173, 938.49 , 1024.856, 1119.114, 1222.042, 1334.436, 1457.167, 1591.187, 1737.532, 1897.337, 2071.84 , 2262.393, 2470.47 , 2697.686, 2945.799, 3216.731, 3512.582, 3835.643, 4188.417, 4573.636, 4994.285, 5453.621, 5955.205, 6502.92 , 7101.009, 7754.107, 8467.272, 9246.028, 10096.408, 11025. ]) """ # 'Center freqs' of mel bands - uniformly spaced between limits min_mel = hz_to_mel(fmin, htk=htk) max_mel = hz_to_mel(fmax, htk=htk) mels = np.linspace(min_mel, max_mel, n_mels) return mel_to_hz(mels, htk=htk)
[ "Compute", "an", "array", "of", "acoustic", "frequencies", "tuned", "to", "the", "mel", "scale", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L830-L914
[ "def", "mel_frequencies", "(", "n_mels", "=", "128", ",", "fmin", "=", "0.0", ",", "fmax", "=", "11025.0", ",", "htk", "=", "False", ")", ":", "# 'Center freqs' of mel bands - uniformly spaced between limits", "min_mel", "=", "hz_to_mel", "(", "fmin", ",", "htk", "=", "htk", ")", "max_mel", "=", "hz_to_mel", "(", "fmax", ",", "htk", "=", "htk", ")", "mels", "=", "np", ".", "linspace", "(", "min_mel", ",", "max_mel", ",", "n_mels", ")", "return", "mel_to_hz", "(", "mels", ",", "htk", "=", "htk", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
tempo_frequencies
Compute the frequencies (in beats-per-minute) corresponding to an onset auto-correlation or tempogram matrix. Parameters ---------- n_bins : int > 0 The number of lag bins hop_length : int > 0 The number of samples between each bin sr : number > 0 The audio sampling rate Returns ------- bin_frequencies : ndarray [shape=(n_bins,)] vector of bin frequencies measured in BPM. .. note:: `bin_frequencies[0] = +np.inf` corresponds to 0-lag Examples -------- Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram >>> librosa.tempo_frequencies(384) array([ inf, 2583.984, 1291.992, ..., 6.782, 6.764, 6.747])
librosa/core/time_frequency.py
def tempo_frequencies(n_bins, hop_length=512, sr=22050): '''Compute the frequencies (in beats-per-minute) corresponding to an onset auto-correlation or tempogram matrix. Parameters ---------- n_bins : int > 0 The number of lag bins hop_length : int > 0 The number of samples between each bin sr : number > 0 The audio sampling rate Returns ------- bin_frequencies : ndarray [shape=(n_bins,)] vector of bin frequencies measured in BPM. .. note:: `bin_frequencies[0] = +np.inf` corresponds to 0-lag Examples -------- Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram >>> librosa.tempo_frequencies(384) array([ inf, 2583.984, 1291.992, ..., 6.782, 6.764, 6.747]) ''' bin_frequencies = np.zeros(int(n_bins), dtype=np.float) bin_frequencies[0] = np.inf bin_frequencies[1:] = 60.0 * sr / (hop_length * np.arange(1.0, n_bins)) return bin_frequencies
def tempo_frequencies(n_bins, hop_length=512, sr=22050): '''Compute the frequencies (in beats-per-minute) corresponding to an onset auto-correlation or tempogram matrix. Parameters ---------- n_bins : int > 0 The number of lag bins hop_length : int > 0 The number of samples between each bin sr : number > 0 The audio sampling rate Returns ------- bin_frequencies : ndarray [shape=(n_bins,)] vector of bin frequencies measured in BPM. .. note:: `bin_frequencies[0] = +np.inf` corresponds to 0-lag Examples -------- Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram >>> librosa.tempo_frequencies(384) array([ inf, 2583.984, 1291.992, ..., 6.782, 6.764, 6.747]) ''' bin_frequencies = np.zeros(int(n_bins), dtype=np.float) bin_frequencies[0] = np.inf bin_frequencies[1:] = 60.0 * sr / (hop_length * np.arange(1.0, n_bins)) return bin_frequencies
[ "Compute", "the", "frequencies", "(", "in", "beats", "-", "per", "-", "minute", ")", "corresponding", "to", "an", "onset", "auto", "-", "correlation", "or", "tempogram", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L917-L953
[ "def", "tempo_frequencies", "(", "n_bins", ",", "hop_length", "=", "512", ",", "sr", "=", "22050", ")", ":", "bin_frequencies", "=", "np", ".", "zeros", "(", "int", "(", "n_bins", ")", ",", "dtype", "=", "np", ".", "float", ")", "bin_frequencies", "[", "0", "]", "=", "np", ".", "inf", "bin_frequencies", "[", "1", ":", "]", "=", "60.0", "*", "sr", "/", "(", "hop_length", "*", "np", ".", "arange", "(", "1.0", ",", "n_bins", ")", ")", "return", "bin_frequencies" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
A_weighting
Compute the A-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- A_weighting : scalar or np.ndarray [shape=(n,)] `A_weighting[i]` is the A-weighting of `frequencies[i]` See Also -------- perceptual_weighting Examples -------- Get the A-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(108, librosa.note_to_hz('C1')) >>> aw = librosa.A_weighting(freqs) >>> plt.plot(freqs, aw) >>> plt.xlabel('Frequency (Hz)') >>> plt.ylabel('Weighting (log10)') >>> plt.title('A-Weighting of CQT frequencies')
librosa/core/time_frequency.py
def A_weighting(frequencies, min_db=-80.0): # pylint: disable=invalid-name '''Compute the A-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- A_weighting : scalar or np.ndarray [shape=(n,)] `A_weighting[i]` is the A-weighting of `frequencies[i]` See Also -------- perceptual_weighting Examples -------- Get the A-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(108, librosa.note_to_hz('C1')) >>> aw = librosa.A_weighting(freqs) >>> plt.plot(freqs, aw) >>> plt.xlabel('Frequency (Hz)') >>> plt.ylabel('Weighting (log10)') >>> plt.title('A-Weighting of CQT frequencies') ''' # Vectorize to make our lives easier frequencies = np.asanyarray(frequencies) # Pre-compute squared frequency f_sq = frequencies**2.0 const = np.array([12200, 20.6, 107.7, 737.9])**2.0 weights = 2.0 + 20.0 * (np.log10(const[0]) + 4 * np.log10(frequencies) - np.log10(f_sq + const[0]) - np.log10(f_sq + const[1]) - 0.5 * np.log10(f_sq + const[2]) - 0.5 * np.log10(f_sq + const[3])) if min_db is not None: weights = np.maximum(min_db, weights) return weights
def A_weighting(frequencies, min_db=-80.0): # pylint: disable=invalid-name '''Compute the A-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- A_weighting : scalar or np.ndarray [shape=(n,)] `A_weighting[i]` is the A-weighting of `frequencies[i]` See Also -------- perceptual_weighting Examples -------- Get the A-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(108, librosa.note_to_hz('C1')) >>> aw = librosa.A_weighting(freqs) >>> plt.plot(freqs, aw) >>> plt.xlabel('Frequency (Hz)') >>> plt.ylabel('Weighting (log10)') >>> plt.title('A-Weighting of CQT frequencies') ''' # Vectorize to make our lives easier frequencies = np.asanyarray(frequencies) # Pre-compute squared frequency f_sq = frequencies**2.0 const = np.array([12200, 20.6, 107.7, 737.9])**2.0 weights = 2.0 + 20.0 * (np.log10(const[0]) + 4 * np.log10(frequencies) - np.log10(f_sq + const[0]) - np.log10(f_sq + const[1]) - 0.5 * np.log10(f_sq + const[2]) - 0.5 * np.log10(f_sq + const[3])) if min_db is not None: weights = np.maximum(min_db, weights) return weights
[ "Compute", "the", "A", "-", "weighting", "of", "a", "set", "of", "frequencies", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L957-L1011
[ "def", "A_weighting", "(", "frequencies", ",", "min_db", "=", "-", "80.0", ")", ":", "# pylint: disable=invalid-name", "# Vectorize to make our lives easier", "frequencies", "=", "np", ".", "asanyarray", "(", "frequencies", ")", "# Pre-compute squared frequency", "f_sq", "=", "frequencies", "**", "2.0", "const", "=", "np", ".", "array", "(", "[", "12200", ",", "20.6", ",", "107.7", ",", "737.9", "]", ")", "**", "2.0", "weights", "=", "2.0", "+", "20.0", "*", "(", "np", ".", "log10", "(", "const", "[", "0", "]", ")", "+", "4", "*", "np", ".", "log10", "(", "frequencies", ")", "-", "np", ".", "log10", "(", "f_sq", "+", "const", "[", "0", "]", ")", "-", "np", ".", "log10", "(", "f_sq", "+", "const", "[", "1", "]", ")", "-", "0.5", "*", "np", ".", "log10", "(", "f_sq", "+", "const", "[", "2", "]", ")", "-", "0.5", "*", "np", ".", "log10", "(", "f_sq", "+", "const", "[", "3", "]", ")", ")", "if", "min_db", "is", "not", "None", ":", "weights", "=", "np", ".", "maximum", "(", "min_db", ",", "weights", ")", "return", "weights" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
times_like
Return an array of time values to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `n_fft / 2` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- times : np.ndarray [shape=(n,)] ndarray of times (in seconds) corresponding to each frame of X. See Also -------- samples_like : Return an array of sample indices to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> X = librosa.stft(y) >>> times = librosa.times_like(X) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01]) Provide a scalar input: >>> n_frames = 2647 >>> times = librosa.times_like(n_frames) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01])
librosa/core/time_frequency.py
def times_like(X, sr=22050, hop_length=512, n_fft=None, axis=-1): """Return an array of time values to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `n_fft / 2` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- times : np.ndarray [shape=(n,)] ndarray of times (in seconds) corresponding to each frame of X. See Also -------- samples_like : Return an array of sample indices to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> X = librosa.stft(y) >>> times = librosa.times_like(X) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01]) Provide a scalar input: >>> n_frames = 2647 >>> times = librosa.times_like(n_frames) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01]) """ samples = samples_like(X, hop_length=hop_length, n_fft=n_fft, axis=axis) return samples_to_time(samples, sr=sr)
def times_like(X, sr=22050, hop_length=512, n_fft=None, axis=-1): """Return an array of time values to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `n_fft / 2` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- times : np.ndarray [shape=(n,)] ndarray of times (in seconds) corresponding to each frame of X. See Also -------- samples_like : Return an array of sample indices to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> X = librosa.stft(y) >>> times = librosa.times_like(X) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01]) Provide a scalar input: >>> n_frames = 2647 >>> times = librosa.times_like(n_frames) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01]) """ samples = samples_like(X, hop_length=hop_length, n_fft=n_fft, axis=axis) return samples_to_time(samples, sr=sr)
[ "Return", "an", "array", "of", "time", "values", "to", "match", "the", "time", "axis", "from", "a", "feature", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L1014-L1067
[ "def", "times_like", "(", "X", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "n_fft", "=", "None", ",", "axis", "=", "-", "1", ")", ":", "samples", "=", "samples_like", "(", "X", ",", "hop_length", "=", "hop_length", ",", "n_fft", "=", "n_fft", ",", "axis", "=", "axis", ")", "return", "samples_to_time", "(", "samples", ",", "sr", "=", "sr", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
samples_like
Return an array of sample indices to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `n_fft / 2` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- samples : np.ndarray [shape=(n,)] ndarray of sample indices corresponding to each frame of X. See Also -------- times_like : Return an array of time values to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> X = librosa.stft(y) >>> samples = librosa.samples_like(X) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752]) Provide a scalar input: >>> n_frames = 2647 >>> samples = librosa.samples_like(n_frames) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752])
librosa/core/time_frequency.py
def samples_like(X, hop_length=512, n_fft=None, axis=-1): """Return an array of sample indices to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `n_fft / 2` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- samples : np.ndarray [shape=(n,)] ndarray of sample indices corresponding to each frame of X. See Also -------- times_like : Return an array of time values to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> X = librosa.stft(y) >>> samples = librosa.samples_like(X) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752]) Provide a scalar input: >>> n_frames = 2647 >>> samples = librosa.samples_like(n_frames) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752]) """ if np.isscalar(X): frames = np.arange(X) else: frames = np.arange(X.shape[axis]) return frames_to_samples(frames, hop_length=hop_length, n_fft=n_fft)
def samples_like(X, hop_length=512, n_fft=None, axis=-1): """Return an array of sample indices to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of `n_fft / 2` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- samples : np.ndarray [shape=(n,)] ndarray of sample indices corresponding to each frame of X. See Also -------- times_like : Return an array of time values to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> X = librosa.stft(y) >>> samples = librosa.samples_like(X) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752]) Provide a scalar input: >>> n_frames = 2647 >>> samples = librosa.samples_like(n_frames) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752]) """ if np.isscalar(X): frames = np.arange(X) else: frames = np.arange(X.shape[axis]) return frames_to_samples(frames, hop_length=hop_length, n_fft=n_fft)
[ "Return", "an", "array", "of", "sample", "indices", "to", "match", "the", "time", "axis", "from", "a", "feature", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/time_frequency.py#L1070-L1121
[ "def", "samples_like", "(", "X", ",", "hop_length", "=", "512", ",", "n_fft", "=", "None", ",", "axis", "=", "-", "1", ")", ":", "if", "np", ".", "isscalar", "(", "X", ")", ":", "frames", "=", "np", ".", "arange", "(", "X", ")", "else", ":", "frames", "=", "np", ".", "arange", "(", "X", ".", "shape", "[", "axis", "]", ")", "return", "frames_to_samples", "(", "frames", ",", "hop_length", "=", "hop_length", ",", "n_fft", "=", "n_fft", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
cqt
Compute the constant-Q transform of an audio signal. This implementation is based on the recursive sub-sampling method described by [1]_. .. [1] Schoerkhuber, Christian, and Anssi Klapuri. "Constant-Q transform toolbox for music processing." 7th Sound and Music Computing Conference, Barcelona, Spain. 2010. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter scale factor. Small values (<1) use shorter windows for improved time resolution. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See `librosa.util.normalize`. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. scale : bool If `True`, scale the CQT response by square-root the length of each channel's filter. This is analogous to `norm='ortho'` in FFT. If `False`, do not scale the CQT. This is analogous to `norm=None` in FFT. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. res_type : string [optional] The resampling mode for recursive downsampling. By default, `cqt` will adaptively select a resampling mode which trades off accuracy at high frequencies for efficiency at low frequencies. You can override this by specifying a resampling mode as supported by `librosa.core.resample`. For example, `res_type='fft'` will use a high-quality, but potentially slow FFT-based down-sampling, while `res_type='polyphase'` will use a fast, but potentially inaccurate down-sampling. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.complex or np.float] Constant-Q value each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. See Also -------- librosa.core.resample librosa.util.normalize Notes ----- This function caches at level 20. Examples -------- Generate and plot a constant-Q power spectrum >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> C = np.abs(librosa.cqt(y, sr=sr)) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), ... sr=sr, x_axis='time', y_axis='cqt_note') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrum') >>> plt.tight_layout() Limit the frequency range >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), ... n_bins=60)) >>> C array([[ 8.827e-04, 9.293e-04, ..., 3.133e-07, 2.942e-07], [ 1.076e-03, 1.068e-03, ..., 1.153e-06, 1.148e-06], ..., [ 1.042e-07, 4.087e-07, ..., 1.612e-07, 1.928e-07], [ 2.363e-07, 5.329e-07, ..., 1.294e-07, 1.611e-07]]) Using a higher frequency resolution >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), ... n_bins=60 * 2, bins_per_octave=12 * 2)) >>> C array([[ 1.536e-05, 5.848e-05, ..., 3.241e-07, 2.453e-07], [ 1.856e-03, 1.854e-03, ..., 2.397e-08, 3.549e-08], ..., [ 2.034e-07, 4.245e-07, ..., 6.213e-08, 1.463e-07], [ 4.896e-08, 5.407e-07, ..., 9.176e-08, 1.051e-07]])
librosa/core/constantq.py
def cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect', res_type=None): '''Compute the constant-Q transform of an audio signal. This implementation is based on the recursive sub-sampling method described by [1]_. .. [1] Schoerkhuber, Christian, and Anssi Klapuri. "Constant-Q transform toolbox for music processing." 7th Sound and Music Computing Conference, Barcelona, Spain. 2010. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter scale factor. Small values (<1) use shorter windows for improved time resolution. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See `librosa.util.normalize`. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. scale : bool If `True`, scale the CQT response by square-root the length of each channel's filter. This is analogous to `norm='ortho'` in FFT. If `False`, do not scale the CQT. This is analogous to `norm=None` in FFT. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. res_type : string [optional] The resampling mode for recursive downsampling. By default, `cqt` will adaptively select a resampling mode which trades off accuracy at high frequencies for efficiency at low frequencies. You can override this by specifying a resampling mode as supported by `librosa.core.resample`. For example, `res_type='fft'` will use a high-quality, but potentially slow FFT-based down-sampling, while `res_type='polyphase'` will use a fast, but potentially inaccurate down-sampling. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.complex or np.float] Constant-Q value each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. See Also -------- librosa.core.resample librosa.util.normalize Notes ----- This function caches at level 20. Examples -------- Generate and plot a constant-Q power spectrum >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> C = np.abs(librosa.cqt(y, sr=sr)) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), ... sr=sr, x_axis='time', y_axis='cqt_note') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrum') >>> plt.tight_layout() Limit the frequency range >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), ... n_bins=60)) >>> C array([[ 8.827e-04, 9.293e-04, ..., 3.133e-07, 2.942e-07], [ 1.076e-03, 1.068e-03, ..., 1.153e-06, 1.148e-06], ..., [ 1.042e-07, 4.087e-07, ..., 1.612e-07, 1.928e-07], [ 2.363e-07, 5.329e-07, ..., 1.294e-07, 1.611e-07]]) Using a higher frequency resolution >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), ... n_bins=60 * 2, bins_per_octave=12 * 2)) >>> C array([[ 1.536e-05, 5.848e-05, ..., 3.241e-07, 2.453e-07], [ 1.856e-03, 1.854e-03, ..., 2.397e-08, 3.549e-08], ..., [ 2.034e-07, 4.245e-07, ..., 6.213e-08, 1.463e-07], [ 4.896e-08, 5.407e-07, ..., 9.176e-08, 1.051e-07]]) ''' # How many octaves are we dealing with? n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) n_filters = min(bins_per_octave, n_bins) len_orig = len(y) if fmin is None: # C1 by default fmin = note_to_hz('C1') if tuning is None: tuning = estimate_tuning(y=y, sr=sr) # First thing, get the freqs of the top octave freqs = cqt_frequencies(n_bins, fmin, bins_per_octave=bins_per_octave, tuning=tuning)[-bins_per_octave:] fmin_t = np.min(freqs) fmax_t = np.max(freqs) # Determine required resampling quality Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1) filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q) nyquist = sr / 2.0 auto_resample = False if not res_type: auto_resample = True if filter_cutoff < audio.BW_FASTEST * nyquist: res_type = 'kaiser_fast' else: res_type = 'kaiser_best' y, sr, hop_length = __early_downsample(y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale) cqt_resp = [] if auto_resample and res_type != 'kaiser_fast': # Do the top octave before resampling to allow for fast resampling fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t, n_filters, bins_per_octave, tuning, filter_scale, norm, sparsity, window=window) # Compute the CQT filter response and append it to the stack cqt_resp.append(__cqt_response(y, n_fft, hop_length, fft_basis, pad_mode)) fmin_t /= 2 fmax_t /= 2 n_octaves -= 1 filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q) res_type = 'kaiser_fast' # Make sure our hop is long enough to support the bottom octave num_twos = __num_two_factors(hop_length) if num_twos < n_octaves - 1: raise ParameterError('hop_length must be a positive integer ' 'multiple of 2^{0:d} for {1:d}-octave CQT' .format(n_octaves - 1, n_octaves)) # Now do the recursive bit fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t, n_filters, bins_per_octave, tuning, filter_scale, norm, sparsity, window=window) my_y, my_sr, my_hop = y, sr, hop_length # Iterate down the octaves for i in range(n_octaves): # Resample (except first time) if i > 0: if len(my_y) < 2: raise ParameterError('Input signal length={} is too short for ' '{:d}-octave CQT'.format(len_orig, n_octaves)) my_y = audio.resample(my_y, 2, 1, res_type=res_type, scale=True) # The re-scale the filters to compensate for downsampling fft_basis[:] *= np.sqrt(2) my_sr /= 2.0 my_hop //= 2 # Compute the cqt filter response and append to the stack cqt_resp.append(__cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode)) C = __trim_stack(cqt_resp, n_bins) if scale: lengths = filters.constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, window=window, filter_scale=filter_scale) C /= np.sqrt(lengths[:, np.newaxis]) return C
def cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect', res_type=None): '''Compute the constant-Q transform of an audio signal. This implementation is based on the recursive sub-sampling method described by [1]_. .. [1] Schoerkhuber, Christian, and Anssi Klapuri. "Constant-Q transform toolbox for music processing." 7th Sound and Music Computing Conference, Barcelona, Spain. 2010. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter scale factor. Small values (<1) use shorter windows for improved time resolution. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See `librosa.util.normalize`. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. scale : bool If `True`, scale the CQT response by square-root the length of each channel's filter. This is analogous to `norm='ortho'` in FFT. If `False`, do not scale the CQT. This is analogous to `norm=None` in FFT. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. res_type : string [optional] The resampling mode for recursive downsampling. By default, `cqt` will adaptively select a resampling mode which trades off accuracy at high frequencies for efficiency at low frequencies. You can override this by specifying a resampling mode as supported by `librosa.core.resample`. For example, `res_type='fft'` will use a high-quality, but potentially slow FFT-based down-sampling, while `res_type='polyphase'` will use a fast, but potentially inaccurate down-sampling. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.complex or np.float] Constant-Q value each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. See Also -------- librosa.core.resample librosa.util.normalize Notes ----- This function caches at level 20. Examples -------- Generate and plot a constant-Q power spectrum >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> C = np.abs(librosa.cqt(y, sr=sr)) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), ... sr=sr, x_axis='time', y_axis='cqt_note') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrum') >>> plt.tight_layout() Limit the frequency range >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), ... n_bins=60)) >>> C array([[ 8.827e-04, 9.293e-04, ..., 3.133e-07, 2.942e-07], [ 1.076e-03, 1.068e-03, ..., 1.153e-06, 1.148e-06], ..., [ 1.042e-07, 4.087e-07, ..., 1.612e-07, 1.928e-07], [ 2.363e-07, 5.329e-07, ..., 1.294e-07, 1.611e-07]]) Using a higher frequency resolution >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'), ... n_bins=60 * 2, bins_per_octave=12 * 2)) >>> C array([[ 1.536e-05, 5.848e-05, ..., 3.241e-07, 2.453e-07], [ 1.856e-03, 1.854e-03, ..., 2.397e-08, 3.549e-08], ..., [ 2.034e-07, 4.245e-07, ..., 6.213e-08, 1.463e-07], [ 4.896e-08, 5.407e-07, ..., 9.176e-08, 1.051e-07]]) ''' # How many octaves are we dealing with? n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) n_filters = min(bins_per_octave, n_bins) len_orig = len(y) if fmin is None: # C1 by default fmin = note_to_hz('C1') if tuning is None: tuning = estimate_tuning(y=y, sr=sr) # First thing, get the freqs of the top octave freqs = cqt_frequencies(n_bins, fmin, bins_per_octave=bins_per_octave, tuning=tuning)[-bins_per_octave:] fmin_t = np.min(freqs) fmax_t = np.max(freqs) # Determine required resampling quality Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1) filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q) nyquist = sr / 2.0 auto_resample = False if not res_type: auto_resample = True if filter_cutoff < audio.BW_FASTEST * nyquist: res_type = 'kaiser_fast' else: res_type = 'kaiser_best' y, sr, hop_length = __early_downsample(y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale) cqt_resp = [] if auto_resample and res_type != 'kaiser_fast': # Do the top octave before resampling to allow for fast resampling fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t, n_filters, bins_per_octave, tuning, filter_scale, norm, sparsity, window=window) # Compute the CQT filter response and append it to the stack cqt_resp.append(__cqt_response(y, n_fft, hop_length, fft_basis, pad_mode)) fmin_t /= 2 fmax_t /= 2 n_octaves -= 1 filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q) res_type = 'kaiser_fast' # Make sure our hop is long enough to support the bottom octave num_twos = __num_two_factors(hop_length) if num_twos < n_octaves - 1: raise ParameterError('hop_length must be a positive integer ' 'multiple of 2^{0:d} for {1:d}-octave CQT' .format(n_octaves - 1, n_octaves)) # Now do the recursive bit fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t, n_filters, bins_per_octave, tuning, filter_scale, norm, sparsity, window=window) my_y, my_sr, my_hop = y, sr, hop_length # Iterate down the octaves for i in range(n_octaves): # Resample (except first time) if i > 0: if len(my_y) < 2: raise ParameterError('Input signal length={} is too short for ' '{:d}-octave CQT'.format(len_orig, n_octaves)) my_y = audio.resample(my_y, 2, 1, res_type=res_type, scale=True) # The re-scale the filters to compensate for downsampling fft_basis[:] *= np.sqrt(2) my_sr /= 2.0 my_hop //= 2 # Compute the cqt filter response and append to the stack cqt_resp.append(__cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode)) C = __trim_stack(cqt_resp, n_bins) if scale: lengths = filters.constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, window=window, filter_scale=filter_scale) C /= np.sqrt(lengths[:, np.newaxis]) return C
[ "Compute", "the", "constant", "-", "Q", "transform", "of", "an", "audio", "signal", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L24-L278
[ "def", "cqt", "(", "y", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "n_bins", "=", "84", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ",", "filter_scale", "=", "1", ",", "norm", "=", "1", ",", "sparsity", "=", "0.01", ",", "window", "=", "'hann'", ",", "scale", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "res_type", "=", "None", ")", ":", "# How many octaves are we dealing with?", "n_octaves", "=", "int", "(", "np", ".", "ceil", "(", "float", "(", "n_bins", ")", "/", "bins_per_octave", ")", ")", "n_filters", "=", "min", "(", "bins_per_octave", ",", "n_bins", ")", "len_orig", "=", "len", "(", "y", ")", "if", "fmin", "is", "None", ":", "# C1 by default", "fmin", "=", "note_to_hz", "(", "'C1'", ")", "if", "tuning", "is", "None", ":", "tuning", "=", "estimate_tuning", "(", "y", "=", "y", ",", "sr", "=", "sr", ")", "# First thing, get the freqs of the top octave", "freqs", "=", "cqt_frequencies", "(", "n_bins", ",", "fmin", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ")", "[", "-", "bins_per_octave", ":", "]", "fmin_t", "=", "np", ".", "min", "(", "freqs", ")", "fmax_t", "=", "np", ".", "max", "(", "freqs", ")", "# Determine required resampling quality", "Q", "=", "float", "(", "filter_scale", ")", "/", "(", "2.0", "**", "(", "1.", "/", "bins_per_octave", ")", "-", "1", ")", "filter_cutoff", "=", "fmax_t", "*", "(", "1", "+", "0.5", "*", "filters", ".", "window_bandwidth", "(", "window", ")", "/", "Q", ")", "nyquist", "=", "sr", "/", "2.0", "auto_resample", "=", "False", "if", "not", "res_type", ":", "auto_resample", "=", "True", "if", "filter_cutoff", "<", "audio", ".", "BW_FASTEST", "*", "nyquist", ":", "res_type", "=", "'kaiser_fast'", "else", ":", "res_type", "=", "'kaiser_best'", "y", ",", "sr", ",", "hop_length", "=", "__early_downsample", "(", "y", ",", "sr", ",", "hop_length", ",", "res_type", ",", "n_octaves", ",", "nyquist", ",", "filter_cutoff", ",", "scale", ")", "cqt_resp", "=", "[", "]", "if", "auto_resample", "and", "res_type", "!=", "'kaiser_fast'", ":", "# Do the top octave before resampling to allow for fast resampling", "fft_basis", ",", "n_fft", ",", "_", "=", "__cqt_filter_fft", "(", "sr", ",", "fmin_t", ",", "n_filters", ",", "bins_per_octave", ",", "tuning", ",", "filter_scale", ",", "norm", ",", "sparsity", ",", "window", "=", "window", ")", "# Compute the CQT filter response and append it to the stack", "cqt_resp", ".", "append", "(", "__cqt_response", "(", "y", ",", "n_fft", ",", "hop_length", ",", "fft_basis", ",", "pad_mode", ")", ")", "fmin_t", "/=", "2", "fmax_t", "/=", "2", "n_octaves", "-=", "1", "filter_cutoff", "=", "fmax_t", "*", "(", "1", "+", "0.5", "*", "filters", ".", "window_bandwidth", "(", "window", ")", "/", "Q", ")", "res_type", "=", "'kaiser_fast'", "# Make sure our hop is long enough to support the bottom octave", "num_twos", "=", "__num_two_factors", "(", "hop_length", ")", "if", "num_twos", "<", "n_octaves", "-", "1", ":", "raise", "ParameterError", "(", "'hop_length must be a positive integer '", "'multiple of 2^{0:d} for {1:d}-octave CQT'", ".", "format", "(", "n_octaves", "-", "1", ",", "n_octaves", ")", ")", "# Now do the recursive bit", "fft_basis", ",", "n_fft", ",", "_", "=", "__cqt_filter_fft", "(", "sr", ",", "fmin_t", ",", "n_filters", ",", "bins_per_octave", ",", "tuning", ",", "filter_scale", ",", "norm", ",", "sparsity", ",", "window", "=", "window", ")", "my_y", ",", "my_sr", ",", "my_hop", "=", "y", ",", "sr", ",", "hop_length", "# Iterate down the octaves", "for", "i", "in", "range", "(", "n_octaves", ")", ":", "# Resample (except first time)", "if", "i", ">", "0", ":", "if", "len", "(", "my_y", ")", "<", "2", ":", "raise", "ParameterError", "(", "'Input signal length={} is too short for '", "'{:d}-octave CQT'", ".", "format", "(", "len_orig", ",", "n_octaves", ")", ")", "my_y", "=", "audio", ".", "resample", "(", "my_y", ",", "2", ",", "1", ",", "res_type", "=", "res_type", ",", "scale", "=", "True", ")", "# The re-scale the filters to compensate for downsampling", "fft_basis", "[", ":", "]", "*=", "np", ".", "sqrt", "(", "2", ")", "my_sr", "/=", "2.0", "my_hop", "//=", "2", "# Compute the cqt filter response and append to the stack", "cqt_resp", ".", "append", "(", "__cqt_response", "(", "my_y", ",", "n_fft", ",", "my_hop", ",", "fft_basis", ",", "pad_mode", ")", ")", "C", "=", "__trim_stack", "(", "cqt_resp", ",", "n_bins", ")", "if", "scale", ":", "lengths", "=", "filters", ".", "constant_q_lengths", "(", "sr", ",", "fmin", ",", "n_bins", "=", "n_bins", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "window", "=", "window", ",", "filter_scale", "=", "filter_scale", ")", "C", "/=", "np", ".", "sqrt", "(", "lengths", "[", ":", ",", "np", ".", "newaxis", "]", ")", "return", "C" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hybrid_cqt
Compute the hybrid constant-Q transform of an audio signal. Here, the hybrid CQT uses the pseudo CQT for higher frequencies where the hop_length is longer than half the filter length and the full CQT for lower frequencies. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter filter_scale factor. Larger values use longer windows. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. res_type : string Resampling mode. See `librosa.core.cqt` for details. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.float] Constant-Q energy for each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. See Also -------- cqt pseudo_cqt Notes ----- This function caches at level 20.
librosa/core/constantq.py
def hybrid_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect', res_type=None): '''Compute the hybrid constant-Q transform of an audio signal. Here, the hybrid CQT uses the pseudo CQT for higher frequencies where the hop_length is longer than half the filter length and the full CQT for lower frequencies. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter filter_scale factor. Larger values use longer windows. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. res_type : string Resampling mode. See `librosa.core.cqt` for details. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.float] Constant-Q energy for each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. See Also -------- cqt pseudo_cqt Notes ----- This function caches at level 20. ''' if fmin is None: # C1 by default fmin = note_to_hz('C1') if tuning is None: tuning = estimate_tuning(y=y, sr=sr) # Get all CQT frequencies freqs = cqt_frequencies(n_bins, fmin, bins_per_octave=bins_per_octave, tuning=tuning) # Compute the length of each constant-Q basis function lengths = filters.constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, window=window) # Determine which filters to use with Pseudo CQT # These are the ones that fit within 2 hop lengths after padding pseudo_filters = 2.0**np.ceil(np.log2(lengths)) < 2 * hop_length n_bins_pseudo = int(np.sum(pseudo_filters)) n_bins_full = n_bins - n_bins_pseudo cqt_resp = [] if n_bins_pseudo > 0: fmin_pseudo = np.min(freqs[pseudo_filters]) cqt_resp.append(pseudo_cqt(y, sr, hop_length=hop_length, fmin=fmin_pseudo, n_bins=n_bins_pseudo, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, norm=norm, sparsity=sparsity, window=window, scale=scale, pad_mode=pad_mode)) if n_bins_full > 0: cqt_resp.append(np.abs(cqt(y, sr, hop_length=hop_length, fmin=fmin, n_bins=n_bins_full, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, norm=norm, sparsity=sparsity, window=window, scale=scale, pad_mode=pad_mode, res_type=res_type))) return __trim_stack(cqt_resp, n_bins)
def hybrid_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect', res_type=None): '''Compute the hybrid constant-Q transform of an audio signal. Here, the hybrid CQT uses the pseudo CQT for higher frequencies where the hop_length is longer than half the filter length and the full CQT for lower frequencies. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter filter_scale factor. Larger values use longer windows. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. res_type : string Resampling mode. See `librosa.core.cqt` for details. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.float] Constant-Q energy for each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. See Also -------- cqt pseudo_cqt Notes ----- This function caches at level 20. ''' if fmin is None: # C1 by default fmin = note_to_hz('C1') if tuning is None: tuning = estimate_tuning(y=y, sr=sr) # Get all CQT frequencies freqs = cqt_frequencies(n_bins, fmin, bins_per_octave=bins_per_octave, tuning=tuning) # Compute the length of each constant-Q basis function lengths = filters.constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, window=window) # Determine which filters to use with Pseudo CQT # These are the ones that fit within 2 hop lengths after padding pseudo_filters = 2.0**np.ceil(np.log2(lengths)) < 2 * hop_length n_bins_pseudo = int(np.sum(pseudo_filters)) n_bins_full = n_bins - n_bins_pseudo cqt_resp = [] if n_bins_pseudo > 0: fmin_pseudo = np.min(freqs[pseudo_filters]) cqt_resp.append(pseudo_cqt(y, sr, hop_length=hop_length, fmin=fmin_pseudo, n_bins=n_bins_pseudo, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, norm=norm, sparsity=sparsity, window=window, scale=scale, pad_mode=pad_mode)) if n_bins_full > 0: cqt_resp.append(np.abs(cqt(y, sr, hop_length=hop_length, fmin=fmin, n_bins=n_bins_full, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, norm=norm, sparsity=sparsity, window=window, scale=scale, pad_mode=pad_mode, res_type=res_type))) return __trim_stack(cqt_resp, n_bins)
[ "Compute", "the", "hybrid", "constant", "-", "Q", "transform", "of", "an", "audio", "signal", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L282-L422
[ "def", "hybrid_cqt", "(", "y", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "n_bins", "=", "84", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ",", "filter_scale", "=", "1", ",", "norm", "=", "1", ",", "sparsity", "=", "0.01", ",", "window", "=", "'hann'", ",", "scale", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "res_type", "=", "None", ")", ":", "if", "fmin", "is", "None", ":", "# C1 by default", "fmin", "=", "note_to_hz", "(", "'C1'", ")", "if", "tuning", "is", "None", ":", "tuning", "=", "estimate_tuning", "(", "y", "=", "y", ",", "sr", "=", "sr", ")", "# Get all CQT frequencies", "freqs", "=", "cqt_frequencies", "(", "n_bins", ",", "fmin", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ")", "# Compute the length of each constant-Q basis function", "lengths", "=", "filters", ".", "constant_q_lengths", "(", "sr", ",", "fmin", ",", "n_bins", "=", "n_bins", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "filter_scale", "=", "filter_scale", ",", "window", "=", "window", ")", "# Determine which filters to use with Pseudo CQT", "# These are the ones that fit within 2 hop lengths after padding", "pseudo_filters", "=", "2.0", "**", "np", ".", "ceil", "(", "np", ".", "log2", "(", "lengths", ")", ")", "<", "2", "*", "hop_length", "n_bins_pseudo", "=", "int", "(", "np", ".", "sum", "(", "pseudo_filters", ")", ")", "n_bins_full", "=", "n_bins", "-", "n_bins_pseudo", "cqt_resp", "=", "[", "]", "if", "n_bins_pseudo", ">", "0", ":", "fmin_pseudo", "=", "np", ".", "min", "(", "freqs", "[", "pseudo_filters", "]", ")", "cqt_resp", ".", "append", "(", "pseudo_cqt", "(", "y", ",", "sr", ",", "hop_length", "=", "hop_length", ",", "fmin", "=", "fmin_pseudo", ",", "n_bins", "=", "n_bins_pseudo", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "filter_scale", "=", "filter_scale", ",", "norm", "=", "norm", ",", "sparsity", "=", "sparsity", ",", "window", "=", "window", ",", "scale", "=", "scale", ",", "pad_mode", "=", "pad_mode", ")", ")", "if", "n_bins_full", ">", "0", ":", "cqt_resp", ".", "append", "(", "np", ".", "abs", "(", "cqt", "(", "y", ",", "sr", ",", "hop_length", "=", "hop_length", ",", "fmin", "=", "fmin", ",", "n_bins", "=", "n_bins_full", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "filter_scale", "=", "filter_scale", ",", "norm", "=", "norm", ",", "sparsity", "=", "sparsity", ",", "window", "=", "window", ",", "scale", "=", "scale", ",", "pad_mode", "=", "pad_mode", ",", "res_type", "=", "res_type", ")", ")", ")", "return", "__trim_stack", "(", "cqt_resp", ",", "n_bins", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
pseudo_cqt
Compute the pseudo constant-Q transform of an audio signal. This uses a single fft size that is the smallest power of 2 that is greater than or equal to the max of: 1. The longest CQT filter 2. 2x the hop_length Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter filter_scale factor. Larger values use longer windows. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.float] Pseudo Constant-Q energy for each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. Notes ----- This function caches at level 20.
librosa/core/constantq.py
def pseudo_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect'): '''Compute the pseudo constant-Q transform of an audio signal. This uses a single fft size that is the smallest power of 2 that is greater than or equal to the max of: 1. The longest CQT filter 2. 2x the hop_length Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter filter_scale factor. Larger values use longer windows. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.float] Pseudo Constant-Q energy for each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. Notes ----- This function caches at level 20. ''' if fmin is None: # C1 by default fmin = note_to_hz('C1') if tuning is None: tuning = estimate_tuning(y=y, sr=sr) fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin, n_bins, bins_per_octave, tuning, filter_scale, norm, sparsity, hop_length=hop_length, window=window) fft_basis = np.abs(fft_basis) # Compute the magnitude STFT with Hann window D = np.abs(stft(y, n_fft=n_fft, hop_length=hop_length, pad_mode=pad_mode)) # Project onto the pseudo-cqt basis C = fft_basis.dot(D) if scale: C /= np.sqrt(n_fft) else: lengths = filters.constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, window=window, filter_scale=filter_scale) C *= np.sqrt(lengths[:, np.newaxis] / n_fft) return C
def pseudo_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect'): '''Compute the pseudo constant-Q transform of an audio signal. This uses a single fft size that is the smallest power of 2 that is greater than or equal to the max of: 1. The longest CQT filter 2. 2x the hop_length Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` hop_length : int > 0 [scalar] number of samples between successive CQT columns. fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz n_bins : int > 0 [scalar] Number of frequency bins, starting at `fmin` bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : None or float in `[-0.5, 0.5)` Tuning offset in fractions of a bin (cents). If `None`, tuning will be automatically estimated from the signal. filter_scale : float > 0 Filter filter_scale factor. Larger values use longer windows. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. pad_mode : string Padding mode for centered frame analysis. See also: `librosa.core.stft` and `np.pad`. Returns ------- CQT : np.ndarray [shape=(n_bins, t), dtype=np.float] Pseudo Constant-Q energy for each frequency at each time. Raises ------ ParameterError If `hop_length` is not an integer multiple of `2**(n_bins / bins_per_octave)` Or if `y` is too short to support the frequency range of the CQT. Notes ----- This function caches at level 20. ''' if fmin is None: # C1 by default fmin = note_to_hz('C1') if tuning is None: tuning = estimate_tuning(y=y, sr=sr) fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin, n_bins, bins_per_octave, tuning, filter_scale, norm, sparsity, hop_length=hop_length, window=window) fft_basis = np.abs(fft_basis) # Compute the magnitude STFT with Hann window D = np.abs(stft(y, n_fft=n_fft, hop_length=hop_length, pad_mode=pad_mode)) # Project onto the pseudo-cqt basis C = fft_basis.dot(D) if scale: C /= np.sqrt(n_fft) else: lengths = filters.constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, window=window, filter_scale=filter_scale) C *= np.sqrt(lengths[:, np.newaxis] / n_fft) return C
[ "Compute", "the", "pseudo", "constant", "-", "Q", "transform", "of", "an", "audio", "signal", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L426-L534
[ "def", "pseudo_cqt", "(", "y", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "n_bins", "=", "84", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ",", "filter_scale", "=", "1", ",", "norm", "=", "1", ",", "sparsity", "=", "0.01", ",", "window", "=", "'hann'", ",", "scale", "=", "True", ",", "pad_mode", "=", "'reflect'", ")", ":", "if", "fmin", "is", "None", ":", "# C1 by default", "fmin", "=", "note_to_hz", "(", "'C1'", ")", "if", "tuning", "is", "None", ":", "tuning", "=", "estimate_tuning", "(", "y", "=", "y", ",", "sr", "=", "sr", ")", "fft_basis", ",", "n_fft", ",", "_", "=", "__cqt_filter_fft", "(", "sr", ",", "fmin", ",", "n_bins", ",", "bins_per_octave", ",", "tuning", ",", "filter_scale", ",", "norm", ",", "sparsity", ",", "hop_length", "=", "hop_length", ",", "window", "=", "window", ")", "fft_basis", "=", "np", ".", "abs", "(", "fft_basis", ")", "# Compute the magnitude STFT with Hann window", "D", "=", "np", ".", "abs", "(", "stft", "(", "y", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "pad_mode", "=", "pad_mode", ")", ")", "# Project onto the pseudo-cqt basis", "C", "=", "fft_basis", ".", "dot", "(", "D", ")", "if", "scale", ":", "C", "/=", "np", ".", "sqrt", "(", "n_fft", ")", "else", ":", "lengths", "=", "filters", ".", "constant_q_lengths", "(", "sr", ",", "fmin", ",", "n_bins", "=", "n_bins", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "window", "=", "window", ",", "filter_scale", "=", "filter_scale", ")", "C", "*=", "np", ".", "sqrt", "(", "lengths", "[", ":", ",", "np", ".", "newaxis", "]", "/", "n_fft", ")", "return", "C" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
icqt
Compute the inverse constant-Q transform. Given a constant-Q transform representation `C` of an audio signal `y`, this function produces an approximation `y_hat`. Parameters ---------- C : np.ndarray, [shape=(n_bins, n_frames)] Constant-Q representation as produced by `core.cqt` hop_length : int > 0 [scalar] number of samples between successive frames fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz tuning : float in `[-0.5, 0.5)` [scalar] Tuning offset in fractions of a bin (cents). filter_scale : float > 0 [scalar] Filter scale factor. Small values (<1) use shorter windows for improved time resolution. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See `librosa.util.normalize`. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. scale : bool If `True`, scale the CQT response by square-root the length of each channel's filter. This is analogous to `norm='ortho'` in FFT. If `False`, do not scale the CQT. This is analogous to `norm=None` in FFT. length : int > 0, optional If provided, the output `y` is zero-padded or clipped to exactly `length` samples. amin : float or None [DEPRECATED] .. note:: This parameter is deprecated in 0.7.0 and will be removed in 0.8.0. res_type : string Resampling mode. By default, this uses `fft` mode for high-quality reconstruction, but this may be slow depending on your signal duration. See `librosa.resample` for supported modes. Returns ------- y : np.ndarray, [shape=(n_samples), dtype=np.float] Audio time-series reconstructed from the CQT representation. See Also -------- cqt core.resample Notes ----- This function caches at level 40. Examples -------- Using default parameters >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> C = librosa.cqt(y=y, sr=sr) >>> y_hat = librosa.icqt(C=C, sr=sr) Or with a different hop length and frequency resolution: >>> hop_length = 256 >>> bins_per_octave = 12 * 3 >>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave, ... bins_per_octave=bins_per_octave) >>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length, ... bins_per_octave=bins_per_octave)
librosa/core/constantq.py
def icqt(C, sr=22050, hop_length=512, fmin=None, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, length=None, amin=util.Deprecated(), res_type='fft'): '''Compute the inverse constant-Q transform. Given a constant-Q transform representation `C` of an audio signal `y`, this function produces an approximation `y_hat`. Parameters ---------- C : np.ndarray, [shape=(n_bins, n_frames)] Constant-Q representation as produced by `core.cqt` hop_length : int > 0 [scalar] number of samples between successive frames fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz tuning : float in `[-0.5, 0.5)` [scalar] Tuning offset in fractions of a bin (cents). filter_scale : float > 0 [scalar] Filter scale factor. Small values (<1) use shorter windows for improved time resolution. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See `librosa.util.normalize`. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. scale : bool If `True`, scale the CQT response by square-root the length of each channel's filter. This is analogous to `norm='ortho'` in FFT. If `False`, do not scale the CQT. This is analogous to `norm=None` in FFT. length : int > 0, optional If provided, the output `y` is zero-padded or clipped to exactly `length` samples. amin : float or None [DEPRECATED] .. note:: This parameter is deprecated in 0.7.0 and will be removed in 0.8.0. res_type : string Resampling mode. By default, this uses `fft` mode for high-quality reconstruction, but this may be slow depending on your signal duration. See `librosa.resample` for supported modes. Returns ------- y : np.ndarray, [shape=(n_samples), dtype=np.float] Audio time-series reconstructed from the CQT representation. See Also -------- cqt core.resample Notes ----- This function caches at level 40. Examples -------- Using default parameters >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> C = librosa.cqt(y=y, sr=sr) >>> y_hat = librosa.icqt(C=C, sr=sr) Or with a different hop length and frequency resolution: >>> hop_length = 256 >>> bins_per_octave = 12 * 3 >>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave, ... bins_per_octave=bins_per_octave) >>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length, ... bins_per_octave=bins_per_octave) ''' if fmin is None: fmin = note_to_hz('C1') # Get the top octave of frequencies n_bins = len(C) freqs = cqt_frequencies(n_bins, fmin, bins_per_octave=bins_per_octave, tuning=tuning)[-bins_per_octave:] n_filters = min(n_bins, bins_per_octave) fft_basis, n_fft, lengths = __cqt_filter_fft(sr, np.min(freqs), n_filters, bins_per_octave, tuning, filter_scale, norm, sparsity=sparsity, window=window) if hop_length > min(lengths): warnings.warn('hop_length={} exceeds minimum CQT filter length={:.3f}.\n' 'This will probably cause unpleasant acoustic artifacts. ' 'Consider decreasing your hop length or increasing the frequency resolution of your CQT.'.format(hop_length, min(lengths))) # The basis gets renormalized by the effective window length above; # This step undoes that fft_basis = fft_basis.todense() * n_fft / lengths[:, np.newaxis] # This step conjugate-transposes the filter inv_basis = fft_basis.H # How many octaves do we have? n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) y = None for octave in range(n_octaves - 1, -1, -1): slice_ = slice(-(octave+1) * bins_per_octave - 1, -(octave) * bins_per_octave - 1) # Slice this octave C_oct = C[slice_] inv_oct = inv_basis[:, -C_oct.shape[0]:] oct_hop = hop_length // 2**octave # Apply energy corrections if scale: C_scale = np.sqrt(lengths[-C_oct.shape[0]:, np.newaxis]) / n_fft else: C_scale = lengths[-C_oct.shape[0]:, np.newaxis] * np.sqrt(2**octave) / n_fft # Inverse-project the basis for each octave D_oct = inv_oct.dot(C_oct / C_scale) # Inverse-STFT that response y_oct = istft(D_oct, window='ones', hop_length=oct_hop) # Up-sample that octave if y is None: y = y_oct else: # Up-sample the previous buffer and add in the new one # Scipy-resampling is fast here, since it's a power-of-two relation y = audio.resample(y, 1, 2, scale=True, res_type=res_type, fix=False) y[:len(y_oct)] += y_oct if length: y = util.fix_length(y, length) return y
def icqt(C, sr=22050, hop_length=512, fmin=None, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, length=None, amin=util.Deprecated(), res_type='fft'): '''Compute the inverse constant-Q transform. Given a constant-Q transform representation `C` of an audio signal `y`, this function produces an approximation `y_hat`. Parameters ---------- C : np.ndarray, [shape=(n_bins, n_frames)] Constant-Q representation as produced by `core.cqt` hop_length : int > 0 [scalar] number of samples between successive frames fmin : float > 0 [scalar] Minimum frequency. Defaults to C1 ~= 32.70 Hz tuning : float in `[-0.5, 0.5)` [scalar] Tuning offset in fractions of a bin (cents). filter_scale : float > 0 [scalar] Filter scale factor. Small values (<1) use shorter windows for improved time resolution. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See `librosa.util.normalize`. sparsity : float in [0, 1) Sparsify the CQT basis by discarding up to `sparsity` fraction of the energy in each basis. Set `sparsity=0` to disable sparsification. window : str, tuple, number, or function Window specification for the basis filters. See `filters.get_window` for details. scale : bool If `True`, scale the CQT response by square-root the length of each channel's filter. This is analogous to `norm='ortho'` in FFT. If `False`, do not scale the CQT. This is analogous to `norm=None` in FFT. length : int > 0, optional If provided, the output `y` is zero-padded or clipped to exactly `length` samples. amin : float or None [DEPRECATED] .. note:: This parameter is deprecated in 0.7.0 and will be removed in 0.8.0. res_type : string Resampling mode. By default, this uses `fft` mode for high-quality reconstruction, but this may be slow depending on your signal duration. See `librosa.resample` for supported modes. Returns ------- y : np.ndarray, [shape=(n_samples), dtype=np.float] Audio time-series reconstructed from the CQT representation. See Also -------- cqt core.resample Notes ----- This function caches at level 40. Examples -------- Using default parameters >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> C = librosa.cqt(y=y, sr=sr) >>> y_hat = librosa.icqt(C=C, sr=sr) Or with a different hop length and frequency resolution: >>> hop_length = 256 >>> bins_per_octave = 12 * 3 >>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave, ... bins_per_octave=bins_per_octave) >>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length, ... bins_per_octave=bins_per_octave) ''' if fmin is None: fmin = note_to_hz('C1') # Get the top octave of frequencies n_bins = len(C) freqs = cqt_frequencies(n_bins, fmin, bins_per_octave=bins_per_octave, tuning=tuning)[-bins_per_octave:] n_filters = min(n_bins, bins_per_octave) fft_basis, n_fft, lengths = __cqt_filter_fft(sr, np.min(freqs), n_filters, bins_per_octave, tuning, filter_scale, norm, sparsity=sparsity, window=window) if hop_length > min(lengths): warnings.warn('hop_length={} exceeds minimum CQT filter length={:.3f}.\n' 'This will probably cause unpleasant acoustic artifacts. ' 'Consider decreasing your hop length or increasing the frequency resolution of your CQT.'.format(hop_length, min(lengths))) # The basis gets renormalized by the effective window length above; # This step undoes that fft_basis = fft_basis.todense() * n_fft / lengths[:, np.newaxis] # This step conjugate-transposes the filter inv_basis = fft_basis.H # How many octaves do we have? n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) y = None for octave in range(n_octaves - 1, -1, -1): slice_ = slice(-(octave+1) * bins_per_octave - 1, -(octave) * bins_per_octave - 1) # Slice this octave C_oct = C[slice_] inv_oct = inv_basis[:, -C_oct.shape[0]:] oct_hop = hop_length // 2**octave # Apply energy corrections if scale: C_scale = np.sqrt(lengths[-C_oct.shape[0]:, np.newaxis]) / n_fft else: C_scale = lengths[-C_oct.shape[0]:, np.newaxis] * np.sqrt(2**octave) / n_fft # Inverse-project the basis for each octave D_oct = inv_oct.dot(C_oct / C_scale) # Inverse-STFT that response y_oct = istft(D_oct, window='ones', hop_length=oct_hop) # Up-sample that octave if y is None: y = y_oct else: # Up-sample the previous buffer and add in the new one # Scipy-resampling is fast here, since it's a power-of-two relation y = audio.resample(y, 1, 2, scale=True, res_type=res_type, fix=False) y[:len(y_oct)] += y_oct if length: y = util.fix_length(y, length) return y
[ "Compute", "the", "inverse", "constant", "-", "Q", "transform", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L538-L703
[ "def", "icqt", "(", "C", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ",", "filter_scale", "=", "1", ",", "norm", "=", "1", ",", "sparsity", "=", "0.01", ",", "window", "=", "'hann'", ",", "scale", "=", "True", ",", "length", "=", "None", ",", "amin", "=", "util", ".", "Deprecated", "(", ")", ",", "res_type", "=", "'fft'", ")", ":", "if", "fmin", "is", "None", ":", "fmin", "=", "note_to_hz", "(", "'C1'", ")", "# Get the top octave of frequencies", "n_bins", "=", "len", "(", "C", ")", "freqs", "=", "cqt_frequencies", "(", "n_bins", ",", "fmin", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ")", "[", "-", "bins_per_octave", ":", "]", "n_filters", "=", "min", "(", "n_bins", ",", "bins_per_octave", ")", "fft_basis", ",", "n_fft", ",", "lengths", "=", "__cqt_filter_fft", "(", "sr", ",", "np", ".", "min", "(", "freqs", ")", ",", "n_filters", ",", "bins_per_octave", ",", "tuning", ",", "filter_scale", ",", "norm", ",", "sparsity", "=", "sparsity", ",", "window", "=", "window", ")", "if", "hop_length", ">", "min", "(", "lengths", ")", ":", "warnings", ".", "warn", "(", "'hop_length={} exceeds minimum CQT filter length={:.3f}.\\n'", "'This will probably cause unpleasant acoustic artifacts. '", "'Consider decreasing your hop length or increasing the frequency resolution of your CQT.'", ".", "format", "(", "hop_length", ",", "min", "(", "lengths", ")", ")", ")", "# The basis gets renormalized by the effective window length above;", "# This step undoes that", "fft_basis", "=", "fft_basis", ".", "todense", "(", ")", "*", "n_fft", "/", "lengths", "[", ":", ",", "np", ".", "newaxis", "]", "# This step conjugate-transposes the filter", "inv_basis", "=", "fft_basis", ".", "H", "# How many octaves do we have?", "n_octaves", "=", "int", "(", "np", ".", "ceil", "(", "float", "(", "n_bins", ")", "/", "bins_per_octave", ")", ")", "y", "=", "None", "for", "octave", "in", "range", "(", "n_octaves", "-", "1", ",", "-", "1", ",", "-", "1", ")", ":", "slice_", "=", "slice", "(", "-", "(", "octave", "+", "1", ")", "*", "bins_per_octave", "-", "1", ",", "-", "(", "octave", ")", "*", "bins_per_octave", "-", "1", ")", "# Slice this octave", "C_oct", "=", "C", "[", "slice_", "]", "inv_oct", "=", "inv_basis", "[", ":", ",", "-", "C_oct", ".", "shape", "[", "0", "]", ":", "]", "oct_hop", "=", "hop_length", "//", "2", "**", "octave", "# Apply energy corrections", "if", "scale", ":", "C_scale", "=", "np", ".", "sqrt", "(", "lengths", "[", "-", "C_oct", ".", "shape", "[", "0", "]", ":", ",", "np", ".", "newaxis", "]", ")", "/", "n_fft", "else", ":", "C_scale", "=", "lengths", "[", "-", "C_oct", ".", "shape", "[", "0", "]", ":", ",", "np", ".", "newaxis", "]", "*", "np", ".", "sqrt", "(", "2", "**", "octave", ")", "/", "n_fft", "# Inverse-project the basis for each octave", "D_oct", "=", "inv_oct", ".", "dot", "(", "C_oct", "/", "C_scale", ")", "# Inverse-STFT that response", "y_oct", "=", "istft", "(", "D_oct", ",", "window", "=", "'ones'", ",", "hop_length", "=", "oct_hop", ")", "# Up-sample that octave", "if", "y", "is", "None", ":", "y", "=", "y_oct", "else", ":", "# Up-sample the previous buffer and add in the new one", "# Scipy-resampling is fast here, since it's a power-of-two relation", "y", "=", "audio", ".", "resample", "(", "y", ",", "1", ",", "2", ",", "scale", "=", "True", ",", "res_type", "=", "res_type", ",", "fix", "=", "False", ")", "y", "[", ":", "len", "(", "y_oct", ")", "]", "+=", "y_oct", "if", "length", ":", "y", "=", "util", ".", "fix_length", "(", "y", ",", "length", ")", "return", "y" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__cqt_filter_fft
Generate the frequency domain constant-Q filter basis.
librosa/core/constantq.py
def __cqt_filter_fft(sr, fmin, n_bins, bins_per_octave, tuning, filter_scale, norm, sparsity, hop_length=None, window='hann'): '''Generate the frequency domain constant-Q filter basis.''' basis, lengths = filters.constant_q(sr, fmin=fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, norm=norm, pad_fft=True, window=window) # Filters are padded up to the nearest integral power of 2 n_fft = basis.shape[1] if (hop_length is not None and n_fft < 2.0**(1 + np.ceil(np.log2(hop_length)))): n_fft = int(2.0 ** (1 + np.ceil(np.log2(hop_length)))) # re-normalize bases with respect to the FFT window length basis *= lengths[:, np.newaxis] / float(n_fft) # FFT and retain only the non-negative frequencies fft = get_fftlib() fft_basis = fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft // 2)+1] # sparsify the basis fft_basis = util.sparsify_rows(fft_basis, quantile=sparsity) return fft_basis, n_fft, lengths
def __cqt_filter_fft(sr, fmin, n_bins, bins_per_octave, tuning, filter_scale, norm, sparsity, hop_length=None, window='hann'): '''Generate the frequency domain constant-Q filter basis.''' basis, lengths = filters.constant_q(sr, fmin=fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, filter_scale=filter_scale, norm=norm, pad_fft=True, window=window) # Filters are padded up to the nearest integral power of 2 n_fft = basis.shape[1] if (hop_length is not None and n_fft < 2.0**(1 + np.ceil(np.log2(hop_length)))): n_fft = int(2.0 ** (1 + np.ceil(np.log2(hop_length)))) # re-normalize bases with respect to the FFT window length basis *= lengths[:, np.newaxis] / float(n_fft) # FFT and retain only the non-negative frequencies fft = get_fftlib() fft_basis = fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft // 2)+1] # sparsify the basis fft_basis = util.sparsify_rows(fft_basis, quantile=sparsity) return fft_basis, n_fft, lengths
[ "Generate", "the", "frequency", "domain", "constant", "-", "Q", "filter", "basis", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L707-L740
[ "def", "__cqt_filter_fft", "(", "sr", ",", "fmin", ",", "n_bins", ",", "bins_per_octave", ",", "tuning", ",", "filter_scale", ",", "norm", ",", "sparsity", ",", "hop_length", "=", "None", ",", "window", "=", "'hann'", ")", ":", "basis", ",", "lengths", "=", "filters", ".", "constant_q", "(", "sr", ",", "fmin", "=", "fmin", ",", "n_bins", "=", "n_bins", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "filter_scale", "=", "filter_scale", ",", "norm", "=", "norm", ",", "pad_fft", "=", "True", ",", "window", "=", "window", ")", "# Filters are padded up to the nearest integral power of 2", "n_fft", "=", "basis", ".", "shape", "[", "1", "]", "if", "(", "hop_length", "is", "not", "None", "and", "n_fft", "<", "2.0", "**", "(", "1", "+", "np", ".", "ceil", "(", "np", ".", "log2", "(", "hop_length", ")", ")", ")", ")", ":", "n_fft", "=", "int", "(", "2.0", "**", "(", "1", "+", "np", ".", "ceil", "(", "np", ".", "log2", "(", "hop_length", ")", ")", ")", ")", "# re-normalize bases with respect to the FFT window length", "basis", "*=", "lengths", "[", ":", ",", "np", ".", "newaxis", "]", "/", "float", "(", "n_fft", ")", "# FFT and retain only the non-negative frequencies", "fft", "=", "get_fftlib", "(", ")", "fft_basis", "=", "fft", ".", "fft", "(", "basis", ",", "n", "=", "n_fft", ",", "axis", "=", "1", ")", "[", ":", ",", ":", "(", "n_fft", "//", "2", ")", "+", "1", "]", "# sparsify the basis", "fft_basis", "=", "util", ".", "sparsify_rows", "(", "fft_basis", ",", "quantile", "=", "sparsity", ")", "return", "fft_basis", ",", "n_fft", ",", "lengths" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__trim_stack
Helper function to trim and stack a collection of CQT responses
librosa/core/constantq.py
def __trim_stack(cqt_resp, n_bins): '''Helper function to trim and stack a collection of CQT responses''' # cleanup any framing errors at the boundaries max_col = min(x.shape[1] for x in cqt_resp) cqt_resp = np.vstack([x[:, :max_col] for x in cqt_resp][::-1]) # Finally, clip out any bottom frequencies that we don't really want # Transpose magic here to ensure column-contiguity return np.ascontiguousarray(cqt_resp[-n_bins:].T).T
def __trim_stack(cqt_resp, n_bins): '''Helper function to trim and stack a collection of CQT responses''' # cleanup any framing errors at the boundaries max_col = min(x.shape[1] for x in cqt_resp) cqt_resp = np.vstack([x[:, :max_col] for x in cqt_resp][::-1]) # Finally, clip out any bottom frequencies that we don't really want # Transpose magic here to ensure column-contiguity return np.ascontiguousarray(cqt_resp[-n_bins:].T).T
[ "Helper", "function", "to", "trim", "and", "stack", "a", "collection", "of", "CQT", "responses" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L743-L753
[ "def", "__trim_stack", "(", "cqt_resp", ",", "n_bins", ")", ":", "# cleanup any framing errors at the boundaries", "max_col", "=", "min", "(", "x", ".", "shape", "[", "1", "]", "for", "x", "in", "cqt_resp", ")", "cqt_resp", "=", "np", ".", "vstack", "(", "[", "x", "[", ":", ",", ":", "max_col", "]", "for", "x", "in", "cqt_resp", "]", "[", ":", ":", "-", "1", "]", ")", "# Finally, clip out any bottom frequencies that we don't really want", "# Transpose magic here to ensure column-contiguity", "return", "np", ".", "ascontiguousarray", "(", "cqt_resp", "[", "-", "n_bins", ":", "]", ".", "T", ")", ".", "T" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__cqt_response
Compute the filter response with a target STFT hop.
librosa/core/constantq.py
def __cqt_response(y, n_fft, hop_length, fft_basis, mode): '''Compute the filter response with a target STFT hop.''' # Compute the STFT matrix D = stft(y, n_fft=n_fft, hop_length=hop_length, window='ones', pad_mode=mode) # And filter response energy return fft_basis.dot(D)
def __cqt_response(y, n_fft, hop_length, fft_basis, mode): '''Compute the filter response with a target STFT hop.''' # Compute the STFT matrix D = stft(y, n_fft=n_fft, hop_length=hop_length, window='ones', pad_mode=mode) # And filter response energy return fft_basis.dot(D)
[ "Compute", "the", "filter", "response", "with", "a", "target", "STFT", "hop", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L756-L765
[ "def", "__cqt_response", "(", "y", ",", "n_fft", ",", "hop_length", ",", "fft_basis", ",", "mode", ")", ":", "# Compute the STFT matrix", "D", "=", "stft", "(", "y", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "window", "=", "'ones'", ",", "pad_mode", "=", "mode", ")", "# And filter response energy", "return", "fft_basis", ".", "dot", "(", "D", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__early_downsample_count
Compute the number of early downsampling operations
librosa/core/constantq.py
def __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves): '''Compute the number of early downsampling operations''' downsample_count1 = max(0, int(np.ceil(np.log2(audio.BW_FASTEST * nyquist / filter_cutoff)) - 1) - 1) num_twos = __num_two_factors(hop_length) downsample_count2 = max(0, num_twos - n_octaves + 1) return min(downsample_count1, downsample_count2)
def __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves): '''Compute the number of early downsampling operations''' downsample_count1 = max(0, int(np.ceil(np.log2(audio.BW_FASTEST * nyquist / filter_cutoff)) - 1) - 1) num_twos = __num_two_factors(hop_length) downsample_count2 = max(0, num_twos - n_octaves + 1) return min(downsample_count1, downsample_count2)
[ "Compute", "the", "number", "of", "early", "downsampling", "operations" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L768-L777
[ "def", "__early_downsample_count", "(", "nyquist", ",", "filter_cutoff", ",", "hop_length", ",", "n_octaves", ")", ":", "downsample_count1", "=", "max", "(", "0", ",", "int", "(", "np", ".", "ceil", "(", "np", ".", "log2", "(", "audio", ".", "BW_FASTEST", "*", "nyquist", "/", "filter_cutoff", ")", ")", "-", "1", ")", "-", "1", ")", "num_twos", "=", "__num_two_factors", "(", "hop_length", ")", "downsample_count2", "=", "max", "(", "0", ",", "num_twos", "-", "n_octaves", "+", "1", ")", "return", "min", "(", "downsample_count1", ",", "downsample_count2", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__early_downsample
Perform early downsampling on an audio signal, if it applies.
librosa/core/constantq.py
def __early_downsample(y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale): '''Perform early downsampling on an audio signal, if it applies.''' downsample_count = __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves) if downsample_count > 0 and res_type == 'kaiser_fast': downsample_factor = 2**(downsample_count) hop_length //= downsample_factor if len(y) < downsample_factor: raise ParameterError('Input signal length={:d} is too short for ' '{:d}-octave CQT'.format(len(y), n_octaves)) new_sr = sr / float(downsample_factor) y = audio.resample(y, sr, new_sr, res_type=res_type, scale=True) # If we're not going to length-scale after CQT, we # need to compensate for the downsampling factor here if not scale: y *= np.sqrt(downsample_factor) sr = new_sr return y, sr, hop_length
def __early_downsample(y, sr, hop_length, res_type, n_octaves, nyquist, filter_cutoff, scale): '''Perform early downsampling on an audio signal, if it applies.''' downsample_count = __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves) if downsample_count > 0 and res_type == 'kaiser_fast': downsample_factor = 2**(downsample_count) hop_length //= downsample_factor if len(y) < downsample_factor: raise ParameterError('Input signal length={:d} is too short for ' '{:d}-octave CQT'.format(len(y), n_octaves)) new_sr = sr / float(downsample_factor) y = audio.resample(y, sr, new_sr, res_type=res_type, scale=True) # If we're not going to length-scale after CQT, we # need to compensate for the downsampling factor here if not scale: y *= np.sqrt(downsample_factor) sr = new_sr return y, sr, hop_length
[ "Perform", "early", "downsampling", "on", "an", "audio", "signal", "if", "it", "applies", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/constantq.py#L780-L808
[ "def", "__early_downsample", "(", "y", ",", "sr", ",", "hop_length", ",", "res_type", ",", "n_octaves", ",", "nyquist", ",", "filter_cutoff", ",", "scale", ")", ":", "downsample_count", "=", "__early_downsample_count", "(", "nyquist", ",", "filter_cutoff", ",", "hop_length", ",", "n_octaves", ")", "if", "downsample_count", ">", "0", "and", "res_type", "==", "'kaiser_fast'", ":", "downsample_factor", "=", "2", "**", "(", "downsample_count", ")", "hop_length", "//=", "downsample_factor", "if", "len", "(", "y", ")", "<", "downsample_factor", ":", "raise", "ParameterError", "(", "'Input signal length={:d} is too short for '", "'{:d}-octave CQT'", ".", "format", "(", "len", "(", "y", ")", ",", "n_octaves", ")", ")", "new_sr", "=", "sr", "/", "float", "(", "downsample_factor", ")", "y", "=", "audio", ".", "resample", "(", "y", ",", "sr", ",", "new_sr", ",", "res_type", "=", "res_type", ",", "scale", "=", "True", ")", "# If we're not going to length-scale after CQT, we", "# need to compensate for the downsampling factor here", "if", "not", "scale", ":", "y", "*=", "np", ".", "sqrt", "(", "downsample_factor", ")", "sr", "=", "new_sr", "return", "y", ",", "sr", ",", "hop_length" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
delta
r'''Compute delta features: local estimate of the derivative of the input data along the selected axis. Delta features are computed Savitsky-Golay filtering. Parameters ---------- data : np.ndarray the input data matrix (eg, spectrogram) width : int, positive, odd [scalar] Number of frames over which to compute the delta features. Cannot exceed the length of `data` along the specified axis. If `mode='interp'`, then `width` must be at least `data.shape[axis]`. order : int > 0 [scalar] the order of the difference operator. 1 for first derivative, 2 for second, etc. axis : int [scalar] the axis along which to compute deltas. Default is -1 (columns). mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'} Padding mode for estimating differences at the boundaries. kwargs : additional keyword arguments See `scipy.signal.savgol_filter` Returns ------- delta_data : np.ndarray [shape=(d, t)] delta matrix of `data` at specified order Notes ----- This function caches at level 40. See Also -------- scipy.signal.savgol_filter Examples -------- Compute MFCC deltas, delta-deltas >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> mfcc_delta = librosa.feature.delta(mfcc) >>> mfcc_delta array([[ 1.666e+01, 1.666e+01, ..., 1.869e-15, 1.869e-15], [ 1.784e+01, 1.784e+01, ..., 6.085e-31, 6.085e-31], ..., [ 7.262e-01, 7.262e-01, ..., 9.259e-31, 9.259e-31], [ 6.578e-01, 6.578e-01, ..., 7.597e-31, 7.597e-31]]) >>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2) >>> mfcc_delta2 array([[ -1.703e+01, -1.703e+01, ..., 3.834e-14, 3.834e-14], [ -1.108e+01, -1.108e+01, ..., -1.068e-30, -1.068e-30], ..., [ 4.075e-01, 4.075e-01, ..., -1.565e-30, -1.565e-30], [ 1.676e-01, 1.676e-01, ..., -2.104e-30, -2.104e-30]]) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(mfcc) >>> plt.title('MFCC') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(mfcc_delta) >>> plt.title(r'MFCC-$\Delta$') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(mfcc_delta2, x_axis='time') >>> plt.title(r'MFCC-$\Delta^2$') >>> plt.colorbar() >>> plt.tight_layout()
librosa/feature/utils.py
def delta(data, width=9, order=1, axis=-1, mode='interp', **kwargs): r'''Compute delta features: local estimate of the derivative of the input data along the selected axis. Delta features are computed Savitsky-Golay filtering. Parameters ---------- data : np.ndarray the input data matrix (eg, spectrogram) width : int, positive, odd [scalar] Number of frames over which to compute the delta features. Cannot exceed the length of `data` along the specified axis. If `mode='interp'`, then `width` must be at least `data.shape[axis]`. order : int > 0 [scalar] the order of the difference operator. 1 for first derivative, 2 for second, etc. axis : int [scalar] the axis along which to compute deltas. Default is -1 (columns). mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'} Padding mode for estimating differences at the boundaries. kwargs : additional keyword arguments See `scipy.signal.savgol_filter` Returns ------- delta_data : np.ndarray [shape=(d, t)] delta matrix of `data` at specified order Notes ----- This function caches at level 40. See Also -------- scipy.signal.savgol_filter Examples -------- Compute MFCC deltas, delta-deltas >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> mfcc_delta = librosa.feature.delta(mfcc) >>> mfcc_delta array([[ 1.666e+01, 1.666e+01, ..., 1.869e-15, 1.869e-15], [ 1.784e+01, 1.784e+01, ..., 6.085e-31, 6.085e-31], ..., [ 7.262e-01, 7.262e-01, ..., 9.259e-31, 9.259e-31], [ 6.578e-01, 6.578e-01, ..., 7.597e-31, 7.597e-31]]) >>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2) >>> mfcc_delta2 array([[ -1.703e+01, -1.703e+01, ..., 3.834e-14, 3.834e-14], [ -1.108e+01, -1.108e+01, ..., -1.068e-30, -1.068e-30], ..., [ 4.075e-01, 4.075e-01, ..., -1.565e-30, -1.565e-30], [ 1.676e-01, 1.676e-01, ..., -2.104e-30, -2.104e-30]]) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(mfcc) >>> plt.title('MFCC') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(mfcc_delta) >>> plt.title(r'MFCC-$\Delta$') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(mfcc_delta2, x_axis='time') >>> plt.title(r'MFCC-$\Delta^2$') >>> plt.colorbar() >>> plt.tight_layout() ''' data = np.atleast_1d(data) if mode == 'interp' and width > data.shape[axis]: raise ParameterError("when mode='interp', width={} " "cannot exceed data.shape[axis]={}".format(width, data.shape[axis])) if width < 3 or np.mod(width, 2) != 1: raise ParameterError('width must be an odd integer >= 3') if order <= 0 or not isinstance(order, int): raise ParameterError('order must be a positive integer') kwargs.pop('deriv', None) kwargs.setdefault('polyorder', order) return scipy.signal.savgol_filter(data, width, deriv=order, axis=axis, mode=mode, **kwargs)
def delta(data, width=9, order=1, axis=-1, mode='interp', **kwargs): r'''Compute delta features: local estimate of the derivative of the input data along the selected axis. Delta features are computed Savitsky-Golay filtering. Parameters ---------- data : np.ndarray the input data matrix (eg, spectrogram) width : int, positive, odd [scalar] Number of frames over which to compute the delta features. Cannot exceed the length of `data` along the specified axis. If `mode='interp'`, then `width` must be at least `data.shape[axis]`. order : int > 0 [scalar] the order of the difference operator. 1 for first derivative, 2 for second, etc. axis : int [scalar] the axis along which to compute deltas. Default is -1 (columns). mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'} Padding mode for estimating differences at the boundaries. kwargs : additional keyword arguments See `scipy.signal.savgol_filter` Returns ------- delta_data : np.ndarray [shape=(d, t)] delta matrix of `data` at specified order Notes ----- This function caches at level 40. See Also -------- scipy.signal.savgol_filter Examples -------- Compute MFCC deltas, delta-deltas >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> mfcc_delta = librosa.feature.delta(mfcc) >>> mfcc_delta array([[ 1.666e+01, 1.666e+01, ..., 1.869e-15, 1.869e-15], [ 1.784e+01, 1.784e+01, ..., 6.085e-31, 6.085e-31], ..., [ 7.262e-01, 7.262e-01, ..., 9.259e-31, 9.259e-31], [ 6.578e-01, 6.578e-01, ..., 7.597e-31, 7.597e-31]]) >>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2) >>> mfcc_delta2 array([[ -1.703e+01, -1.703e+01, ..., 3.834e-14, 3.834e-14], [ -1.108e+01, -1.108e+01, ..., -1.068e-30, -1.068e-30], ..., [ 4.075e-01, 4.075e-01, ..., -1.565e-30, -1.565e-30], [ 1.676e-01, 1.676e-01, ..., -2.104e-30, -2.104e-30]]) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(mfcc) >>> plt.title('MFCC') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(mfcc_delta) >>> plt.title(r'MFCC-$\Delta$') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(mfcc_delta2, x_axis='time') >>> plt.title(r'MFCC-$\Delta^2$') >>> plt.colorbar() >>> plt.tight_layout() ''' data = np.atleast_1d(data) if mode == 'interp' and width > data.shape[axis]: raise ParameterError("when mode='interp', width={} " "cannot exceed data.shape[axis]={}".format(width, data.shape[axis])) if width < 3 or np.mod(width, 2) != 1: raise ParameterError('width must be an odd integer >= 3') if order <= 0 or not isinstance(order, int): raise ParameterError('order must be a positive integer') kwargs.pop('deriv', None) kwargs.setdefault('polyorder', order) return scipy.signal.savgol_filter(data, width, deriv=order, axis=axis, mode=mode, **kwargs)
[ "r", "Compute", "delta", "features", ":", "local", "estimate", "of", "the", "derivative", "of", "the", "input", "data", "along", "the", "selected", "axis", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/utils.py#L15-L115
[ "def", "delta", "(", "data", ",", "width", "=", "9", ",", "order", "=", "1", ",", "axis", "=", "-", "1", ",", "mode", "=", "'interp'", ",", "*", "*", "kwargs", ")", ":", "data", "=", "np", ".", "atleast_1d", "(", "data", ")", "if", "mode", "==", "'interp'", "and", "width", ">", "data", ".", "shape", "[", "axis", "]", ":", "raise", "ParameterError", "(", "\"when mode='interp', width={} \"", "\"cannot exceed data.shape[axis]={}\"", ".", "format", "(", "width", ",", "data", ".", "shape", "[", "axis", "]", ")", ")", "if", "width", "<", "3", "or", "np", ".", "mod", "(", "width", ",", "2", ")", "!=", "1", ":", "raise", "ParameterError", "(", "'width must be an odd integer >= 3'", ")", "if", "order", "<=", "0", "or", "not", "isinstance", "(", "order", ",", "int", ")", ":", "raise", "ParameterError", "(", "'order must be a positive integer'", ")", "kwargs", ".", "pop", "(", "'deriv'", ",", "None", ")", "kwargs", ".", "setdefault", "(", "'polyorder'", ",", "order", ")", "return", "scipy", ".", "signal", ".", "savgol_filter", "(", "data", ",", "width", ",", "deriv", "=", "order", ",", "axis", "=", "axis", ",", "mode", "=", "mode", ",", "*", "*", "kwargs", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
stack_memory
Short-term history embedding: vertically concatenate a data vector or matrix with delayed copies of itself. Each column `data[:, i]` is mapped to:: data[:, i] -> [data[:, i], data[:, i - delay], ... data[:, i - (n_steps-1)*delay]] For columns `i < (n_steps - 1) * delay` , the data will be padded. By default, the data is padded with zeros, but this behavior can be overridden by supplying additional keyword arguments which are passed to `np.pad()`. Parameters ---------- data : np.ndarray [shape=(t,) or (d, t)] Input data matrix. If `data` is a vector (`data.ndim == 1`), it will be interpreted as a row matrix and reshaped to `(1, t)`. n_steps : int > 0 [scalar] embedding dimension, the number of steps back in time to stack delay : int != 0 [scalar] the number of columns to step. Positive values embed from the past (previous columns). Negative values embed from the future (subsequent columns). kwargs : additional keyword arguments Additional arguments to pass to `np.pad`. Returns ------- data_history : np.ndarray [shape=(m * d, t)] data augmented with lagged copies of itself, where `m == n_steps - 1`. Notes ----- This function caches at level 40. Examples -------- Keep two steps (current and previous) >>> data = np.arange(-3, 3) >>> librosa.feature.stack_memory(data) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1]]) Or three steps >>> librosa.feature.stack_memory(data, n_steps=3) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1], [ 0, 0, -3, -2, -1, 0]]) Use reflection padding instead of zero-padding >>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect') array([[-3, -2, -1, 0, 1, 2], [-2, -3, -2, -1, 0, 1], [-1, -2, -3, -2, -1, 0]]) Or pad with edge-values, and delay by 2 >>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge') array([[-3, -2, -1, 0, 1, 2], [-3, -3, -3, -2, -1, 0], [-3, -3, -3, -3, -3, -2]]) Stack time-lagged beat-synchronous chroma edge padding >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beats = librosa.util.fix_frames(beats, x_min=0, x_max=chroma.shape[1]) >>> chroma_sync = librosa.util.sync(chroma, beats) >>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3, ... mode='edge') Plot the result >>> import matplotlib.pyplot as plt >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time', ... x_coords=beat_times) >>> plt.yticks([0, 12, 24], ['Lag=0', 'Lag=1', 'Lag=2']) >>> plt.title('Time-lagged chroma') >>> plt.colorbar() >>> plt.tight_layout()
librosa/feature/utils.py
def stack_memory(data, n_steps=2, delay=1, **kwargs): """Short-term history embedding: vertically concatenate a data vector or matrix with delayed copies of itself. Each column `data[:, i]` is mapped to:: data[:, i] -> [data[:, i], data[:, i - delay], ... data[:, i - (n_steps-1)*delay]] For columns `i < (n_steps - 1) * delay` , the data will be padded. By default, the data is padded with zeros, but this behavior can be overridden by supplying additional keyword arguments which are passed to `np.pad()`. Parameters ---------- data : np.ndarray [shape=(t,) or (d, t)] Input data matrix. If `data` is a vector (`data.ndim == 1`), it will be interpreted as a row matrix and reshaped to `(1, t)`. n_steps : int > 0 [scalar] embedding dimension, the number of steps back in time to stack delay : int != 0 [scalar] the number of columns to step. Positive values embed from the past (previous columns). Negative values embed from the future (subsequent columns). kwargs : additional keyword arguments Additional arguments to pass to `np.pad`. Returns ------- data_history : np.ndarray [shape=(m * d, t)] data augmented with lagged copies of itself, where `m == n_steps - 1`. Notes ----- This function caches at level 40. Examples -------- Keep two steps (current and previous) >>> data = np.arange(-3, 3) >>> librosa.feature.stack_memory(data) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1]]) Or three steps >>> librosa.feature.stack_memory(data, n_steps=3) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1], [ 0, 0, -3, -2, -1, 0]]) Use reflection padding instead of zero-padding >>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect') array([[-3, -2, -1, 0, 1, 2], [-2, -3, -2, -1, 0, 1], [-1, -2, -3, -2, -1, 0]]) Or pad with edge-values, and delay by 2 >>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge') array([[-3, -2, -1, 0, 1, 2], [-3, -3, -3, -2, -1, 0], [-3, -3, -3, -3, -3, -2]]) Stack time-lagged beat-synchronous chroma edge padding >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beats = librosa.util.fix_frames(beats, x_min=0, x_max=chroma.shape[1]) >>> chroma_sync = librosa.util.sync(chroma, beats) >>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3, ... mode='edge') Plot the result >>> import matplotlib.pyplot as plt >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time', ... x_coords=beat_times) >>> plt.yticks([0, 12, 24], ['Lag=0', 'Lag=1', 'Lag=2']) >>> plt.title('Time-lagged chroma') >>> plt.colorbar() >>> plt.tight_layout() """ if n_steps < 1: raise ParameterError('n_steps must be a positive integer') if delay == 0: raise ParameterError('delay must be a non-zero integer') data = np.atleast_2d(data) t = data.shape[1] kwargs.setdefault('mode', 'constant') if kwargs['mode'] == 'constant': kwargs.setdefault('constant_values', [0]) # Pad the end with zeros, which will roll to the front below if delay > 0: padding = (int((n_steps - 1) * delay), 0) else: padding = (0, int((n_steps - 1) * -delay)) data = np.pad(data, [(0, 0), padding], **kwargs) history = data for i in range(1, n_steps): history = np.vstack([np.roll(data, -i * delay, axis=1), history]) # Trim to original width if delay > 0: history = history[:, :t] else: history = history[:, -t:] # Make contiguous return np.ascontiguousarray(history.T).T
def stack_memory(data, n_steps=2, delay=1, **kwargs): """Short-term history embedding: vertically concatenate a data vector or matrix with delayed copies of itself. Each column `data[:, i]` is mapped to:: data[:, i] -> [data[:, i], data[:, i - delay], ... data[:, i - (n_steps-1)*delay]] For columns `i < (n_steps - 1) * delay` , the data will be padded. By default, the data is padded with zeros, but this behavior can be overridden by supplying additional keyword arguments which are passed to `np.pad()`. Parameters ---------- data : np.ndarray [shape=(t,) or (d, t)] Input data matrix. If `data` is a vector (`data.ndim == 1`), it will be interpreted as a row matrix and reshaped to `(1, t)`. n_steps : int > 0 [scalar] embedding dimension, the number of steps back in time to stack delay : int != 0 [scalar] the number of columns to step. Positive values embed from the past (previous columns). Negative values embed from the future (subsequent columns). kwargs : additional keyword arguments Additional arguments to pass to `np.pad`. Returns ------- data_history : np.ndarray [shape=(m * d, t)] data augmented with lagged copies of itself, where `m == n_steps - 1`. Notes ----- This function caches at level 40. Examples -------- Keep two steps (current and previous) >>> data = np.arange(-3, 3) >>> librosa.feature.stack_memory(data) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1]]) Or three steps >>> librosa.feature.stack_memory(data, n_steps=3) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1], [ 0, 0, -3, -2, -1, 0]]) Use reflection padding instead of zero-padding >>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect') array([[-3, -2, -1, 0, 1, 2], [-2, -3, -2, -1, 0, 1], [-1, -2, -3, -2, -1, 0]]) Or pad with edge-values, and delay by 2 >>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge') array([[-3, -2, -1, 0, 1, 2], [-3, -3, -3, -2, -1, 0], [-3, -3, -3, -3, -3, -2]]) Stack time-lagged beat-synchronous chroma edge padding >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beats = librosa.util.fix_frames(beats, x_min=0, x_max=chroma.shape[1]) >>> chroma_sync = librosa.util.sync(chroma, beats) >>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3, ... mode='edge') Plot the result >>> import matplotlib.pyplot as plt >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time', ... x_coords=beat_times) >>> plt.yticks([0, 12, 24], ['Lag=0', 'Lag=1', 'Lag=2']) >>> plt.title('Time-lagged chroma') >>> plt.colorbar() >>> plt.tight_layout() """ if n_steps < 1: raise ParameterError('n_steps must be a positive integer') if delay == 0: raise ParameterError('delay must be a non-zero integer') data = np.atleast_2d(data) t = data.shape[1] kwargs.setdefault('mode', 'constant') if kwargs['mode'] == 'constant': kwargs.setdefault('constant_values', [0]) # Pad the end with zeros, which will roll to the front below if delay > 0: padding = (int((n_steps - 1) * delay), 0) else: padding = (0, int((n_steps - 1) * -delay)) data = np.pad(data, [(0, 0), padding], **kwargs) history = data for i in range(1, n_steps): history = np.vstack([np.roll(data, -i * delay, axis=1), history]) # Trim to original width if delay > 0: history = history[:, :t] else: history = history[:, -t:] # Make contiguous return np.ascontiguousarray(history.T).T
[ "Short", "-", "term", "history", "embedding", ":", "vertically", "concatenate", "a", "data", "vector", "or", "matrix", "with", "delayed", "copies", "of", "itself", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/utils.py#L119-L252
[ "def", "stack_memory", "(", "data", ",", "n_steps", "=", "2", ",", "delay", "=", "1", ",", "*", "*", "kwargs", ")", ":", "if", "n_steps", "<", "1", ":", "raise", "ParameterError", "(", "'n_steps must be a positive integer'", ")", "if", "delay", "==", "0", ":", "raise", "ParameterError", "(", "'delay must be a non-zero integer'", ")", "data", "=", "np", ".", "atleast_2d", "(", "data", ")", "t", "=", "data", ".", "shape", "[", "1", "]", "kwargs", ".", "setdefault", "(", "'mode'", ",", "'constant'", ")", "if", "kwargs", "[", "'mode'", "]", "==", "'constant'", ":", "kwargs", ".", "setdefault", "(", "'constant_values'", ",", "[", "0", "]", ")", "# Pad the end with zeros, which will roll to the front below", "if", "delay", ">", "0", ":", "padding", "=", "(", "int", "(", "(", "n_steps", "-", "1", ")", "*", "delay", ")", ",", "0", ")", "else", ":", "padding", "=", "(", "0", ",", "int", "(", "(", "n_steps", "-", "1", ")", "*", "-", "delay", ")", ")", "data", "=", "np", ".", "pad", "(", "data", ",", "[", "(", "0", ",", "0", ")", ",", "padding", "]", ",", "*", "*", "kwargs", ")", "history", "=", "data", "for", "i", "in", "range", "(", "1", ",", "n_steps", ")", ":", "history", "=", "np", ".", "vstack", "(", "[", "np", ".", "roll", "(", "data", ",", "-", "i", "*", "delay", ",", "axis", "=", "1", ")", ",", "history", "]", ")", "# Trim to original width", "if", "delay", ">", "0", ":", "history", "=", "history", "[", ":", ",", ":", "t", "]", "else", ":", "history", "=", "history", "[", ":", ",", "-", "t", ":", "]", "# Make contiguous", "return", "np", ".", "ascontiguousarray", "(", "history", ".", "T", ")", ".", "T" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
dtw
Dynamic time warping (DTW). This function performs a DTW and path backtracking on two sequences. We follow the nomenclature and algorithmic approach as described in [1]_. .. [1] Meinard Mueller Fundamentals of Music Processing — Audio, Analysis, Algorithms, Applications Springer Verlag, ISBN: 978-3-319-21944-8, 2015. Parameters ---------- X : np.ndarray [shape=(K, N)] audio feature matrix (e.g., chroma features) Y : np.ndarray [shape=(K, M)] audio feature matrix (e.g., chroma features) C : np.ndarray [shape=(N, M)] Precomputed distance matrix. If supplied, X and Y must not be supplied and ``metric`` will be ignored. metric : str Identifier for the cost-function as documented in `scipy.spatial.cdist()` step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. weights_add : np.ndarray [shape=[n, ]] Additive weights to penalize certain step sizes. weights_mul : np.ndarray [shape=[n, ]] Multiplicative weights to penalize certain step sizes. subseq : binary Enable subsequence DTW, e.g., for retrieval tasks. backtrack : binary Enable backtracking in accumulated cost matrix. global_constraints : binary Applies global constraints to the cost matrix ``C`` (Sakoe-Chiba band). band_rad : float The Sakoe-Chiba band radius (1/2 of the width) will be ``int(radius*min(C.shape))``. Returns ------- D : np.ndarray [shape=(N,M)] accumulated cost matrix. D[N,M] is the total alignment cost. When doing subsequence DTW, D[N,:] indicates a matching function. wp : np.ndarray [shape=(N,2)] Warping path with index pairs. Each row of the array contains an index pair n,m). Only returned when ``backtrack`` is True. Raises ------ ParameterError If you are doing diagonal matching and Y is shorter than X or if an incompatible combination of X, Y, and C are supplied. If your input dimensions are incompatible. Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=10, duration=15) >>> X = librosa.feature.chroma_cens(y=y, sr=sr) >>> noise = np.random.rand(X.shape[0], 200) >>> Y = np.concatenate((noise, noise, X, noise), axis=1) >>> D, wp = librosa.sequence.dtw(X, Y, subseq=True) >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(D, x_axis='frames', y_axis='frames') >>> plt.title('Database excerpt') >>> plt.plot(wp[:, 1], wp[:, 0], label='Optimal path', color='y') >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> plt.plot(D[-1, :] / wp.shape[0]) >>> plt.xlim([0, Y.shape[1]]) >>> plt.ylim([0, 2]) >>> plt.title('Matching cost function') >>> plt.tight_layout()
librosa/sequence.py
def dtw(X=None, Y=None, C=None, metric='euclidean', step_sizes_sigma=None, weights_add=None, weights_mul=None, subseq=False, backtrack=True, global_constraints=False, band_rad=0.25): '''Dynamic time warping (DTW). This function performs a DTW and path backtracking on two sequences. We follow the nomenclature and algorithmic approach as described in [1]_. .. [1] Meinard Mueller Fundamentals of Music Processing — Audio, Analysis, Algorithms, Applications Springer Verlag, ISBN: 978-3-319-21944-8, 2015. Parameters ---------- X : np.ndarray [shape=(K, N)] audio feature matrix (e.g., chroma features) Y : np.ndarray [shape=(K, M)] audio feature matrix (e.g., chroma features) C : np.ndarray [shape=(N, M)] Precomputed distance matrix. If supplied, X and Y must not be supplied and ``metric`` will be ignored. metric : str Identifier for the cost-function as documented in `scipy.spatial.cdist()` step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. weights_add : np.ndarray [shape=[n, ]] Additive weights to penalize certain step sizes. weights_mul : np.ndarray [shape=[n, ]] Multiplicative weights to penalize certain step sizes. subseq : binary Enable subsequence DTW, e.g., for retrieval tasks. backtrack : binary Enable backtracking in accumulated cost matrix. global_constraints : binary Applies global constraints to the cost matrix ``C`` (Sakoe-Chiba band). band_rad : float The Sakoe-Chiba band radius (1/2 of the width) will be ``int(radius*min(C.shape))``. Returns ------- D : np.ndarray [shape=(N,M)] accumulated cost matrix. D[N,M] is the total alignment cost. When doing subsequence DTW, D[N,:] indicates a matching function. wp : np.ndarray [shape=(N,2)] Warping path with index pairs. Each row of the array contains an index pair n,m). Only returned when ``backtrack`` is True. Raises ------ ParameterError If you are doing diagonal matching and Y is shorter than X or if an incompatible combination of X, Y, and C are supplied. If your input dimensions are incompatible. Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=10, duration=15) >>> X = librosa.feature.chroma_cens(y=y, sr=sr) >>> noise = np.random.rand(X.shape[0], 200) >>> Y = np.concatenate((noise, noise, X, noise), axis=1) >>> D, wp = librosa.sequence.dtw(X, Y, subseq=True) >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(D, x_axis='frames', y_axis='frames') >>> plt.title('Database excerpt') >>> plt.plot(wp[:, 1], wp[:, 0], label='Optimal path', color='y') >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> plt.plot(D[-1, :] / wp.shape[0]) >>> plt.xlim([0, Y.shape[1]]) >>> plt.ylim([0, 2]) >>> plt.title('Matching cost function') >>> plt.tight_layout() ''' # Default Parameters if step_sizes_sigma is None: step_sizes_sigma = np.array([[1, 1], [0, 1], [1, 0]]) if weights_add is None: weights_add = np.zeros(len(step_sizes_sigma)) if weights_mul is None: weights_mul = np.ones(len(step_sizes_sigma)) if len(step_sizes_sigma) != len(weights_add): raise ParameterError('len(weights_add) must be equal to len(step_sizes_sigma)') if len(step_sizes_sigma) != len(weights_mul): raise ParameterError('len(weights_mul) must be equal to len(step_sizes_sigma)') if C is None and (X is None or Y is None): raise ParameterError('If C is not supplied, both X and Y must be supplied') if C is not None and (X is not None or Y is not None): raise ParameterError('If C is supplied, both X and Y must not be supplied') # calculate pair-wise distances, unless already supplied. if C is None: # take care of dimensions X = np.atleast_2d(X) Y = np.atleast_2d(Y) try: C = cdist(X.T, Y.T, metric=metric) except ValueError: msg = ('scipy.spatial.distance.cdist returned an error.\n' 'Please provide your input in the form X.shape=(K, N) and Y.shape=(K, M).\n' '1-dimensional sequences should be reshaped to X.shape=(1, N) and Y.shape=(1, M).') six.reraise(ParameterError, ParameterError(msg)) # for subsequence matching: # if N > M, Y can be a subsequence of X if subseq and (X.shape[1] > Y.shape[1]): C = C.T C = np.atleast_2d(C) # if diagonal matching, Y has to be longer than X # (X simply cannot be contained in Y) if np.array_equal(step_sizes_sigma, np.array([[1, 1]])) and (C.shape[0] > C.shape[1]): raise ParameterError('For diagonal matching: Y.shape[1] >= X.shape[1] ' '(C.shape[1] >= C.shape[0])') max_0 = step_sizes_sigma[:, 0].max() max_1 = step_sizes_sigma[:, 1].max() if global_constraints: # Apply global constraints to the cost matrix fill_off_diagonal(C, band_rad, value=np.inf) # initialize whole matrix with infinity values D = np.ones(C.shape + np.array([max_0, max_1])) * np.inf # set starting point to C[0, 0] D[max_0, max_1] = C[0, 0] if subseq: D[max_0, max_1:] = C[0, :] # initialize step matrix with -1 # will be filled in calc_accu_cost() with indices from step_sizes_sigma D_steps = -1 * np.ones(D.shape, dtype=np.int) # calculate accumulated cost matrix D, D_steps = __dtw_calc_accu_cost(C, D, D_steps, step_sizes_sigma, weights_mul, weights_add, max_0, max_1) # delete infinity rows and columns D = D[max_0:, max_1:] D_steps = D_steps[max_0:, max_1:] if backtrack: if subseq: # search for global minimum in last row of D-matrix wp_end_idx = np.argmin(D[-1, :]) + 1 wp = __dtw_backtracking(D_steps[:, :wp_end_idx], step_sizes_sigma) else: # perform warping path backtracking wp = __dtw_backtracking(D_steps, step_sizes_sigma) wp = np.asarray(wp, dtype=int) # since we transposed in the beginning, we have to adjust the index pairs back if subseq and (X.shape[1] > Y.shape[1]): wp = np.fliplr(wp) return D, wp else: return D
def dtw(X=None, Y=None, C=None, metric='euclidean', step_sizes_sigma=None, weights_add=None, weights_mul=None, subseq=False, backtrack=True, global_constraints=False, band_rad=0.25): '''Dynamic time warping (DTW). This function performs a DTW and path backtracking on two sequences. We follow the nomenclature and algorithmic approach as described in [1]_. .. [1] Meinard Mueller Fundamentals of Music Processing — Audio, Analysis, Algorithms, Applications Springer Verlag, ISBN: 978-3-319-21944-8, 2015. Parameters ---------- X : np.ndarray [shape=(K, N)] audio feature matrix (e.g., chroma features) Y : np.ndarray [shape=(K, M)] audio feature matrix (e.g., chroma features) C : np.ndarray [shape=(N, M)] Precomputed distance matrix. If supplied, X and Y must not be supplied and ``metric`` will be ignored. metric : str Identifier for the cost-function as documented in `scipy.spatial.cdist()` step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. weights_add : np.ndarray [shape=[n, ]] Additive weights to penalize certain step sizes. weights_mul : np.ndarray [shape=[n, ]] Multiplicative weights to penalize certain step sizes. subseq : binary Enable subsequence DTW, e.g., for retrieval tasks. backtrack : binary Enable backtracking in accumulated cost matrix. global_constraints : binary Applies global constraints to the cost matrix ``C`` (Sakoe-Chiba band). band_rad : float The Sakoe-Chiba band radius (1/2 of the width) will be ``int(radius*min(C.shape))``. Returns ------- D : np.ndarray [shape=(N,M)] accumulated cost matrix. D[N,M] is the total alignment cost. When doing subsequence DTW, D[N,:] indicates a matching function. wp : np.ndarray [shape=(N,2)] Warping path with index pairs. Each row of the array contains an index pair n,m). Only returned when ``backtrack`` is True. Raises ------ ParameterError If you are doing diagonal matching and Y is shorter than X or if an incompatible combination of X, Y, and C are supplied. If your input dimensions are incompatible. Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=10, duration=15) >>> X = librosa.feature.chroma_cens(y=y, sr=sr) >>> noise = np.random.rand(X.shape[0], 200) >>> Y = np.concatenate((noise, noise, X, noise), axis=1) >>> D, wp = librosa.sequence.dtw(X, Y, subseq=True) >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(D, x_axis='frames', y_axis='frames') >>> plt.title('Database excerpt') >>> plt.plot(wp[:, 1], wp[:, 0], label='Optimal path', color='y') >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> plt.plot(D[-1, :] / wp.shape[0]) >>> plt.xlim([0, Y.shape[1]]) >>> plt.ylim([0, 2]) >>> plt.title('Matching cost function') >>> plt.tight_layout() ''' # Default Parameters if step_sizes_sigma is None: step_sizes_sigma = np.array([[1, 1], [0, 1], [1, 0]]) if weights_add is None: weights_add = np.zeros(len(step_sizes_sigma)) if weights_mul is None: weights_mul = np.ones(len(step_sizes_sigma)) if len(step_sizes_sigma) != len(weights_add): raise ParameterError('len(weights_add) must be equal to len(step_sizes_sigma)') if len(step_sizes_sigma) != len(weights_mul): raise ParameterError('len(weights_mul) must be equal to len(step_sizes_sigma)') if C is None and (X is None or Y is None): raise ParameterError('If C is not supplied, both X and Y must be supplied') if C is not None and (X is not None or Y is not None): raise ParameterError('If C is supplied, both X and Y must not be supplied') # calculate pair-wise distances, unless already supplied. if C is None: # take care of dimensions X = np.atleast_2d(X) Y = np.atleast_2d(Y) try: C = cdist(X.T, Y.T, metric=metric) except ValueError: msg = ('scipy.spatial.distance.cdist returned an error.\n' 'Please provide your input in the form X.shape=(K, N) and Y.shape=(K, M).\n' '1-dimensional sequences should be reshaped to X.shape=(1, N) and Y.shape=(1, M).') six.reraise(ParameterError, ParameterError(msg)) # for subsequence matching: # if N > M, Y can be a subsequence of X if subseq and (X.shape[1] > Y.shape[1]): C = C.T C = np.atleast_2d(C) # if diagonal matching, Y has to be longer than X # (X simply cannot be contained in Y) if np.array_equal(step_sizes_sigma, np.array([[1, 1]])) and (C.shape[0] > C.shape[1]): raise ParameterError('For diagonal matching: Y.shape[1] >= X.shape[1] ' '(C.shape[1] >= C.shape[0])') max_0 = step_sizes_sigma[:, 0].max() max_1 = step_sizes_sigma[:, 1].max() if global_constraints: # Apply global constraints to the cost matrix fill_off_diagonal(C, band_rad, value=np.inf) # initialize whole matrix with infinity values D = np.ones(C.shape + np.array([max_0, max_1])) * np.inf # set starting point to C[0, 0] D[max_0, max_1] = C[0, 0] if subseq: D[max_0, max_1:] = C[0, :] # initialize step matrix with -1 # will be filled in calc_accu_cost() with indices from step_sizes_sigma D_steps = -1 * np.ones(D.shape, dtype=np.int) # calculate accumulated cost matrix D, D_steps = __dtw_calc_accu_cost(C, D, D_steps, step_sizes_sigma, weights_mul, weights_add, max_0, max_1) # delete infinity rows and columns D = D[max_0:, max_1:] D_steps = D_steps[max_0:, max_1:] if backtrack: if subseq: # search for global minimum in last row of D-matrix wp_end_idx = np.argmin(D[-1, :]) + 1 wp = __dtw_backtracking(D_steps[:, :wp_end_idx], step_sizes_sigma) else: # perform warping path backtracking wp = __dtw_backtracking(D_steps, step_sizes_sigma) wp = np.asarray(wp, dtype=int) # since we transposed in the beginning, we have to adjust the index pairs back if subseq and (X.shape[1] > Y.shape[1]): wp = np.fliplr(wp) return D, wp else: return D
[ "Dynamic", "time", "warping", "(", "DTW", ")", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L52-L234
[ "def", "dtw", "(", "X", "=", "None", ",", "Y", "=", "None", ",", "C", "=", "None", ",", "metric", "=", "'euclidean'", ",", "step_sizes_sigma", "=", "None", ",", "weights_add", "=", "None", ",", "weights_mul", "=", "None", ",", "subseq", "=", "False", ",", "backtrack", "=", "True", ",", "global_constraints", "=", "False", ",", "band_rad", "=", "0.25", ")", ":", "# Default Parameters", "if", "step_sizes_sigma", "is", "None", ":", "step_sizes_sigma", "=", "np", ".", "array", "(", "[", "[", "1", ",", "1", "]", ",", "[", "0", ",", "1", "]", ",", "[", "1", ",", "0", "]", "]", ")", "if", "weights_add", "is", "None", ":", "weights_add", "=", "np", ".", "zeros", "(", "len", "(", "step_sizes_sigma", ")", ")", "if", "weights_mul", "is", "None", ":", "weights_mul", "=", "np", ".", "ones", "(", "len", "(", "step_sizes_sigma", ")", ")", "if", "len", "(", "step_sizes_sigma", ")", "!=", "len", "(", "weights_add", ")", ":", "raise", "ParameterError", "(", "'len(weights_add) must be equal to len(step_sizes_sigma)'", ")", "if", "len", "(", "step_sizes_sigma", ")", "!=", "len", "(", "weights_mul", ")", ":", "raise", "ParameterError", "(", "'len(weights_mul) must be equal to len(step_sizes_sigma)'", ")", "if", "C", "is", "None", "and", "(", "X", "is", "None", "or", "Y", "is", "None", ")", ":", "raise", "ParameterError", "(", "'If C is not supplied, both X and Y must be supplied'", ")", "if", "C", "is", "not", "None", "and", "(", "X", "is", "not", "None", "or", "Y", "is", "not", "None", ")", ":", "raise", "ParameterError", "(", "'If C is supplied, both X and Y must not be supplied'", ")", "# calculate pair-wise distances, unless already supplied.", "if", "C", "is", "None", ":", "# take care of dimensions", "X", "=", "np", ".", "atleast_2d", "(", "X", ")", "Y", "=", "np", ".", "atleast_2d", "(", "Y", ")", "try", ":", "C", "=", "cdist", "(", "X", ".", "T", ",", "Y", ".", "T", ",", "metric", "=", "metric", ")", "except", "ValueError", ":", "msg", "=", "(", "'scipy.spatial.distance.cdist returned an error.\\n'", "'Please provide your input in the form X.shape=(K, N) and Y.shape=(K, M).\\n'", "'1-dimensional sequences should be reshaped to X.shape=(1, N) and Y.shape=(1, M).'", ")", "six", ".", "reraise", "(", "ParameterError", ",", "ParameterError", "(", "msg", ")", ")", "# for subsequence matching:", "# if N > M, Y can be a subsequence of X", "if", "subseq", "and", "(", "X", ".", "shape", "[", "1", "]", ">", "Y", ".", "shape", "[", "1", "]", ")", ":", "C", "=", "C", ".", "T", "C", "=", "np", ".", "atleast_2d", "(", "C", ")", "# if diagonal matching, Y has to be longer than X", "# (X simply cannot be contained in Y)", "if", "np", ".", "array_equal", "(", "step_sizes_sigma", ",", "np", ".", "array", "(", "[", "[", "1", ",", "1", "]", "]", ")", ")", "and", "(", "C", ".", "shape", "[", "0", "]", ">", "C", ".", "shape", "[", "1", "]", ")", ":", "raise", "ParameterError", "(", "'For diagonal matching: Y.shape[1] >= X.shape[1] '", "'(C.shape[1] >= C.shape[0])'", ")", "max_0", "=", "step_sizes_sigma", "[", ":", ",", "0", "]", ".", "max", "(", ")", "max_1", "=", "step_sizes_sigma", "[", ":", ",", "1", "]", ".", "max", "(", ")", "if", "global_constraints", ":", "# Apply global constraints to the cost matrix", "fill_off_diagonal", "(", "C", ",", "band_rad", ",", "value", "=", "np", ".", "inf", ")", "# initialize whole matrix with infinity values", "D", "=", "np", ".", "ones", "(", "C", ".", "shape", "+", "np", ".", "array", "(", "[", "max_0", ",", "max_1", "]", ")", ")", "*", "np", ".", "inf", "# set starting point to C[0, 0]", "D", "[", "max_0", ",", "max_1", "]", "=", "C", "[", "0", ",", "0", "]", "if", "subseq", ":", "D", "[", "max_0", ",", "max_1", ":", "]", "=", "C", "[", "0", ",", ":", "]", "# initialize step matrix with -1", "# will be filled in calc_accu_cost() with indices from step_sizes_sigma", "D_steps", "=", "-", "1", "*", "np", ".", "ones", "(", "D", ".", "shape", ",", "dtype", "=", "np", ".", "int", ")", "# calculate accumulated cost matrix", "D", ",", "D_steps", "=", "__dtw_calc_accu_cost", "(", "C", ",", "D", ",", "D_steps", ",", "step_sizes_sigma", ",", "weights_mul", ",", "weights_add", ",", "max_0", ",", "max_1", ")", "# delete infinity rows and columns", "D", "=", "D", "[", "max_0", ":", ",", "max_1", ":", "]", "D_steps", "=", "D_steps", "[", "max_0", ":", ",", "max_1", ":", "]", "if", "backtrack", ":", "if", "subseq", ":", "# search for global minimum in last row of D-matrix", "wp_end_idx", "=", "np", ".", "argmin", "(", "D", "[", "-", "1", ",", ":", "]", ")", "+", "1", "wp", "=", "__dtw_backtracking", "(", "D_steps", "[", ":", ",", ":", "wp_end_idx", "]", ",", "step_sizes_sigma", ")", "else", ":", "# perform warping path backtracking", "wp", "=", "__dtw_backtracking", "(", "D_steps", ",", "step_sizes_sigma", ")", "wp", "=", "np", ".", "asarray", "(", "wp", ",", "dtype", "=", "int", ")", "# since we transposed in the beginning, we have to adjust the index pairs back", "if", "subseq", "and", "(", "X", ".", "shape", "[", "1", "]", ">", "Y", ".", "shape", "[", "1", "]", ")", ":", "wp", "=", "np", ".", "fliplr", "(", "wp", ")", "return", "D", ",", "wp", "else", ":", "return", "D" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__dtw_calc_accu_cost
Calculate the accumulated cost matrix D. Use dynamic programming to calculate the accumulated costs. Parameters ---------- C : np.ndarray [shape=(N, M)] pre-computed cost matrix D : np.ndarray [shape=(N, M)] accumulated cost matrix D_steps : np.ndarray [shape=(N, M)] steps which were used for calculating D step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. weights_add : np.ndarray [shape=[n, ]] Additive weights to penalize certain step sizes. weights_mul : np.ndarray [shape=[n, ]] Multiplicative weights to penalize certain step sizes. max_0 : int maximum number of steps in step_sizes_sigma in dim 0. max_1 : int maximum number of steps in step_sizes_sigma in dim 1. Returns ------- D : np.ndarray [shape=(N,M)] accumulated cost matrix. D[N,M] is the total alignment cost. When doing subsequence DTW, D[N,:] indicates a matching function. D_steps : np.ndarray [shape=(N,M)] steps which were used for calculating D. See Also -------- dtw
librosa/sequence.py
def __dtw_calc_accu_cost(C, D, D_steps, step_sizes_sigma, weights_mul, weights_add, max_0, max_1): # pragma: no cover '''Calculate the accumulated cost matrix D. Use dynamic programming to calculate the accumulated costs. Parameters ---------- C : np.ndarray [shape=(N, M)] pre-computed cost matrix D : np.ndarray [shape=(N, M)] accumulated cost matrix D_steps : np.ndarray [shape=(N, M)] steps which were used for calculating D step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. weights_add : np.ndarray [shape=[n, ]] Additive weights to penalize certain step sizes. weights_mul : np.ndarray [shape=[n, ]] Multiplicative weights to penalize certain step sizes. max_0 : int maximum number of steps in step_sizes_sigma in dim 0. max_1 : int maximum number of steps in step_sizes_sigma in dim 1. Returns ------- D : np.ndarray [shape=(N,M)] accumulated cost matrix. D[N,M] is the total alignment cost. When doing subsequence DTW, D[N,:] indicates a matching function. D_steps : np.ndarray [shape=(N,M)] steps which were used for calculating D. See Also -------- dtw ''' for cur_n in range(max_0, D.shape[0]): for cur_m in range(max_1, D.shape[1]): # accumulate costs for cur_step_idx, cur_w_add, cur_w_mul in zip(range(step_sizes_sigma.shape[0]), weights_add, weights_mul): cur_D = D[cur_n - step_sizes_sigma[cur_step_idx, 0], cur_m - step_sizes_sigma[cur_step_idx, 1]] cur_C = cur_w_mul * C[cur_n - max_0, cur_m - max_1] cur_C += cur_w_add cur_cost = cur_D + cur_C # check if cur_cost is smaller than the one stored in D if cur_cost < D[cur_n, cur_m]: D[cur_n, cur_m] = cur_cost # save step-index D_steps[cur_n, cur_m] = cur_step_idx return D, D_steps
def __dtw_calc_accu_cost(C, D, D_steps, step_sizes_sigma, weights_mul, weights_add, max_0, max_1): # pragma: no cover '''Calculate the accumulated cost matrix D. Use dynamic programming to calculate the accumulated costs. Parameters ---------- C : np.ndarray [shape=(N, M)] pre-computed cost matrix D : np.ndarray [shape=(N, M)] accumulated cost matrix D_steps : np.ndarray [shape=(N, M)] steps which were used for calculating D step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. weights_add : np.ndarray [shape=[n, ]] Additive weights to penalize certain step sizes. weights_mul : np.ndarray [shape=[n, ]] Multiplicative weights to penalize certain step sizes. max_0 : int maximum number of steps in step_sizes_sigma in dim 0. max_1 : int maximum number of steps in step_sizes_sigma in dim 1. Returns ------- D : np.ndarray [shape=(N,M)] accumulated cost matrix. D[N,M] is the total alignment cost. When doing subsequence DTW, D[N,:] indicates a matching function. D_steps : np.ndarray [shape=(N,M)] steps which were used for calculating D. See Also -------- dtw ''' for cur_n in range(max_0, D.shape[0]): for cur_m in range(max_1, D.shape[1]): # accumulate costs for cur_step_idx, cur_w_add, cur_w_mul in zip(range(step_sizes_sigma.shape[0]), weights_add, weights_mul): cur_D = D[cur_n - step_sizes_sigma[cur_step_idx, 0], cur_m - step_sizes_sigma[cur_step_idx, 1]] cur_C = cur_w_mul * C[cur_n - max_0, cur_m - max_1] cur_C += cur_w_add cur_cost = cur_D + cur_C # check if cur_cost is smaller than the one stored in D if cur_cost < D[cur_n, cur_m]: D[cur_n, cur_m] = cur_cost # save step-index D_steps[cur_n, cur_m] = cur_step_idx return D, D_steps
[ "Calculate", "the", "accumulated", "cost", "matrix", "D", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L238-L302
[ "def", "__dtw_calc_accu_cost", "(", "C", ",", "D", ",", "D_steps", ",", "step_sizes_sigma", ",", "weights_mul", ",", "weights_add", ",", "max_0", ",", "max_1", ")", ":", "# pragma: no cover", "for", "cur_n", "in", "range", "(", "max_0", ",", "D", ".", "shape", "[", "0", "]", ")", ":", "for", "cur_m", "in", "range", "(", "max_1", ",", "D", ".", "shape", "[", "1", "]", ")", ":", "# accumulate costs", "for", "cur_step_idx", ",", "cur_w_add", ",", "cur_w_mul", "in", "zip", "(", "range", "(", "step_sizes_sigma", ".", "shape", "[", "0", "]", ")", ",", "weights_add", ",", "weights_mul", ")", ":", "cur_D", "=", "D", "[", "cur_n", "-", "step_sizes_sigma", "[", "cur_step_idx", ",", "0", "]", ",", "cur_m", "-", "step_sizes_sigma", "[", "cur_step_idx", ",", "1", "]", "]", "cur_C", "=", "cur_w_mul", "*", "C", "[", "cur_n", "-", "max_0", ",", "cur_m", "-", "max_1", "]", "cur_C", "+=", "cur_w_add", "cur_cost", "=", "cur_D", "+", "cur_C", "# check if cur_cost is smaller than the one stored in D", "if", "cur_cost", "<", "D", "[", "cur_n", ",", "cur_m", "]", ":", "D", "[", "cur_n", ",", "cur_m", "]", "=", "cur_cost", "# save step-index", "D_steps", "[", "cur_n", ",", "cur_m", "]", "=", "cur_step_idx", "return", "D", ",", "D_steps" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__dtw_backtracking
Backtrack optimal warping path. Uses the saved step sizes from the cost accumulation step to backtrack the index pairs for an optimal warping path. Parameters ---------- D_steps : np.ndarray [shape=(N, M)] Saved indices of the used steps used in the calculation of D. step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. Returns ------- wp : list [shape=(N,)] Warping path with index pairs. Each list entry contains an index pair (n,m) as a tuple See Also -------- dtw
librosa/sequence.py
def __dtw_backtracking(D_steps, step_sizes_sigma): # pragma: no cover '''Backtrack optimal warping path. Uses the saved step sizes from the cost accumulation step to backtrack the index pairs for an optimal warping path. Parameters ---------- D_steps : np.ndarray [shape=(N, M)] Saved indices of the used steps used in the calculation of D. step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. Returns ------- wp : list [shape=(N,)] Warping path with index pairs. Each list entry contains an index pair (n,m) as a tuple See Also -------- dtw ''' wp = [] # Set starting point D(N,M) and append it to the path cur_idx = (D_steps.shape[0] - 1, D_steps.shape[1] - 1) wp.append((cur_idx[0], cur_idx[1])) # Loop backwards. # Stop criteria: # Setting it to (0, 0) does not work for the subsequence dtw, # so we only ask to reach the first row of the matrix. while cur_idx[0] > 0: cur_step_idx = D_steps[(cur_idx[0], cur_idx[1])] # save tuple with minimal acc. cost in path cur_idx = (cur_idx[0] - step_sizes_sigma[cur_step_idx][0], cur_idx[1] - step_sizes_sigma[cur_step_idx][1]) # append to warping path wp.append((cur_idx[0], cur_idx[1])) return wp
def __dtw_backtracking(D_steps, step_sizes_sigma): # pragma: no cover '''Backtrack optimal warping path. Uses the saved step sizes from the cost accumulation step to backtrack the index pairs for an optimal warping path. Parameters ---------- D_steps : np.ndarray [shape=(N, M)] Saved indices of the used steps used in the calculation of D. step_sizes_sigma : np.ndarray [shape=[n, 2]] Specifies allowed step sizes as used by the dtw. Returns ------- wp : list [shape=(N,)] Warping path with index pairs. Each list entry contains an index pair (n,m) as a tuple See Also -------- dtw ''' wp = [] # Set starting point D(N,M) and append it to the path cur_idx = (D_steps.shape[0] - 1, D_steps.shape[1] - 1) wp.append((cur_idx[0], cur_idx[1])) # Loop backwards. # Stop criteria: # Setting it to (0, 0) does not work for the subsequence dtw, # so we only ask to reach the first row of the matrix. while cur_idx[0] > 0: cur_step_idx = D_steps[(cur_idx[0], cur_idx[1])] # save tuple with minimal acc. cost in path cur_idx = (cur_idx[0] - step_sizes_sigma[cur_step_idx][0], cur_idx[1] - step_sizes_sigma[cur_step_idx][1]) # append to warping path wp.append((cur_idx[0], cur_idx[1])) return wp
[ "Backtrack", "optimal", "warping", "path", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L306-L352
[ "def", "__dtw_backtracking", "(", "D_steps", ",", "step_sizes_sigma", ")", ":", "# pragma: no cover", "wp", "=", "[", "]", "# Set starting point D(N,M) and append it to the path", "cur_idx", "=", "(", "D_steps", ".", "shape", "[", "0", "]", "-", "1", ",", "D_steps", ".", "shape", "[", "1", "]", "-", "1", ")", "wp", ".", "append", "(", "(", "cur_idx", "[", "0", "]", ",", "cur_idx", "[", "1", "]", ")", ")", "# Loop backwards.", "# Stop criteria:", "# Setting it to (0, 0) does not work for the subsequence dtw,", "# so we only ask to reach the first row of the matrix.", "while", "cur_idx", "[", "0", "]", ">", "0", ":", "cur_step_idx", "=", "D_steps", "[", "(", "cur_idx", "[", "0", "]", ",", "cur_idx", "[", "1", "]", ")", "]", "# save tuple with minimal acc. cost in path", "cur_idx", "=", "(", "cur_idx", "[", "0", "]", "-", "step_sizes_sigma", "[", "cur_step_idx", "]", "[", "0", "]", ",", "cur_idx", "[", "1", "]", "-", "step_sizes_sigma", "[", "cur_step_idx", "]", "[", "1", "]", ")", "# append to warping path", "wp", ".", "append", "(", "(", "cur_idx", "[", "0", "]", ",", "cur_idx", "[", "1", "]", ")", ")", "return", "wp" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
_viterbi
Core Viterbi algorithm. This is intended for internal use only. Parameters ---------- log_prob : np.ndarray [shape=(T, m)] `log_prob[t, s]` is the conditional log-likelihood log P[X = X(t) | State(t) = s] log_trans : np.ndarray [shape=(m, m)] The log transition matrix `log_trans[i, j]` = log P[State(t+1) = j | State(t) = i] log_p_init : np.ndarray [shape=(m,)] log of the initial state distribution state : np.ndarray [shape=(T,), dtype=int] Pre-allocated state index array value : np.ndarray [shape=(T, m)] float Pre-allocated value array ptr : np.ndarray [shape=(T, m), dtype=int] Pre-allocated pointer array Returns ------- None All computations are performed in-place on `state, value, ptr`.
librosa/sequence.py
def _viterbi(log_prob, log_trans, log_p_init, state, value, ptr): # pragma: no cover '''Core Viterbi algorithm. This is intended for internal use only. Parameters ---------- log_prob : np.ndarray [shape=(T, m)] `log_prob[t, s]` is the conditional log-likelihood log P[X = X(t) | State(t) = s] log_trans : np.ndarray [shape=(m, m)] The log transition matrix `log_trans[i, j]` = log P[State(t+1) = j | State(t) = i] log_p_init : np.ndarray [shape=(m,)] log of the initial state distribution state : np.ndarray [shape=(T,), dtype=int] Pre-allocated state index array value : np.ndarray [shape=(T, m)] float Pre-allocated value array ptr : np.ndarray [shape=(T, m), dtype=int] Pre-allocated pointer array Returns ------- None All computations are performed in-place on `state, value, ptr`. ''' n_steps, n_states = log_prob.shape # factor in initial state distribution value[0] = log_prob[0] + log_p_init for t in range(1, n_steps): # Want V[t, j] <- p[t, j] * max_k V[t-1, k] * A[k, j] # assume at time t-1 we were in state k # transition k -> j # Broadcast over rows: # Tout[k, j] = V[t-1, k] * A[k, j] # then take the max over columns # We'll do this in log-space for stability trans_out = value[t - 1] + log_trans.T # Unroll the max/argmax loop to enable numba support for j in range(n_states): ptr[t, j] = np.argmax(trans_out[j]) # value[t, j] = log_prob[t, j] + np.max(trans_out[j]) value[t, j] = log_prob[t, j] + trans_out[j, ptr[t][j]] # Now roll backward # Get the last state state[-1] = np.argmax(value[-1]) for t in range(n_steps - 2, -1, -1): state[t] = ptr[t+1, state[t+1]]
def _viterbi(log_prob, log_trans, log_p_init, state, value, ptr): # pragma: no cover '''Core Viterbi algorithm. This is intended for internal use only. Parameters ---------- log_prob : np.ndarray [shape=(T, m)] `log_prob[t, s]` is the conditional log-likelihood log P[X = X(t) | State(t) = s] log_trans : np.ndarray [shape=(m, m)] The log transition matrix `log_trans[i, j]` = log P[State(t+1) = j | State(t) = i] log_p_init : np.ndarray [shape=(m,)] log of the initial state distribution state : np.ndarray [shape=(T,), dtype=int] Pre-allocated state index array value : np.ndarray [shape=(T, m)] float Pre-allocated value array ptr : np.ndarray [shape=(T, m), dtype=int] Pre-allocated pointer array Returns ------- None All computations are performed in-place on `state, value, ptr`. ''' n_steps, n_states = log_prob.shape # factor in initial state distribution value[0] = log_prob[0] + log_p_init for t in range(1, n_steps): # Want V[t, j] <- p[t, j] * max_k V[t-1, k] * A[k, j] # assume at time t-1 we were in state k # transition k -> j # Broadcast over rows: # Tout[k, j] = V[t-1, k] * A[k, j] # then take the max over columns # We'll do this in log-space for stability trans_out = value[t - 1] + log_trans.T # Unroll the max/argmax loop to enable numba support for j in range(n_states): ptr[t, j] = np.argmax(trans_out[j]) # value[t, j] = log_prob[t, j] + np.max(trans_out[j]) value[t, j] = log_prob[t, j] + trans_out[j, ptr[t][j]] # Now roll backward # Get the last state state[-1] = np.argmax(value[-1]) for t in range(n_steps - 2, -1, -1): state[t] = ptr[t+1, state[t+1]]
[ "Core", "Viterbi", "algorithm", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L356-L417
[ "def", "_viterbi", "(", "log_prob", ",", "log_trans", ",", "log_p_init", ",", "state", ",", "value", ",", "ptr", ")", ":", "# pragma: no cover", "n_steps", ",", "n_states", "=", "log_prob", ".", "shape", "# factor in initial state distribution", "value", "[", "0", "]", "=", "log_prob", "[", "0", "]", "+", "log_p_init", "for", "t", "in", "range", "(", "1", ",", "n_steps", ")", ":", "# Want V[t, j] <- p[t, j] * max_k V[t-1, k] * A[k, j]", "# assume at time t-1 we were in state k", "# transition k -> j", "# Broadcast over rows:", "# Tout[k, j] = V[t-1, k] * A[k, j]", "# then take the max over columns", "# We'll do this in log-space for stability", "trans_out", "=", "value", "[", "t", "-", "1", "]", "+", "log_trans", ".", "T", "# Unroll the max/argmax loop to enable numba support", "for", "j", "in", "range", "(", "n_states", ")", ":", "ptr", "[", "t", ",", "j", "]", "=", "np", ".", "argmax", "(", "trans_out", "[", "j", "]", ")", "# value[t, j] = log_prob[t, j] + np.max(trans_out[j])", "value", "[", "t", ",", "j", "]", "=", "log_prob", "[", "t", ",", "j", "]", "+", "trans_out", "[", "j", ",", "ptr", "[", "t", "]", "[", "j", "]", "]", "# Now roll backward", "# Get the last state", "state", "[", "-", "1", "]", "=", "np", ".", "argmax", "(", "value", "[", "-", "1", "]", ")", "for", "t", "in", "range", "(", "n_steps", "-", "2", ",", "-", "1", ",", "-", "1", ")", ":", "state", "[", "t", "]", "=", "ptr", "[", "t", "+", "1", ",", "state", "[", "t", "+", "1", "]", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
viterbi_discriminative
Viterbi decoding from discriminative state predictions. Given a sequence of conditional state predictions `prob[s, t]`, indicating the conditional likelihood of state `s` given the observation at time `t`, and a transition matrix `transition[i, j]` which encodes the conditional probability of moving from state `i` to state `j`, the Viterbi algorithm computes the most likely sequence of states from the observations. This implementation uses the standard Viterbi decoding algorithm for observation likelihood sequences, under the assumption that `P[Obs(t) | State(t) = s]` is proportional to `P[State(t) = s | Obs(t)] / P[State(t) = s]`, where the denominator is the marginal probability of state `s` occurring as given by `p_state`. Parameters ---------- prob : np.ndarray [shape=(n_states, n_steps), non-negative] `prob[s, t]` is the probability of state `s` conditional on the observation at time `t`. Must be non-negative and sum to 1 along each column. transition : np.ndarray [shape=(n_states, n_states), non-negative] `transition[i, j]` is the probability of a transition from i->j. Each row must sum to 1. p_state : np.ndarray [shape=(n_states,)] Optional: marginal probability distribution over states, must be non-negative and sum to 1. If not provided, a uniform distribution is assumed. p_init : np.ndarray [shape=(n_states,)] Optional: initial state distribution. If not provided, it is assumed to be uniform. return_logp : bool If `True`, return the log-likelihood of the state sequence. Returns ------- Either `states` or `(states, logp)`: states : np.ndarray [shape=(n_steps,)] The most likely state sequence. logp : scalar [float] If `return_logp=True`, the log probability of `states` given the observations. See Also -------- viterbi : Viterbi decoding from observation likelihoods viterbi_binary: Viterbi decoding for multi-label, conditional state likelihoods Examples -------- This example constructs a simple, template-based discriminative chord estimator, using CENS chroma as input features. .. note:: this chord model is not accurate enough to use in practice. It is only intended to demonstrate how to use discriminative Viterbi decoding. >>> # Create templates for major, minor, and no-chord qualities >>> maj_template = np.array([1,0,0, 0,1,0, 0,1,0, 0,0,0]) >>> min_template = np.array([1,0,0, 1,0,0, 0,1,0, 0,0,0]) >>> N_template = np.array([1,1,1, 1,1,1, 1,1,1, 1,1,1.]) / 4. >>> # Generate the weighting matrix that maps chroma to labels >>> weights = np.zeros((25, 12), dtype=float) >>> labels = ['C:maj', 'C#:maj', 'D:maj', 'D#:maj', 'E:maj', 'F:maj', ... 'F#:maj', 'G:maj', 'G#:maj', 'A:maj', 'A#:maj', 'B:maj', ... 'C:min', 'C#:min', 'D:min', 'D#:min', 'E:min', 'F:min', ... 'F#:min', 'G:min', 'G#:min', 'A:min', 'A#:min', 'B:min', ... 'N'] >>> for c in range(12): ... weights[c, :] = np.roll(maj_template, c) # c:maj ... weights[c + 12, :] = np.roll(min_template, c) # c:min >>> weights[-1] = N_template # the last row is the no-chord class >>> # Make a self-loop transition matrix over 25 states >>> trans = librosa.sequence.transition_loop(25, 0.9) >>> # Load in audio and make features >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_cens(y=y, sr=sr, bins_per_octave=36) >>> # Map chroma (observations) to class (state) likelihoods >>> probs = np.exp(weights.dot(chroma)) # P[class | chroma] proportional to exp(template' chroma) >>> probs /= probs.sum(axis=0, keepdims=True) # probabilities must sum to 1 in each column >>> # Compute independent frame-wise estimates >>> chords_ind = np.argmax(probs, axis=0) >>> # And viterbi estimates >>> chords_vit = librosa.sequence.viterbi_discriminative(probs, trans) >>> # Plot the features and prediction map >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma, x_axis='time', y_axis='chroma') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(weights, x_axis='chroma') >>> plt.yticks(np.arange(25) + 0.5, labels) >>> plt.ylabel('Chord') >>> plt.colorbar() >>> plt.tight_layout() >>> # And plot the results >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(probs, x_axis='time', cmap='gray') >>> plt.colorbar() >>> times = librosa.frames_to_time(np.arange(len(chords_vit))) >>> plt.scatter(times, chords_ind + 0.75, color='lime', alpha=0.5, marker='+', s=15, label='Independent') >>> plt.scatter(times, chords_vit + 0.25, color='deeppink', alpha=0.5, marker='o', s=15, label='Viterbi') >>> plt.yticks(0.5 + np.unique(chords_vit), [labels[i] for i in np.unique(chords_vit)], va='center') >>> plt.legend(loc='best') >>> plt.tight_layout()
librosa/sequence.py
def viterbi_discriminative(prob, transition, p_state=None, p_init=None, return_logp=False): '''Viterbi decoding from discriminative state predictions. Given a sequence of conditional state predictions `prob[s, t]`, indicating the conditional likelihood of state `s` given the observation at time `t`, and a transition matrix `transition[i, j]` which encodes the conditional probability of moving from state `i` to state `j`, the Viterbi algorithm computes the most likely sequence of states from the observations. This implementation uses the standard Viterbi decoding algorithm for observation likelihood sequences, under the assumption that `P[Obs(t) | State(t) = s]` is proportional to `P[State(t) = s | Obs(t)] / P[State(t) = s]`, where the denominator is the marginal probability of state `s` occurring as given by `p_state`. Parameters ---------- prob : np.ndarray [shape=(n_states, n_steps), non-negative] `prob[s, t]` is the probability of state `s` conditional on the observation at time `t`. Must be non-negative and sum to 1 along each column. transition : np.ndarray [shape=(n_states, n_states), non-negative] `transition[i, j]` is the probability of a transition from i->j. Each row must sum to 1. p_state : np.ndarray [shape=(n_states,)] Optional: marginal probability distribution over states, must be non-negative and sum to 1. If not provided, a uniform distribution is assumed. p_init : np.ndarray [shape=(n_states,)] Optional: initial state distribution. If not provided, it is assumed to be uniform. return_logp : bool If `True`, return the log-likelihood of the state sequence. Returns ------- Either `states` or `(states, logp)`: states : np.ndarray [shape=(n_steps,)] The most likely state sequence. logp : scalar [float] If `return_logp=True`, the log probability of `states` given the observations. See Also -------- viterbi : Viterbi decoding from observation likelihoods viterbi_binary: Viterbi decoding for multi-label, conditional state likelihoods Examples -------- This example constructs a simple, template-based discriminative chord estimator, using CENS chroma as input features. .. note:: this chord model is not accurate enough to use in practice. It is only intended to demonstrate how to use discriminative Viterbi decoding. >>> # Create templates for major, minor, and no-chord qualities >>> maj_template = np.array([1,0,0, 0,1,0, 0,1,0, 0,0,0]) >>> min_template = np.array([1,0,0, 1,0,0, 0,1,0, 0,0,0]) >>> N_template = np.array([1,1,1, 1,1,1, 1,1,1, 1,1,1.]) / 4. >>> # Generate the weighting matrix that maps chroma to labels >>> weights = np.zeros((25, 12), dtype=float) >>> labels = ['C:maj', 'C#:maj', 'D:maj', 'D#:maj', 'E:maj', 'F:maj', ... 'F#:maj', 'G:maj', 'G#:maj', 'A:maj', 'A#:maj', 'B:maj', ... 'C:min', 'C#:min', 'D:min', 'D#:min', 'E:min', 'F:min', ... 'F#:min', 'G:min', 'G#:min', 'A:min', 'A#:min', 'B:min', ... 'N'] >>> for c in range(12): ... weights[c, :] = np.roll(maj_template, c) # c:maj ... weights[c + 12, :] = np.roll(min_template, c) # c:min >>> weights[-1] = N_template # the last row is the no-chord class >>> # Make a self-loop transition matrix over 25 states >>> trans = librosa.sequence.transition_loop(25, 0.9) >>> # Load in audio and make features >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_cens(y=y, sr=sr, bins_per_octave=36) >>> # Map chroma (observations) to class (state) likelihoods >>> probs = np.exp(weights.dot(chroma)) # P[class | chroma] proportional to exp(template' chroma) >>> probs /= probs.sum(axis=0, keepdims=True) # probabilities must sum to 1 in each column >>> # Compute independent frame-wise estimates >>> chords_ind = np.argmax(probs, axis=0) >>> # And viterbi estimates >>> chords_vit = librosa.sequence.viterbi_discriminative(probs, trans) >>> # Plot the features and prediction map >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma, x_axis='time', y_axis='chroma') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(weights, x_axis='chroma') >>> plt.yticks(np.arange(25) + 0.5, labels) >>> plt.ylabel('Chord') >>> plt.colorbar() >>> plt.tight_layout() >>> # And plot the results >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(probs, x_axis='time', cmap='gray') >>> plt.colorbar() >>> times = librosa.frames_to_time(np.arange(len(chords_vit))) >>> plt.scatter(times, chords_ind + 0.75, color='lime', alpha=0.5, marker='+', s=15, label='Independent') >>> plt.scatter(times, chords_vit + 0.25, color='deeppink', alpha=0.5, marker='o', s=15, label='Viterbi') >>> plt.yticks(0.5 + np.unique(chords_vit), [labels[i] for i in np.unique(chords_vit)], va='center') >>> plt.legend(loc='best') >>> plt.tight_layout() ''' n_states, n_steps = prob.shape if transition.shape != (n_states, n_states): raise ParameterError('transition.shape={}, must be ' '(n_states, n_states)={}'.format(transition.shape, (n_states, n_states))) if np.any(transition < 0) or not np.allclose(transition.sum(axis=1), 1): raise ParameterError('Invalid transition matrix: must be non-negative ' 'and sum to 1 on each row.') if np.any(prob < 0) or not np.allclose(prob.sum(axis=0), 1): raise ParameterError('Invalid probability values: each column must ' 'sum to 1 and be non-negative') states = np.zeros(n_steps, dtype=int) values = np.zeros((n_steps, n_states), dtype=float) ptr = np.zeros((n_steps, n_states), dtype=int) # Compute log-likelihoods while avoiding log-underflow epsilon = np.finfo(prob.dtype).tiny # Compute marginal log probabilities while avoiding underflow if p_state is None: p_state = np.empty(n_states) p_state.fill(1./n_states) elif p_state.shape != (n_states,): raise ParameterError('Marginal distribution p_state must have shape (n_states,). ' 'Got p_state.shape={}'.format(p_state.shape)) elif np.any(p_state < 0) or not np.allclose(p_state.sum(axis=-1), 1): raise ParameterError('Invalid marginal state distribution: ' 'p_state={}'.format(p_state)) log_trans = np.log(transition + epsilon) log_marginal = np.log(p_state + epsilon) # By Bayes' rule, P[X | Y] * P[Y] = P[Y | X] * P[X] # P[X] is constant for the sake of maximum likelihood inference # and P[Y] is given by the marginal distribution p_state. # # So we have P[X | y] \propto P[Y | x] / P[Y] # if X = observation and Y = states, this can be done in log space as # log P[X | y] \propto \log P[Y | x] - \log P[Y] log_prob = np.log(prob.T + epsilon) - log_marginal if p_init is None: p_init = np.empty(n_states) p_init.fill(1./n_states) elif np.any(p_init < 0) or not np.allclose(p_init.sum(), 1): raise ParameterError('Invalid initial state distribution: ' 'p_init={}'.format(p_init)) log_p_init = np.log(p_init + epsilon) _viterbi(log_prob, log_trans, log_p_init, states, values, ptr) if return_logp: return states, values[-1, states[-1]] return states
def viterbi_discriminative(prob, transition, p_state=None, p_init=None, return_logp=False): '''Viterbi decoding from discriminative state predictions. Given a sequence of conditional state predictions `prob[s, t]`, indicating the conditional likelihood of state `s` given the observation at time `t`, and a transition matrix `transition[i, j]` which encodes the conditional probability of moving from state `i` to state `j`, the Viterbi algorithm computes the most likely sequence of states from the observations. This implementation uses the standard Viterbi decoding algorithm for observation likelihood sequences, under the assumption that `P[Obs(t) | State(t) = s]` is proportional to `P[State(t) = s | Obs(t)] / P[State(t) = s]`, where the denominator is the marginal probability of state `s` occurring as given by `p_state`. Parameters ---------- prob : np.ndarray [shape=(n_states, n_steps), non-negative] `prob[s, t]` is the probability of state `s` conditional on the observation at time `t`. Must be non-negative and sum to 1 along each column. transition : np.ndarray [shape=(n_states, n_states), non-negative] `transition[i, j]` is the probability of a transition from i->j. Each row must sum to 1. p_state : np.ndarray [shape=(n_states,)] Optional: marginal probability distribution over states, must be non-negative and sum to 1. If not provided, a uniform distribution is assumed. p_init : np.ndarray [shape=(n_states,)] Optional: initial state distribution. If not provided, it is assumed to be uniform. return_logp : bool If `True`, return the log-likelihood of the state sequence. Returns ------- Either `states` or `(states, logp)`: states : np.ndarray [shape=(n_steps,)] The most likely state sequence. logp : scalar [float] If `return_logp=True`, the log probability of `states` given the observations. See Also -------- viterbi : Viterbi decoding from observation likelihoods viterbi_binary: Viterbi decoding for multi-label, conditional state likelihoods Examples -------- This example constructs a simple, template-based discriminative chord estimator, using CENS chroma as input features. .. note:: this chord model is not accurate enough to use in practice. It is only intended to demonstrate how to use discriminative Viterbi decoding. >>> # Create templates for major, minor, and no-chord qualities >>> maj_template = np.array([1,0,0, 0,1,0, 0,1,0, 0,0,0]) >>> min_template = np.array([1,0,0, 1,0,0, 0,1,0, 0,0,0]) >>> N_template = np.array([1,1,1, 1,1,1, 1,1,1, 1,1,1.]) / 4. >>> # Generate the weighting matrix that maps chroma to labels >>> weights = np.zeros((25, 12), dtype=float) >>> labels = ['C:maj', 'C#:maj', 'D:maj', 'D#:maj', 'E:maj', 'F:maj', ... 'F#:maj', 'G:maj', 'G#:maj', 'A:maj', 'A#:maj', 'B:maj', ... 'C:min', 'C#:min', 'D:min', 'D#:min', 'E:min', 'F:min', ... 'F#:min', 'G:min', 'G#:min', 'A:min', 'A#:min', 'B:min', ... 'N'] >>> for c in range(12): ... weights[c, :] = np.roll(maj_template, c) # c:maj ... weights[c + 12, :] = np.roll(min_template, c) # c:min >>> weights[-1] = N_template # the last row is the no-chord class >>> # Make a self-loop transition matrix over 25 states >>> trans = librosa.sequence.transition_loop(25, 0.9) >>> # Load in audio and make features >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_cens(y=y, sr=sr, bins_per_octave=36) >>> # Map chroma (observations) to class (state) likelihoods >>> probs = np.exp(weights.dot(chroma)) # P[class | chroma] proportional to exp(template' chroma) >>> probs /= probs.sum(axis=0, keepdims=True) # probabilities must sum to 1 in each column >>> # Compute independent frame-wise estimates >>> chords_ind = np.argmax(probs, axis=0) >>> # And viterbi estimates >>> chords_vit = librosa.sequence.viterbi_discriminative(probs, trans) >>> # Plot the features and prediction map >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma, x_axis='time', y_axis='chroma') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(weights, x_axis='chroma') >>> plt.yticks(np.arange(25) + 0.5, labels) >>> plt.ylabel('Chord') >>> plt.colorbar() >>> plt.tight_layout() >>> # And plot the results >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(probs, x_axis='time', cmap='gray') >>> plt.colorbar() >>> times = librosa.frames_to_time(np.arange(len(chords_vit))) >>> plt.scatter(times, chords_ind + 0.75, color='lime', alpha=0.5, marker='+', s=15, label='Independent') >>> plt.scatter(times, chords_vit + 0.25, color='deeppink', alpha=0.5, marker='o', s=15, label='Viterbi') >>> plt.yticks(0.5 + np.unique(chords_vit), [labels[i] for i in np.unique(chords_vit)], va='center') >>> plt.legend(loc='best') >>> plt.tight_layout() ''' n_states, n_steps = prob.shape if transition.shape != (n_states, n_states): raise ParameterError('transition.shape={}, must be ' '(n_states, n_states)={}'.format(transition.shape, (n_states, n_states))) if np.any(transition < 0) or not np.allclose(transition.sum(axis=1), 1): raise ParameterError('Invalid transition matrix: must be non-negative ' 'and sum to 1 on each row.') if np.any(prob < 0) or not np.allclose(prob.sum(axis=0), 1): raise ParameterError('Invalid probability values: each column must ' 'sum to 1 and be non-negative') states = np.zeros(n_steps, dtype=int) values = np.zeros((n_steps, n_states), dtype=float) ptr = np.zeros((n_steps, n_states), dtype=int) # Compute log-likelihoods while avoiding log-underflow epsilon = np.finfo(prob.dtype).tiny # Compute marginal log probabilities while avoiding underflow if p_state is None: p_state = np.empty(n_states) p_state.fill(1./n_states) elif p_state.shape != (n_states,): raise ParameterError('Marginal distribution p_state must have shape (n_states,). ' 'Got p_state.shape={}'.format(p_state.shape)) elif np.any(p_state < 0) or not np.allclose(p_state.sum(axis=-1), 1): raise ParameterError('Invalid marginal state distribution: ' 'p_state={}'.format(p_state)) log_trans = np.log(transition + epsilon) log_marginal = np.log(p_state + epsilon) # By Bayes' rule, P[X | Y] * P[Y] = P[Y | X] * P[X] # P[X] is constant for the sake of maximum likelihood inference # and P[Y] is given by the marginal distribution p_state. # # So we have P[X | y] \propto P[Y | x] / P[Y] # if X = observation and Y = states, this can be done in log space as # log P[X | y] \propto \log P[Y | x] - \log P[Y] log_prob = np.log(prob.T + epsilon) - log_marginal if p_init is None: p_init = np.empty(n_states) p_init.fill(1./n_states) elif np.any(p_init < 0) or not np.allclose(p_init.sum(), 1): raise ParameterError('Invalid initial state distribution: ' 'p_init={}'.format(p_init)) log_p_init = np.log(p_init + epsilon) _viterbi(log_prob, log_trans, log_p_init, states, values, ptr) if return_logp: return states, values[-1, states[-1]] return states
[ "Viterbi", "decoding", "from", "discriminative", "state", "predictions", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L540-L717
[ "def", "viterbi_discriminative", "(", "prob", ",", "transition", ",", "p_state", "=", "None", ",", "p_init", "=", "None", ",", "return_logp", "=", "False", ")", ":", "n_states", ",", "n_steps", "=", "prob", ".", "shape", "if", "transition", ".", "shape", "!=", "(", "n_states", ",", "n_states", ")", ":", "raise", "ParameterError", "(", "'transition.shape={}, must be '", "'(n_states, n_states)={}'", ".", "format", "(", "transition", ".", "shape", ",", "(", "n_states", ",", "n_states", ")", ")", ")", "if", "np", ".", "any", "(", "transition", "<", "0", ")", "or", "not", "np", ".", "allclose", "(", "transition", ".", "sum", "(", "axis", "=", "1", ")", ",", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid transition matrix: must be non-negative '", "'and sum to 1 on each row.'", ")", "if", "np", ".", "any", "(", "prob", "<", "0", ")", "or", "not", "np", ".", "allclose", "(", "prob", ".", "sum", "(", "axis", "=", "0", ")", ",", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid probability values: each column must '", "'sum to 1 and be non-negative'", ")", "states", "=", "np", ".", "zeros", "(", "n_steps", ",", "dtype", "=", "int", ")", "values", "=", "np", ".", "zeros", "(", "(", "n_steps", ",", "n_states", ")", ",", "dtype", "=", "float", ")", "ptr", "=", "np", ".", "zeros", "(", "(", "n_steps", ",", "n_states", ")", ",", "dtype", "=", "int", ")", "# Compute log-likelihoods while avoiding log-underflow", "epsilon", "=", "np", ".", "finfo", "(", "prob", ".", "dtype", ")", ".", "tiny", "# Compute marginal log probabilities while avoiding underflow", "if", "p_state", "is", "None", ":", "p_state", "=", "np", ".", "empty", "(", "n_states", ")", "p_state", ".", "fill", "(", "1.", "/", "n_states", ")", "elif", "p_state", ".", "shape", "!=", "(", "n_states", ",", ")", ":", "raise", "ParameterError", "(", "'Marginal distribution p_state must have shape (n_states,). '", "'Got p_state.shape={}'", ".", "format", "(", "p_state", ".", "shape", ")", ")", "elif", "np", ".", "any", "(", "p_state", "<", "0", ")", "or", "not", "np", ".", "allclose", "(", "p_state", ".", "sum", "(", "axis", "=", "-", "1", ")", ",", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid marginal state distribution: '", "'p_state={}'", ".", "format", "(", "p_state", ")", ")", "log_trans", "=", "np", ".", "log", "(", "transition", "+", "epsilon", ")", "log_marginal", "=", "np", ".", "log", "(", "p_state", "+", "epsilon", ")", "# By Bayes' rule, P[X | Y] * P[Y] = P[Y | X] * P[X]", "# P[X] is constant for the sake of maximum likelihood inference", "# and P[Y] is given by the marginal distribution p_state.", "#", "# So we have P[X | y] \\propto P[Y | x] / P[Y]", "# if X = observation and Y = states, this can be done in log space as", "# log P[X | y] \\propto \\log P[Y | x] - \\log P[Y]", "log_prob", "=", "np", ".", "log", "(", "prob", ".", "T", "+", "epsilon", ")", "-", "log_marginal", "if", "p_init", "is", "None", ":", "p_init", "=", "np", ".", "empty", "(", "n_states", ")", "p_init", ".", "fill", "(", "1.", "/", "n_states", ")", "elif", "np", ".", "any", "(", "p_init", "<", "0", ")", "or", "not", "np", ".", "allclose", "(", "p_init", ".", "sum", "(", ")", ",", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid initial state distribution: '", "'p_init={}'", ".", "format", "(", "p_init", ")", ")", "log_p_init", "=", "np", ".", "log", "(", "p_init", "+", "epsilon", ")", "_viterbi", "(", "log_prob", ",", "log_trans", ",", "log_p_init", ",", "states", ",", "values", ",", "ptr", ")", "if", "return_logp", ":", "return", "states", ",", "values", "[", "-", "1", ",", "states", "[", "-", "1", "]", "]", "return", "states" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
viterbi_binary
Viterbi decoding from binary (multi-label), discriminative state predictions. Given a sequence of conditional state predictions `prob[s, t]`, indicating the conditional likelihood of state `s` being active conditional on observation at time `t`, and a 2*2 transition matrix `transition` which encodes the conditional probability of moving from state `s` to state `~s` (not-`s`), the Viterbi algorithm computes the most likely sequence of states from the observations. This function differs from `viterbi_discriminative` in that it does not assume the states to be mutually exclusive. `viterbi_binary` is implemented by transforming the multi-label decoding problem to a collection of binary Viterbi problems (one for each *state* or label). The output is a binary matrix `states[s, t]` indicating whether each state `s` is active at time `t`. Parameters ---------- prob : np.ndarray [shape=(n_steps,) or (n_states, n_steps)], non-negative `prob[s, t]` is the probability of state `s` being active conditional on the observation at time `t`. Must be non-negative and less than 1. If `prob` is 1-dimensional, it is expanded to shape `(1, n_steps)`. transition : np.ndarray [shape=(2, 2) or (n_states, 2, 2)], non-negative If 2-dimensional, the same transition matrix is applied to each sub-problem. `transition[0, i]` is the probability of the state going from inactive to `i`, `transition[1, i]` is the probability of the state going from active to `i`. Each row must sum to 1. If 3-dimensional, `transition[s]` is interpreted as the 2x2 transition matrix for state label `s`. p_state : np.ndarray [shape=(n_states,)] Optional: marginal probability for each state (between [0,1]). If not provided, a uniform distribution (0.5 for each state) is assumed. p_init : np.ndarray [shape=(n_states,)] Optional: initial state distribution. If not provided, it is assumed to be uniform. return_logp : bool If `True`, return the log-likelihood of the state sequence. Returns ------- Either `states` or `(states, logp)`: states : np.ndarray [shape=(n_states, n_steps)] The most likely state sequence. logp : np.ndarray [shape=(n_states,)] If `return_logp=True`, the log probability of each state activation sequence `states` See Also -------- viterbi : Viterbi decoding from observation likelihoods viterbi_discriminative : Viterbi decoding for discriminative (mutually exclusive) state predictions Examples -------- In this example, we have a sequence of binary state likelihoods that we want to de-noise under the assumption that state changes are relatively uncommon. Positive predictions should only be retained if they persist for multiple steps, and any transient predictions should be considered as errors. This use case arises frequently in problems such as instrument recognition, where state activations tend to be stable over time, but subject to abrupt changes (e.g., when an instrument joins the mix). We assume that the 0 state has a self-transition probability of 90%, and the 1 state has a self-transition probability of 70%. We assume the marginal and initial probability of either state is 50%. >>> trans = np.array([[0.9, 0.1], [0.3, 0.7]]) >>> prob = np.array([0.1, 0.7, 0.4, 0.3, 0.8, 0.9, 0.8, 0.2, 0.6, 0.3]) >>> librosa.sequence.viterbi_binary(prob, trans, p_state=0.5, p_init=0.5) array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]])
librosa/sequence.py
def viterbi_binary(prob, transition, p_state=None, p_init=None, return_logp=False): '''Viterbi decoding from binary (multi-label), discriminative state predictions. Given a sequence of conditional state predictions `prob[s, t]`, indicating the conditional likelihood of state `s` being active conditional on observation at time `t`, and a 2*2 transition matrix `transition` which encodes the conditional probability of moving from state `s` to state `~s` (not-`s`), the Viterbi algorithm computes the most likely sequence of states from the observations. This function differs from `viterbi_discriminative` in that it does not assume the states to be mutually exclusive. `viterbi_binary` is implemented by transforming the multi-label decoding problem to a collection of binary Viterbi problems (one for each *state* or label). The output is a binary matrix `states[s, t]` indicating whether each state `s` is active at time `t`. Parameters ---------- prob : np.ndarray [shape=(n_steps,) or (n_states, n_steps)], non-negative `prob[s, t]` is the probability of state `s` being active conditional on the observation at time `t`. Must be non-negative and less than 1. If `prob` is 1-dimensional, it is expanded to shape `(1, n_steps)`. transition : np.ndarray [shape=(2, 2) or (n_states, 2, 2)], non-negative If 2-dimensional, the same transition matrix is applied to each sub-problem. `transition[0, i]` is the probability of the state going from inactive to `i`, `transition[1, i]` is the probability of the state going from active to `i`. Each row must sum to 1. If 3-dimensional, `transition[s]` is interpreted as the 2x2 transition matrix for state label `s`. p_state : np.ndarray [shape=(n_states,)] Optional: marginal probability for each state (between [0,1]). If not provided, a uniform distribution (0.5 for each state) is assumed. p_init : np.ndarray [shape=(n_states,)] Optional: initial state distribution. If not provided, it is assumed to be uniform. return_logp : bool If `True`, return the log-likelihood of the state sequence. Returns ------- Either `states` or `(states, logp)`: states : np.ndarray [shape=(n_states, n_steps)] The most likely state sequence. logp : np.ndarray [shape=(n_states,)] If `return_logp=True`, the log probability of each state activation sequence `states` See Also -------- viterbi : Viterbi decoding from observation likelihoods viterbi_discriminative : Viterbi decoding for discriminative (mutually exclusive) state predictions Examples -------- In this example, we have a sequence of binary state likelihoods that we want to de-noise under the assumption that state changes are relatively uncommon. Positive predictions should only be retained if they persist for multiple steps, and any transient predictions should be considered as errors. This use case arises frequently in problems such as instrument recognition, where state activations tend to be stable over time, but subject to abrupt changes (e.g., when an instrument joins the mix). We assume that the 0 state has a self-transition probability of 90%, and the 1 state has a self-transition probability of 70%. We assume the marginal and initial probability of either state is 50%. >>> trans = np.array([[0.9, 0.1], [0.3, 0.7]]) >>> prob = np.array([0.1, 0.7, 0.4, 0.3, 0.8, 0.9, 0.8, 0.2, 0.6, 0.3]) >>> librosa.sequence.viterbi_binary(prob, trans, p_state=0.5, p_init=0.5) array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]]) ''' prob = np.atleast_2d(prob) n_states, n_steps = prob.shape if transition.shape == (2, 2): transition = np.tile(transition, (n_states, 1, 1)) elif transition.shape != (n_states, 2, 2): raise ParameterError('transition.shape={}, must be (2,2) or ' '(n_states, 2, 2)={}'.format(transition.shape, (n_states))) if np.any(transition < 0) or not np.allclose(transition.sum(axis=-1), 1): raise ParameterError('Invalid transition matrix: must be non-negative ' 'and sum to 1 on each row.') if np.any(prob < 0) or np.any(prob > 1): raise ParameterError('Invalid probability values: prob must be between [0, 1]') if p_state is None: p_state = np.empty(n_states) p_state.fill(0.5) else: p_state = np.atleast_1d(p_state) if p_state.shape != (n_states,) or np.any(p_state < 0) or np.any(p_state > 1): raise ParameterError('Invalid marginal state distributions: p_state={}'.format(p_state)) if p_init is None: p_init = np.empty(n_states) p_init.fill(0.5) else: p_init = np.atleast_1d(p_init) if p_init.shape != (n_states,) or np.any(p_init < 0) or np.any(p_init > 1): raise ParameterError('Invalid initial state distributions: p_init={}'.format(p_init)) states = np.empty((n_states, n_steps), dtype=int) logp = np.empty(n_states) prob_binary = np.empty((2, n_steps)) p_state_binary = np.empty(2) p_init_binary = np.empty(2) for state in range(n_states): prob_binary[0] = 1 - prob[state] prob_binary[1] = prob[state] p_state_binary[0] = 1 - p_state[state] p_state_binary[1] = p_state[state] p_init_binary[0] = 1 - p_init[state] p_init_binary[1] = p_init[state] states[state, :], logp[state] = viterbi_discriminative(prob_binary, transition[state], p_state=p_state_binary, p_init=p_init_binary, return_logp=True) if return_logp: return states, logp return states
def viterbi_binary(prob, transition, p_state=None, p_init=None, return_logp=False): '''Viterbi decoding from binary (multi-label), discriminative state predictions. Given a sequence of conditional state predictions `prob[s, t]`, indicating the conditional likelihood of state `s` being active conditional on observation at time `t`, and a 2*2 transition matrix `transition` which encodes the conditional probability of moving from state `s` to state `~s` (not-`s`), the Viterbi algorithm computes the most likely sequence of states from the observations. This function differs from `viterbi_discriminative` in that it does not assume the states to be mutually exclusive. `viterbi_binary` is implemented by transforming the multi-label decoding problem to a collection of binary Viterbi problems (one for each *state* or label). The output is a binary matrix `states[s, t]` indicating whether each state `s` is active at time `t`. Parameters ---------- prob : np.ndarray [shape=(n_steps,) or (n_states, n_steps)], non-negative `prob[s, t]` is the probability of state `s` being active conditional on the observation at time `t`. Must be non-negative and less than 1. If `prob` is 1-dimensional, it is expanded to shape `(1, n_steps)`. transition : np.ndarray [shape=(2, 2) or (n_states, 2, 2)], non-negative If 2-dimensional, the same transition matrix is applied to each sub-problem. `transition[0, i]` is the probability of the state going from inactive to `i`, `transition[1, i]` is the probability of the state going from active to `i`. Each row must sum to 1. If 3-dimensional, `transition[s]` is interpreted as the 2x2 transition matrix for state label `s`. p_state : np.ndarray [shape=(n_states,)] Optional: marginal probability for each state (between [0,1]). If not provided, a uniform distribution (0.5 for each state) is assumed. p_init : np.ndarray [shape=(n_states,)] Optional: initial state distribution. If not provided, it is assumed to be uniform. return_logp : bool If `True`, return the log-likelihood of the state sequence. Returns ------- Either `states` or `(states, logp)`: states : np.ndarray [shape=(n_states, n_steps)] The most likely state sequence. logp : np.ndarray [shape=(n_states,)] If `return_logp=True`, the log probability of each state activation sequence `states` See Also -------- viterbi : Viterbi decoding from observation likelihoods viterbi_discriminative : Viterbi decoding for discriminative (mutually exclusive) state predictions Examples -------- In this example, we have a sequence of binary state likelihoods that we want to de-noise under the assumption that state changes are relatively uncommon. Positive predictions should only be retained if they persist for multiple steps, and any transient predictions should be considered as errors. This use case arises frequently in problems such as instrument recognition, where state activations tend to be stable over time, but subject to abrupt changes (e.g., when an instrument joins the mix). We assume that the 0 state has a self-transition probability of 90%, and the 1 state has a self-transition probability of 70%. We assume the marginal and initial probability of either state is 50%. >>> trans = np.array([[0.9, 0.1], [0.3, 0.7]]) >>> prob = np.array([0.1, 0.7, 0.4, 0.3, 0.8, 0.9, 0.8, 0.2, 0.6, 0.3]) >>> librosa.sequence.viterbi_binary(prob, trans, p_state=0.5, p_init=0.5) array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]]) ''' prob = np.atleast_2d(prob) n_states, n_steps = prob.shape if transition.shape == (2, 2): transition = np.tile(transition, (n_states, 1, 1)) elif transition.shape != (n_states, 2, 2): raise ParameterError('transition.shape={}, must be (2,2) or ' '(n_states, 2, 2)={}'.format(transition.shape, (n_states))) if np.any(transition < 0) or not np.allclose(transition.sum(axis=-1), 1): raise ParameterError('Invalid transition matrix: must be non-negative ' 'and sum to 1 on each row.') if np.any(prob < 0) or np.any(prob > 1): raise ParameterError('Invalid probability values: prob must be between [0, 1]') if p_state is None: p_state = np.empty(n_states) p_state.fill(0.5) else: p_state = np.atleast_1d(p_state) if p_state.shape != (n_states,) or np.any(p_state < 0) or np.any(p_state > 1): raise ParameterError('Invalid marginal state distributions: p_state={}'.format(p_state)) if p_init is None: p_init = np.empty(n_states) p_init.fill(0.5) else: p_init = np.atleast_1d(p_init) if p_init.shape != (n_states,) or np.any(p_init < 0) or np.any(p_init > 1): raise ParameterError('Invalid initial state distributions: p_init={}'.format(p_init)) states = np.empty((n_states, n_steps), dtype=int) logp = np.empty(n_states) prob_binary = np.empty((2, n_steps)) p_state_binary = np.empty(2) p_init_binary = np.empty(2) for state in range(n_states): prob_binary[0] = 1 - prob[state] prob_binary[1] = prob[state] p_state_binary[0] = 1 - p_state[state] p_state_binary[1] = p_state[state] p_init_binary[0] = 1 - p_init[state] p_init_binary[1] = p_init[state] states[state, :], logp[state] = viterbi_discriminative(prob_binary, transition[state], p_state=p_state_binary, p_init=p_init_binary, return_logp=True) if return_logp: return states, logp return states
[ "Viterbi", "decoding", "from", "binary", "(", "multi", "-", "label", ")", "discriminative", "state", "predictions", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L720-L864
[ "def", "viterbi_binary", "(", "prob", ",", "transition", ",", "p_state", "=", "None", ",", "p_init", "=", "None", ",", "return_logp", "=", "False", ")", ":", "prob", "=", "np", ".", "atleast_2d", "(", "prob", ")", "n_states", ",", "n_steps", "=", "prob", ".", "shape", "if", "transition", ".", "shape", "==", "(", "2", ",", "2", ")", ":", "transition", "=", "np", ".", "tile", "(", "transition", ",", "(", "n_states", ",", "1", ",", "1", ")", ")", "elif", "transition", ".", "shape", "!=", "(", "n_states", ",", "2", ",", "2", ")", ":", "raise", "ParameterError", "(", "'transition.shape={}, must be (2,2) or '", "'(n_states, 2, 2)={}'", ".", "format", "(", "transition", ".", "shape", ",", "(", "n_states", ")", ")", ")", "if", "np", ".", "any", "(", "transition", "<", "0", ")", "or", "not", "np", ".", "allclose", "(", "transition", ".", "sum", "(", "axis", "=", "-", "1", ")", ",", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid transition matrix: must be non-negative '", "'and sum to 1 on each row.'", ")", "if", "np", ".", "any", "(", "prob", "<", "0", ")", "or", "np", ".", "any", "(", "prob", ">", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid probability values: prob must be between [0, 1]'", ")", "if", "p_state", "is", "None", ":", "p_state", "=", "np", ".", "empty", "(", "n_states", ")", "p_state", ".", "fill", "(", "0.5", ")", "else", ":", "p_state", "=", "np", ".", "atleast_1d", "(", "p_state", ")", "if", "p_state", ".", "shape", "!=", "(", "n_states", ",", ")", "or", "np", ".", "any", "(", "p_state", "<", "0", ")", "or", "np", ".", "any", "(", "p_state", ">", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid marginal state distributions: p_state={}'", ".", "format", "(", "p_state", ")", ")", "if", "p_init", "is", "None", ":", "p_init", "=", "np", ".", "empty", "(", "n_states", ")", "p_init", ".", "fill", "(", "0.5", ")", "else", ":", "p_init", "=", "np", ".", "atleast_1d", "(", "p_init", ")", "if", "p_init", ".", "shape", "!=", "(", "n_states", ",", ")", "or", "np", ".", "any", "(", "p_init", "<", "0", ")", "or", "np", ".", "any", "(", "p_init", ">", "1", ")", ":", "raise", "ParameterError", "(", "'Invalid initial state distributions: p_init={}'", ".", "format", "(", "p_init", ")", ")", "states", "=", "np", ".", "empty", "(", "(", "n_states", ",", "n_steps", ")", ",", "dtype", "=", "int", ")", "logp", "=", "np", ".", "empty", "(", "n_states", ")", "prob_binary", "=", "np", ".", "empty", "(", "(", "2", ",", "n_steps", ")", ")", "p_state_binary", "=", "np", ".", "empty", "(", "2", ")", "p_init_binary", "=", "np", ".", "empty", "(", "2", ")", "for", "state", "in", "range", "(", "n_states", ")", ":", "prob_binary", "[", "0", "]", "=", "1", "-", "prob", "[", "state", "]", "prob_binary", "[", "1", "]", "=", "prob", "[", "state", "]", "p_state_binary", "[", "0", "]", "=", "1", "-", "p_state", "[", "state", "]", "p_state_binary", "[", "1", "]", "=", "p_state", "[", "state", "]", "p_init_binary", "[", "0", "]", "=", "1", "-", "p_init", "[", "state", "]", "p_init_binary", "[", "1", "]", "=", "p_init", "[", "state", "]", "states", "[", "state", ",", ":", "]", ",", "logp", "[", "state", "]", "=", "viterbi_discriminative", "(", "prob_binary", ",", "transition", "[", "state", "]", ",", "p_state", "=", "p_state_binary", ",", "p_init", "=", "p_init_binary", ",", "return_logp", "=", "True", ")", "if", "return_logp", ":", "return", "states", ",", "logp", "return", "states" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
transition_uniform
Construct a uniform transition matrix over `n_states`. Parameters ---------- n_states : int > 0 The number of states Returns ------- transition : np.ndarray [shape=(n_states, n_states)] `transition[i, j] = 1./n_states` Examples -------- >>> librosa.sequence.transition_uniform(3) array([[0.333, 0.333, 0.333], [0.333, 0.333, 0.333], [0.333, 0.333, 0.333]])
librosa/sequence.py
def transition_uniform(n_states): '''Construct a uniform transition matrix over `n_states`. Parameters ---------- n_states : int > 0 The number of states Returns ------- transition : np.ndarray [shape=(n_states, n_states)] `transition[i, j] = 1./n_states` Examples -------- >>> librosa.sequence.transition_uniform(3) array([[0.333, 0.333, 0.333], [0.333, 0.333, 0.333], [0.333, 0.333, 0.333]]) ''' if not isinstance(n_states, int) or n_states <= 0: raise ParameterError('n_states={} must be a positive integer') transition = np.empty((n_states, n_states), dtype=np.float) transition.fill(1./n_states) return transition
def transition_uniform(n_states): '''Construct a uniform transition matrix over `n_states`. Parameters ---------- n_states : int > 0 The number of states Returns ------- transition : np.ndarray [shape=(n_states, n_states)] `transition[i, j] = 1./n_states` Examples -------- >>> librosa.sequence.transition_uniform(3) array([[0.333, 0.333, 0.333], [0.333, 0.333, 0.333], [0.333, 0.333, 0.333]]) ''' if not isinstance(n_states, int) or n_states <= 0: raise ParameterError('n_states={} must be a positive integer') transition = np.empty((n_states, n_states), dtype=np.float) transition.fill(1./n_states) return transition
[ "Construct", "a", "uniform", "transition", "matrix", "over", "n_states", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L867-L894
[ "def", "transition_uniform", "(", "n_states", ")", ":", "if", "not", "isinstance", "(", "n_states", ",", "int", ")", "or", "n_states", "<=", "0", ":", "raise", "ParameterError", "(", "'n_states={} must be a positive integer'", ")", "transition", "=", "np", ".", "empty", "(", "(", "n_states", ",", "n_states", ")", ",", "dtype", "=", "np", ".", "float", ")", "transition", ".", "fill", "(", "1.", "/", "n_states", ")", "return", "transition" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
transition_loop
Construct a self-loop transition matrix over `n_states`. The transition matrix will have the following properties: - `transition[i, i] = p` for all i - `transition[i, j] = (1 - p) / (n_states - 1)` for all `j != i` This type of transition matrix is appropriate when states tend to be locally stable, and there is no additional structure between different states. This is primarily useful for de-noising frame-wise predictions. Parameters ---------- n_states : int > 1 The number of states prob : float in [0, 1] or iterable, length=n_states If a scalar, this is the probability of a self-transition. If a vector of length `n_states`, `p[i]` is the probability of state `i`'s self-transition. Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- >>> librosa.sequence.transition_loop(3, 0.5) array([[0.5 , 0.25, 0.25], [0.25, 0.5 , 0.25], [0.25, 0.25, 0.5 ]]) >>> librosa.sequence.transition_loop(3, [0.8, 0.5, 0.25]) array([[0.8 , 0.1 , 0.1 ], [0.25 , 0.5 , 0.25 ], [0.375, 0.375, 0.25 ]])
librosa/sequence.py
def transition_loop(n_states, prob): '''Construct a self-loop transition matrix over `n_states`. The transition matrix will have the following properties: - `transition[i, i] = p` for all i - `transition[i, j] = (1 - p) / (n_states - 1)` for all `j != i` This type of transition matrix is appropriate when states tend to be locally stable, and there is no additional structure between different states. This is primarily useful for de-noising frame-wise predictions. Parameters ---------- n_states : int > 1 The number of states prob : float in [0, 1] or iterable, length=n_states If a scalar, this is the probability of a self-transition. If a vector of length `n_states`, `p[i]` is the probability of state `i`'s self-transition. Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- >>> librosa.sequence.transition_loop(3, 0.5) array([[0.5 , 0.25, 0.25], [0.25, 0.5 , 0.25], [0.25, 0.25, 0.5 ]]) >>> librosa.sequence.transition_loop(3, [0.8, 0.5, 0.25]) array([[0.8 , 0.1 , 0.1 ], [0.25 , 0.5 , 0.25 ], [0.375, 0.375, 0.25 ]]) ''' if not isinstance(n_states, int) or n_states <= 1: raise ParameterError('n_states={} must be a positive integer > 1') transition = np.empty((n_states, n_states), dtype=np.float) # if it's a float, make it a vector prob = np.asarray(prob, dtype=np.float) if prob.ndim == 0: prob = np.tile(prob, n_states) if prob.shape != (n_states,): raise ParameterError('prob={} must have length equal to n_states={}'.format(prob, n_states)) if np.any(prob < 0) or np.any(prob > 1): raise ParameterError('prob={} must have values in the range [0, 1]'.format(prob)) for i, prob_i in enumerate(prob): transition[i] = (1. - prob_i) / (n_states - 1) transition[i, i] = prob_i return transition
def transition_loop(n_states, prob): '''Construct a self-loop transition matrix over `n_states`. The transition matrix will have the following properties: - `transition[i, i] = p` for all i - `transition[i, j] = (1 - p) / (n_states - 1)` for all `j != i` This type of transition matrix is appropriate when states tend to be locally stable, and there is no additional structure between different states. This is primarily useful for de-noising frame-wise predictions. Parameters ---------- n_states : int > 1 The number of states prob : float in [0, 1] or iterable, length=n_states If a scalar, this is the probability of a self-transition. If a vector of length `n_states`, `p[i]` is the probability of state `i`'s self-transition. Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- >>> librosa.sequence.transition_loop(3, 0.5) array([[0.5 , 0.25, 0.25], [0.25, 0.5 , 0.25], [0.25, 0.25, 0.5 ]]) >>> librosa.sequence.transition_loop(3, [0.8, 0.5, 0.25]) array([[0.8 , 0.1 , 0.1 ], [0.25 , 0.5 , 0.25 ], [0.375, 0.375, 0.25 ]]) ''' if not isinstance(n_states, int) or n_states <= 1: raise ParameterError('n_states={} must be a positive integer > 1') transition = np.empty((n_states, n_states), dtype=np.float) # if it's a float, make it a vector prob = np.asarray(prob, dtype=np.float) if prob.ndim == 0: prob = np.tile(prob, n_states) if prob.shape != (n_states,): raise ParameterError('prob={} must have length equal to n_states={}'.format(prob, n_states)) if np.any(prob < 0) or np.any(prob > 1): raise ParameterError('prob={} must have values in the range [0, 1]'.format(prob)) for i, prob_i in enumerate(prob): transition[i] = (1. - prob_i) / (n_states - 1) transition[i, i] = prob_i return transition
[ "Construct", "a", "self", "-", "loop", "transition", "matrix", "over", "n_states", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L897-L958
[ "def", "transition_loop", "(", "n_states", ",", "prob", ")", ":", "if", "not", "isinstance", "(", "n_states", ",", "int", ")", "or", "n_states", "<=", "1", ":", "raise", "ParameterError", "(", "'n_states={} must be a positive integer > 1'", ")", "transition", "=", "np", ".", "empty", "(", "(", "n_states", ",", "n_states", ")", ",", "dtype", "=", "np", ".", "float", ")", "# if it's a float, make it a vector", "prob", "=", "np", ".", "asarray", "(", "prob", ",", "dtype", "=", "np", ".", "float", ")", "if", "prob", ".", "ndim", "==", "0", ":", "prob", "=", "np", ".", "tile", "(", "prob", ",", "n_states", ")", "if", "prob", ".", "shape", "!=", "(", "n_states", ",", ")", ":", "raise", "ParameterError", "(", "'prob={} must have length equal to n_states={}'", ".", "format", "(", "prob", ",", "n_states", ")", ")", "if", "np", ".", "any", "(", "prob", "<", "0", ")", "or", "np", ".", "any", "(", "prob", ">", "1", ")", ":", "raise", "ParameterError", "(", "'prob={} must have values in the range [0, 1]'", ".", "format", "(", "prob", ")", ")", "for", "i", ",", "prob_i", "in", "enumerate", "(", "prob", ")", ":", "transition", "[", "i", "]", "=", "(", "1.", "-", "prob_i", ")", "/", "(", "n_states", "-", "1", ")", "transition", "[", "i", ",", "i", "]", "=", "prob_i", "return", "transition" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
transition_cycle
Construct a cyclic transition matrix over `n_states`. The transition matrix will have the following properties: - `transition[i, i] = p` - `transition[i, i + 1] = (1 - p)` This type of transition matrix is appropriate for state spaces with cyclical structure, such as metrical position within a bar. For example, a song in 4/4 time has state transitions of the form 1->{1, 2}, 2->{2, 3}, 3->{3, 4}, 4->{4, 1}. Parameters ---------- n_states : int > 1 The number of states prob : float in [0, 1] or iterable, length=n_states If a scalar, this is the probability of a self-transition. If a vector of length `n_states`, `p[i]` is the probability of state `i`'s self-transition. Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- >>> librosa.sequence.transition_cycle(4, 0.9) array([[0.9, 0.1, 0. , 0. ], [0. , 0.9, 0.1, 0. ], [0. , 0. , 0.9, 0.1], [0.1, 0. , 0. , 0.9]])
librosa/sequence.py
def transition_cycle(n_states, prob): '''Construct a cyclic transition matrix over `n_states`. The transition matrix will have the following properties: - `transition[i, i] = p` - `transition[i, i + 1] = (1 - p)` This type of transition matrix is appropriate for state spaces with cyclical structure, such as metrical position within a bar. For example, a song in 4/4 time has state transitions of the form 1->{1, 2}, 2->{2, 3}, 3->{3, 4}, 4->{4, 1}. Parameters ---------- n_states : int > 1 The number of states prob : float in [0, 1] or iterable, length=n_states If a scalar, this is the probability of a self-transition. If a vector of length `n_states`, `p[i]` is the probability of state `i`'s self-transition. Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- >>> librosa.sequence.transition_cycle(4, 0.9) array([[0.9, 0.1, 0. , 0. ], [0. , 0.9, 0.1, 0. ], [0. , 0. , 0.9, 0.1], [0.1, 0. , 0. , 0.9]]) ''' if not isinstance(n_states, int) or n_states <= 1: raise ParameterError('n_states={} must be a positive integer > 1') transition = np.zeros((n_states, n_states), dtype=np.float) # if it's a float, make it a vector prob = np.asarray(prob, dtype=np.float) if prob.ndim == 0: prob = np.tile(prob, n_states) if prob.shape != (n_states,): raise ParameterError('prob={} must have length equal to n_states={}'.format(prob, n_states)) if np.any(prob < 0) or np.any(prob > 1): raise ParameterError('prob={} must have values in the range [0, 1]'.format(prob)) for i, prob_i in enumerate(prob): transition[i, np.mod(i + 1, n_states)] = 1. - prob_i transition[i, i] = prob_i return transition
def transition_cycle(n_states, prob): '''Construct a cyclic transition matrix over `n_states`. The transition matrix will have the following properties: - `transition[i, i] = p` - `transition[i, i + 1] = (1 - p)` This type of transition matrix is appropriate for state spaces with cyclical structure, such as metrical position within a bar. For example, a song in 4/4 time has state transitions of the form 1->{1, 2}, 2->{2, 3}, 3->{3, 4}, 4->{4, 1}. Parameters ---------- n_states : int > 1 The number of states prob : float in [0, 1] or iterable, length=n_states If a scalar, this is the probability of a self-transition. If a vector of length `n_states`, `p[i]` is the probability of state `i`'s self-transition. Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- >>> librosa.sequence.transition_cycle(4, 0.9) array([[0.9, 0.1, 0. , 0. ], [0. , 0.9, 0.1, 0. ], [0. , 0. , 0.9, 0.1], [0.1, 0. , 0. , 0.9]]) ''' if not isinstance(n_states, int) or n_states <= 1: raise ParameterError('n_states={} must be a positive integer > 1') transition = np.zeros((n_states, n_states), dtype=np.float) # if it's a float, make it a vector prob = np.asarray(prob, dtype=np.float) if prob.ndim == 0: prob = np.tile(prob, n_states) if prob.shape != (n_states,): raise ParameterError('prob={} must have length equal to n_states={}'.format(prob, n_states)) if np.any(prob < 0) or np.any(prob > 1): raise ParameterError('prob={} must have values in the range [0, 1]'.format(prob)) for i, prob_i in enumerate(prob): transition[i, np.mod(i + 1, n_states)] = 1. - prob_i transition[i, i] = prob_i return transition
[ "Construct", "a", "cyclic", "transition", "matrix", "over", "n_states", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L961-L1021
[ "def", "transition_cycle", "(", "n_states", ",", "prob", ")", ":", "if", "not", "isinstance", "(", "n_states", ",", "int", ")", "or", "n_states", "<=", "1", ":", "raise", "ParameterError", "(", "'n_states={} must be a positive integer > 1'", ")", "transition", "=", "np", ".", "zeros", "(", "(", "n_states", ",", "n_states", ")", ",", "dtype", "=", "np", ".", "float", ")", "# if it's a float, make it a vector", "prob", "=", "np", ".", "asarray", "(", "prob", ",", "dtype", "=", "np", ".", "float", ")", "if", "prob", ".", "ndim", "==", "0", ":", "prob", "=", "np", ".", "tile", "(", "prob", ",", "n_states", ")", "if", "prob", ".", "shape", "!=", "(", "n_states", ",", ")", ":", "raise", "ParameterError", "(", "'prob={} must have length equal to n_states={}'", ".", "format", "(", "prob", ",", "n_states", ")", ")", "if", "np", ".", "any", "(", "prob", "<", "0", ")", "or", "np", ".", "any", "(", "prob", ">", "1", ")", ":", "raise", "ParameterError", "(", "'prob={} must have values in the range [0, 1]'", ".", "format", "(", "prob", ")", ")", "for", "i", ",", "prob_i", "in", "enumerate", "(", "prob", ")", ":", "transition", "[", "i", ",", "np", ".", "mod", "(", "i", "+", "1", ",", "n_states", ")", "]", "=", "1.", "-", "prob_i", "transition", "[", "i", ",", "i", "]", "=", "prob_i", "return", "transition" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
transition_local
Construct a localized transition matrix. The transition matrix will have the following properties: - `transition[i, j] = 0` if `|i - j| > width` - `transition[i, i]` is maximal - `transition[i, i - width//2 : i + width//2]` has shape `window` This type of transition matrix is appropriate for state spaces that discretely approximate continuous variables, such as in fundamental frequency estimation. Parameters ---------- n_states : int > 1 The number of states width : int >= 1 or iterable The maximum number of states to treat as "local". If iterable, it should have length equal to `n_states`, and specify the width independently for each state. window : str, callable, or window specification The window function to determine the shape of the "local" distribution. Any window specification supported by `filters.get_window` will work here. .. note:: Certain windows (e.g., 'hann') are identically 0 at the boundaries, so and effectively have `width-2` non-zero values. You may have to expand `width` to get the desired behavior. wrap : bool If `True`, then state locality `|i - j|` is computed modulo `n_states`. If `False` (default), then locality is absolute. See Also -------- filters.get_window Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- Triangular distributions with and without wrapping >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=False) array([[0.667, 0.333, 0. , 0. , 0. ], [0.25 , 0.5 , 0.25 , 0. , 0. ], [0. , 0.25 , 0.5 , 0.25 , 0. ], [0. , 0. , 0.25 , 0.5 , 0.25 ], [0. , 0. , 0. , 0.333, 0.667]]) >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=True) array([[0.5 , 0.25, 0. , 0. , 0.25], [0.25, 0.5 , 0.25, 0. , 0. ], [0. , 0.25, 0.5 , 0.25, 0. ], [0. , 0. , 0.25, 0.5 , 0.25], [0.25, 0. , 0. , 0.25, 0.5 ]]) Uniform local distributions with variable widths and no wrapping >>> librosa.sequence.transition_local(5, [1, 2, 3, 3, 1], window='ones', wrap=False) array([[1. , 0. , 0. , 0. , 0. ], [0.5 , 0.5 , 0. , 0. , 0. ], [0. , 0.333, 0.333, 0.333, 0. ], [0. , 0. , 0.333, 0.333, 0.333], [0. , 0. , 0. , 0. , 1. ]])
librosa/sequence.py
def transition_local(n_states, width, window='triangle', wrap=False): '''Construct a localized transition matrix. The transition matrix will have the following properties: - `transition[i, j] = 0` if `|i - j| > width` - `transition[i, i]` is maximal - `transition[i, i - width//2 : i + width//2]` has shape `window` This type of transition matrix is appropriate for state spaces that discretely approximate continuous variables, such as in fundamental frequency estimation. Parameters ---------- n_states : int > 1 The number of states width : int >= 1 or iterable The maximum number of states to treat as "local". If iterable, it should have length equal to `n_states`, and specify the width independently for each state. window : str, callable, or window specification The window function to determine the shape of the "local" distribution. Any window specification supported by `filters.get_window` will work here. .. note:: Certain windows (e.g., 'hann') are identically 0 at the boundaries, so and effectively have `width-2` non-zero values. You may have to expand `width` to get the desired behavior. wrap : bool If `True`, then state locality `|i - j|` is computed modulo `n_states`. If `False` (default), then locality is absolute. See Also -------- filters.get_window Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- Triangular distributions with and without wrapping >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=False) array([[0.667, 0.333, 0. , 0. , 0. ], [0.25 , 0.5 , 0.25 , 0. , 0. ], [0. , 0.25 , 0.5 , 0.25 , 0. ], [0. , 0. , 0.25 , 0.5 , 0.25 ], [0. , 0. , 0. , 0.333, 0.667]]) >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=True) array([[0.5 , 0.25, 0. , 0. , 0.25], [0.25, 0.5 , 0.25, 0. , 0. ], [0. , 0.25, 0.5 , 0.25, 0. ], [0. , 0. , 0.25, 0.5 , 0.25], [0.25, 0. , 0. , 0.25, 0.5 ]]) Uniform local distributions with variable widths and no wrapping >>> librosa.sequence.transition_local(5, [1, 2, 3, 3, 1], window='ones', wrap=False) array([[1. , 0. , 0. , 0. , 0. ], [0.5 , 0.5 , 0. , 0. , 0. ], [0. , 0.333, 0.333, 0.333, 0. ], [0. , 0. , 0.333, 0.333, 0.333], [0. , 0. , 0. , 0. , 1. ]]) ''' if not isinstance(n_states, int) or n_states <= 1: raise ParameterError('n_states={} must be a positive integer > 1') width = np.asarray(width, dtype=int) if width.ndim == 0: width = np.tile(width, n_states) if width.shape != (n_states,): raise ParameterError('width={} must have length equal to n_states={}'.format(width, n_states)) if np.any(width < 1): raise ParameterError('width={} must be at least 1') transition = np.zeros((n_states, n_states), dtype=np.float) # Fill in the widths. This is inefficient, but simple for i, width_i in enumerate(width): trans_row = pad_center(get_window(window, width_i, fftbins=False), n_states) trans_row = np.roll(trans_row, n_states//2 + i + 1) if not wrap: # Knock out the off-diagonal-band elements trans_row[min(n_states, i + width_i//2 + 1):] = 0 trans_row[:max(0, i - width_i//2)] = 0 transition[i] = trans_row # Row-normalize transition /= transition.sum(axis=1, keepdims=True) return transition
def transition_local(n_states, width, window='triangle', wrap=False): '''Construct a localized transition matrix. The transition matrix will have the following properties: - `transition[i, j] = 0` if `|i - j| > width` - `transition[i, i]` is maximal - `transition[i, i - width//2 : i + width//2]` has shape `window` This type of transition matrix is appropriate for state spaces that discretely approximate continuous variables, such as in fundamental frequency estimation. Parameters ---------- n_states : int > 1 The number of states width : int >= 1 or iterable The maximum number of states to treat as "local". If iterable, it should have length equal to `n_states`, and specify the width independently for each state. window : str, callable, or window specification The window function to determine the shape of the "local" distribution. Any window specification supported by `filters.get_window` will work here. .. note:: Certain windows (e.g., 'hann') are identically 0 at the boundaries, so and effectively have `width-2` non-zero values. You may have to expand `width` to get the desired behavior. wrap : bool If `True`, then state locality `|i - j|` is computed modulo `n_states`. If `False` (default), then locality is absolute. See Also -------- filters.get_window Returns ------- transition : np.ndarray [shape=(n_states, n_states)] The transition matrix Examples -------- Triangular distributions with and without wrapping >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=False) array([[0.667, 0.333, 0. , 0. , 0. ], [0.25 , 0.5 , 0.25 , 0. , 0. ], [0. , 0.25 , 0.5 , 0.25 , 0. ], [0. , 0. , 0.25 , 0.5 , 0.25 ], [0. , 0. , 0. , 0.333, 0.667]]) >>> librosa.sequence.transition_local(5, 3, window='triangle', wrap=True) array([[0.5 , 0.25, 0. , 0. , 0.25], [0.25, 0.5 , 0.25, 0. , 0. ], [0. , 0.25, 0.5 , 0.25, 0. ], [0. , 0. , 0.25, 0.5 , 0.25], [0.25, 0. , 0. , 0.25, 0.5 ]]) Uniform local distributions with variable widths and no wrapping >>> librosa.sequence.transition_local(5, [1, 2, 3, 3, 1], window='ones', wrap=False) array([[1. , 0. , 0. , 0. , 0. ], [0.5 , 0.5 , 0. , 0. , 0. ], [0. , 0.333, 0.333, 0.333, 0. ], [0. , 0. , 0.333, 0.333, 0.333], [0. , 0. , 0. , 0. , 1. ]]) ''' if not isinstance(n_states, int) or n_states <= 1: raise ParameterError('n_states={} must be a positive integer > 1') width = np.asarray(width, dtype=int) if width.ndim == 0: width = np.tile(width, n_states) if width.shape != (n_states,): raise ParameterError('width={} must have length equal to n_states={}'.format(width, n_states)) if np.any(width < 1): raise ParameterError('width={} must be at least 1') transition = np.zeros((n_states, n_states), dtype=np.float) # Fill in the widths. This is inefficient, but simple for i, width_i in enumerate(width): trans_row = pad_center(get_window(window, width_i, fftbins=False), n_states) trans_row = np.roll(trans_row, n_states//2 + i + 1) if not wrap: # Knock out the off-diagonal-band elements trans_row[min(n_states, i + width_i//2 + 1):] = 0 trans_row[:max(0, i - width_i//2)] = 0 transition[i] = trans_row # Row-normalize transition /= transition.sum(axis=1, keepdims=True) return transition
[ "Construct", "a", "localized", "transition", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/sequence.py#L1024-L1129
[ "def", "transition_local", "(", "n_states", ",", "width", ",", "window", "=", "'triangle'", ",", "wrap", "=", "False", ")", ":", "if", "not", "isinstance", "(", "n_states", ",", "int", ")", "or", "n_states", "<=", "1", ":", "raise", "ParameterError", "(", "'n_states={} must be a positive integer > 1'", ")", "width", "=", "np", ".", "asarray", "(", "width", ",", "dtype", "=", "int", ")", "if", "width", ".", "ndim", "==", "0", ":", "width", "=", "np", ".", "tile", "(", "width", ",", "n_states", ")", "if", "width", ".", "shape", "!=", "(", "n_states", ",", ")", ":", "raise", "ParameterError", "(", "'width={} must have length equal to n_states={}'", ".", "format", "(", "width", ",", "n_states", ")", ")", "if", "np", ".", "any", "(", "width", "<", "1", ")", ":", "raise", "ParameterError", "(", "'width={} must be at least 1'", ")", "transition", "=", "np", ".", "zeros", "(", "(", "n_states", ",", "n_states", ")", ",", "dtype", "=", "np", ".", "float", ")", "# Fill in the widths. This is inefficient, but simple", "for", "i", ",", "width_i", "in", "enumerate", "(", "width", ")", ":", "trans_row", "=", "pad_center", "(", "get_window", "(", "window", ",", "width_i", ",", "fftbins", "=", "False", ")", ",", "n_states", ")", "trans_row", "=", "np", ".", "roll", "(", "trans_row", ",", "n_states", "//", "2", "+", "i", "+", "1", ")", "if", "not", "wrap", ":", "# Knock out the off-diagonal-band elements", "trans_row", "[", "min", "(", "n_states", ",", "i", "+", "width_i", "//", "2", "+", "1", ")", ":", "]", "=", "0", "trans_row", "[", ":", "max", "(", "0", ",", "i", "-", "width_i", "//", "2", ")", "]", "=", "0", "transition", "[", "i", "]", "=", "trans_row", "# Row-normalize", "transition", "/=", "transition", ".", "sum", "(", "axis", "=", "1", ",", "keepdims", "=", "True", ")", "return", "transition" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
onset_detect
Basic onset detector. Locate note onset events by picking peaks in an onset strength envelope. The `peak_pick` parameters were chosen by large-scale hyper-parameter optimization over the dataset provided by [1]_. .. [1] https://github.com/CPJKU/onset_db Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(m,)] (optional) pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length (in samples) units : {'frames', 'samples', 'time'} The units to encode detected onset events in. By default, 'frames' are used. backtrack : bool If `True`, detected onset events are backtracked to the nearest preceding minimum of `energy`. This is primarily useful when using onsets as slice points for segmentation. energy : np.ndarray [shape=(m,)] (optional) An energy function to use for backtracking detected onset events. If none is provided, then `onset_envelope` is used. kwargs : additional keyword arguments Additional parameters for peak picking. See `librosa.util.peak_pick` for details. Returns ------- onsets : np.ndarray [shape=(n_onsets,)] estimated positions of detected onsets, in whichever units are specified. By default, frame indices. .. note:: If no onset strength could be detected, onset_detect returns an empty list. Raises ------ ParameterError if neither `y` nor `onsets` are provided or if `units` is not one of 'frames', 'samples', or 'time' See Also -------- onset_strength : compute onset strength per-frame onset_backtrack : backtracking onset events librosa.util.peak_pick : pick peaks from a time series Examples -------- Get onset times from a signal >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=2.0) >>> onset_frames = librosa.onset.onset_detect(y=y, sr=sr) >>> librosa.frames_to_time(onset_frames, sr=sr) array([ 0.07 , 0.395, 0.511, 0.627, 0.766, 0.975, 1.207, 1.324, 1.44 , 1.788, 1.881]) Or use a pre-computed onset envelope >>> o_env = librosa.onset.onset_strength(y, sr=sr) >>> times = librosa.frames_to_time(np.arange(len(o_env)), sr=sr) >>> onset_frames = librosa.onset.onset_detect(onset_envelope=o_env, sr=sr) >>> import matplotlib.pyplot as plt >>> D = np.abs(librosa.stft(y)) >>> plt.figure() >>> ax1 = plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... x_axis='time', y_axis='log') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2, sharex=ax1) >>> plt.plot(times, o_env, label='Onset strength') >>> plt.vlines(times[onset_frames], 0, o_env.max(), color='r', alpha=0.9, ... linestyle='--', label='Onsets') >>> plt.axis('tight') >>> plt.legend(frameon=True, framealpha=0.75)
librosa/onset.py
def onset_detect(y=None, sr=22050, onset_envelope=None, hop_length=512, backtrack=False, energy=None, units='frames', **kwargs): """Basic onset detector. Locate note onset events by picking peaks in an onset strength envelope. The `peak_pick` parameters were chosen by large-scale hyper-parameter optimization over the dataset provided by [1]_. .. [1] https://github.com/CPJKU/onset_db Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(m,)] (optional) pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length (in samples) units : {'frames', 'samples', 'time'} The units to encode detected onset events in. By default, 'frames' are used. backtrack : bool If `True`, detected onset events are backtracked to the nearest preceding minimum of `energy`. This is primarily useful when using onsets as slice points for segmentation. energy : np.ndarray [shape=(m,)] (optional) An energy function to use for backtracking detected onset events. If none is provided, then `onset_envelope` is used. kwargs : additional keyword arguments Additional parameters for peak picking. See `librosa.util.peak_pick` for details. Returns ------- onsets : np.ndarray [shape=(n_onsets,)] estimated positions of detected onsets, in whichever units are specified. By default, frame indices. .. note:: If no onset strength could be detected, onset_detect returns an empty list. Raises ------ ParameterError if neither `y` nor `onsets` are provided or if `units` is not one of 'frames', 'samples', or 'time' See Also -------- onset_strength : compute onset strength per-frame onset_backtrack : backtracking onset events librosa.util.peak_pick : pick peaks from a time series Examples -------- Get onset times from a signal >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=2.0) >>> onset_frames = librosa.onset.onset_detect(y=y, sr=sr) >>> librosa.frames_to_time(onset_frames, sr=sr) array([ 0.07 , 0.395, 0.511, 0.627, 0.766, 0.975, 1.207, 1.324, 1.44 , 1.788, 1.881]) Or use a pre-computed onset envelope >>> o_env = librosa.onset.onset_strength(y, sr=sr) >>> times = librosa.frames_to_time(np.arange(len(o_env)), sr=sr) >>> onset_frames = librosa.onset.onset_detect(onset_envelope=o_env, sr=sr) >>> import matplotlib.pyplot as plt >>> D = np.abs(librosa.stft(y)) >>> plt.figure() >>> ax1 = plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... x_axis='time', y_axis='log') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2, sharex=ax1) >>> plt.plot(times, o_env, label='Onset strength') >>> plt.vlines(times[onset_frames], 0, o_env.max(), color='r', alpha=0.9, ... linestyle='--', label='Onsets') >>> plt.axis('tight') >>> plt.legend(frameon=True, framealpha=0.75) """ # First, get the frame->beat strength profile if we don't already have one if onset_envelope is None: if y is None: raise ParameterError('y or onset_envelope must be provided') onset_envelope = onset_strength(y=y, sr=sr, hop_length=hop_length) # Shift onset envelope up to be non-negative # (a common normalization step to make the threshold more consistent) onset_envelope -= onset_envelope.min() # Do we have any onsets to grab? if not onset_envelope.any(): return np.array([], dtype=np.int) # Normalize onset strength function to [0, 1] range onset_envelope /= onset_envelope.max() # These parameter settings found by large-scale search kwargs.setdefault('pre_max', 0.03*sr//hop_length) # 30ms kwargs.setdefault('post_max', 0.00*sr//hop_length + 1) # 0ms kwargs.setdefault('pre_avg', 0.10*sr//hop_length) # 100ms kwargs.setdefault('post_avg', 0.10*sr//hop_length + 1) # 100ms kwargs.setdefault('wait', 0.03*sr//hop_length) # 30ms kwargs.setdefault('delta', 0.07) # Peak pick the onset envelope onsets = util.peak_pick(onset_envelope, **kwargs) # Optionally backtrack the events if backtrack: if energy is None: energy = onset_envelope onsets = onset_backtrack(onsets, energy) if units == 'frames': pass elif units == 'samples': onsets = core.frames_to_samples(onsets, hop_length=hop_length) elif units == 'time': onsets = core.frames_to_time(onsets, hop_length=hop_length, sr=sr) else: raise ParameterError('Invalid unit type: {}'.format(units)) return onsets
def onset_detect(y=None, sr=22050, onset_envelope=None, hop_length=512, backtrack=False, energy=None, units='frames', **kwargs): """Basic onset detector. Locate note onset events by picking peaks in an onset strength envelope. The `peak_pick` parameters were chosen by large-scale hyper-parameter optimization over the dataset provided by [1]_. .. [1] https://github.com/CPJKU/onset_db Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(m,)] (optional) pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length (in samples) units : {'frames', 'samples', 'time'} The units to encode detected onset events in. By default, 'frames' are used. backtrack : bool If `True`, detected onset events are backtracked to the nearest preceding minimum of `energy`. This is primarily useful when using onsets as slice points for segmentation. energy : np.ndarray [shape=(m,)] (optional) An energy function to use for backtracking detected onset events. If none is provided, then `onset_envelope` is used. kwargs : additional keyword arguments Additional parameters for peak picking. See `librosa.util.peak_pick` for details. Returns ------- onsets : np.ndarray [shape=(n_onsets,)] estimated positions of detected onsets, in whichever units are specified. By default, frame indices. .. note:: If no onset strength could be detected, onset_detect returns an empty list. Raises ------ ParameterError if neither `y` nor `onsets` are provided or if `units` is not one of 'frames', 'samples', or 'time' See Also -------- onset_strength : compute onset strength per-frame onset_backtrack : backtracking onset events librosa.util.peak_pick : pick peaks from a time series Examples -------- Get onset times from a signal >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=2.0) >>> onset_frames = librosa.onset.onset_detect(y=y, sr=sr) >>> librosa.frames_to_time(onset_frames, sr=sr) array([ 0.07 , 0.395, 0.511, 0.627, 0.766, 0.975, 1.207, 1.324, 1.44 , 1.788, 1.881]) Or use a pre-computed onset envelope >>> o_env = librosa.onset.onset_strength(y, sr=sr) >>> times = librosa.frames_to_time(np.arange(len(o_env)), sr=sr) >>> onset_frames = librosa.onset.onset_detect(onset_envelope=o_env, sr=sr) >>> import matplotlib.pyplot as plt >>> D = np.abs(librosa.stft(y)) >>> plt.figure() >>> ax1 = plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... x_axis='time', y_axis='log') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2, sharex=ax1) >>> plt.plot(times, o_env, label='Onset strength') >>> plt.vlines(times[onset_frames], 0, o_env.max(), color='r', alpha=0.9, ... linestyle='--', label='Onsets') >>> plt.axis('tight') >>> plt.legend(frameon=True, framealpha=0.75) """ # First, get the frame->beat strength profile if we don't already have one if onset_envelope is None: if y is None: raise ParameterError('y or onset_envelope must be provided') onset_envelope = onset_strength(y=y, sr=sr, hop_length=hop_length) # Shift onset envelope up to be non-negative # (a common normalization step to make the threshold more consistent) onset_envelope -= onset_envelope.min() # Do we have any onsets to grab? if not onset_envelope.any(): return np.array([], dtype=np.int) # Normalize onset strength function to [0, 1] range onset_envelope /= onset_envelope.max() # These parameter settings found by large-scale search kwargs.setdefault('pre_max', 0.03*sr//hop_length) # 30ms kwargs.setdefault('post_max', 0.00*sr//hop_length + 1) # 0ms kwargs.setdefault('pre_avg', 0.10*sr//hop_length) # 100ms kwargs.setdefault('post_avg', 0.10*sr//hop_length + 1) # 100ms kwargs.setdefault('wait', 0.03*sr//hop_length) # 30ms kwargs.setdefault('delta', 0.07) # Peak pick the onset envelope onsets = util.peak_pick(onset_envelope, **kwargs) # Optionally backtrack the events if backtrack: if energy is None: energy = onset_envelope onsets = onset_backtrack(onsets, energy) if units == 'frames': pass elif units == 'samples': onsets = core.frames_to_samples(onsets, hop_length=hop_length) elif units == 'time': onsets = core.frames_to_time(onsets, hop_length=hop_length, sr=sr) else: raise ParameterError('Invalid unit type: {}'.format(units)) return onsets
[ "Basic", "onset", "detector", ".", "Locate", "note", "onset", "events", "by", "picking", "peaks", "in", "an", "onset", "strength", "envelope", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/onset.py#L31-L182
[ "def", "onset_detect", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "onset_envelope", "=", "None", ",", "hop_length", "=", "512", ",", "backtrack", "=", "False", ",", "energy", "=", "None", ",", "units", "=", "'frames'", ",", "*", "*", "kwargs", ")", ":", "# First, get the frame->beat strength profile if we don't already have one", "if", "onset_envelope", "is", "None", ":", "if", "y", "is", "None", ":", "raise", "ParameterError", "(", "'y or onset_envelope must be provided'", ")", "onset_envelope", "=", "onset_strength", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", "# Shift onset envelope up to be non-negative", "# (a common normalization step to make the threshold more consistent)", "onset_envelope", "-=", "onset_envelope", ".", "min", "(", ")", "# Do we have any onsets to grab?", "if", "not", "onset_envelope", ".", "any", "(", ")", ":", "return", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "np", ".", "int", ")", "# Normalize onset strength function to [0, 1] range", "onset_envelope", "/=", "onset_envelope", ".", "max", "(", ")", "# These parameter settings found by large-scale search", "kwargs", ".", "setdefault", "(", "'pre_max'", ",", "0.03", "*", "sr", "//", "hop_length", ")", "# 30ms", "kwargs", ".", "setdefault", "(", "'post_max'", ",", "0.00", "*", "sr", "//", "hop_length", "+", "1", ")", "# 0ms", "kwargs", ".", "setdefault", "(", "'pre_avg'", ",", "0.10", "*", "sr", "//", "hop_length", ")", "# 100ms", "kwargs", ".", "setdefault", "(", "'post_avg'", ",", "0.10", "*", "sr", "//", "hop_length", "+", "1", ")", "# 100ms", "kwargs", ".", "setdefault", "(", "'wait'", ",", "0.03", "*", "sr", "//", "hop_length", ")", "# 30ms", "kwargs", ".", "setdefault", "(", "'delta'", ",", "0.07", ")", "# Peak pick the onset envelope", "onsets", "=", "util", ".", "peak_pick", "(", "onset_envelope", ",", "*", "*", "kwargs", ")", "# Optionally backtrack the events", "if", "backtrack", ":", "if", "energy", "is", "None", ":", "energy", "=", "onset_envelope", "onsets", "=", "onset_backtrack", "(", "onsets", ",", "energy", ")", "if", "units", "==", "'frames'", ":", "pass", "elif", "units", "==", "'samples'", ":", "onsets", "=", "core", ".", "frames_to_samples", "(", "onsets", ",", "hop_length", "=", "hop_length", ")", "elif", "units", "==", "'time'", ":", "onsets", "=", "core", ".", "frames_to_time", "(", "onsets", ",", "hop_length", "=", "hop_length", ",", "sr", "=", "sr", ")", "else", ":", "raise", "ParameterError", "(", "'Invalid unit type: {}'", ".", "format", "(", "units", ")", ")", "return", "onsets" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
onset_strength
Compute a spectral flux onset strength envelope. Onset strength at time `t` is determined by: `mean_f max(0, S[f, t] - ref[f, t - lag])` where `ref` is `S` after local max filtering along the frequency axis [1]_. By default, if a time series `y` is provided, S will be the log-power Mel spectrogram. .. [1] Böck, Sebastian, and Gerhard Widmer. "Maximum filter vibrato suppression for onset detection." 16th International Conference on Digital Audio Effects, Maynooth, Ireland. 2013. Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, m)] pre-computed (log-power) spectrogram lag : int > 0 time lag for computing differences max_size : int > 0 size (in frequency bins) of the local max filter. set to `1` to disable filtering. ref : None or np.ndarray [shape=(d, m)] An optional pre-computed reference spectrum, of the same shape as `S`. If not provided, it will be computed from `S`. If provided, it will override any local max filtering governed by `max_size`. detrend : bool [scalar] Filter the onset strength to remove the DC component center : bool [scalar] Shift the onset function by `n_fft / (2 * hop_length)` frames feature : function Function for computing time-series features, eg, scaled spectrograms. By default, uses `librosa.feature.melspectrogram` with `fmax=11025.0` aggregate : function Aggregation function to use when combining onsets at different frequency bins. Default: `np.mean` kwargs : additional keyword arguments Additional parameters to `feature()`, if `S` is not provided. Returns ------- onset_envelope : np.ndarray [shape=(m,)] vector containing the onset strength envelope Raises ------ ParameterError if neither `(y, sr)` nor `S` are provided or if `lag` or `max_size` are not positive integers See Also -------- onset_detect onset_strength_multi Examples -------- First, load some audio and plot the spectrogram >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = np.abs(librosa.stft(y)) >>> times = librosa.frames_to_time(np.arange(D.shape[1])) >>> plt.figure() >>> ax1 = plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Power spectrogram') Construct a standard onset function >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr) >>> plt.subplot(2, 1, 2, sharex=ax1) >>> plt.plot(times, 2 + onset_env / onset_env.max(), alpha=0.8, ... label='Mean (mel)') Median aggregation, and custom mel options >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... aggregate=np.median, ... fmax=8000, n_mels=256) >>> plt.plot(times, 1 + onset_env / onset_env.max(), alpha=0.8, ... label='Median (custom mel)') Constant-Q spectrogram instead of Mel >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... feature=librosa.cqt) >>> plt.plot(times, onset_env / onset_env.max(), alpha=0.8, ... label='Mean (CQT)') >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.ylabel('Normalized strength') >>> plt.yticks([]) >>> plt.axis('tight') >>> plt.tight_layout()
librosa/onset.py
def onset_strength(y=None, sr=22050, S=None, lag=1, max_size=1, ref=None, detrend=False, center=True, feature=None, aggregate=None, centering=None, **kwargs): """Compute a spectral flux onset strength envelope. Onset strength at time `t` is determined by: `mean_f max(0, S[f, t] - ref[f, t - lag])` where `ref` is `S` after local max filtering along the frequency axis [1]_. By default, if a time series `y` is provided, S will be the log-power Mel spectrogram. .. [1] Böck, Sebastian, and Gerhard Widmer. "Maximum filter vibrato suppression for onset detection." 16th International Conference on Digital Audio Effects, Maynooth, Ireland. 2013. Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, m)] pre-computed (log-power) spectrogram lag : int > 0 time lag for computing differences max_size : int > 0 size (in frequency bins) of the local max filter. set to `1` to disable filtering. ref : None or np.ndarray [shape=(d, m)] An optional pre-computed reference spectrum, of the same shape as `S`. If not provided, it will be computed from `S`. If provided, it will override any local max filtering governed by `max_size`. detrend : bool [scalar] Filter the onset strength to remove the DC component center : bool [scalar] Shift the onset function by `n_fft / (2 * hop_length)` frames feature : function Function for computing time-series features, eg, scaled spectrograms. By default, uses `librosa.feature.melspectrogram` with `fmax=11025.0` aggregate : function Aggregation function to use when combining onsets at different frequency bins. Default: `np.mean` kwargs : additional keyword arguments Additional parameters to `feature()`, if `S` is not provided. Returns ------- onset_envelope : np.ndarray [shape=(m,)] vector containing the onset strength envelope Raises ------ ParameterError if neither `(y, sr)` nor `S` are provided or if `lag` or `max_size` are not positive integers See Also -------- onset_detect onset_strength_multi Examples -------- First, load some audio and plot the spectrogram >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = np.abs(librosa.stft(y)) >>> times = librosa.frames_to_time(np.arange(D.shape[1])) >>> plt.figure() >>> ax1 = plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Power spectrogram') Construct a standard onset function >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr) >>> plt.subplot(2, 1, 2, sharex=ax1) >>> plt.plot(times, 2 + onset_env / onset_env.max(), alpha=0.8, ... label='Mean (mel)') Median aggregation, and custom mel options >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... aggregate=np.median, ... fmax=8000, n_mels=256) >>> plt.plot(times, 1 + onset_env / onset_env.max(), alpha=0.8, ... label='Median (custom mel)') Constant-Q spectrogram instead of Mel >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... feature=librosa.cqt) >>> plt.plot(times, onset_env / onset_env.max(), alpha=0.8, ... label='Mean (CQT)') >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.ylabel('Normalized strength') >>> plt.yticks([]) >>> plt.axis('tight') >>> plt.tight_layout() """ if aggregate is False: raise ParameterError('aggregate={} cannot be False when computing full-spectrum onset strength.') odf_all = onset_strength_multi(y=y, sr=sr, S=S, lag=lag, max_size=max_size, ref=ref, detrend=detrend, center=center, feature=feature, aggregate=aggregate, channels=None, **kwargs) return odf_all[0]
def onset_strength(y=None, sr=22050, S=None, lag=1, max_size=1, ref=None, detrend=False, center=True, feature=None, aggregate=None, centering=None, **kwargs): """Compute a spectral flux onset strength envelope. Onset strength at time `t` is determined by: `mean_f max(0, S[f, t] - ref[f, t - lag])` where `ref` is `S` after local max filtering along the frequency axis [1]_. By default, if a time series `y` is provided, S will be the log-power Mel spectrogram. .. [1] Böck, Sebastian, and Gerhard Widmer. "Maximum filter vibrato suppression for onset detection." 16th International Conference on Digital Audio Effects, Maynooth, Ireland. 2013. Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, m)] pre-computed (log-power) spectrogram lag : int > 0 time lag for computing differences max_size : int > 0 size (in frequency bins) of the local max filter. set to `1` to disable filtering. ref : None or np.ndarray [shape=(d, m)] An optional pre-computed reference spectrum, of the same shape as `S`. If not provided, it will be computed from `S`. If provided, it will override any local max filtering governed by `max_size`. detrend : bool [scalar] Filter the onset strength to remove the DC component center : bool [scalar] Shift the onset function by `n_fft / (2 * hop_length)` frames feature : function Function for computing time-series features, eg, scaled spectrograms. By default, uses `librosa.feature.melspectrogram` with `fmax=11025.0` aggregate : function Aggregation function to use when combining onsets at different frequency bins. Default: `np.mean` kwargs : additional keyword arguments Additional parameters to `feature()`, if `S` is not provided. Returns ------- onset_envelope : np.ndarray [shape=(m,)] vector containing the onset strength envelope Raises ------ ParameterError if neither `(y, sr)` nor `S` are provided or if `lag` or `max_size` are not positive integers See Also -------- onset_detect onset_strength_multi Examples -------- First, load some audio and plot the spectrogram >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = np.abs(librosa.stft(y)) >>> times = librosa.frames_to_time(np.arange(D.shape[1])) >>> plt.figure() >>> ax1 = plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Power spectrogram') Construct a standard onset function >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr) >>> plt.subplot(2, 1, 2, sharex=ax1) >>> plt.plot(times, 2 + onset_env / onset_env.max(), alpha=0.8, ... label='Mean (mel)') Median aggregation, and custom mel options >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... aggregate=np.median, ... fmax=8000, n_mels=256) >>> plt.plot(times, 1 + onset_env / onset_env.max(), alpha=0.8, ... label='Median (custom mel)') Constant-Q spectrogram instead of Mel >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... feature=librosa.cqt) >>> plt.plot(times, onset_env / onset_env.max(), alpha=0.8, ... label='Mean (CQT)') >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.ylabel('Normalized strength') >>> plt.yticks([]) >>> plt.axis('tight') >>> plt.tight_layout() """ if aggregate is False: raise ParameterError('aggregate={} cannot be False when computing full-spectrum onset strength.') odf_all = onset_strength_multi(y=y, sr=sr, S=S, lag=lag, max_size=max_size, ref=ref, detrend=detrend, center=center, feature=feature, aggregate=aggregate, channels=None, **kwargs) return odf_all[0]
[ "Compute", "a", "spectral", "flux", "onset", "strength", "envelope", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/onset.py#L185-L333
[ "def", "onset_strength", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "lag", "=", "1", ",", "max_size", "=", "1", ",", "ref", "=", "None", ",", "detrend", "=", "False", ",", "center", "=", "True", ",", "feature", "=", "None", ",", "aggregate", "=", "None", ",", "centering", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "aggregate", "is", "False", ":", "raise", "ParameterError", "(", "'aggregate={} cannot be False when computing full-spectrum onset strength.'", ")", "odf_all", "=", "onset_strength_multi", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "S", "=", "S", ",", "lag", "=", "lag", ",", "max_size", "=", "max_size", ",", "ref", "=", "ref", ",", "detrend", "=", "detrend", ",", "center", "=", "center", ",", "feature", "=", "feature", ",", "aggregate", "=", "aggregate", ",", "channels", "=", "None", ",", "*", "*", "kwargs", ")", "return", "odf_all", "[", "0", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
onset_backtrack
Backtrack detected onset events to the nearest preceding local minimum of an energy function. This function can be used to roll back the timing of detected onsets from a detected peak amplitude to the preceding minimum. This is most useful when using onsets to determine slice points for segmentation, as described by [1]_. .. [1] Jehan, Tristan. "Creating music by listening" Doctoral dissertation Massachusetts Institute of Technology, 2005. Parameters ---------- events : np.ndarray, dtype=int List of onset event frame indices, as computed by `onset_detect` energy : np.ndarray, shape=(m,) An energy function Returns ------- events_backtracked : np.ndarray, shape=events.shape The input events matched to nearest preceding minima of `energy`. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=2.0) >>> oenv = librosa.onset.onset_strength(y=y, sr=sr) >>> # Detect events without backtracking >>> onset_raw = librosa.onset.onset_detect(onset_envelope=oenv, ... backtrack=False) >>> # Backtrack the events using the onset envelope >>> onset_bt = librosa.onset.onset_backtrack(onset_raw, oenv) >>> # Backtrack the events using the RMS values >>> rms = librosa.feature.rms(S=np.abs(librosa.stft(y=y))) >>> onset_bt_rms = librosa.onset.onset_backtrack(onset_raw, rms[0]) >>> # Plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> plt.plot(oenv, label='Onset strength') >>> plt.vlines(onset_raw, 0, oenv.max(), label='Raw onsets') >>> plt.vlines(onset_bt, 0, oenv.max(), label='Backtracked', color='r') >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.subplot(2,1,2) >>> plt.plot(rms[0], label='RMS') >>> plt.vlines(onset_bt_rms, 0, rms.max(), label='Backtracked (RMS)', color='r') >>> plt.legend(frameon=True, framealpha=0.75)
librosa/onset.py
def onset_backtrack(events, energy): '''Backtrack detected onset events to the nearest preceding local minimum of an energy function. This function can be used to roll back the timing of detected onsets from a detected peak amplitude to the preceding minimum. This is most useful when using onsets to determine slice points for segmentation, as described by [1]_. .. [1] Jehan, Tristan. "Creating music by listening" Doctoral dissertation Massachusetts Institute of Technology, 2005. Parameters ---------- events : np.ndarray, dtype=int List of onset event frame indices, as computed by `onset_detect` energy : np.ndarray, shape=(m,) An energy function Returns ------- events_backtracked : np.ndarray, shape=events.shape The input events matched to nearest preceding minima of `energy`. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=2.0) >>> oenv = librosa.onset.onset_strength(y=y, sr=sr) >>> # Detect events without backtracking >>> onset_raw = librosa.onset.onset_detect(onset_envelope=oenv, ... backtrack=False) >>> # Backtrack the events using the onset envelope >>> onset_bt = librosa.onset.onset_backtrack(onset_raw, oenv) >>> # Backtrack the events using the RMS values >>> rms = librosa.feature.rms(S=np.abs(librosa.stft(y=y))) >>> onset_bt_rms = librosa.onset.onset_backtrack(onset_raw, rms[0]) >>> # Plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> plt.plot(oenv, label='Onset strength') >>> plt.vlines(onset_raw, 0, oenv.max(), label='Raw onsets') >>> plt.vlines(onset_bt, 0, oenv.max(), label='Backtracked', color='r') >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.subplot(2,1,2) >>> plt.plot(rms[0], label='RMS') >>> plt.vlines(onset_bt_rms, 0, rms.max(), label='Backtracked (RMS)', color='r') >>> plt.legend(frameon=True, framealpha=0.75) ''' # Find points where energy is non-increasing # all points: energy[i] <= energy[i-1] # tail points: energy[i] < energy[i+1] minima = np.flatnonzero((energy[1:-1] <= energy[:-2]) & (energy[1:-1] < energy[2:])) # Pad on a 0, just in case we have onsets with no preceding minimum # Shift by one to account for slicing in minima detection minima = util.fix_frames(1 + minima, x_min=0) # Only match going left from the detected events return minima[util.match_events(events, minima, right=False)]
def onset_backtrack(events, energy): '''Backtrack detected onset events to the nearest preceding local minimum of an energy function. This function can be used to roll back the timing of detected onsets from a detected peak amplitude to the preceding minimum. This is most useful when using onsets to determine slice points for segmentation, as described by [1]_. .. [1] Jehan, Tristan. "Creating music by listening" Doctoral dissertation Massachusetts Institute of Technology, 2005. Parameters ---------- events : np.ndarray, dtype=int List of onset event frame indices, as computed by `onset_detect` energy : np.ndarray, shape=(m,) An energy function Returns ------- events_backtracked : np.ndarray, shape=events.shape The input events matched to nearest preceding minima of `energy`. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=2.0) >>> oenv = librosa.onset.onset_strength(y=y, sr=sr) >>> # Detect events without backtracking >>> onset_raw = librosa.onset.onset_detect(onset_envelope=oenv, ... backtrack=False) >>> # Backtrack the events using the onset envelope >>> onset_bt = librosa.onset.onset_backtrack(onset_raw, oenv) >>> # Backtrack the events using the RMS values >>> rms = librosa.feature.rms(S=np.abs(librosa.stft(y=y))) >>> onset_bt_rms = librosa.onset.onset_backtrack(onset_raw, rms[0]) >>> # Plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> plt.plot(oenv, label='Onset strength') >>> plt.vlines(onset_raw, 0, oenv.max(), label='Raw onsets') >>> plt.vlines(onset_bt, 0, oenv.max(), label='Backtracked', color='r') >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.subplot(2,1,2) >>> plt.plot(rms[0], label='RMS') >>> plt.vlines(onset_bt_rms, 0, rms.max(), label='Backtracked (RMS)', color='r') >>> plt.legend(frameon=True, framealpha=0.75) ''' # Find points where energy is non-increasing # all points: energy[i] <= energy[i-1] # tail points: energy[i] < energy[i+1] minima = np.flatnonzero((energy[1:-1] <= energy[:-2]) & (energy[1:-1] < energy[2:])) # Pad on a 0, just in case we have onsets with no preceding minimum # Shift by one to account for slicing in minima detection minima = util.fix_frames(1 + minima, x_min=0) # Only match going left from the detected events return minima[util.match_events(events, minima, right=False)]
[ "Backtrack", "detected", "onset", "events", "to", "the", "nearest", "preceding", "local", "minimum", "of", "an", "energy", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/onset.py#L336-L403
[ "def", "onset_backtrack", "(", "events", ",", "energy", ")", ":", "# Find points where energy is non-increasing", "# all points: energy[i] <= energy[i-1]", "# tail points: energy[i] < energy[i+1]", "minima", "=", "np", ".", "flatnonzero", "(", "(", "energy", "[", "1", ":", "-", "1", "]", "<=", "energy", "[", ":", "-", "2", "]", ")", "&", "(", "energy", "[", "1", ":", "-", "1", "]", "<", "energy", "[", "2", ":", "]", ")", ")", "# Pad on a 0, just in case we have onsets with no preceding minimum", "# Shift by one to account for slicing in minima detection", "minima", "=", "util", ".", "fix_frames", "(", "1", "+", "minima", ",", "x_min", "=", "0", ")", "# Only match going left from the detected events", "return", "minima", "[", "util", ".", "match_events", "(", "events", ",", "minima", ",", "right", "=", "False", ")", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
onset_strength_multi
Compute a spectral flux onset strength envelope across multiple channels. Onset strength for channel `i` at time `t` is determined by: `mean_{f in channels[i]} max(0, S[f, t+1] - S[f, t])` Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, m)] pre-computed (log-power) spectrogram lag : int > 0 time lag for computing differences max_size : int > 0 size (in frequency bins) of the local max filter. set to `1` to disable filtering. ref : None or np.ndarray [shape=(d, m)] An optional pre-computed reference spectrum, of the same shape as `S`. If not provided, it will be computed from `S`. If provided, it will override any local max filtering governed by `max_size`. detrend : bool [scalar] Filter the onset strength to remove the DC component center : bool [scalar] Shift the onset function by `n_fft / (2 * hop_length)` frames feature : function Function for computing time-series features, eg, scaled spectrograms. By default, uses `librosa.feature.melspectrogram` with `fmax=11025.0` aggregate : function or False Aggregation function to use when combining onsets at different frequency bins. If `False`, then no aggregation is performed. Default: `np.mean` channels : list or None Array of channel boundaries or slice objects. If `None`, then a single channel is generated to span all bands. kwargs : additional keyword arguments Additional parameters to `feature()`, if `S` is not provided. Returns ------- onset_envelope : np.ndarray [shape=(n_channels, m)] array containing the onset strength envelope for each specified channel Raises ------ ParameterError if neither `(y, sr)` nor `S` are provided See Also -------- onset_strength Notes ----- This function caches at level 30. Examples -------- First, load some audio and plot the spectrogram >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = np.abs(librosa.stft(y)) >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log') >>> plt.title('Power spectrogram') Construct a standard onset function over four sub-bands >>> onset_subbands = librosa.onset.onset_strength_multi(y=y, sr=sr, ... channels=[0, 32, 64, 96, 128]) >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(onset_subbands, x_axis='time') >>> plt.ylabel('Sub-bands') >>> plt.title('Sub-band onset strength')
librosa/onset.py
def onset_strength_multi(y=None, sr=22050, S=None, lag=1, max_size=1, ref=None, detrend=False, center=True, feature=None, aggregate=None, channels=None, **kwargs): """Compute a spectral flux onset strength envelope across multiple channels. Onset strength for channel `i` at time `t` is determined by: `mean_{f in channels[i]} max(0, S[f, t+1] - S[f, t])` Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, m)] pre-computed (log-power) spectrogram lag : int > 0 time lag for computing differences max_size : int > 0 size (in frequency bins) of the local max filter. set to `1` to disable filtering. ref : None or np.ndarray [shape=(d, m)] An optional pre-computed reference spectrum, of the same shape as `S`. If not provided, it will be computed from `S`. If provided, it will override any local max filtering governed by `max_size`. detrend : bool [scalar] Filter the onset strength to remove the DC component center : bool [scalar] Shift the onset function by `n_fft / (2 * hop_length)` frames feature : function Function for computing time-series features, eg, scaled spectrograms. By default, uses `librosa.feature.melspectrogram` with `fmax=11025.0` aggregate : function or False Aggregation function to use when combining onsets at different frequency bins. If `False`, then no aggregation is performed. Default: `np.mean` channels : list or None Array of channel boundaries or slice objects. If `None`, then a single channel is generated to span all bands. kwargs : additional keyword arguments Additional parameters to `feature()`, if `S` is not provided. Returns ------- onset_envelope : np.ndarray [shape=(n_channels, m)] array containing the onset strength envelope for each specified channel Raises ------ ParameterError if neither `(y, sr)` nor `S` are provided See Also -------- onset_strength Notes ----- This function caches at level 30. Examples -------- First, load some audio and plot the spectrogram >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = np.abs(librosa.stft(y)) >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log') >>> plt.title('Power spectrogram') Construct a standard onset function over four sub-bands >>> onset_subbands = librosa.onset.onset_strength_multi(y=y, sr=sr, ... channels=[0, 32, 64, 96, 128]) >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(onset_subbands, x_axis='time') >>> plt.ylabel('Sub-bands') >>> plt.title('Sub-band onset strength') """ if feature is None: feature = melspectrogram kwargs.setdefault('fmax', 11025.0) if aggregate is None: aggregate = np.mean if lag < 1 or not isinstance(lag, int): raise ParameterError('lag must be a positive integer') if max_size < 1 or not isinstance(max_size, int): raise ParameterError('max_size must be a positive integer') # First, compute mel spectrogram if S is None: S = np.abs(feature(y=y, sr=sr, **kwargs)) # Convert to dBs S = core.power_to_db(S) # Retrieve the n_fft and hop_length, # or default values for onsets if not provided n_fft = kwargs.get('n_fft', 2048) hop_length = kwargs.get('hop_length', 512) # Ensure that S is at least 2-d S = np.atleast_2d(S) # Compute the reference spectrogram. # Efficiency hack: skip filtering step and pass by reference # if max_size will produce a no-op. if ref is None: if max_size == 1: ref = S else: ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=0) elif ref.shape != S.shape: raise ParameterError('Reference spectrum shape {} must match input spectrum {}'.format(ref.shape, S.shape)) # Compute difference to the reference, spaced by lag onset_env = S[:, lag:] - ref[:, :-lag] # Discard negatives (decreasing amplitude) onset_env = np.maximum(0.0, onset_env) # Aggregate within channels pad = True if channels is None: channels = [slice(None)] else: pad = False if aggregate: onset_env = util.sync(onset_env, channels, aggregate=aggregate, pad=pad, axis=0) # compensate for lag pad_width = lag if center: # Counter-act framing effects. Shift the onsets by n_fft / hop_length pad_width += n_fft // (2 * hop_length) onset_env = np.pad(onset_env, ([0, 0], [int(pad_width), 0]), mode='constant') # remove the DC component if detrend: onset_env = scipy.signal.lfilter([1.0, -1.0], [1.0, -0.99], onset_env, axis=-1) # Trim to match the input duration if center: onset_env = onset_env[:, :S.shape[1]] return onset_env
def onset_strength_multi(y=None, sr=22050, S=None, lag=1, max_size=1, ref=None, detrend=False, center=True, feature=None, aggregate=None, channels=None, **kwargs): """Compute a spectral flux onset strength envelope across multiple channels. Onset strength for channel `i` at time `t` is determined by: `mean_{f in channels[i]} max(0, S[f, t+1] - S[f, t])` Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, m)] pre-computed (log-power) spectrogram lag : int > 0 time lag for computing differences max_size : int > 0 size (in frequency bins) of the local max filter. set to `1` to disable filtering. ref : None or np.ndarray [shape=(d, m)] An optional pre-computed reference spectrum, of the same shape as `S`. If not provided, it will be computed from `S`. If provided, it will override any local max filtering governed by `max_size`. detrend : bool [scalar] Filter the onset strength to remove the DC component center : bool [scalar] Shift the onset function by `n_fft / (2 * hop_length)` frames feature : function Function for computing time-series features, eg, scaled spectrograms. By default, uses `librosa.feature.melspectrogram` with `fmax=11025.0` aggregate : function or False Aggregation function to use when combining onsets at different frequency bins. If `False`, then no aggregation is performed. Default: `np.mean` channels : list or None Array of channel boundaries or slice objects. If `None`, then a single channel is generated to span all bands. kwargs : additional keyword arguments Additional parameters to `feature()`, if `S` is not provided. Returns ------- onset_envelope : np.ndarray [shape=(n_channels, m)] array containing the onset strength envelope for each specified channel Raises ------ ParameterError if neither `(y, sr)` nor `S` are provided See Also -------- onset_strength Notes ----- This function caches at level 30. Examples -------- First, load some audio and plot the spectrogram >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = np.abs(librosa.stft(y)) >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log') >>> plt.title('Power spectrogram') Construct a standard onset function over four sub-bands >>> onset_subbands = librosa.onset.onset_strength_multi(y=y, sr=sr, ... channels=[0, 32, 64, 96, 128]) >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(onset_subbands, x_axis='time') >>> plt.ylabel('Sub-bands') >>> plt.title('Sub-band onset strength') """ if feature is None: feature = melspectrogram kwargs.setdefault('fmax', 11025.0) if aggregate is None: aggregate = np.mean if lag < 1 or not isinstance(lag, int): raise ParameterError('lag must be a positive integer') if max_size < 1 or not isinstance(max_size, int): raise ParameterError('max_size must be a positive integer') # First, compute mel spectrogram if S is None: S = np.abs(feature(y=y, sr=sr, **kwargs)) # Convert to dBs S = core.power_to_db(S) # Retrieve the n_fft and hop_length, # or default values for onsets if not provided n_fft = kwargs.get('n_fft', 2048) hop_length = kwargs.get('hop_length', 512) # Ensure that S is at least 2-d S = np.atleast_2d(S) # Compute the reference spectrogram. # Efficiency hack: skip filtering step and pass by reference # if max_size will produce a no-op. if ref is None: if max_size == 1: ref = S else: ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=0) elif ref.shape != S.shape: raise ParameterError('Reference spectrum shape {} must match input spectrum {}'.format(ref.shape, S.shape)) # Compute difference to the reference, spaced by lag onset_env = S[:, lag:] - ref[:, :-lag] # Discard negatives (decreasing amplitude) onset_env = np.maximum(0.0, onset_env) # Aggregate within channels pad = True if channels is None: channels = [slice(None)] else: pad = False if aggregate: onset_env = util.sync(onset_env, channels, aggregate=aggregate, pad=pad, axis=0) # compensate for lag pad_width = lag if center: # Counter-act framing effects. Shift the onsets by n_fft / hop_length pad_width += n_fft // (2 * hop_length) onset_env = np.pad(onset_env, ([0, 0], [int(pad_width), 0]), mode='constant') # remove the DC component if detrend: onset_env = scipy.signal.lfilter([1.0, -1.0], [1.0, -0.99], onset_env, axis=-1) # Trim to match the input duration if center: onset_env = onset_env[:, :S.shape[1]] return onset_env
[ "Compute", "a", "spectral", "flux", "onset", "strength", "envelope", "across", "multiple", "channels", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/onset.py#L407-L586
[ "def", "onset_strength_multi", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "lag", "=", "1", ",", "max_size", "=", "1", ",", "ref", "=", "None", ",", "detrend", "=", "False", ",", "center", "=", "True", ",", "feature", "=", "None", ",", "aggregate", "=", "None", ",", "channels", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "feature", "is", "None", ":", "feature", "=", "melspectrogram", "kwargs", ".", "setdefault", "(", "'fmax'", ",", "11025.0", ")", "if", "aggregate", "is", "None", ":", "aggregate", "=", "np", ".", "mean", "if", "lag", "<", "1", "or", "not", "isinstance", "(", "lag", ",", "int", ")", ":", "raise", "ParameterError", "(", "'lag must be a positive integer'", ")", "if", "max_size", "<", "1", "or", "not", "isinstance", "(", "max_size", ",", "int", ")", ":", "raise", "ParameterError", "(", "'max_size must be a positive integer'", ")", "# First, compute mel spectrogram", "if", "S", "is", "None", ":", "S", "=", "np", ".", "abs", "(", "feature", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "*", "*", "kwargs", ")", ")", "# Convert to dBs", "S", "=", "core", ".", "power_to_db", "(", "S", ")", "# Retrieve the n_fft and hop_length,", "# or default values for onsets if not provided", "n_fft", "=", "kwargs", ".", "get", "(", "'n_fft'", ",", "2048", ")", "hop_length", "=", "kwargs", ".", "get", "(", "'hop_length'", ",", "512", ")", "# Ensure that S is at least 2-d", "S", "=", "np", ".", "atleast_2d", "(", "S", ")", "# Compute the reference spectrogram.", "# Efficiency hack: skip filtering step and pass by reference", "# if max_size will produce a no-op.", "if", "ref", "is", "None", ":", "if", "max_size", "==", "1", ":", "ref", "=", "S", "else", ":", "ref", "=", "scipy", ".", "ndimage", ".", "maximum_filter1d", "(", "S", ",", "max_size", ",", "axis", "=", "0", ")", "elif", "ref", ".", "shape", "!=", "S", ".", "shape", ":", "raise", "ParameterError", "(", "'Reference spectrum shape {} must match input spectrum {}'", ".", "format", "(", "ref", ".", "shape", ",", "S", ".", "shape", ")", ")", "# Compute difference to the reference, spaced by lag", "onset_env", "=", "S", "[", ":", ",", "lag", ":", "]", "-", "ref", "[", ":", ",", ":", "-", "lag", "]", "# Discard negatives (decreasing amplitude)", "onset_env", "=", "np", ".", "maximum", "(", "0.0", ",", "onset_env", ")", "# Aggregate within channels", "pad", "=", "True", "if", "channels", "is", "None", ":", "channels", "=", "[", "slice", "(", "None", ")", "]", "else", ":", "pad", "=", "False", "if", "aggregate", ":", "onset_env", "=", "util", ".", "sync", "(", "onset_env", ",", "channels", ",", "aggregate", "=", "aggregate", ",", "pad", "=", "pad", ",", "axis", "=", "0", ")", "# compensate for lag", "pad_width", "=", "lag", "if", "center", ":", "# Counter-act framing effects. Shift the onsets by n_fft / hop_length", "pad_width", "+=", "n_fft", "//", "(", "2", "*", "hop_length", ")", "onset_env", "=", "np", ".", "pad", "(", "onset_env", ",", "(", "[", "0", ",", "0", "]", ",", "[", "int", "(", "pad_width", ")", ",", "0", "]", ")", ",", "mode", "=", "'constant'", ")", "# remove the DC component", "if", "detrend", ":", "onset_env", "=", "scipy", ".", "signal", ".", "lfilter", "(", "[", "1.0", ",", "-", "1.0", "]", ",", "[", "1.0", ",", "-", "0.99", "]", ",", "onset_env", ",", "axis", "=", "-", "1", ")", "# Trim to match the input duration", "if", "center", ":", "onset_env", "=", "onset_env", "[", ":", ",", ":", "S", ".", "shape", "[", "1", "]", "]", "return", "onset_env" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
annotation
r'''Save annotations in a 3-column format:: intervals[0, 0],intervals[0, 1],annotations[0]\n intervals[1, 0],intervals[1, 1],annotations[1]\n intervals[2, 0],intervals[2, 1],annotations[2]\n ... This can be used for segment or chord annotations. Parameters ---------- path : str path to save the output CSV file intervals : np.ndarray [shape=(n, 2)] array of interval start and end-times. `intervals[i, 0]` marks the start time of interval `i` `intervals[i, 1]` marks the end time of interval `i` annotations : None or list-like [shape=(n,)] optional list of annotation strings. `annotations[i]` applies to the time range `intervals[i, 0]` to `intervals[i, 1]` delimiter : str character to separate fields fmt : str format-string for rendering time data Raises ------ ParameterError if `annotations` is not `None` and length does not match `intervals` Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> data = librosa.feature.mfcc(y=y, sr=sr, hop_length=512) Detect segment boundaries >>> boundaries = librosa.segment.agglomerative(data, k=10) Convert to time >>> boundary_times = librosa.frames_to_time(boundaries, sr=sr, ... hop_length=512) Convert events boundaries to intervals >>> intervals = np.hstack([boundary_times[:-1, np.newaxis], ... boundary_times[1:, np.newaxis]]) Make some fake annotations >>> labels = ['Seg #{:03d}'.format(i) for i in range(len(intervals))] Save the output >>> librosa.output.annotation('segments.csv', intervals, ... annotations=labels)
librosa/output.py
def annotation(path, intervals, annotations=None, delimiter=',', fmt='%0.3f'): r'''Save annotations in a 3-column format:: intervals[0, 0],intervals[0, 1],annotations[0]\n intervals[1, 0],intervals[1, 1],annotations[1]\n intervals[2, 0],intervals[2, 1],annotations[2]\n ... This can be used for segment or chord annotations. Parameters ---------- path : str path to save the output CSV file intervals : np.ndarray [shape=(n, 2)] array of interval start and end-times. `intervals[i, 0]` marks the start time of interval `i` `intervals[i, 1]` marks the end time of interval `i` annotations : None or list-like [shape=(n,)] optional list of annotation strings. `annotations[i]` applies to the time range `intervals[i, 0]` to `intervals[i, 1]` delimiter : str character to separate fields fmt : str format-string for rendering time data Raises ------ ParameterError if `annotations` is not `None` and length does not match `intervals` Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> data = librosa.feature.mfcc(y=y, sr=sr, hop_length=512) Detect segment boundaries >>> boundaries = librosa.segment.agglomerative(data, k=10) Convert to time >>> boundary_times = librosa.frames_to_time(boundaries, sr=sr, ... hop_length=512) Convert events boundaries to intervals >>> intervals = np.hstack([boundary_times[:-1, np.newaxis], ... boundary_times[1:, np.newaxis]]) Make some fake annotations >>> labels = ['Seg #{:03d}'.format(i) for i in range(len(intervals))] Save the output >>> librosa.output.annotation('segments.csv', intervals, ... annotations=labels) ''' util.valid_intervals(intervals) if annotations is not None and len(annotations) != len(intervals): raise ParameterError('len(annotations) != len(intervals)') with open(path, 'w') as output_file: writer = csv.writer(output_file, delimiter=delimiter) if annotations is None: for t_int in intervals: writer.writerow([fmt % t_int[0], fmt % t_int[1]]) else: for t_int, lab in zip(intervals, annotations): writer.writerow([fmt % t_int[0], fmt % t_int[1], lab])
def annotation(path, intervals, annotations=None, delimiter=',', fmt='%0.3f'): r'''Save annotations in a 3-column format:: intervals[0, 0],intervals[0, 1],annotations[0]\n intervals[1, 0],intervals[1, 1],annotations[1]\n intervals[2, 0],intervals[2, 1],annotations[2]\n ... This can be used for segment or chord annotations. Parameters ---------- path : str path to save the output CSV file intervals : np.ndarray [shape=(n, 2)] array of interval start and end-times. `intervals[i, 0]` marks the start time of interval `i` `intervals[i, 1]` marks the end time of interval `i` annotations : None or list-like [shape=(n,)] optional list of annotation strings. `annotations[i]` applies to the time range `intervals[i, 0]` to `intervals[i, 1]` delimiter : str character to separate fields fmt : str format-string for rendering time data Raises ------ ParameterError if `annotations` is not `None` and length does not match `intervals` Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> data = librosa.feature.mfcc(y=y, sr=sr, hop_length=512) Detect segment boundaries >>> boundaries = librosa.segment.agglomerative(data, k=10) Convert to time >>> boundary_times = librosa.frames_to_time(boundaries, sr=sr, ... hop_length=512) Convert events boundaries to intervals >>> intervals = np.hstack([boundary_times[:-1, np.newaxis], ... boundary_times[1:, np.newaxis]]) Make some fake annotations >>> labels = ['Seg #{:03d}'.format(i) for i in range(len(intervals))] Save the output >>> librosa.output.annotation('segments.csv', intervals, ... annotations=labels) ''' util.valid_intervals(intervals) if annotations is not None and len(annotations) != len(intervals): raise ParameterError('len(annotations) != len(intervals)') with open(path, 'w') as output_file: writer = csv.writer(output_file, delimiter=delimiter) if annotations is None: for t_int in intervals: writer.writerow([fmt % t_int[0], fmt % t_int[1]]) else: for t_int, lab in zip(intervals, annotations): writer.writerow([fmt % t_int[0], fmt % t_int[1], lab])
[ "r", "Save", "annotations", "in", "a", "3", "-", "column", "format", "::" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/output.py#L36-L117
[ "def", "annotation", "(", "path", ",", "intervals", ",", "annotations", "=", "None", ",", "delimiter", "=", "','", ",", "fmt", "=", "'%0.3f'", ")", ":", "util", ".", "valid_intervals", "(", "intervals", ")", "if", "annotations", "is", "not", "None", "and", "len", "(", "annotations", ")", "!=", "len", "(", "intervals", ")", ":", "raise", "ParameterError", "(", "'len(annotations) != len(intervals)'", ")", "with", "open", "(", "path", ",", "'w'", ")", "as", "output_file", ":", "writer", "=", "csv", ".", "writer", "(", "output_file", ",", "delimiter", "=", "delimiter", ")", "if", "annotations", "is", "None", ":", "for", "t_int", "in", "intervals", ":", "writer", ".", "writerow", "(", "[", "fmt", "%", "t_int", "[", "0", "]", ",", "fmt", "%", "t_int", "[", "1", "]", "]", ")", "else", ":", "for", "t_int", ",", "lab", "in", "zip", "(", "intervals", ",", "annotations", ")", ":", "writer", ".", "writerow", "(", "[", "fmt", "%", "t_int", "[", "0", "]", ",", "fmt", "%", "t_int", "[", "1", "]", ",", "lab", "]", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
times_csv
r"""Save time steps as in CSV format. This can be used to store the output of a beat-tracker or segmentation algorithm. If only `times` are provided, the file will contain each value of `times` on a row:: times[0]\n times[1]\n times[2]\n ... If `annotations` are also provided, the file will contain delimiter-separated values:: times[0],annotations[0]\n times[1],annotations[1]\n times[2],annotations[2]\n ... Parameters ---------- path : string path to save the output CSV file times : list-like of floats list of frame numbers for beat events annotations : None or list-like optional annotations for each time step delimiter : str character to separate fields fmt : str format-string for rendering time Raises ------ ParameterError if `annotations` is not `None` and length does not match `times` Examples -------- Write beat-tracker time to CSV >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y, sr=sr, units='time') >>> librosa.output.times_csv('beat_times.csv', beats)
librosa/output.py
def times_csv(path, times, annotations=None, delimiter=',', fmt='%0.3f'): r"""Save time steps as in CSV format. This can be used to store the output of a beat-tracker or segmentation algorithm. If only `times` are provided, the file will contain each value of `times` on a row:: times[0]\n times[1]\n times[2]\n ... If `annotations` are also provided, the file will contain delimiter-separated values:: times[0],annotations[0]\n times[1],annotations[1]\n times[2],annotations[2]\n ... Parameters ---------- path : string path to save the output CSV file times : list-like of floats list of frame numbers for beat events annotations : None or list-like optional annotations for each time step delimiter : str character to separate fields fmt : str format-string for rendering time Raises ------ ParameterError if `annotations` is not `None` and length does not match `times` Examples -------- Write beat-tracker time to CSV >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y, sr=sr, units='time') >>> librosa.output.times_csv('beat_times.csv', beats) """ if annotations is not None and len(annotations) != len(times): raise ParameterError('len(annotations) != len(times)') with open(path, 'w') as output_file: writer = csv.writer(output_file, delimiter=delimiter) if annotations is None: for t in times: writer.writerow([fmt % t]) else: for t, lab in zip(times, annotations): writer.writerow([(fmt % t), lab])
def times_csv(path, times, annotations=None, delimiter=',', fmt='%0.3f'): r"""Save time steps as in CSV format. This can be used to store the output of a beat-tracker or segmentation algorithm. If only `times` are provided, the file will contain each value of `times` on a row:: times[0]\n times[1]\n times[2]\n ... If `annotations` are also provided, the file will contain delimiter-separated values:: times[0],annotations[0]\n times[1],annotations[1]\n times[2],annotations[2]\n ... Parameters ---------- path : string path to save the output CSV file times : list-like of floats list of frame numbers for beat events annotations : None or list-like optional annotations for each time step delimiter : str character to separate fields fmt : str format-string for rendering time Raises ------ ParameterError if `annotations` is not `None` and length does not match `times` Examples -------- Write beat-tracker time to CSV >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y, sr=sr, units='time') >>> librosa.output.times_csv('beat_times.csv', beats) """ if annotations is not None and len(annotations) != len(times): raise ParameterError('len(annotations) != len(times)') with open(path, 'w') as output_file: writer = csv.writer(output_file, delimiter=delimiter) if annotations is None: for t in times: writer.writerow([fmt % t]) else: for t, lab in zip(times, annotations): writer.writerow([(fmt % t), lab])
[ "r", "Save", "time", "steps", "as", "in", "CSV", "format", ".", "This", "can", "be", "used", "to", "store", "the", "output", "of", "a", "beat", "-", "tracker", "or", "segmentation", "algorithm", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/output.py#L120-L184
[ "def", "times_csv", "(", "path", ",", "times", ",", "annotations", "=", "None", ",", "delimiter", "=", "','", ",", "fmt", "=", "'%0.3f'", ")", ":", "if", "annotations", "is", "not", "None", "and", "len", "(", "annotations", ")", "!=", "len", "(", "times", ")", ":", "raise", "ParameterError", "(", "'len(annotations) != len(times)'", ")", "with", "open", "(", "path", ",", "'w'", ")", "as", "output_file", ":", "writer", "=", "csv", ".", "writer", "(", "output_file", ",", "delimiter", "=", "delimiter", ")", "if", "annotations", "is", "None", ":", "for", "t", "in", "times", ":", "writer", ".", "writerow", "(", "[", "fmt", "%", "t", "]", ")", "else", ":", "for", "t", ",", "lab", "in", "zip", "(", "times", ",", "annotations", ")", ":", "writer", ".", "writerow", "(", "[", "(", "fmt", "%", "t", ")", ",", "lab", "]", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
write_wav
Output a time series as a .wav file Note: only mono or stereo, floating-point data is supported. For more advanced and flexible output options, refer to `soundfile`. Parameters ---------- path : str path to save the output wav file y : np.ndarray [shape=(n,) or (2,n), dtype=np.float] audio time series (mono or stereo). Note that only floating-point values are supported. sr : int > 0 [scalar] sampling rate of `y` norm : boolean [scalar] enable amplitude normalization. For floating point `y`, scale the data to the range [-1, +1]. Examples -------- Trim a signal to 5 seconds and save it back >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=5.0) >>> librosa.output.write_wav('file_trim_5s.wav', y, sr) See Also -------- soundfile.write
librosa/output.py
def write_wav(path, y, sr, norm=False): """Output a time series as a .wav file Note: only mono or stereo, floating-point data is supported. For more advanced and flexible output options, refer to `soundfile`. Parameters ---------- path : str path to save the output wav file y : np.ndarray [shape=(n,) or (2,n), dtype=np.float] audio time series (mono or stereo). Note that only floating-point values are supported. sr : int > 0 [scalar] sampling rate of `y` norm : boolean [scalar] enable amplitude normalization. For floating point `y`, scale the data to the range [-1, +1]. Examples -------- Trim a signal to 5 seconds and save it back >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=5.0) >>> librosa.output.write_wav('file_trim_5s.wav', y, sr) See Also -------- soundfile.write """ # Validate the buffer. Stereo is okay here. util.valid_audio(y, mono=False) # normalize if norm and np.issubdtype(y.dtype, np.floating): wav = util.normalize(y, norm=np.inf, axis=None) else: wav = y # Check for stereo if wav.ndim > 1 and wav.shape[0] == 2: wav = wav.T # Save scipy.io.wavfile.write(path, sr, wav)
def write_wav(path, y, sr, norm=False): """Output a time series as a .wav file Note: only mono or stereo, floating-point data is supported. For more advanced and flexible output options, refer to `soundfile`. Parameters ---------- path : str path to save the output wav file y : np.ndarray [shape=(n,) or (2,n), dtype=np.float] audio time series (mono or stereo). Note that only floating-point values are supported. sr : int > 0 [scalar] sampling rate of `y` norm : boolean [scalar] enable amplitude normalization. For floating point `y`, scale the data to the range [-1, +1]. Examples -------- Trim a signal to 5 seconds and save it back >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=5.0) >>> librosa.output.write_wav('file_trim_5s.wav', y, sr) See Also -------- soundfile.write """ # Validate the buffer. Stereo is okay here. util.valid_audio(y, mono=False) # normalize if norm and np.issubdtype(y.dtype, np.floating): wav = util.normalize(y, norm=np.inf, axis=None) else: wav = y # Check for stereo if wav.ndim > 1 and wav.shape[0] == 2: wav = wav.T # Save scipy.io.wavfile.write(path, sr, wav)
[ "Output", "a", "time", "series", "as", "a", ".", "wav", "file" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/output.py#L187-L238
[ "def", "write_wav", "(", "path", ",", "y", ",", "sr", ",", "norm", "=", "False", ")", ":", "# Validate the buffer. Stereo is okay here.", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "# normalize", "if", "norm", "and", "np", ".", "issubdtype", "(", "y", ".", "dtype", ",", "np", ".", "floating", ")", ":", "wav", "=", "util", ".", "normalize", "(", "y", ",", "norm", "=", "np", ".", "inf", ",", "axis", "=", "None", ")", "else", ":", "wav", "=", "y", "# Check for stereo", "if", "wav", ".", "ndim", ">", "1", "and", "wav", ".", "shape", "[", "0", "]", "==", "2", ":", "wav", "=", "wav", ".", "T", "# Save", "scipy", ".", "io", ".", "wavfile", ".", "write", "(", "path", ",", "sr", ",", "wav", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
cmap
Get a default colormap from the given data. If the data is boolean, use a black and white colormap. If the data has both positive and negative values, use a diverging colormap. Otherwise, use a sequential colormap. Parameters ---------- data : np.ndarray Input data robust : bool If True, discard the top and bottom 2% of data when calculating range. cmap_seq : str The sequential colormap name cmap_bool : str The boolean colormap name cmap_div : str The diverging colormap name Returns ------- cmap : matplotlib.colors.Colormap The colormap to use for `data` See Also -------- matplotlib.pyplot.colormaps
librosa/display.py
def cmap(data, robust=True, cmap_seq='magma', cmap_bool='gray_r', cmap_div='coolwarm'): '''Get a default colormap from the given data. If the data is boolean, use a black and white colormap. If the data has both positive and negative values, use a diverging colormap. Otherwise, use a sequential colormap. Parameters ---------- data : np.ndarray Input data robust : bool If True, discard the top and bottom 2% of data when calculating range. cmap_seq : str The sequential colormap name cmap_bool : str The boolean colormap name cmap_div : str The diverging colormap name Returns ------- cmap : matplotlib.colors.Colormap The colormap to use for `data` See Also -------- matplotlib.pyplot.colormaps ''' data = np.atleast_1d(data) if data.dtype == 'bool': return get_cmap(cmap_bool) data = data[np.isfinite(data)] if robust: min_p, max_p = 2, 98 else: min_p, max_p = 0, 100 max_val = np.percentile(data, max_p) min_val = np.percentile(data, min_p) if min_val >= 0 or max_val <= 0: return get_cmap(cmap_seq) return get_cmap(cmap_div)
def cmap(data, robust=True, cmap_seq='magma', cmap_bool='gray_r', cmap_div='coolwarm'): '''Get a default colormap from the given data. If the data is boolean, use a black and white colormap. If the data has both positive and negative values, use a diverging colormap. Otherwise, use a sequential colormap. Parameters ---------- data : np.ndarray Input data robust : bool If True, discard the top and bottom 2% of data when calculating range. cmap_seq : str The sequential colormap name cmap_bool : str The boolean colormap name cmap_div : str The diverging colormap name Returns ------- cmap : matplotlib.colors.Colormap The colormap to use for `data` See Also -------- matplotlib.pyplot.colormaps ''' data = np.atleast_1d(data) if data.dtype == 'bool': return get_cmap(cmap_bool) data = data[np.isfinite(data)] if robust: min_p, max_p = 2, 98 else: min_p, max_p = 0, 100 max_val = np.percentile(data, max_p) min_val = np.percentile(data, min_p) if min_val >= 0 or max_val <= 0: return get_cmap(cmap_seq) return get_cmap(cmap_div)
[ "Get", "a", "default", "colormap", "from", "the", "given", "data", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L293-L349
[ "def", "cmap", "(", "data", ",", "robust", "=", "True", ",", "cmap_seq", "=", "'magma'", ",", "cmap_bool", "=", "'gray_r'", ",", "cmap_div", "=", "'coolwarm'", ")", ":", "data", "=", "np", ".", "atleast_1d", "(", "data", ")", "if", "data", ".", "dtype", "==", "'bool'", ":", "return", "get_cmap", "(", "cmap_bool", ")", "data", "=", "data", "[", "np", ".", "isfinite", "(", "data", ")", "]", "if", "robust", ":", "min_p", ",", "max_p", "=", "2", ",", "98", "else", ":", "min_p", ",", "max_p", "=", "0", ",", "100", "max_val", "=", "np", ".", "percentile", "(", "data", ",", "max_p", ")", "min_val", "=", "np", ".", "percentile", "(", "data", ",", "min_p", ")", "if", "min_val", ">=", "0", "or", "max_val", "<=", "0", ":", "return", "get_cmap", "(", "cmap_seq", ")", "return", "get_cmap", "(", "cmap_div", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__envelope
Compute the max-envelope of x at a stride/frame length of h
librosa/display.py
def __envelope(x, hop): '''Compute the max-envelope of x at a stride/frame length of h''' return util.frame(x, hop_length=hop, frame_length=hop).max(axis=0)
def __envelope(x, hop): '''Compute the max-envelope of x at a stride/frame length of h''' return util.frame(x, hop_length=hop, frame_length=hop).max(axis=0)
[ "Compute", "the", "max", "-", "envelope", "of", "x", "at", "a", "stride", "/", "frame", "length", "of", "h" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L352-L354
[ "def", "__envelope", "(", "x", ",", "hop", ")", ":", "return", "util", ".", "frame", "(", "x", ",", "hop_length", "=", "hop", ",", "frame_length", "=", "hop", ")", ".", "max", "(", "axis", "=", "0", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
waveplot
Plot the amplitude envelope of a waveform. If `y` is monophonic, a filled curve is drawn between `[-abs(y), abs(y)]`. If `y` is stereo, the curve is drawn between `[-abs(y[1]), abs(y[0])]`, so that the left and right channels are drawn above and below the axis, respectively. Long signals (`duration >= max_points`) are down-sampled to at most `max_sr` before plotting. Parameters ---------- y : np.ndarray [shape=(n,) or (2,n)] audio time series (mono or stereo) sr : number > 0 [scalar] sampling rate of `y` max_points : postive number or None Maximum number of time-points to plot: if `max_points` exceeds the duration of `y`, then `y` is downsampled. If `None`, no downsampling is performed. x_axis : str {'time', 'off', 'none'} or None If 'time', the x-axis is given time tick-marks. ax : matplotlib.axes.Axes or None Axes to plot on instead of the default `plt.gca()`. offset : float Horizontal offset (in seconds) to start the waveform plot max_sr : number > 0 [scalar] Maximum sampling rate for the visualization kwargs Additional keyword arguments to `matplotlib.pyplot.fill_between` Returns ------- pc : matplotlib.collections.PolyCollection The PolyCollection created by `fill_between`. See also -------- librosa.core.resample matplotlib.pyplot.fill_between Examples -------- Plot a monophonic waveform >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=10) >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.waveplot(y, sr=sr) >>> plt.title('Monophonic') Or a stereo waveform >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... mono=False, duration=10) >>> plt.subplot(3, 1, 2) >>> librosa.display.waveplot(y, sr=sr) >>> plt.title('Stereo') Or harmonic and percussive components with transparency >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=10) >>> y_harm, y_perc = librosa.effects.hpss(y) >>> plt.subplot(3, 1, 3) >>> librosa.display.waveplot(y_harm, sr=sr, alpha=0.25) >>> librosa.display.waveplot(y_perc, sr=sr, color='r', alpha=0.5) >>> plt.title('Harmonic + Percussive') >>> plt.tight_layout()
librosa/display.py
def waveplot(y, sr=22050, max_points=5e4, x_axis='time', offset=0.0, max_sr=1000, ax=None, **kwargs): '''Plot the amplitude envelope of a waveform. If `y` is monophonic, a filled curve is drawn between `[-abs(y), abs(y)]`. If `y` is stereo, the curve is drawn between `[-abs(y[1]), abs(y[0])]`, so that the left and right channels are drawn above and below the axis, respectively. Long signals (`duration >= max_points`) are down-sampled to at most `max_sr` before plotting. Parameters ---------- y : np.ndarray [shape=(n,) or (2,n)] audio time series (mono or stereo) sr : number > 0 [scalar] sampling rate of `y` max_points : postive number or None Maximum number of time-points to plot: if `max_points` exceeds the duration of `y`, then `y` is downsampled. If `None`, no downsampling is performed. x_axis : str {'time', 'off', 'none'} or None If 'time', the x-axis is given time tick-marks. ax : matplotlib.axes.Axes or None Axes to plot on instead of the default `plt.gca()`. offset : float Horizontal offset (in seconds) to start the waveform plot max_sr : number > 0 [scalar] Maximum sampling rate for the visualization kwargs Additional keyword arguments to `matplotlib.pyplot.fill_between` Returns ------- pc : matplotlib.collections.PolyCollection The PolyCollection created by `fill_between`. See also -------- librosa.core.resample matplotlib.pyplot.fill_between Examples -------- Plot a monophonic waveform >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=10) >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.waveplot(y, sr=sr) >>> plt.title('Monophonic') Or a stereo waveform >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... mono=False, duration=10) >>> plt.subplot(3, 1, 2) >>> librosa.display.waveplot(y, sr=sr) >>> plt.title('Stereo') Or harmonic and percussive components with transparency >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=10) >>> y_harm, y_perc = librosa.effects.hpss(y) >>> plt.subplot(3, 1, 3) >>> librosa.display.waveplot(y_harm, sr=sr, alpha=0.25) >>> librosa.display.waveplot(y_perc, sr=sr, color='r', alpha=0.5) >>> plt.title('Harmonic + Percussive') >>> plt.tight_layout() ''' util.valid_audio(y, mono=False) if not (isinstance(max_sr, int) and max_sr > 0): raise ParameterError('max_sr must be a non-negative integer') target_sr = sr hop_length = 1 if max_points is not None: if max_points <= 0: raise ParameterError('max_points must be strictly positive') if max_points < y.shape[-1]: target_sr = min(max_sr, (sr * y.shape[-1]) // max_points) hop_length = sr // target_sr if y.ndim == 1: y = __envelope(y, hop_length) else: y = np.vstack([__envelope(_, hop_length) for _ in y]) if y.ndim > 1: y_top = y[0] y_bottom = -y[1] else: y_top = y y_bottom = -y axes = __check_axes(ax) kwargs.setdefault('color', next(axes._get_lines.prop_cycler)['color']) locs = offset + core.frames_to_time(np.arange(len(y_top)), sr=sr, hop_length=hop_length) out = axes.fill_between(locs, y_bottom, y_top, **kwargs) axes.set_xlim([locs.min(), locs.max()]) if x_axis == 'time': axes.xaxis.set_major_formatter(TimeFormatter(lag=False)) axes.xaxis.set_label_text('Time') elif x_axis is None or x_axis in ['off', 'none']: axes.set_xticks([]) else: raise ParameterError('Unknown x_axis value: {}'.format(x_axis)) return out
def waveplot(y, sr=22050, max_points=5e4, x_axis='time', offset=0.0, max_sr=1000, ax=None, **kwargs): '''Plot the amplitude envelope of a waveform. If `y` is monophonic, a filled curve is drawn between `[-abs(y), abs(y)]`. If `y` is stereo, the curve is drawn between `[-abs(y[1]), abs(y[0])]`, so that the left and right channels are drawn above and below the axis, respectively. Long signals (`duration >= max_points`) are down-sampled to at most `max_sr` before plotting. Parameters ---------- y : np.ndarray [shape=(n,) or (2,n)] audio time series (mono or stereo) sr : number > 0 [scalar] sampling rate of `y` max_points : postive number or None Maximum number of time-points to plot: if `max_points` exceeds the duration of `y`, then `y` is downsampled. If `None`, no downsampling is performed. x_axis : str {'time', 'off', 'none'} or None If 'time', the x-axis is given time tick-marks. ax : matplotlib.axes.Axes or None Axes to plot on instead of the default `plt.gca()`. offset : float Horizontal offset (in seconds) to start the waveform plot max_sr : number > 0 [scalar] Maximum sampling rate for the visualization kwargs Additional keyword arguments to `matplotlib.pyplot.fill_between` Returns ------- pc : matplotlib.collections.PolyCollection The PolyCollection created by `fill_between`. See also -------- librosa.core.resample matplotlib.pyplot.fill_between Examples -------- Plot a monophonic waveform >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=10) >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.waveplot(y, sr=sr) >>> plt.title('Monophonic') Or a stereo waveform >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... mono=False, duration=10) >>> plt.subplot(3, 1, 2) >>> librosa.display.waveplot(y, sr=sr) >>> plt.title('Stereo') Or harmonic and percussive components with transparency >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=10) >>> y_harm, y_perc = librosa.effects.hpss(y) >>> plt.subplot(3, 1, 3) >>> librosa.display.waveplot(y_harm, sr=sr, alpha=0.25) >>> librosa.display.waveplot(y_perc, sr=sr, color='r', alpha=0.5) >>> plt.title('Harmonic + Percussive') >>> plt.tight_layout() ''' util.valid_audio(y, mono=False) if not (isinstance(max_sr, int) and max_sr > 0): raise ParameterError('max_sr must be a non-negative integer') target_sr = sr hop_length = 1 if max_points is not None: if max_points <= 0: raise ParameterError('max_points must be strictly positive') if max_points < y.shape[-1]: target_sr = min(max_sr, (sr * y.shape[-1]) // max_points) hop_length = sr // target_sr if y.ndim == 1: y = __envelope(y, hop_length) else: y = np.vstack([__envelope(_, hop_length) for _ in y]) if y.ndim > 1: y_top = y[0] y_bottom = -y[1] else: y_top = y y_bottom = -y axes = __check_axes(ax) kwargs.setdefault('color', next(axes._get_lines.prop_cycler)['color']) locs = offset + core.frames_to_time(np.arange(len(y_top)), sr=sr, hop_length=hop_length) out = axes.fill_between(locs, y_bottom, y_top, **kwargs) axes.set_xlim([locs.min(), locs.max()]) if x_axis == 'time': axes.xaxis.set_major_formatter(TimeFormatter(lag=False)) axes.xaxis.set_label_text('Time') elif x_axis is None or x_axis in ['off', 'none']: axes.set_xticks([]) else: raise ParameterError('Unknown x_axis value: {}'.format(x_axis)) return out
[ "Plot", "the", "amplitude", "envelope", "of", "a", "waveform", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L357-L488
[ "def", "waveplot", "(", "y", ",", "sr", "=", "22050", ",", "max_points", "=", "5e4", ",", "x_axis", "=", "'time'", ",", "offset", "=", "0.0", ",", "max_sr", "=", "1000", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "if", "not", "(", "isinstance", "(", "max_sr", ",", "int", ")", "and", "max_sr", ">", "0", ")", ":", "raise", "ParameterError", "(", "'max_sr must be a non-negative integer'", ")", "target_sr", "=", "sr", "hop_length", "=", "1", "if", "max_points", "is", "not", "None", ":", "if", "max_points", "<=", "0", ":", "raise", "ParameterError", "(", "'max_points must be strictly positive'", ")", "if", "max_points", "<", "y", ".", "shape", "[", "-", "1", "]", ":", "target_sr", "=", "min", "(", "max_sr", ",", "(", "sr", "*", "y", ".", "shape", "[", "-", "1", "]", ")", "//", "max_points", ")", "hop_length", "=", "sr", "//", "target_sr", "if", "y", ".", "ndim", "==", "1", ":", "y", "=", "__envelope", "(", "y", ",", "hop_length", ")", "else", ":", "y", "=", "np", ".", "vstack", "(", "[", "__envelope", "(", "_", ",", "hop_length", ")", "for", "_", "in", "y", "]", ")", "if", "y", ".", "ndim", ">", "1", ":", "y_top", "=", "y", "[", "0", "]", "y_bottom", "=", "-", "y", "[", "1", "]", "else", ":", "y_top", "=", "y", "y_bottom", "=", "-", "y", "axes", "=", "__check_axes", "(", "ax", ")", "kwargs", ".", "setdefault", "(", "'color'", ",", "next", "(", "axes", ".", "_get_lines", ".", "prop_cycler", ")", "[", "'color'", "]", ")", "locs", "=", "offset", "+", "core", ".", "frames_to_time", "(", "np", ".", "arange", "(", "len", "(", "y_top", ")", ")", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", "out", "=", "axes", ".", "fill_between", "(", "locs", ",", "y_bottom", ",", "y_top", ",", "*", "*", "kwargs", ")", "axes", ".", "set_xlim", "(", "[", "locs", ".", "min", "(", ")", ",", "locs", ".", "max", "(", ")", "]", ")", "if", "x_axis", "==", "'time'", ":", "axes", ".", "xaxis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "lag", "=", "False", ")", ")", "axes", ".", "xaxis", ".", "set_label_text", "(", "'Time'", ")", "elif", "x_axis", "is", "None", "or", "x_axis", "in", "[", "'off'", ",", "'none'", "]", ":", "axes", ".", "set_xticks", "(", "[", "]", ")", "else", ":", "raise", "ParameterError", "(", "'Unknown x_axis value: {}'", ".", "format", "(", "x_axis", ")", ")", "return", "out" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
specshow
Display a spectrogram/chromagram/cqt/etc. Parameters ---------- data : np.ndarray [shape=(d, n)] Matrix to display (e.g., spectrogram) sr : number > 0 [scalar] Sample rate used to determine time scale in x-axis. hop_length : int > 0 [scalar] Hop length, also used to determine time scale in x-axis x_axis : None or str y_axis : None or str Range for the x- and y-axes. Valid types are: - None, 'none', or 'off' : no axis decoration is displayed. Frequency types: - 'linear', 'fft', 'hz' : frequency range is determined by the FFT window and sampling rate. - 'log' : the spectrum is displayed on a log scale. - 'mel' : frequencies are determined by the mel scale. - 'cqt_hz' : frequencies are determined by the CQT scale. - 'cqt_note' : pitches are determined by the CQT scale. All frequency types are plotted in units of Hz. Categorical types: - 'chroma' : pitches are determined by the chroma filters. Pitch classes are arranged at integer locations (0-11). - 'tonnetz' : axes are labeled by Tonnetz dimensions (0-5) - 'frames' : markers are shown as frame counts. Time types: - 'time' : markers are shown as milliseconds, seconds, minutes, or hours. Values are plotted in units of seconds. - 's' : markers are shown as seconds. - 'ms' : markers are shown as milliseconds. - 'lag' : like time, but past the halfway point counts as negative values. - 'lag_s' : same as lag, but in seconds. - 'lag_ms' : same as lag, but in milliseconds. Other: - 'tempo' : markers are shown as beats-per-minute (BPM) using a logarithmic scale. x_coords : np.ndarray [shape=data.shape[1]+1] y_coords : np.ndarray [shape=data.shape[0]+1] Optional positioning coordinates of the input data. These can be use to explicitly set the location of each element `data[i, j]`, e.g., for displaying beat-synchronous features in natural time coordinates. If not provided, they are inferred from `x_axis` and `y_axis`. fmin : float > 0 [scalar] or None Frequency of the lowest spectrogram bin. Used for Mel and CQT scales. If `y_axis` is `cqt_hz` or `cqt_note` and `fmin` is not given, it is set by default to `note_to_hz('C1')`. fmax : float > 0 [scalar] or None Used for setting the Mel frequency scales bins_per_octave : int > 0 [scalar] Number of bins per octave. Used for CQT frequency scale. ax : matplotlib.axes.Axes or None Axes to plot on instead of the default `plt.gca()`. kwargs : additional keyword arguments Arguments passed through to `matplotlib.pyplot.pcolormesh`. By default, the following options are set: - `rasterized=True` - `shading='flat'` - `edgecolors='None'` Returns ------- axes The axis handle for the figure. See Also -------- cmap : Automatic colormap detection matplotlib.pyplot.pcolormesh Examples -------- Visualize an STFT power spectrum >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> plt.figure(figsize=(12, 8)) >>> D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) >>> plt.subplot(4, 2, 1) >>> librosa.display.specshow(D, y_axis='linear') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Linear-frequency power spectrogram') Or on a logarithmic scale >>> plt.subplot(4, 2, 2) >>> librosa.display.specshow(D, y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log-frequency power spectrogram') Or use a CQT scale >>> CQT = librosa.amplitude_to_db(np.abs(librosa.cqt(y, sr=sr)), ref=np.max) >>> plt.subplot(4, 2, 3) >>> librosa.display.specshow(CQT, y_axis='cqt_note') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrogram (note)') >>> plt.subplot(4, 2, 4) >>> librosa.display.specshow(CQT, y_axis='cqt_hz') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrogram (Hz)') Draw a chromagram with pitch classes >>> C = librosa.feature.chroma_cqt(y=y, sr=sr) >>> plt.subplot(4, 2, 5) >>> librosa.display.specshow(C, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Chromagram') Force a grayscale colormap (white -> black) >>> plt.subplot(4, 2, 6) >>> librosa.display.specshow(D, cmap='gray_r', y_axis='linear') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Linear power spectrogram (grayscale)') Draw time markers automatically >>> plt.subplot(4, 2, 7) >>> librosa.display.specshow(D, x_axis='time', y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log power spectrogram') Draw a tempogram with BPM markers >>> plt.subplot(4, 2, 8) >>> Tgram = librosa.feature.tempogram(y=y, sr=sr) >>> librosa.display.specshow(Tgram, x_axis='time', y_axis='tempo') >>> plt.colorbar() >>> plt.title('Tempogram') >>> plt.tight_layout() Draw beat-synchronous chroma in natural time >>> plt.figure() >>> tempo, beat_f = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> beat_f = librosa.util.fix_frames(beat_f, x_max=C.shape[1]) >>> Csync = librosa.util.sync(C, beat_f, aggregate=np.median) >>> beat_t = librosa.frames_to_time(beat_f, sr=sr) >>> ax1 = plt.subplot(2,1,1) >>> librosa.display.specshow(C, y_axis='chroma', x_axis='time') >>> plt.title('Chroma (linear time)') >>> ax2 = plt.subplot(2,1,2, sharex=ax1) >>> librosa.display.specshow(Csync, y_axis='chroma', x_axis='time', ... x_coords=beat_t) >>> plt.title('Chroma (beat time)') >>> plt.tight_layout()
librosa/display.py
def specshow(data, x_coords=None, y_coords=None, x_axis=None, y_axis=None, sr=22050, hop_length=512, fmin=None, fmax=None, bins_per_octave=12, ax=None, **kwargs): '''Display a spectrogram/chromagram/cqt/etc. Parameters ---------- data : np.ndarray [shape=(d, n)] Matrix to display (e.g., spectrogram) sr : number > 0 [scalar] Sample rate used to determine time scale in x-axis. hop_length : int > 0 [scalar] Hop length, also used to determine time scale in x-axis x_axis : None or str y_axis : None or str Range for the x- and y-axes. Valid types are: - None, 'none', or 'off' : no axis decoration is displayed. Frequency types: - 'linear', 'fft', 'hz' : frequency range is determined by the FFT window and sampling rate. - 'log' : the spectrum is displayed on a log scale. - 'mel' : frequencies are determined by the mel scale. - 'cqt_hz' : frequencies are determined by the CQT scale. - 'cqt_note' : pitches are determined by the CQT scale. All frequency types are plotted in units of Hz. Categorical types: - 'chroma' : pitches are determined by the chroma filters. Pitch classes are arranged at integer locations (0-11). - 'tonnetz' : axes are labeled by Tonnetz dimensions (0-5) - 'frames' : markers are shown as frame counts. Time types: - 'time' : markers are shown as milliseconds, seconds, minutes, or hours. Values are plotted in units of seconds. - 's' : markers are shown as seconds. - 'ms' : markers are shown as milliseconds. - 'lag' : like time, but past the halfway point counts as negative values. - 'lag_s' : same as lag, but in seconds. - 'lag_ms' : same as lag, but in milliseconds. Other: - 'tempo' : markers are shown as beats-per-minute (BPM) using a logarithmic scale. x_coords : np.ndarray [shape=data.shape[1]+1] y_coords : np.ndarray [shape=data.shape[0]+1] Optional positioning coordinates of the input data. These can be use to explicitly set the location of each element `data[i, j]`, e.g., for displaying beat-synchronous features in natural time coordinates. If not provided, they are inferred from `x_axis` and `y_axis`. fmin : float > 0 [scalar] or None Frequency of the lowest spectrogram bin. Used for Mel and CQT scales. If `y_axis` is `cqt_hz` or `cqt_note` and `fmin` is not given, it is set by default to `note_to_hz('C1')`. fmax : float > 0 [scalar] or None Used for setting the Mel frequency scales bins_per_octave : int > 0 [scalar] Number of bins per octave. Used for CQT frequency scale. ax : matplotlib.axes.Axes or None Axes to plot on instead of the default `plt.gca()`. kwargs : additional keyword arguments Arguments passed through to `matplotlib.pyplot.pcolormesh`. By default, the following options are set: - `rasterized=True` - `shading='flat'` - `edgecolors='None'` Returns ------- axes The axis handle for the figure. See Also -------- cmap : Automatic colormap detection matplotlib.pyplot.pcolormesh Examples -------- Visualize an STFT power spectrum >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> plt.figure(figsize=(12, 8)) >>> D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) >>> plt.subplot(4, 2, 1) >>> librosa.display.specshow(D, y_axis='linear') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Linear-frequency power spectrogram') Or on a logarithmic scale >>> plt.subplot(4, 2, 2) >>> librosa.display.specshow(D, y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log-frequency power spectrogram') Or use a CQT scale >>> CQT = librosa.amplitude_to_db(np.abs(librosa.cqt(y, sr=sr)), ref=np.max) >>> plt.subplot(4, 2, 3) >>> librosa.display.specshow(CQT, y_axis='cqt_note') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrogram (note)') >>> plt.subplot(4, 2, 4) >>> librosa.display.specshow(CQT, y_axis='cqt_hz') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrogram (Hz)') Draw a chromagram with pitch classes >>> C = librosa.feature.chroma_cqt(y=y, sr=sr) >>> plt.subplot(4, 2, 5) >>> librosa.display.specshow(C, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Chromagram') Force a grayscale colormap (white -> black) >>> plt.subplot(4, 2, 6) >>> librosa.display.specshow(D, cmap='gray_r', y_axis='linear') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Linear power spectrogram (grayscale)') Draw time markers automatically >>> plt.subplot(4, 2, 7) >>> librosa.display.specshow(D, x_axis='time', y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log power spectrogram') Draw a tempogram with BPM markers >>> plt.subplot(4, 2, 8) >>> Tgram = librosa.feature.tempogram(y=y, sr=sr) >>> librosa.display.specshow(Tgram, x_axis='time', y_axis='tempo') >>> plt.colorbar() >>> plt.title('Tempogram') >>> plt.tight_layout() Draw beat-synchronous chroma in natural time >>> plt.figure() >>> tempo, beat_f = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> beat_f = librosa.util.fix_frames(beat_f, x_max=C.shape[1]) >>> Csync = librosa.util.sync(C, beat_f, aggregate=np.median) >>> beat_t = librosa.frames_to_time(beat_f, sr=sr) >>> ax1 = plt.subplot(2,1,1) >>> librosa.display.specshow(C, y_axis='chroma', x_axis='time') >>> plt.title('Chroma (linear time)') >>> ax2 = plt.subplot(2,1,2, sharex=ax1) >>> librosa.display.specshow(Csync, y_axis='chroma', x_axis='time', ... x_coords=beat_t) >>> plt.title('Chroma (beat time)') >>> plt.tight_layout() ''' if np.issubdtype(data.dtype, np.complexfloating): warnings.warn('Trying to display complex-valued input. ' 'Showing magnitude instead.') data = np.abs(data) kwargs.setdefault('cmap', cmap(data)) kwargs.setdefault('rasterized', True) kwargs.setdefault('edgecolors', 'None') kwargs.setdefault('shading', 'flat') all_params = dict(kwargs=kwargs, sr=sr, fmin=fmin, fmax=fmax, bins_per_octave=bins_per_octave, hop_length=hop_length) # Get the x and y coordinates y_coords = __mesh_coords(y_axis, y_coords, data.shape[0], **all_params) x_coords = __mesh_coords(x_axis, x_coords, data.shape[1], **all_params) axes = __check_axes(ax) out = axes.pcolormesh(x_coords, y_coords, data, **kwargs) __set_current_image(ax, out) axes.set_xlim(x_coords.min(), x_coords.max()) axes.set_ylim(y_coords.min(), y_coords.max()) # Set up axis scaling __scale_axes(axes, x_axis, 'x') __scale_axes(axes, y_axis, 'y') # Construct tickers and locators __decorate_axis(axes.xaxis, x_axis) __decorate_axis(axes.yaxis, y_axis) return axes
def specshow(data, x_coords=None, y_coords=None, x_axis=None, y_axis=None, sr=22050, hop_length=512, fmin=None, fmax=None, bins_per_octave=12, ax=None, **kwargs): '''Display a spectrogram/chromagram/cqt/etc. Parameters ---------- data : np.ndarray [shape=(d, n)] Matrix to display (e.g., spectrogram) sr : number > 0 [scalar] Sample rate used to determine time scale in x-axis. hop_length : int > 0 [scalar] Hop length, also used to determine time scale in x-axis x_axis : None or str y_axis : None or str Range for the x- and y-axes. Valid types are: - None, 'none', or 'off' : no axis decoration is displayed. Frequency types: - 'linear', 'fft', 'hz' : frequency range is determined by the FFT window and sampling rate. - 'log' : the spectrum is displayed on a log scale. - 'mel' : frequencies are determined by the mel scale. - 'cqt_hz' : frequencies are determined by the CQT scale. - 'cqt_note' : pitches are determined by the CQT scale. All frequency types are plotted in units of Hz. Categorical types: - 'chroma' : pitches are determined by the chroma filters. Pitch classes are arranged at integer locations (0-11). - 'tonnetz' : axes are labeled by Tonnetz dimensions (0-5) - 'frames' : markers are shown as frame counts. Time types: - 'time' : markers are shown as milliseconds, seconds, minutes, or hours. Values are plotted in units of seconds. - 's' : markers are shown as seconds. - 'ms' : markers are shown as milliseconds. - 'lag' : like time, but past the halfway point counts as negative values. - 'lag_s' : same as lag, but in seconds. - 'lag_ms' : same as lag, but in milliseconds. Other: - 'tempo' : markers are shown as beats-per-minute (BPM) using a logarithmic scale. x_coords : np.ndarray [shape=data.shape[1]+1] y_coords : np.ndarray [shape=data.shape[0]+1] Optional positioning coordinates of the input data. These can be use to explicitly set the location of each element `data[i, j]`, e.g., for displaying beat-synchronous features in natural time coordinates. If not provided, they are inferred from `x_axis` and `y_axis`. fmin : float > 0 [scalar] or None Frequency of the lowest spectrogram bin. Used for Mel and CQT scales. If `y_axis` is `cqt_hz` or `cqt_note` and `fmin` is not given, it is set by default to `note_to_hz('C1')`. fmax : float > 0 [scalar] or None Used for setting the Mel frequency scales bins_per_octave : int > 0 [scalar] Number of bins per octave. Used for CQT frequency scale. ax : matplotlib.axes.Axes or None Axes to plot on instead of the default `plt.gca()`. kwargs : additional keyword arguments Arguments passed through to `matplotlib.pyplot.pcolormesh`. By default, the following options are set: - `rasterized=True` - `shading='flat'` - `edgecolors='None'` Returns ------- axes The axis handle for the figure. See Also -------- cmap : Automatic colormap detection matplotlib.pyplot.pcolormesh Examples -------- Visualize an STFT power spectrum >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> plt.figure(figsize=(12, 8)) >>> D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) >>> plt.subplot(4, 2, 1) >>> librosa.display.specshow(D, y_axis='linear') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Linear-frequency power spectrogram') Or on a logarithmic scale >>> plt.subplot(4, 2, 2) >>> librosa.display.specshow(D, y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log-frequency power spectrogram') Or use a CQT scale >>> CQT = librosa.amplitude_to_db(np.abs(librosa.cqt(y, sr=sr)), ref=np.max) >>> plt.subplot(4, 2, 3) >>> librosa.display.specshow(CQT, y_axis='cqt_note') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrogram (note)') >>> plt.subplot(4, 2, 4) >>> librosa.display.specshow(CQT, y_axis='cqt_hz') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Constant-Q power spectrogram (Hz)') Draw a chromagram with pitch classes >>> C = librosa.feature.chroma_cqt(y=y, sr=sr) >>> plt.subplot(4, 2, 5) >>> librosa.display.specshow(C, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Chromagram') Force a grayscale colormap (white -> black) >>> plt.subplot(4, 2, 6) >>> librosa.display.specshow(D, cmap='gray_r', y_axis='linear') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Linear power spectrogram (grayscale)') Draw time markers automatically >>> plt.subplot(4, 2, 7) >>> librosa.display.specshow(D, x_axis='time', y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log power spectrogram') Draw a tempogram with BPM markers >>> plt.subplot(4, 2, 8) >>> Tgram = librosa.feature.tempogram(y=y, sr=sr) >>> librosa.display.specshow(Tgram, x_axis='time', y_axis='tempo') >>> plt.colorbar() >>> plt.title('Tempogram') >>> plt.tight_layout() Draw beat-synchronous chroma in natural time >>> plt.figure() >>> tempo, beat_f = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> beat_f = librosa.util.fix_frames(beat_f, x_max=C.shape[1]) >>> Csync = librosa.util.sync(C, beat_f, aggregate=np.median) >>> beat_t = librosa.frames_to_time(beat_f, sr=sr) >>> ax1 = plt.subplot(2,1,1) >>> librosa.display.specshow(C, y_axis='chroma', x_axis='time') >>> plt.title('Chroma (linear time)') >>> ax2 = plt.subplot(2,1,2, sharex=ax1) >>> librosa.display.specshow(Csync, y_axis='chroma', x_axis='time', ... x_coords=beat_t) >>> plt.title('Chroma (beat time)') >>> plt.tight_layout() ''' if np.issubdtype(data.dtype, np.complexfloating): warnings.warn('Trying to display complex-valued input. ' 'Showing magnitude instead.') data = np.abs(data) kwargs.setdefault('cmap', cmap(data)) kwargs.setdefault('rasterized', True) kwargs.setdefault('edgecolors', 'None') kwargs.setdefault('shading', 'flat') all_params = dict(kwargs=kwargs, sr=sr, fmin=fmin, fmax=fmax, bins_per_octave=bins_per_octave, hop_length=hop_length) # Get the x and y coordinates y_coords = __mesh_coords(y_axis, y_coords, data.shape[0], **all_params) x_coords = __mesh_coords(x_axis, x_coords, data.shape[1], **all_params) axes = __check_axes(ax) out = axes.pcolormesh(x_coords, y_coords, data, **kwargs) __set_current_image(ax, out) axes.set_xlim(x_coords.min(), x_coords.max()) axes.set_ylim(y_coords.min(), y_coords.max()) # Set up axis scaling __scale_axes(axes, x_axis, 'x') __scale_axes(axes, y_axis, 'y') # Construct tickers and locators __decorate_axis(axes.xaxis, x_axis) __decorate_axis(axes.yaxis, y_axis) return axes
[ "Display", "a", "spectrogram", "/", "chromagram", "/", "cqt", "/", "etc", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L491-L731
[ "def", "specshow", "(", "data", ",", "x_coords", "=", "None", ",", "y_coords", "=", "None", ",", "x_axis", "=", "None", ",", "y_axis", "=", "None", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "fmax", "=", "None", ",", "bins_per_octave", "=", "12", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "np", ".", "issubdtype", "(", "data", ".", "dtype", ",", "np", ".", "complexfloating", ")", ":", "warnings", ".", "warn", "(", "'Trying to display complex-valued input. '", "'Showing magnitude instead.'", ")", "data", "=", "np", ".", "abs", "(", "data", ")", "kwargs", ".", "setdefault", "(", "'cmap'", ",", "cmap", "(", "data", ")", ")", "kwargs", ".", "setdefault", "(", "'rasterized'", ",", "True", ")", "kwargs", ".", "setdefault", "(", "'edgecolors'", ",", "'None'", ")", "kwargs", ".", "setdefault", "(", "'shading'", ",", "'flat'", ")", "all_params", "=", "dict", "(", "kwargs", "=", "kwargs", ",", "sr", "=", "sr", ",", "fmin", "=", "fmin", ",", "fmax", "=", "fmax", ",", "bins_per_octave", "=", "bins_per_octave", ",", "hop_length", "=", "hop_length", ")", "# Get the x and y coordinates", "y_coords", "=", "__mesh_coords", "(", "y_axis", ",", "y_coords", ",", "data", ".", "shape", "[", "0", "]", ",", "*", "*", "all_params", ")", "x_coords", "=", "__mesh_coords", "(", "x_axis", ",", "x_coords", ",", "data", ".", "shape", "[", "1", "]", ",", "*", "*", "all_params", ")", "axes", "=", "__check_axes", "(", "ax", ")", "out", "=", "axes", ".", "pcolormesh", "(", "x_coords", ",", "y_coords", ",", "data", ",", "*", "*", "kwargs", ")", "__set_current_image", "(", "ax", ",", "out", ")", "axes", ".", "set_xlim", "(", "x_coords", ".", "min", "(", ")", ",", "x_coords", ".", "max", "(", ")", ")", "axes", ".", "set_ylim", "(", "y_coords", ".", "min", "(", ")", ",", "y_coords", ".", "max", "(", ")", ")", "# Set up axis scaling", "__scale_axes", "(", "axes", ",", "x_axis", ",", "'x'", ")", "__scale_axes", "(", "axes", ",", "y_axis", ",", "'y'", ")", "# Construct tickers and locators", "__decorate_axis", "(", "axes", ".", "xaxis", ",", "x_axis", ")", "__decorate_axis", "(", "axes", ".", "yaxis", ",", "y_axis", ")", "return", "axes" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__set_current_image
Helper to set the current image in pyplot mode. If the provided `ax` is not `None`, then we assume that the user is using the object API. In this case, the pyplot current image is not set.
librosa/display.py
def __set_current_image(ax, img): '''Helper to set the current image in pyplot mode. If the provided `ax` is not `None`, then we assume that the user is using the object API. In this case, the pyplot current image is not set. ''' if ax is None: import matplotlib.pyplot as plt plt.sci(img)
def __set_current_image(ax, img): '''Helper to set the current image in pyplot mode. If the provided `ax` is not `None`, then we assume that the user is using the object API. In this case, the pyplot current image is not set. ''' if ax is None: import matplotlib.pyplot as plt plt.sci(img)
[ "Helper", "to", "set", "the", "current", "image", "in", "pyplot", "mode", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L734-L743
[ "def", "__set_current_image", "(", "ax", ",", "img", ")", ":", "if", "ax", "is", "None", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "plt", ".", "sci", "(", "img", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__mesh_coords
Compute axis coordinates
librosa/display.py
def __mesh_coords(ax_type, coords, n, **kwargs): '''Compute axis coordinates''' if coords is not None: if len(coords) < n: raise ParameterError('Coordinate shape mismatch: ' '{}<{}'.format(len(coords), n)) return coords coord_map = {'linear': __coord_fft_hz, 'hz': __coord_fft_hz, 'log': __coord_fft_hz, 'mel': __coord_mel_hz, 'cqt': __coord_cqt_hz, 'cqt_hz': __coord_cqt_hz, 'cqt_note': __coord_cqt_hz, 'chroma': __coord_chroma, 'time': __coord_time, 's': __coord_time, 'ms': __coord_time, 'lag': __coord_time, 'lag_s': __coord_time, 'lag_ms': __coord_time, 'tonnetz': __coord_n, 'off': __coord_n, 'tempo': __coord_tempo, 'frames': __coord_n, None: __coord_n} if ax_type not in coord_map: raise ParameterError('Unknown axis type: {}'.format(ax_type)) return coord_map[ax_type](n, **kwargs)
def __mesh_coords(ax_type, coords, n, **kwargs): '''Compute axis coordinates''' if coords is not None: if len(coords) < n: raise ParameterError('Coordinate shape mismatch: ' '{}<{}'.format(len(coords), n)) return coords coord_map = {'linear': __coord_fft_hz, 'hz': __coord_fft_hz, 'log': __coord_fft_hz, 'mel': __coord_mel_hz, 'cqt': __coord_cqt_hz, 'cqt_hz': __coord_cqt_hz, 'cqt_note': __coord_cqt_hz, 'chroma': __coord_chroma, 'time': __coord_time, 's': __coord_time, 'ms': __coord_time, 'lag': __coord_time, 'lag_s': __coord_time, 'lag_ms': __coord_time, 'tonnetz': __coord_n, 'off': __coord_n, 'tempo': __coord_tempo, 'frames': __coord_n, None: __coord_n} if ax_type not in coord_map: raise ParameterError('Unknown axis type: {}'.format(ax_type)) return coord_map[ax_type](n, **kwargs)
[ "Compute", "axis", "coordinates" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L746-L777
[ "def", "__mesh_coords", "(", "ax_type", ",", "coords", ",", "n", ",", "*", "*", "kwargs", ")", ":", "if", "coords", "is", "not", "None", ":", "if", "len", "(", "coords", ")", "<", "n", ":", "raise", "ParameterError", "(", "'Coordinate shape mismatch: '", "'{}<{}'", ".", "format", "(", "len", "(", "coords", ")", ",", "n", ")", ")", "return", "coords", "coord_map", "=", "{", "'linear'", ":", "__coord_fft_hz", ",", "'hz'", ":", "__coord_fft_hz", ",", "'log'", ":", "__coord_fft_hz", ",", "'mel'", ":", "__coord_mel_hz", ",", "'cqt'", ":", "__coord_cqt_hz", ",", "'cqt_hz'", ":", "__coord_cqt_hz", ",", "'cqt_note'", ":", "__coord_cqt_hz", ",", "'chroma'", ":", "__coord_chroma", ",", "'time'", ":", "__coord_time", ",", "'s'", ":", "__coord_time", ",", "'ms'", ":", "__coord_time", ",", "'lag'", ":", "__coord_time", ",", "'lag_s'", ":", "__coord_time", ",", "'lag_ms'", ":", "__coord_time", ",", "'tonnetz'", ":", "__coord_n", ",", "'off'", ":", "__coord_n", ",", "'tempo'", ":", "__coord_tempo", ",", "'frames'", ":", "__coord_n", ",", "None", ":", "__coord_n", "}", "if", "ax_type", "not", "in", "coord_map", ":", "raise", "ParameterError", "(", "'Unknown axis type: {}'", ".", "format", "(", "ax_type", ")", ")", "return", "coord_map", "[", "ax_type", "]", "(", "n", ",", "*", "*", "kwargs", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__check_axes
Check if "axes" is an instance of an axis object. If not, use `gca`.
librosa/display.py
def __check_axes(axes): '''Check if "axes" is an instance of an axis object. If not, use `gca`.''' if axes is None: import matplotlib.pyplot as plt axes = plt.gca() elif not isinstance(axes, Axes): raise ValueError("`axes` must be an instance of matplotlib.axes.Axes. " "Found type(axes)={}".format(type(axes))) return axes
def __check_axes(axes): '''Check if "axes" is an instance of an axis object. If not, use `gca`.''' if axes is None: import matplotlib.pyplot as plt axes = plt.gca() elif not isinstance(axes, Axes): raise ValueError("`axes` must be an instance of matplotlib.axes.Axes. " "Found type(axes)={}".format(type(axes))) return axes
[ "Check", "if", "axes", "is", "an", "instance", "of", "an", "axis", "object", ".", "If", "not", "use", "gca", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L780-L788
[ "def", "__check_axes", "(", "axes", ")", ":", "if", "axes", "is", "None", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "axes", "=", "plt", ".", "gca", "(", ")", "elif", "not", "isinstance", "(", "axes", ",", "Axes", ")", ":", "raise", "ValueError", "(", "\"`axes` must be an instance of matplotlib.axes.Axes. \"", "\"Found type(axes)={}\"", ".", "format", "(", "type", "(", "axes", ")", ")", ")", "return", "axes" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__scale_axes
Set the axis scaling
librosa/display.py
def __scale_axes(axes, ax_type, which): '''Set the axis scaling''' kwargs = dict() if which == 'x': thresh = 'linthreshx' base = 'basex' scale = 'linscalex' scaler = axes.set_xscale limit = axes.set_xlim else: thresh = 'linthreshy' base = 'basey' scale = 'linscaley' scaler = axes.set_yscale limit = axes.set_ylim # Map ticker scales if ax_type == 'mel': mode = 'symlog' kwargs[thresh] = 1000.0 kwargs[base] = 2 elif ax_type == 'log': mode = 'symlog' kwargs[base] = 2 kwargs[thresh] = core.note_to_hz('C2') kwargs[scale] = 0.5 elif ax_type in ['cqt', 'cqt_hz', 'cqt_note']: mode = 'log' kwargs[base] = 2 elif ax_type == 'tempo': mode = 'log' kwargs[base] = 2 limit(16, 480) else: return scaler(mode, **kwargs)
def __scale_axes(axes, ax_type, which): '''Set the axis scaling''' kwargs = dict() if which == 'x': thresh = 'linthreshx' base = 'basex' scale = 'linscalex' scaler = axes.set_xscale limit = axes.set_xlim else: thresh = 'linthreshy' base = 'basey' scale = 'linscaley' scaler = axes.set_yscale limit = axes.set_ylim # Map ticker scales if ax_type == 'mel': mode = 'symlog' kwargs[thresh] = 1000.0 kwargs[base] = 2 elif ax_type == 'log': mode = 'symlog' kwargs[base] = 2 kwargs[thresh] = core.note_to_hz('C2') kwargs[scale] = 0.5 elif ax_type in ['cqt', 'cqt_hz', 'cqt_note']: mode = 'log' kwargs[base] = 2 elif ax_type == 'tempo': mode = 'log' kwargs[base] = 2 limit(16, 480) else: return scaler(mode, **kwargs)
[ "Set", "the", "axis", "scaling" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L791-L831
[ "def", "__scale_axes", "(", "axes", ",", "ax_type", ",", "which", ")", ":", "kwargs", "=", "dict", "(", ")", "if", "which", "==", "'x'", ":", "thresh", "=", "'linthreshx'", "base", "=", "'basex'", "scale", "=", "'linscalex'", "scaler", "=", "axes", ".", "set_xscale", "limit", "=", "axes", ".", "set_xlim", "else", ":", "thresh", "=", "'linthreshy'", "base", "=", "'basey'", "scale", "=", "'linscaley'", "scaler", "=", "axes", ".", "set_yscale", "limit", "=", "axes", ".", "set_ylim", "# Map ticker scales", "if", "ax_type", "==", "'mel'", ":", "mode", "=", "'symlog'", "kwargs", "[", "thresh", "]", "=", "1000.0", "kwargs", "[", "base", "]", "=", "2", "elif", "ax_type", "==", "'log'", ":", "mode", "=", "'symlog'", "kwargs", "[", "base", "]", "=", "2", "kwargs", "[", "thresh", "]", "=", "core", ".", "note_to_hz", "(", "'C2'", ")", "kwargs", "[", "scale", "]", "=", "0.5", "elif", "ax_type", "in", "[", "'cqt'", ",", "'cqt_hz'", ",", "'cqt_note'", "]", ":", "mode", "=", "'log'", "kwargs", "[", "base", "]", "=", "2", "elif", "ax_type", "==", "'tempo'", ":", "mode", "=", "'log'", "kwargs", "[", "base", "]", "=", "2", "limit", "(", "16", ",", "480", ")", "else", ":", "return", "scaler", "(", "mode", ",", "*", "*", "kwargs", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__decorate_axis
Configure axis tickers, locators, and labels
librosa/display.py
def __decorate_axis(axis, ax_type): '''Configure axis tickers, locators, and labels''' if ax_type == 'tonnetz': axis.set_major_formatter(TonnetzFormatter()) axis.set_major_locator(FixedLocator(0.5 + np.arange(6))) axis.set_label_text('Tonnetz') elif ax_type == 'chroma': axis.set_major_formatter(ChromaFormatter()) axis.set_major_locator(FixedLocator(0.5 + np.add.outer(12 * np.arange(10), [0, 2, 4, 5, 7, 9, 11]).ravel())) axis.set_label_text('Pitch class') elif ax_type == 'tempo': axis.set_major_formatter(ScalarFormatter()) axis.set_major_locator(LogLocator(base=2.0)) axis.set_label_text('BPM') elif ax_type == 'time': axis.set_major_formatter(TimeFormatter(unit=None, lag=False)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Time') elif ax_type == 's': axis.set_major_formatter(TimeFormatter(unit='s', lag=False)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Time (s)') elif ax_type == 'ms': axis.set_major_formatter(TimeFormatter(unit='ms', lag=False)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Time (ms)') elif ax_type == 'lag': axis.set_major_formatter(TimeFormatter(unit=None, lag=True)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Lag') elif ax_type == 'lag_s': axis.set_major_formatter(TimeFormatter(unit='s', lag=True)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Lag (s)') elif ax_type == 'lag_ms': axis.set_major_formatter(TimeFormatter(unit='ms', lag=True)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Lag (ms)') elif ax_type == 'cqt_note': axis.set_major_formatter(NoteFormatter()) axis.set_major_locator(LogLocator(base=2.0)) axis.set_minor_formatter(NoteFormatter(major=False)) axis.set_minor_locator(LogLocator(base=2.0, subs=2.0**(np.arange(1, 12)/12.0))) axis.set_label_text('Note') elif ax_type in ['cqt_hz']: axis.set_major_formatter(LogHzFormatter()) axis.set_major_locator(LogLocator(base=2.0)) axis.set_minor_formatter(LogHzFormatter(major=False)) axis.set_minor_locator(LogLocator(base=2.0, subs=2.0**(np.arange(1, 12)/12.0))) axis.set_label_text('Hz') elif ax_type in ['mel', 'log']: axis.set_major_formatter(ScalarFormatter()) axis.set_major_locator(SymmetricalLogLocator(axis.get_transform())) axis.set_label_text('Hz') elif ax_type in ['linear', 'hz']: axis.set_major_formatter(ScalarFormatter()) axis.set_label_text('Hz') elif ax_type in ['frames']: axis.set_label_text('Frames') elif ax_type in ['off', 'none', None]: axis.set_label_text('') axis.set_ticks([])
def __decorate_axis(axis, ax_type): '''Configure axis tickers, locators, and labels''' if ax_type == 'tonnetz': axis.set_major_formatter(TonnetzFormatter()) axis.set_major_locator(FixedLocator(0.5 + np.arange(6))) axis.set_label_text('Tonnetz') elif ax_type == 'chroma': axis.set_major_formatter(ChromaFormatter()) axis.set_major_locator(FixedLocator(0.5 + np.add.outer(12 * np.arange(10), [0, 2, 4, 5, 7, 9, 11]).ravel())) axis.set_label_text('Pitch class') elif ax_type == 'tempo': axis.set_major_formatter(ScalarFormatter()) axis.set_major_locator(LogLocator(base=2.0)) axis.set_label_text('BPM') elif ax_type == 'time': axis.set_major_formatter(TimeFormatter(unit=None, lag=False)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Time') elif ax_type == 's': axis.set_major_formatter(TimeFormatter(unit='s', lag=False)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Time (s)') elif ax_type == 'ms': axis.set_major_formatter(TimeFormatter(unit='ms', lag=False)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Time (ms)') elif ax_type == 'lag': axis.set_major_formatter(TimeFormatter(unit=None, lag=True)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Lag') elif ax_type == 'lag_s': axis.set_major_formatter(TimeFormatter(unit='s', lag=True)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Lag (s)') elif ax_type == 'lag_ms': axis.set_major_formatter(TimeFormatter(unit='ms', lag=True)) axis.set_major_locator(MaxNLocator(prune=None, steps=[1, 1.5, 5, 6, 10])) axis.set_label_text('Lag (ms)') elif ax_type == 'cqt_note': axis.set_major_formatter(NoteFormatter()) axis.set_major_locator(LogLocator(base=2.0)) axis.set_minor_formatter(NoteFormatter(major=False)) axis.set_minor_locator(LogLocator(base=2.0, subs=2.0**(np.arange(1, 12)/12.0))) axis.set_label_text('Note') elif ax_type in ['cqt_hz']: axis.set_major_formatter(LogHzFormatter()) axis.set_major_locator(LogLocator(base=2.0)) axis.set_minor_formatter(LogHzFormatter(major=False)) axis.set_minor_locator(LogLocator(base=2.0, subs=2.0**(np.arange(1, 12)/12.0))) axis.set_label_text('Hz') elif ax_type in ['mel', 'log']: axis.set_major_formatter(ScalarFormatter()) axis.set_major_locator(SymmetricalLogLocator(axis.get_transform())) axis.set_label_text('Hz') elif ax_type in ['linear', 'hz']: axis.set_major_formatter(ScalarFormatter()) axis.set_label_text('Hz') elif ax_type in ['frames']: axis.set_label_text('Frames') elif ax_type in ['off', 'none', None]: axis.set_label_text('') axis.set_ticks([])
[ "Configure", "axis", "tickers", "locators", "and", "labels" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L834-L920
[ "def", "__decorate_axis", "(", "axis", ",", "ax_type", ")", ":", "if", "ax_type", "==", "'tonnetz'", ":", "axis", ".", "set_major_formatter", "(", "TonnetzFormatter", "(", ")", ")", "axis", ".", "set_major_locator", "(", "FixedLocator", "(", "0.5", "+", "np", ".", "arange", "(", "6", ")", ")", ")", "axis", ".", "set_label_text", "(", "'Tonnetz'", ")", "elif", "ax_type", "==", "'chroma'", ":", "axis", ".", "set_major_formatter", "(", "ChromaFormatter", "(", ")", ")", "axis", ".", "set_major_locator", "(", "FixedLocator", "(", "0.5", "+", "np", ".", "add", ".", "outer", "(", "12", "*", "np", ".", "arange", "(", "10", ")", ",", "[", "0", ",", "2", ",", "4", ",", "5", ",", "7", ",", "9", ",", "11", "]", ")", ".", "ravel", "(", ")", ")", ")", "axis", ".", "set_label_text", "(", "'Pitch class'", ")", "elif", "ax_type", "==", "'tempo'", ":", "axis", ".", "set_major_formatter", "(", "ScalarFormatter", "(", ")", ")", "axis", ".", "set_major_locator", "(", "LogLocator", "(", "base", "=", "2.0", ")", ")", "axis", ".", "set_label_text", "(", "'BPM'", ")", "elif", "ax_type", "==", "'time'", ":", "axis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "unit", "=", "None", ",", "lag", "=", "False", ")", ")", "axis", ".", "set_major_locator", "(", "MaxNLocator", "(", "prune", "=", "None", ",", "steps", "=", "[", "1", ",", "1.5", ",", "5", ",", "6", ",", "10", "]", ")", ")", "axis", ".", "set_label_text", "(", "'Time'", ")", "elif", "ax_type", "==", "'s'", ":", "axis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "unit", "=", "'s'", ",", "lag", "=", "False", ")", ")", "axis", ".", "set_major_locator", "(", "MaxNLocator", "(", "prune", "=", "None", ",", "steps", "=", "[", "1", ",", "1.5", ",", "5", ",", "6", ",", "10", "]", ")", ")", "axis", ".", "set_label_text", "(", "'Time (s)'", ")", "elif", "ax_type", "==", "'ms'", ":", "axis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "unit", "=", "'ms'", ",", "lag", "=", "False", ")", ")", "axis", ".", "set_major_locator", "(", "MaxNLocator", "(", "prune", "=", "None", ",", "steps", "=", "[", "1", ",", "1.5", ",", "5", ",", "6", ",", "10", "]", ")", ")", "axis", ".", "set_label_text", "(", "'Time (ms)'", ")", "elif", "ax_type", "==", "'lag'", ":", "axis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "unit", "=", "None", ",", "lag", "=", "True", ")", ")", "axis", ".", "set_major_locator", "(", "MaxNLocator", "(", "prune", "=", "None", ",", "steps", "=", "[", "1", ",", "1.5", ",", "5", ",", "6", ",", "10", "]", ")", ")", "axis", ".", "set_label_text", "(", "'Lag'", ")", "elif", "ax_type", "==", "'lag_s'", ":", "axis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "unit", "=", "'s'", ",", "lag", "=", "True", ")", ")", "axis", ".", "set_major_locator", "(", "MaxNLocator", "(", "prune", "=", "None", ",", "steps", "=", "[", "1", ",", "1.5", ",", "5", ",", "6", ",", "10", "]", ")", ")", "axis", ".", "set_label_text", "(", "'Lag (s)'", ")", "elif", "ax_type", "==", "'lag_ms'", ":", "axis", ".", "set_major_formatter", "(", "TimeFormatter", "(", "unit", "=", "'ms'", ",", "lag", "=", "True", ")", ")", "axis", ".", "set_major_locator", "(", "MaxNLocator", "(", "prune", "=", "None", ",", "steps", "=", "[", "1", ",", "1.5", ",", "5", ",", "6", ",", "10", "]", ")", ")", "axis", ".", "set_label_text", "(", "'Lag (ms)'", ")", "elif", "ax_type", "==", "'cqt_note'", ":", "axis", ".", "set_major_formatter", "(", "NoteFormatter", "(", ")", ")", "axis", ".", "set_major_locator", "(", "LogLocator", "(", "base", "=", "2.0", ")", ")", "axis", ".", "set_minor_formatter", "(", "NoteFormatter", "(", "major", "=", "False", ")", ")", "axis", ".", "set_minor_locator", "(", "LogLocator", "(", "base", "=", "2.0", ",", "subs", "=", "2.0", "**", "(", "np", ".", "arange", "(", "1", ",", "12", ")", "/", "12.0", ")", ")", ")", "axis", ".", "set_label_text", "(", "'Note'", ")", "elif", "ax_type", "in", "[", "'cqt_hz'", "]", ":", "axis", ".", "set_major_formatter", "(", "LogHzFormatter", "(", ")", ")", "axis", ".", "set_major_locator", "(", "LogLocator", "(", "base", "=", "2.0", ")", ")", "axis", ".", "set_minor_formatter", "(", "LogHzFormatter", "(", "major", "=", "False", ")", ")", "axis", ".", "set_minor_locator", "(", "LogLocator", "(", "base", "=", "2.0", ",", "subs", "=", "2.0", "**", "(", "np", ".", "arange", "(", "1", ",", "12", ")", "/", "12.0", ")", ")", ")", "axis", ".", "set_label_text", "(", "'Hz'", ")", "elif", "ax_type", "in", "[", "'mel'", ",", "'log'", "]", ":", "axis", ".", "set_major_formatter", "(", "ScalarFormatter", "(", ")", ")", "axis", ".", "set_major_locator", "(", "SymmetricalLogLocator", "(", "axis", ".", "get_transform", "(", ")", ")", ")", "axis", ".", "set_label_text", "(", "'Hz'", ")", "elif", "ax_type", "in", "[", "'linear'", ",", "'hz'", "]", ":", "axis", ".", "set_major_formatter", "(", "ScalarFormatter", "(", ")", ")", "axis", ".", "set_label_text", "(", "'Hz'", ")", "elif", "ax_type", "in", "[", "'frames'", "]", ":", "axis", ".", "set_label_text", "(", "'Frames'", ")", "elif", "ax_type", "in", "[", "'off'", ",", "'none'", ",", "None", "]", ":", "axis", ".", "set_label_text", "(", "''", ")", "axis", ".", "set_ticks", "(", "[", "]", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__coord_fft_hz
Get the frequencies for FFT bins
librosa/display.py
def __coord_fft_hz(n, sr=22050, **_kwargs): '''Get the frequencies for FFT bins''' n_fft = 2 * (n - 1) # The following code centers the FFT bins at their frequencies # and clips to the non-negative frequency range [0, nyquist] basis = core.fft_frequencies(sr=sr, n_fft=n_fft) fmax = basis[-1] basis -= 0.5 * (basis[1] - basis[0]) basis = np.append(np.maximum(0, basis), [fmax]) return basis
def __coord_fft_hz(n, sr=22050, **_kwargs): '''Get the frequencies for FFT bins''' n_fft = 2 * (n - 1) # The following code centers the FFT bins at their frequencies # and clips to the non-negative frequency range [0, nyquist] basis = core.fft_frequencies(sr=sr, n_fft=n_fft) fmax = basis[-1] basis -= 0.5 * (basis[1] - basis[0]) basis = np.append(np.maximum(0, basis), [fmax]) return basis
[ "Get", "the", "frequencies", "for", "FFT", "bins" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L923-L932
[ "def", "__coord_fft_hz", "(", "n", ",", "sr", "=", "22050", ",", "*", "*", "_kwargs", ")", ":", "n_fft", "=", "2", "*", "(", "n", "-", "1", ")", "# The following code centers the FFT bins at their frequencies", "# and clips to the non-negative frequency range [0, nyquist]", "basis", "=", "core", ".", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "fmax", "=", "basis", "[", "-", "1", "]", "basis", "-=", "0.5", "*", "(", "basis", "[", "1", "]", "-", "basis", "[", "0", "]", ")", "basis", "=", "np", ".", "append", "(", "np", ".", "maximum", "(", "0", ",", "basis", ")", ",", "[", "fmax", "]", ")", "return", "basis" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__coord_mel_hz
Get the frequencies for Mel bins
librosa/display.py
def __coord_mel_hz(n, fmin=0, fmax=11025.0, **_kwargs): '''Get the frequencies for Mel bins''' if fmin is None: fmin = 0 if fmax is None: fmax = 11025.0 basis = core.mel_frequencies(n, fmin=fmin, fmax=fmax) basis[1:] -= 0.5 * np.diff(basis) basis = np.append(np.maximum(0, basis), [fmax]) return basis
def __coord_mel_hz(n, fmin=0, fmax=11025.0, **_kwargs): '''Get the frequencies for Mel bins''' if fmin is None: fmin = 0 if fmax is None: fmax = 11025.0 basis = core.mel_frequencies(n, fmin=fmin, fmax=fmax) basis[1:] -= 0.5 * np.diff(basis) basis = np.append(np.maximum(0, basis), [fmax]) return basis
[ "Get", "the", "frequencies", "for", "Mel", "bins" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L935-L946
[ "def", "__coord_mel_hz", "(", "n", ",", "fmin", "=", "0", ",", "fmax", "=", "11025.0", ",", "*", "*", "_kwargs", ")", ":", "if", "fmin", "is", "None", ":", "fmin", "=", "0", "if", "fmax", "is", "None", ":", "fmax", "=", "11025.0", "basis", "=", "core", ".", "mel_frequencies", "(", "n", ",", "fmin", "=", "fmin", ",", "fmax", "=", "fmax", ")", "basis", "[", "1", ":", "]", "-=", "0.5", "*", "np", ".", "diff", "(", "basis", ")", "basis", "=", "np", ".", "append", "(", "np", ".", "maximum", "(", "0", ",", "basis", ")", ",", "[", "fmax", "]", ")", "return", "basis" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__coord_cqt_hz
Get CQT bin frequencies
librosa/display.py
def __coord_cqt_hz(n, fmin=None, bins_per_octave=12, **_kwargs): '''Get CQT bin frequencies''' if fmin is None: fmin = core.note_to_hz('C1') # we drop by half a bin so that CQT bins are centered vertically return core.cqt_frequencies(n+1, fmin=fmin / 2.0**(0.5/bins_per_octave), bins_per_octave=bins_per_octave)
def __coord_cqt_hz(n, fmin=None, bins_per_octave=12, **_kwargs): '''Get CQT bin frequencies''' if fmin is None: fmin = core.note_to_hz('C1') # we drop by half a bin so that CQT bins are centered vertically return core.cqt_frequencies(n+1, fmin=fmin / 2.0**(0.5/bins_per_octave), bins_per_octave=bins_per_octave)
[ "Get", "CQT", "bin", "frequencies" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L949-L957
[ "def", "__coord_cqt_hz", "(", "n", ",", "fmin", "=", "None", ",", "bins_per_octave", "=", "12", ",", "*", "*", "_kwargs", ")", ":", "if", "fmin", "is", "None", ":", "fmin", "=", "core", ".", "note_to_hz", "(", "'C1'", ")", "# we drop by half a bin so that CQT bins are centered vertically", "return", "core", ".", "cqt_frequencies", "(", "n", "+", "1", ",", "fmin", "=", "fmin", "/", "2.0", "**", "(", "0.5", "/", "bins_per_octave", ")", ",", "bins_per_octave", "=", "bins_per_octave", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__coord_chroma
Get chroma bin numbers
librosa/display.py
def __coord_chroma(n, bins_per_octave=12, **_kwargs): '''Get chroma bin numbers''' return np.linspace(0, (12.0 * n) / bins_per_octave, num=n+1, endpoint=True)
def __coord_chroma(n, bins_per_octave=12, **_kwargs): '''Get chroma bin numbers''' return np.linspace(0, (12.0 * n) / bins_per_octave, num=n+1, endpoint=True)
[ "Get", "chroma", "bin", "numbers" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L960-L962
[ "def", "__coord_chroma", "(", "n", ",", "bins_per_octave", "=", "12", ",", "*", "*", "_kwargs", ")", ":", "return", "np", ".", "linspace", "(", "0", ",", "(", "12.0", "*", "n", ")", "/", "bins_per_octave", ",", "num", "=", "n", "+", "1", ",", "endpoint", "=", "True", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__coord_tempo
Tempo coordinates
librosa/display.py
def __coord_tempo(n, sr=22050, hop_length=512, **_kwargs): '''Tempo coordinates''' basis = core.tempo_frequencies(n+2, sr=sr, hop_length=hop_length)[1:] edges = np.arange(1, n+2) return basis * (edges + 0.5) / edges
def __coord_tempo(n, sr=22050, hop_length=512, **_kwargs): '''Tempo coordinates''' basis = core.tempo_frequencies(n+2, sr=sr, hop_length=hop_length)[1:] edges = np.arange(1, n+2) return basis * (edges + 0.5) / edges
[ "Tempo", "coordinates" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L965-L969
[ "def", "__coord_tempo", "(", "n", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "*", "*", "_kwargs", ")", ":", "basis", "=", "core", ".", "tempo_frequencies", "(", "n", "+", "2", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", "[", "1", ":", "]", "edges", "=", "np", ".", "arange", "(", "1", ",", "n", "+", "2", ")", "return", "basis", "*", "(", "edges", "+", "0.5", ")", "/", "edges" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__coord_time
Get time coordinates from frames
librosa/display.py
def __coord_time(n, sr=22050, hop_length=512, **_kwargs): '''Get time coordinates from frames''' return core.frames_to_time(np.arange(n+1), sr=sr, hop_length=hop_length)
def __coord_time(n, sr=22050, hop_length=512, **_kwargs): '''Get time coordinates from frames''' return core.frames_to_time(np.arange(n+1), sr=sr, hop_length=hop_length)
[ "Get", "time", "coordinates", "from", "frames" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/display.py#L977-L979
[ "def", "__coord_time", "(", "n", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "*", "*", "_kwargs", ")", ":", "return", "core", ".", "frames_to_time", "(", "np", ".", "arange", "(", "n", "+", "1", ")", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
estimate_tuning
Estimate the tuning of an audio time series or spectrogram input. Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to measurements in cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave kwargs : additional keyword arguments Additional arguments passed to `piptrack` Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- piptrack Pitch tracking by parabolic interpolation Examples -------- >>> # With time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr) 0.089999999999999969 >>> # In tenths of a cent >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3) 0.093999999999999972 >>> # Using spectrogram input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.estimate_tuning(S=S, sr=sr) 0.089999999999999969 >>> # Using pass-through arguments to `librosa.piptrack` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192, ... fmax=librosa.note_to_hz('G#9')) 0.070000000000000062
librosa/core/pitch.py
def estimate_tuning(y=None, sr=22050, S=None, n_fft=2048, resolution=0.01, bins_per_octave=12, **kwargs): '''Estimate the tuning of an audio time series or spectrogram input. Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to measurements in cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave kwargs : additional keyword arguments Additional arguments passed to `piptrack` Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- piptrack Pitch tracking by parabolic interpolation Examples -------- >>> # With time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr) 0.089999999999999969 >>> # In tenths of a cent >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3) 0.093999999999999972 >>> # Using spectrogram input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.estimate_tuning(S=S, sr=sr) 0.089999999999999969 >>> # Using pass-through arguments to `librosa.piptrack` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192, ... fmax=librosa.note_to_hz('G#9')) 0.070000000000000062 ''' pitch, mag = piptrack(y=y, sr=sr, S=S, n_fft=n_fft, **kwargs) # Only count magnitude where frequency is > 0 pitch_mask = pitch > 0 if pitch_mask.any(): threshold = np.median(mag[pitch_mask]) else: threshold = 0.0 return pitch_tuning(pitch[(mag >= threshold) & pitch_mask], resolution=resolution, bins_per_octave=bins_per_octave)
def estimate_tuning(y=None, sr=22050, S=None, n_fft=2048, resolution=0.01, bins_per_octave=12, **kwargs): '''Estimate the tuning of an audio time series or spectrogram input. Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to measurements in cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave kwargs : additional keyword arguments Additional arguments passed to `piptrack` Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- piptrack Pitch tracking by parabolic interpolation Examples -------- >>> # With time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr) 0.089999999999999969 >>> # In tenths of a cent >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3) 0.093999999999999972 >>> # Using spectrogram input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.estimate_tuning(S=S, sr=sr) 0.089999999999999969 >>> # Using pass-through arguments to `librosa.piptrack` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192, ... fmax=librosa.note_to_hz('G#9')) 0.070000000000000062 ''' pitch, mag = piptrack(y=y, sr=sr, S=S, n_fft=n_fft, **kwargs) # Only count magnitude where frequency is > 0 pitch_mask = pitch > 0 if pitch_mask.any(): threshold = np.median(mag[pitch_mask]) else: threshold = 0.0 return pitch_tuning(pitch[(mag >= threshold) & pitch_mask], resolution=resolution, bins_per_octave=bins_per_octave)
[ "Estimate", "the", "tuning", "of", "an", "audio", "time", "series", "or", "spectrogram", "input", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/pitch.py#L17-L93
[ "def", "estimate_tuning", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "resolution", "=", "0.01", ",", "bins_per_octave", "=", "12", ",", "*", "*", "kwargs", ")", ":", "pitch", ",", "mag", "=", "piptrack", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "*", "*", "kwargs", ")", "# Only count magnitude where frequency is > 0", "pitch_mask", "=", "pitch", ">", "0", "if", "pitch_mask", ".", "any", "(", ")", ":", "threshold", "=", "np", ".", "median", "(", "mag", "[", "pitch_mask", "]", ")", "else", ":", "threshold", "=", "0.0", "return", "pitch_tuning", "(", "pitch", "[", "(", "mag", ">=", "threshold", ")", "&", "pitch_mask", "]", ",", "resolution", "=", "resolution", ",", "bins_per_octave", "=", "bins_per_octave", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
pitch_tuning
Given a collection of pitches, estimate its tuning offset (in fractions of a bin) relative to A440=440.0Hz. Parameters ---------- frequencies : array-like, float A collection of frequencies detected in the signal. See `piptrack` resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- estimate_tuning Estimating tuning from time-series or spectrogram input Examples -------- >>> # Generate notes at +25 cents >>> freqs = librosa.cqt_frequencies(24, 55, tuning=0.25) >>> librosa.pitch_tuning(freqs) 0.25 >>> # Track frequencies from a real spectrogram >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes, stft = librosa.ifptrack(y, sr) >>> # Select out pitches with high energy >>> pitches = pitches[magnitudes > np.median(magnitudes)] >>> librosa.pitch_tuning(pitches) 0.089999999999999969
librosa/core/pitch.py
def pitch_tuning(frequencies, resolution=0.01, bins_per_octave=12): '''Given a collection of pitches, estimate its tuning offset (in fractions of a bin) relative to A440=440.0Hz. Parameters ---------- frequencies : array-like, float A collection of frequencies detected in the signal. See `piptrack` resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- estimate_tuning Estimating tuning from time-series or spectrogram input Examples -------- >>> # Generate notes at +25 cents >>> freqs = librosa.cqt_frequencies(24, 55, tuning=0.25) >>> librosa.pitch_tuning(freqs) 0.25 >>> # Track frequencies from a real spectrogram >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes, stft = librosa.ifptrack(y, sr) >>> # Select out pitches with high energy >>> pitches = pitches[magnitudes > np.median(magnitudes)] >>> librosa.pitch_tuning(pitches) 0.089999999999999969 ''' frequencies = np.atleast_1d(frequencies) # Trim out any DC components frequencies = frequencies[frequencies > 0] if not np.any(frequencies): warnings.warn('Trying to estimate tuning from empty frequency set.') return 0.0 # Compute the residual relative to the number of bins residual = np.mod(bins_per_octave * time_frequency.hz_to_octs(frequencies), 1.0) # Are we on the wrong side of the semitone? # A residual of 0.95 is more likely to be a deviation of -0.05 # from the next tone up. residual[residual >= 0.5] -= 1.0 bins = np.linspace(-0.5, 0.5, int(np.ceil(1. / resolution)) + 1) counts, tuning = np.histogram(residual, bins) # return the histogram peak return tuning[np.argmax(counts)]
def pitch_tuning(frequencies, resolution=0.01, bins_per_octave=12): '''Given a collection of pitches, estimate its tuning offset (in fractions of a bin) relative to A440=440.0Hz. Parameters ---------- frequencies : array-like, float A collection of frequencies detected in the signal. See `piptrack` resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- estimate_tuning Estimating tuning from time-series or spectrogram input Examples -------- >>> # Generate notes at +25 cents >>> freqs = librosa.cqt_frequencies(24, 55, tuning=0.25) >>> librosa.pitch_tuning(freqs) 0.25 >>> # Track frequencies from a real spectrogram >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes, stft = librosa.ifptrack(y, sr) >>> # Select out pitches with high energy >>> pitches = pitches[magnitudes > np.median(magnitudes)] >>> librosa.pitch_tuning(pitches) 0.089999999999999969 ''' frequencies = np.atleast_1d(frequencies) # Trim out any DC components frequencies = frequencies[frequencies > 0] if not np.any(frequencies): warnings.warn('Trying to estimate tuning from empty frequency set.') return 0.0 # Compute the residual relative to the number of bins residual = np.mod(bins_per_octave * time_frequency.hz_to_octs(frequencies), 1.0) # Are we on the wrong side of the semitone? # A residual of 0.95 is more likely to be a deviation of -0.05 # from the next tone up. residual[residual >= 0.5] -= 1.0 bins = np.linspace(-0.5, 0.5, int(np.ceil(1. / resolution)) + 1) counts, tuning = np.histogram(residual, bins) # return the histogram peak return tuning[np.argmax(counts)]
[ "Given", "a", "collection", "of", "pitches", "estimate", "its", "tuning", "offset", "(", "in", "fractions", "of", "a", "bin", ")", "relative", "to", "A440", "=", "440", ".", "0Hz", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/pitch.py#L96-L163
[ "def", "pitch_tuning", "(", "frequencies", ",", "resolution", "=", "0.01", ",", "bins_per_octave", "=", "12", ")", ":", "frequencies", "=", "np", ".", "atleast_1d", "(", "frequencies", ")", "# Trim out any DC components", "frequencies", "=", "frequencies", "[", "frequencies", ">", "0", "]", "if", "not", "np", ".", "any", "(", "frequencies", ")", ":", "warnings", ".", "warn", "(", "'Trying to estimate tuning from empty frequency set.'", ")", "return", "0.0", "# Compute the residual relative to the number of bins", "residual", "=", "np", ".", "mod", "(", "bins_per_octave", "*", "time_frequency", ".", "hz_to_octs", "(", "frequencies", ")", ",", "1.0", ")", "# Are we on the wrong side of the semitone?", "# A residual of 0.95 is more likely to be a deviation of -0.05", "# from the next tone up.", "residual", "[", "residual", ">=", "0.5", "]", "-=", "1.0", "bins", "=", "np", ".", "linspace", "(", "-", "0.5", ",", "0.5", ",", "int", "(", "np", ".", "ceil", "(", "1.", "/", "resolution", ")", ")", "+", "1", ")", "counts", ",", "tuning", "=", "np", ".", "histogram", "(", "residual", ",", "bins", ")", "# return the histogram peak", "return", "tuning", "[", "np", ".", "argmax", "(", "counts", ")", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
piptrack
Pitch tracking on thresholded parabolically-interpolated STFT. This implementation uses the parabolic interpolation method described by [1]_. .. [1] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. hop_length : int > 0 [scalar] or None number of samples to hop threshold : float in `(0, 1)` A bin in spectrum `S` is considered a pitch when it is greater than `threshold*ref(S)`. By default, `ref(S)` is taken to be `max(S, axis=0)` (the maximum value in each column). fmin : float > 0 [scalar] lower frequency cutoff. fmax : float > 0 [scalar] upper frequency cutoff. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. ref : scalar or callable [default=np.max] If scalar, the reference value against which `S` is compared for determining pitches. If callable, the reference value is computed as `ref(S, axis=0)`. .. note:: One of `S` or `y` must be provided. If `S` is not given, it is computed from `y` using the default parameters of `librosa.core.stft`. Returns ------- pitches : np.ndarray [shape=(d, t)] magnitudes : np.ndarray [shape=(d,t)] Where `d` is the subset of FFT bins within `fmin` and `fmax`. `pitches[f, t]` contains instantaneous frequency at bin `f`, time `t` `magnitudes[f, t]` contains the corresponding magnitudes. Both `pitches` and `magnitudes` take value 0 at bins of non-maximal magnitude. Notes ----- This function caches at level 30. Examples -------- Computing pitches from a waveform input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr) Or from a spectrogram input >>> S = np.abs(librosa.stft(y)) >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr) Or with an alternate reference value for pitch detection, where values above the mean spectral energy in each frame are counted as pitches >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1, ... ref=np.mean)
librosa/core/pitch.py
def piptrack(y=None, sr=22050, S=None, n_fft=2048, hop_length=None, fmin=150.0, fmax=4000.0, threshold=0.1, win_length=None, window='hann', center=True, pad_mode='reflect', ref=None): '''Pitch tracking on thresholded parabolically-interpolated STFT. This implementation uses the parabolic interpolation method described by [1]_. .. [1] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. hop_length : int > 0 [scalar] or None number of samples to hop threshold : float in `(0, 1)` A bin in spectrum `S` is considered a pitch when it is greater than `threshold*ref(S)`. By default, `ref(S)` is taken to be `max(S, axis=0)` (the maximum value in each column). fmin : float > 0 [scalar] lower frequency cutoff. fmax : float > 0 [scalar] upper frequency cutoff. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. ref : scalar or callable [default=np.max] If scalar, the reference value against which `S` is compared for determining pitches. If callable, the reference value is computed as `ref(S, axis=0)`. .. note:: One of `S` or `y` must be provided. If `S` is not given, it is computed from `y` using the default parameters of `librosa.core.stft`. Returns ------- pitches : np.ndarray [shape=(d, t)] magnitudes : np.ndarray [shape=(d,t)] Where `d` is the subset of FFT bins within `fmin` and `fmax`. `pitches[f, t]` contains instantaneous frequency at bin `f`, time `t` `magnitudes[f, t]` contains the corresponding magnitudes. Both `pitches` and `magnitudes` take value 0 at bins of non-maximal magnitude. Notes ----- This function caches at level 30. Examples -------- Computing pitches from a waveform input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr) Or from a spectrogram input >>> S = np.abs(librosa.stft(y)) >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr) Or with an alternate reference value for pitch detection, where values above the mean spectral energy in each frame are counted as pitches >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1, ... ref=np.mean) ''' # Check that we received an audio time series or STFT S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Make sure we're dealing with magnitudes S = np.abs(S) # Truncate to feasible region fmin = np.maximum(fmin, 0) fmax = np.minimum(fmax, float(sr) / 2) fft_freqs = time_frequency.fft_frequencies(sr=sr, n_fft=n_fft) # Do the parabolic interpolation everywhere, # then figure out where the peaks are # then restrict to the feasible range (fmin:fmax) avg = 0.5 * (S[2:] - S[:-2]) shift = 2 * S[1:-1] - S[2:] - S[:-2] # Suppress divide-by-zeros. # Points where shift == 0 will never be selected by localmax anyway shift = avg / (shift + (np.abs(shift) < util.tiny(shift))) # Pad back up to the same shape as S avg = np.pad(avg, ([1, 1], [0, 0]), mode='constant') shift = np.pad(shift, ([1, 1], [0, 0]), mode='constant') dskew = 0.5 * avg * shift # Pre-allocate output pitches = np.zeros_like(S) mags = np.zeros_like(S) # Clip to the viable frequency range freq_mask = ((fmin <= fft_freqs) & (fft_freqs < fmax)).reshape((-1, 1)) # Compute the column-wise local max of S after thresholding # Find the argmax coordinates if ref is None: ref = np.max if six.callable(ref): ref_value = threshold * ref(S, axis=0) else: ref_value = np.abs(ref) idx = np.argwhere(freq_mask & util.localmax(S * (S > ref_value))) # Store pitch and magnitude pitches[idx[:, 0], idx[:, 1]] = ((idx[:, 0] + shift[idx[:, 0], idx[:, 1]]) * float(sr) / n_fft) mags[idx[:, 0], idx[:, 1]] = (S[idx[:, 0], idx[:, 1]] + dskew[idx[:, 0], idx[:, 1]]) return pitches, mags
def piptrack(y=None, sr=22050, S=None, n_fft=2048, hop_length=None, fmin=150.0, fmax=4000.0, threshold=0.1, win_length=None, window='hann', center=True, pad_mode='reflect', ref=None): '''Pitch tracking on thresholded parabolically-interpolated STFT. This implementation uses the parabolic interpolation method described by [1]_. .. [1] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. hop_length : int > 0 [scalar] or None number of samples to hop threshold : float in `(0, 1)` A bin in spectrum `S` is considered a pitch when it is greater than `threshold*ref(S)`. By default, `ref(S)` is taken to be `max(S, axis=0)` (the maximum value in each column). fmin : float > 0 [scalar] lower frequency cutoff. fmax : float > 0 [scalar] upper frequency cutoff. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. ref : scalar or callable [default=np.max] If scalar, the reference value against which `S` is compared for determining pitches. If callable, the reference value is computed as `ref(S, axis=0)`. .. note:: One of `S` or `y` must be provided. If `S` is not given, it is computed from `y` using the default parameters of `librosa.core.stft`. Returns ------- pitches : np.ndarray [shape=(d, t)] magnitudes : np.ndarray [shape=(d,t)] Where `d` is the subset of FFT bins within `fmin` and `fmax`. `pitches[f, t]` contains instantaneous frequency at bin `f`, time `t` `magnitudes[f, t]` contains the corresponding magnitudes. Both `pitches` and `magnitudes` take value 0 at bins of non-maximal magnitude. Notes ----- This function caches at level 30. Examples -------- Computing pitches from a waveform input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr) Or from a spectrogram input >>> S = np.abs(librosa.stft(y)) >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr) Or with an alternate reference value for pitch detection, where values above the mean spectral energy in each frame are counted as pitches >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1, ... ref=np.mean) ''' # Check that we received an audio time series or STFT S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Make sure we're dealing with magnitudes S = np.abs(S) # Truncate to feasible region fmin = np.maximum(fmin, 0) fmax = np.minimum(fmax, float(sr) / 2) fft_freqs = time_frequency.fft_frequencies(sr=sr, n_fft=n_fft) # Do the parabolic interpolation everywhere, # then figure out where the peaks are # then restrict to the feasible range (fmin:fmax) avg = 0.5 * (S[2:] - S[:-2]) shift = 2 * S[1:-1] - S[2:] - S[:-2] # Suppress divide-by-zeros. # Points where shift == 0 will never be selected by localmax anyway shift = avg / (shift + (np.abs(shift) < util.tiny(shift))) # Pad back up to the same shape as S avg = np.pad(avg, ([1, 1], [0, 0]), mode='constant') shift = np.pad(shift, ([1, 1], [0, 0]), mode='constant') dskew = 0.5 * avg * shift # Pre-allocate output pitches = np.zeros_like(S) mags = np.zeros_like(S) # Clip to the viable frequency range freq_mask = ((fmin <= fft_freqs) & (fft_freqs < fmax)).reshape((-1, 1)) # Compute the column-wise local max of S after thresholding # Find the argmax coordinates if ref is None: ref = np.max if six.callable(ref): ref_value = threshold * ref(S, axis=0) else: ref_value = np.abs(ref) idx = np.argwhere(freq_mask & util.localmax(S * (S > ref_value))) # Store pitch and magnitude pitches[idx[:, 0], idx[:, 1]] = ((idx[:, 0] + shift[idx[:, 0], idx[:, 1]]) * float(sr) / n_fft) mags[idx[:, 0], idx[:, 1]] = (S[idx[:, 0], idx[:, 1]] + dskew[idx[:, 0], idx[:, 1]]) return pitches, mags
[ "Pitch", "tracking", "on", "thresholded", "parabolically", "-", "interpolated", "STFT", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/pitch.py#L167-L338
[ "def", "piptrack", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "None", ",", "fmin", "=", "150.0", ",", "fmax", "=", "4000.0", ",", "threshold", "=", "0.1", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "ref", "=", "None", ")", ":", "# Check that we received an audio time series or STFT", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "# Make sure we're dealing with magnitudes", "S", "=", "np", ".", "abs", "(", "S", ")", "# Truncate to feasible region", "fmin", "=", "np", ".", "maximum", "(", "fmin", ",", "0", ")", "fmax", "=", "np", ".", "minimum", "(", "fmax", ",", "float", "(", "sr", ")", "/", "2", ")", "fft_freqs", "=", "time_frequency", ".", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "# Do the parabolic interpolation everywhere,", "# then figure out where the peaks are", "# then restrict to the feasible range (fmin:fmax)", "avg", "=", "0.5", "*", "(", "S", "[", "2", ":", "]", "-", "S", "[", ":", "-", "2", "]", ")", "shift", "=", "2", "*", "S", "[", "1", ":", "-", "1", "]", "-", "S", "[", "2", ":", "]", "-", "S", "[", ":", "-", "2", "]", "# Suppress divide-by-zeros.", "# Points where shift == 0 will never be selected by localmax anyway", "shift", "=", "avg", "/", "(", "shift", "+", "(", "np", ".", "abs", "(", "shift", ")", "<", "util", ".", "tiny", "(", "shift", ")", ")", ")", "# Pad back up to the same shape as S", "avg", "=", "np", ".", "pad", "(", "avg", ",", "(", "[", "1", ",", "1", "]", ",", "[", "0", ",", "0", "]", ")", ",", "mode", "=", "'constant'", ")", "shift", "=", "np", ".", "pad", "(", "shift", ",", "(", "[", "1", ",", "1", "]", ",", "[", "0", ",", "0", "]", ")", ",", "mode", "=", "'constant'", ")", "dskew", "=", "0.5", "*", "avg", "*", "shift", "# Pre-allocate output", "pitches", "=", "np", ".", "zeros_like", "(", "S", ")", "mags", "=", "np", ".", "zeros_like", "(", "S", ")", "# Clip to the viable frequency range", "freq_mask", "=", "(", "(", "fmin", "<=", "fft_freqs", ")", "&", "(", "fft_freqs", "<", "fmax", ")", ")", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "# Compute the column-wise local max of S after thresholding", "# Find the argmax coordinates", "if", "ref", "is", "None", ":", "ref", "=", "np", ".", "max", "if", "six", ".", "callable", "(", "ref", ")", ":", "ref_value", "=", "threshold", "*", "ref", "(", "S", ",", "axis", "=", "0", ")", "else", ":", "ref_value", "=", "np", ".", "abs", "(", "ref", ")", "idx", "=", "np", ".", "argwhere", "(", "freq_mask", "&", "util", ".", "localmax", "(", "S", "*", "(", "S", ">", "ref_value", ")", ")", ")", "# Store pitch and magnitude", "pitches", "[", "idx", "[", ":", ",", "0", "]", ",", "idx", "[", ":", ",", "1", "]", "]", "=", "(", "(", "idx", "[", ":", ",", "0", "]", "+", "shift", "[", "idx", "[", ":", ",", "0", "]", ",", "idx", "[", ":", ",", "1", "]", "]", ")", "*", "float", "(", "sr", ")", "/", "n_fft", ")", "mags", "[", "idx", "[", ":", ",", "0", "]", ",", "idx", "[", ":", ",", "1", "]", "]", "=", "(", "S", "[", "idx", "[", ":", ",", "0", "]", ",", "idx", "[", ":", ",", "1", "]", "]", "+", "dskew", "[", "idx", "[", ":", ",", "0", "]", ",", "idx", "[", ":", ",", "1", "]", "]", ")", "return", "pitches", ",", "mags" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hpss
Decompose an audio time series into harmonic and percussive components. This function automates the STFT->HPSS->ISTFT pipeline, and ensures that the output waveforms have equal length to the input waveform `y`. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_harmonic : np.ndarray [shape=(n,)] audio time series of the harmonic elements y_percussive : np.ndarray [shape=(n,)] audio time series of the percussive elements See Also -------- harmonic : Extract only the harmonic component percussive : Extract only the percussive component librosa.decompose.hpss : HPSS on spectrograms Examples -------- >>> # Extract harmonic and percussive components >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_harmonic, y_percussive = librosa.effects.hpss(y) >>> # Get a more isolated percussive component by widening its margin >>> y_harmonic, y_percussive = librosa.effects.hpss(y, margin=(1.0,5.0))
librosa/effects.py
def hpss(y, **kwargs): '''Decompose an audio time series into harmonic and percussive components. This function automates the STFT->HPSS->ISTFT pipeline, and ensures that the output waveforms have equal length to the input waveform `y`. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_harmonic : np.ndarray [shape=(n,)] audio time series of the harmonic elements y_percussive : np.ndarray [shape=(n,)] audio time series of the percussive elements See Also -------- harmonic : Extract only the harmonic component percussive : Extract only the percussive component librosa.decompose.hpss : HPSS on spectrograms Examples -------- >>> # Extract harmonic and percussive components >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_harmonic, y_percussive = librosa.effects.hpss(y) >>> # Get a more isolated percussive component by widening its margin >>> y_harmonic, y_percussive = librosa.effects.hpss(y, margin=(1.0,5.0)) ''' # Compute the STFT matrix stft = core.stft(y) # Decompose into harmonic and percussives stft_harm, stft_perc = decompose.hpss(stft, **kwargs) # Invert the STFTs. Adjust length to match the input. y_harm = util.fix_length(core.istft(stft_harm, dtype=y.dtype), len(y)) y_perc = util.fix_length(core.istft(stft_perc, dtype=y.dtype), len(y)) return y_harm, y_perc
def hpss(y, **kwargs): '''Decompose an audio time series into harmonic and percussive components. This function automates the STFT->HPSS->ISTFT pipeline, and ensures that the output waveforms have equal length to the input waveform `y`. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_harmonic : np.ndarray [shape=(n,)] audio time series of the harmonic elements y_percussive : np.ndarray [shape=(n,)] audio time series of the percussive elements See Also -------- harmonic : Extract only the harmonic component percussive : Extract only the percussive component librosa.decompose.hpss : HPSS on spectrograms Examples -------- >>> # Extract harmonic and percussive components >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_harmonic, y_percussive = librosa.effects.hpss(y) >>> # Get a more isolated percussive component by widening its margin >>> y_harmonic, y_percussive = librosa.effects.hpss(y, margin=(1.0,5.0)) ''' # Compute the STFT matrix stft = core.stft(y) # Decompose into harmonic and percussives stft_harm, stft_perc = decompose.hpss(stft, **kwargs) # Invert the STFTs. Adjust length to match the input. y_harm = util.fix_length(core.istft(stft_harm, dtype=y.dtype), len(y)) y_perc = util.fix_length(core.istft(stft_perc, dtype=y.dtype), len(y)) return y_harm, y_perc
[ "Decompose", "an", "audio", "time", "series", "into", "harmonic", "and", "percussive", "components", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L47-L98
[ "def", "hpss", "(", "y", ",", "*", "*", "kwargs", ")", ":", "# Compute the STFT matrix", "stft", "=", "core", ".", "stft", "(", "y", ")", "# Decompose into harmonic and percussives", "stft_harm", ",", "stft_perc", "=", "decompose", ".", "hpss", "(", "stft", ",", "*", "*", "kwargs", ")", "# Invert the STFTs. Adjust length to match the input.", "y_harm", "=", "util", ".", "fix_length", "(", "core", ".", "istft", "(", "stft_harm", ",", "dtype", "=", "y", ".", "dtype", ")", ",", "len", "(", "y", ")", ")", "y_perc", "=", "util", ".", "fix_length", "(", "core", ".", "istft", "(", "stft_perc", ",", "dtype", "=", "y", ".", "dtype", ")", ",", "len", "(", "y", ")", ")", "return", "y_harm", ",", "y_perc" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
harmonic
Extract harmonic elements from an audio time-series. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_harmonic : np.ndarray [shape=(n,)] audio time series of just the harmonic portion See Also -------- hpss : Separate harmonic and percussive components percussive : Extract only the percussive component librosa.decompose.hpss : HPSS for spectrograms Examples -------- >>> # Extract harmonic component >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_harmonic = librosa.effects.harmonic(y) >>> # Use a margin > 1.0 for greater harmonic separation >>> y_harmonic = librosa.effects.harmonic(y, margin=3.0)
librosa/effects.py
def harmonic(y, **kwargs): '''Extract harmonic elements from an audio time-series. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_harmonic : np.ndarray [shape=(n,)] audio time series of just the harmonic portion See Also -------- hpss : Separate harmonic and percussive components percussive : Extract only the percussive component librosa.decompose.hpss : HPSS for spectrograms Examples -------- >>> # Extract harmonic component >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_harmonic = librosa.effects.harmonic(y) >>> # Use a margin > 1.0 for greater harmonic separation >>> y_harmonic = librosa.effects.harmonic(y, margin=3.0) ''' # Compute the STFT matrix stft = core.stft(y) # Remove percussives stft_harm = decompose.hpss(stft, **kwargs)[0] # Invert the STFTs y_harm = util.fix_length(core.istft(stft_harm, dtype=y.dtype), len(y)) return y_harm
def harmonic(y, **kwargs): '''Extract harmonic elements from an audio time-series. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_harmonic : np.ndarray [shape=(n,)] audio time series of just the harmonic portion See Also -------- hpss : Separate harmonic and percussive components percussive : Extract only the percussive component librosa.decompose.hpss : HPSS for spectrograms Examples -------- >>> # Extract harmonic component >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_harmonic = librosa.effects.harmonic(y) >>> # Use a margin > 1.0 for greater harmonic separation >>> y_harmonic = librosa.effects.harmonic(y, margin=3.0) ''' # Compute the STFT matrix stft = core.stft(y) # Remove percussives stft_harm = decompose.hpss(stft, **kwargs)[0] # Invert the STFTs y_harm = util.fix_length(core.istft(stft_harm, dtype=y.dtype), len(y)) return y_harm
[ "Extract", "harmonic", "elements", "from", "an", "audio", "time", "-", "series", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L101-L142
[ "def", "harmonic", "(", "y", ",", "*", "*", "kwargs", ")", ":", "# Compute the STFT matrix", "stft", "=", "core", ".", "stft", "(", "y", ")", "# Remove percussives", "stft_harm", "=", "decompose", ".", "hpss", "(", "stft", ",", "*", "*", "kwargs", ")", "[", "0", "]", "# Invert the STFTs", "y_harm", "=", "util", ".", "fix_length", "(", "core", ".", "istft", "(", "stft_harm", ",", "dtype", "=", "y", ".", "dtype", ")", ",", "len", "(", "y", ")", ")", "return", "y_harm" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
percussive
Extract percussive elements from an audio time-series. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_percussive : np.ndarray [shape=(n,)] audio time series of just the percussive portion See Also -------- hpss : Separate harmonic and percussive components harmonic : Extract only the harmonic component librosa.decompose.hpss : HPSS for spectrograms Examples -------- >>> # Extract percussive component >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_percussive = librosa.effects.percussive(y) >>> # Use a margin > 1.0 for greater percussive separation >>> y_percussive = librosa.effects.percussive(y, margin=3.0)
librosa/effects.py
def percussive(y, **kwargs): '''Extract percussive elements from an audio time-series. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_percussive : np.ndarray [shape=(n,)] audio time series of just the percussive portion See Also -------- hpss : Separate harmonic and percussive components harmonic : Extract only the harmonic component librosa.decompose.hpss : HPSS for spectrograms Examples -------- >>> # Extract percussive component >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_percussive = librosa.effects.percussive(y) >>> # Use a margin > 1.0 for greater percussive separation >>> y_percussive = librosa.effects.percussive(y, margin=3.0) ''' # Compute the STFT matrix stft = core.stft(y) # Remove harmonics stft_perc = decompose.hpss(stft, **kwargs)[1] # Invert the STFT y_perc = util.fix_length(core.istft(stft_perc, dtype=y.dtype), len(y)) return y_perc
def percussive(y, **kwargs): '''Extract percussive elements from an audio time-series. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series kwargs : additional keyword arguments. See `librosa.decompose.hpss` for details. Returns ------- y_percussive : np.ndarray [shape=(n,)] audio time series of just the percussive portion See Also -------- hpss : Separate harmonic and percussive components harmonic : Extract only the harmonic component librosa.decompose.hpss : HPSS for spectrograms Examples -------- >>> # Extract percussive component >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_percussive = librosa.effects.percussive(y) >>> # Use a margin > 1.0 for greater percussive separation >>> y_percussive = librosa.effects.percussive(y, margin=3.0) ''' # Compute the STFT matrix stft = core.stft(y) # Remove harmonics stft_perc = decompose.hpss(stft, **kwargs)[1] # Invert the STFT y_perc = util.fix_length(core.istft(stft_perc, dtype=y.dtype), len(y)) return y_perc
[ "Extract", "percussive", "elements", "from", "an", "audio", "time", "-", "series", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L145-L186
[ "def", "percussive", "(", "y", ",", "*", "*", "kwargs", ")", ":", "# Compute the STFT matrix", "stft", "=", "core", ".", "stft", "(", "y", ")", "# Remove harmonics", "stft_perc", "=", "decompose", ".", "hpss", "(", "stft", ",", "*", "*", "kwargs", ")", "[", "1", "]", "# Invert the STFT", "y_perc", "=", "util", ".", "fix_length", "(", "core", ".", "istft", "(", "stft_perc", ",", "dtype", "=", "y", ".", "dtype", ")", ",", "len", "(", "y", ")", ")", "return", "y_perc" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
time_stretch
Time-stretch an audio series by a fixed rate. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series rate : float > 0 [scalar] Stretch factor. If `rate > 1`, then the signal is sped up. If `rate < 1`, then the signal is slowed down. Returns ------- y_stretch : np.ndarray [shape=(rate * n,)] audio time series stretched by the specified rate See Also -------- pitch_shift : pitch shifting librosa.core.phase_vocoder : spectrogram phase vocoder Examples -------- Compress to be twice as fast >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_fast = librosa.effects.time_stretch(y, 2.0) Or half the original speed >>> y_slow = librosa.effects.time_stretch(y, 0.5)
librosa/effects.py
def time_stretch(y, rate): '''Time-stretch an audio series by a fixed rate. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series rate : float > 0 [scalar] Stretch factor. If `rate > 1`, then the signal is sped up. If `rate < 1`, then the signal is slowed down. Returns ------- y_stretch : np.ndarray [shape=(rate * n,)] audio time series stretched by the specified rate See Also -------- pitch_shift : pitch shifting librosa.core.phase_vocoder : spectrogram phase vocoder Examples -------- Compress to be twice as fast >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_fast = librosa.effects.time_stretch(y, 2.0) Or half the original speed >>> y_slow = librosa.effects.time_stretch(y, 0.5) ''' if rate <= 0: raise ParameterError('rate must be a positive number') # Construct the stft stft = core.stft(y) # Stretch by phase vocoding stft_stretch = core.phase_vocoder(stft, rate) # Invert the stft y_stretch = core.istft(stft_stretch, dtype=y.dtype) return y_stretch
def time_stretch(y, rate): '''Time-stretch an audio series by a fixed rate. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series rate : float > 0 [scalar] Stretch factor. If `rate > 1`, then the signal is sped up. If `rate < 1`, then the signal is slowed down. Returns ------- y_stretch : np.ndarray [shape=(rate * n,)] audio time series stretched by the specified rate See Also -------- pitch_shift : pitch shifting librosa.core.phase_vocoder : spectrogram phase vocoder Examples -------- Compress to be twice as fast >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_fast = librosa.effects.time_stretch(y, 2.0) Or half the original speed >>> y_slow = librosa.effects.time_stretch(y, 0.5) ''' if rate <= 0: raise ParameterError('rate must be a positive number') # Construct the stft stft = core.stft(y) # Stretch by phase vocoding stft_stretch = core.phase_vocoder(stft, rate) # Invert the stft y_stretch = core.istft(stft_stretch, dtype=y.dtype) return y_stretch
[ "Time", "-", "stretch", "an", "audio", "series", "by", "a", "fixed", "rate", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L189-L239
[ "def", "time_stretch", "(", "y", ",", "rate", ")", ":", "if", "rate", "<=", "0", ":", "raise", "ParameterError", "(", "'rate must be a positive number'", ")", "# Construct the stft", "stft", "=", "core", ".", "stft", "(", "y", ")", "# Stretch by phase vocoding", "stft_stretch", "=", "core", ".", "phase_vocoder", "(", "stft", ",", "rate", ")", "# Invert the stft", "y_stretch", "=", "core", ".", "istft", "(", "stft_stretch", ",", "dtype", "=", "y", ".", "dtype", ")", "return", "y_stretch" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
pitch_shift
Pitch-shift the waveform by `n_steps` half-steps. Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] audio sampling rate of `y` n_steps : float [scalar] how many (fractional) half-steps to shift `y` bins_per_octave : float > 0 [scalar] how many steps per octave res_type : string Resample type. Possible options: 'kaiser_best', 'kaiser_fast', and 'scipy', 'polyphase', 'fft'. By default, 'kaiser_best' is used. See `core.resample` for more information. Returns ------- y_shift : np.ndarray [shape=(n,)] The pitch-shifted audio time-series See Also -------- time_stretch : time stretching librosa.core.phase_vocoder : spectrogram phase vocoder Examples -------- Shift up by a major third (four half-steps) >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_third = librosa.effects.pitch_shift(y, sr, n_steps=4) Shift down by a tritone (six half-steps) >>> y_tritone = librosa.effects.pitch_shift(y, sr, n_steps=-6) Shift up by 3 quarter-tones >>> y_three_qt = librosa.effects.pitch_shift(y, sr, n_steps=3, ... bins_per_octave=24)
librosa/effects.py
def pitch_shift(y, sr, n_steps, bins_per_octave=12, res_type='kaiser_best'): '''Pitch-shift the waveform by `n_steps` half-steps. Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] audio sampling rate of `y` n_steps : float [scalar] how many (fractional) half-steps to shift `y` bins_per_octave : float > 0 [scalar] how many steps per octave res_type : string Resample type. Possible options: 'kaiser_best', 'kaiser_fast', and 'scipy', 'polyphase', 'fft'. By default, 'kaiser_best' is used. See `core.resample` for more information. Returns ------- y_shift : np.ndarray [shape=(n,)] The pitch-shifted audio time-series See Also -------- time_stretch : time stretching librosa.core.phase_vocoder : spectrogram phase vocoder Examples -------- Shift up by a major third (four half-steps) >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_third = librosa.effects.pitch_shift(y, sr, n_steps=4) Shift down by a tritone (six half-steps) >>> y_tritone = librosa.effects.pitch_shift(y, sr, n_steps=-6) Shift up by 3 quarter-tones >>> y_three_qt = librosa.effects.pitch_shift(y, sr, n_steps=3, ... bins_per_octave=24) ''' if bins_per_octave < 1 or not np.issubdtype(type(bins_per_octave), np.integer): raise ParameterError('bins_per_octave must be a positive integer.') rate = 2.0 ** (-float(n_steps) / bins_per_octave) # Stretch in time, then resample y_shift = core.resample(time_stretch(y, rate), float(sr) / rate, sr, res_type=res_type) # Crop to the same dimension as the input return util.fix_length(y_shift, len(y))
def pitch_shift(y, sr, n_steps, bins_per_octave=12, res_type='kaiser_best'): '''Pitch-shift the waveform by `n_steps` half-steps. Parameters ---------- y : np.ndarray [shape=(n,)] audio time-series sr : number > 0 [scalar] audio sampling rate of `y` n_steps : float [scalar] how many (fractional) half-steps to shift `y` bins_per_octave : float > 0 [scalar] how many steps per octave res_type : string Resample type. Possible options: 'kaiser_best', 'kaiser_fast', and 'scipy', 'polyphase', 'fft'. By default, 'kaiser_best' is used. See `core.resample` for more information. Returns ------- y_shift : np.ndarray [shape=(n,)] The pitch-shifted audio time-series See Also -------- time_stretch : time stretching librosa.core.phase_vocoder : spectrogram phase vocoder Examples -------- Shift up by a major third (four half-steps) >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y_third = librosa.effects.pitch_shift(y, sr, n_steps=4) Shift down by a tritone (six half-steps) >>> y_tritone = librosa.effects.pitch_shift(y, sr, n_steps=-6) Shift up by 3 quarter-tones >>> y_three_qt = librosa.effects.pitch_shift(y, sr, n_steps=3, ... bins_per_octave=24) ''' if bins_per_octave < 1 or not np.issubdtype(type(bins_per_octave), np.integer): raise ParameterError('bins_per_octave must be a positive integer.') rate = 2.0 ** (-float(n_steps) / bins_per_octave) # Stretch in time, then resample y_shift = core.resample(time_stretch(y, rate), float(sr) / rate, sr, res_type=res_type) # Crop to the same dimension as the input return util.fix_length(y_shift, len(y))
[ "Pitch", "-", "shift", "the", "waveform", "by", "n_steps", "half", "-", "steps", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L242-L307
[ "def", "pitch_shift", "(", "y", ",", "sr", ",", "n_steps", ",", "bins_per_octave", "=", "12", ",", "res_type", "=", "'kaiser_best'", ")", ":", "if", "bins_per_octave", "<", "1", "or", "not", "np", ".", "issubdtype", "(", "type", "(", "bins_per_octave", ")", ",", "np", ".", "integer", ")", ":", "raise", "ParameterError", "(", "'bins_per_octave must be a positive integer.'", ")", "rate", "=", "2.0", "**", "(", "-", "float", "(", "n_steps", ")", "/", "bins_per_octave", ")", "# Stretch in time, then resample", "y_shift", "=", "core", ".", "resample", "(", "time_stretch", "(", "y", ",", "rate", ")", ",", "float", "(", "sr", ")", "/", "rate", ",", "sr", ",", "res_type", "=", "res_type", ")", "# Crop to the same dimension as the input", "return", "util", ".", "fix_length", "(", "y_shift", ",", "len", "(", "y", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
remix
Remix an audio signal by re-ordering time intervals. Parameters ---------- y : np.ndarray [shape=(t,) or (2, t)] Audio time series intervals : iterable of tuples (start, end) An iterable (list-like or generator) where the `i`th item `intervals[i]` indicates the start and end (in samples) of a slice of `y`. align_zeros : boolean If `True`, interval boundaries are mapped to the closest zero-crossing in `y`. If `y` is stereo, zero-crossings are computed after converting to mono. Returns ------- y_remix : np.ndarray [shape=(d,) or (2, d)] `y` remixed in the order specified by `intervals` Examples -------- Load in the example track and reverse the beats >>> y, sr = librosa.load(librosa.util.example_audio_file()) Compute beats >>> _, beat_frames = librosa.beat.beat_track(y=y, sr=sr, ... hop_length=512) Convert from frames to sample indices >>> beat_samples = librosa.frames_to_samples(beat_frames) Generate intervals from consecutive events >>> intervals = librosa.util.frame(beat_samples, frame_length=2, ... hop_length=1).T Reverse the beat intervals >>> y_out = librosa.effects.remix(y, intervals[::-1])
librosa/effects.py
def remix(y, intervals, align_zeros=True): '''Remix an audio signal by re-ordering time intervals. Parameters ---------- y : np.ndarray [shape=(t,) or (2, t)] Audio time series intervals : iterable of tuples (start, end) An iterable (list-like or generator) where the `i`th item `intervals[i]` indicates the start and end (in samples) of a slice of `y`. align_zeros : boolean If `True`, interval boundaries are mapped to the closest zero-crossing in `y`. If `y` is stereo, zero-crossings are computed after converting to mono. Returns ------- y_remix : np.ndarray [shape=(d,) or (2, d)] `y` remixed in the order specified by `intervals` Examples -------- Load in the example track and reverse the beats >>> y, sr = librosa.load(librosa.util.example_audio_file()) Compute beats >>> _, beat_frames = librosa.beat.beat_track(y=y, sr=sr, ... hop_length=512) Convert from frames to sample indices >>> beat_samples = librosa.frames_to_samples(beat_frames) Generate intervals from consecutive events >>> intervals = librosa.util.frame(beat_samples, frame_length=2, ... hop_length=1).T Reverse the beat intervals >>> y_out = librosa.effects.remix(y, intervals[::-1]) ''' # Validate the audio buffer util.valid_audio(y, mono=False) y_out = [] if align_zeros: y_mono = core.to_mono(y) zeros = np.nonzero(core.zero_crossings(y_mono))[-1] # Force end-of-signal onto zeros zeros = np.append(zeros, [len(y_mono)]) clip = [slice(None)] * y.ndim for interval in intervals: if align_zeros: interval = zeros[util.match_events(interval, zeros)] clip[-1] = slice(interval[0], interval[1]) y_out.append(y[tuple(clip)]) return np.concatenate(y_out, axis=-1)
def remix(y, intervals, align_zeros=True): '''Remix an audio signal by re-ordering time intervals. Parameters ---------- y : np.ndarray [shape=(t,) or (2, t)] Audio time series intervals : iterable of tuples (start, end) An iterable (list-like or generator) where the `i`th item `intervals[i]` indicates the start and end (in samples) of a slice of `y`. align_zeros : boolean If `True`, interval boundaries are mapped to the closest zero-crossing in `y`. If `y` is stereo, zero-crossings are computed after converting to mono. Returns ------- y_remix : np.ndarray [shape=(d,) or (2, d)] `y` remixed in the order specified by `intervals` Examples -------- Load in the example track and reverse the beats >>> y, sr = librosa.load(librosa.util.example_audio_file()) Compute beats >>> _, beat_frames = librosa.beat.beat_track(y=y, sr=sr, ... hop_length=512) Convert from frames to sample indices >>> beat_samples = librosa.frames_to_samples(beat_frames) Generate intervals from consecutive events >>> intervals = librosa.util.frame(beat_samples, frame_length=2, ... hop_length=1).T Reverse the beat intervals >>> y_out = librosa.effects.remix(y, intervals[::-1]) ''' # Validate the audio buffer util.valid_audio(y, mono=False) y_out = [] if align_zeros: y_mono = core.to_mono(y) zeros = np.nonzero(core.zero_crossings(y_mono))[-1] # Force end-of-signal onto zeros zeros = np.append(zeros, [len(y_mono)]) clip = [slice(None)] * y.ndim for interval in intervals: if align_zeros: interval = zeros[util.match_events(interval, zeros)] clip[-1] = slice(interval[0], interval[1]) y_out.append(y[tuple(clip)]) return np.concatenate(y_out, axis=-1)
[ "Remix", "an", "audio", "signal", "by", "re", "-", "ordering", "time", "intervals", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L310-L387
[ "def", "remix", "(", "y", ",", "intervals", ",", "align_zeros", "=", "True", ")", ":", "# Validate the audio buffer", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "y_out", "=", "[", "]", "if", "align_zeros", ":", "y_mono", "=", "core", ".", "to_mono", "(", "y", ")", "zeros", "=", "np", ".", "nonzero", "(", "core", ".", "zero_crossings", "(", "y_mono", ")", ")", "[", "-", "1", "]", "# Force end-of-signal onto zeros", "zeros", "=", "np", ".", "append", "(", "zeros", ",", "[", "len", "(", "y_mono", ")", "]", ")", "clip", "=", "[", "slice", "(", "None", ")", "]", "*", "y", ".", "ndim", "for", "interval", "in", "intervals", ":", "if", "align_zeros", ":", "interval", "=", "zeros", "[", "util", ".", "match_events", "(", "interval", ",", "zeros", ")", "]", "clip", "[", "-", "1", "]", "=", "slice", "(", "interval", "[", "0", "]", ",", "interval", "[", "1", "]", ")", "y_out", ".", "append", "(", "y", "[", "tuple", "(", "clip", ")", "]", ")", "return", "np", ".", "concatenate", "(", "y_out", ",", "axis", "=", "-", "1", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
_signal_to_frame_nonsilent
Frame-wise non-silent indicator for audio input. This is a helper function for `trim` and `split`. Parameters ---------- y : np.ndarray, shape=(n,) or (2,n) Audio signal, mono or stereo frame_length : int > 0 The number of samples per frame hop_length : int > 0 The number of samples between frames top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : callable or float The reference power Returns ------- non_silent : np.ndarray, shape=(m,), dtype=bool Indicator of non-silent frames
librosa/effects.py
def _signal_to_frame_nonsilent(y, frame_length=2048, hop_length=512, top_db=60, ref=np.max): '''Frame-wise non-silent indicator for audio input. This is a helper function for `trim` and `split`. Parameters ---------- y : np.ndarray, shape=(n,) or (2,n) Audio signal, mono or stereo frame_length : int > 0 The number of samples per frame hop_length : int > 0 The number of samples between frames top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : callable or float The reference power Returns ------- non_silent : np.ndarray, shape=(m,), dtype=bool Indicator of non-silent frames ''' # Convert to mono y_mono = core.to_mono(y) # Compute the MSE for the signal mse = feature.rms(y=y_mono, frame_length=frame_length, hop_length=hop_length)**2 return (core.power_to_db(mse.squeeze(), ref=ref, top_db=None) > - top_db)
def _signal_to_frame_nonsilent(y, frame_length=2048, hop_length=512, top_db=60, ref=np.max): '''Frame-wise non-silent indicator for audio input. This is a helper function for `trim` and `split`. Parameters ---------- y : np.ndarray, shape=(n,) or (2,n) Audio signal, mono or stereo frame_length : int > 0 The number of samples per frame hop_length : int > 0 The number of samples between frames top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : callable or float The reference power Returns ------- non_silent : np.ndarray, shape=(m,), dtype=bool Indicator of non-silent frames ''' # Convert to mono y_mono = core.to_mono(y) # Compute the MSE for the signal mse = feature.rms(y=y_mono, frame_length=frame_length, hop_length=hop_length)**2 return (core.power_to_db(mse.squeeze(), ref=ref, top_db=None) > - top_db)
[ "Frame", "-", "wise", "non", "-", "silent", "indicator", "for", "audio", "input", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L390-L429
[ "def", "_signal_to_frame_nonsilent", "(", "y", ",", "frame_length", "=", "2048", ",", "hop_length", "=", "512", ",", "top_db", "=", "60", ",", "ref", "=", "np", ".", "max", ")", ":", "# Convert to mono", "y_mono", "=", "core", ".", "to_mono", "(", "y", ")", "# Compute the MSE for the signal", "mse", "=", "feature", ".", "rms", "(", "y", "=", "y_mono", ",", "frame_length", "=", "frame_length", ",", "hop_length", "=", "hop_length", ")", "**", "2", "return", "(", "core", ".", "power_to_db", "(", "mse", ".", "squeeze", "(", ")", ",", "ref", "=", "ref", ",", "top_db", "=", "None", ")", ">", "-", "top_db", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
trim
Trim leading and trailing silence from an audio signal. Parameters ---------- y : np.ndarray, shape=(n,) or (2,n) Audio signal, can be mono or stereo top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : number or callable The reference power. By default, it uses `np.max` and compares to the peak power in the signal. frame_length : int > 0 The number of samples per analysis frame hop_length : int > 0 The number of samples between analysis frames Returns ------- y_trimmed : np.ndarray, shape=(m,) or (2, m) The trimmed signal index : np.ndarray, shape=(2,) the interval of `y` corresponding to the non-silent region: `y_trimmed = y[index[0]:index[1]]` (for mono) or `y_trimmed = y[:, index[0]:index[1]]` (for stereo). Examples -------- >>> # Load some audio >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> # Trim the beginning and ending silence >>> yt, index = librosa.effects.trim(y) >>> # Print the durations >>> print(librosa.get_duration(y), librosa.get_duration(yt)) 61.45886621315193 60.58086167800454
librosa/effects.py
def trim(y, top_db=60, ref=np.max, frame_length=2048, hop_length=512): '''Trim leading and trailing silence from an audio signal. Parameters ---------- y : np.ndarray, shape=(n,) or (2,n) Audio signal, can be mono or stereo top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : number or callable The reference power. By default, it uses `np.max` and compares to the peak power in the signal. frame_length : int > 0 The number of samples per analysis frame hop_length : int > 0 The number of samples between analysis frames Returns ------- y_trimmed : np.ndarray, shape=(m,) or (2, m) The trimmed signal index : np.ndarray, shape=(2,) the interval of `y` corresponding to the non-silent region: `y_trimmed = y[index[0]:index[1]]` (for mono) or `y_trimmed = y[:, index[0]:index[1]]` (for stereo). Examples -------- >>> # Load some audio >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> # Trim the beginning and ending silence >>> yt, index = librosa.effects.trim(y) >>> # Print the durations >>> print(librosa.get_duration(y), librosa.get_duration(yt)) 61.45886621315193 60.58086167800454 ''' non_silent = _signal_to_frame_nonsilent(y, frame_length=frame_length, hop_length=hop_length, ref=ref, top_db=top_db) nonzero = np.flatnonzero(non_silent) if nonzero.size > 0: # Compute the start and end positions # End position goes one frame past the last non-zero start = int(core.frames_to_samples(nonzero[0], hop_length)) end = min(y.shape[-1], int(core.frames_to_samples(nonzero[-1] + 1, hop_length))) else: # The signal only contains zeros start, end = 0, 0 # Build the mono/stereo index full_index = [slice(None)] * y.ndim full_index[-1] = slice(start, end) return y[tuple(full_index)], np.asarray([start, end])
def trim(y, top_db=60, ref=np.max, frame_length=2048, hop_length=512): '''Trim leading and trailing silence from an audio signal. Parameters ---------- y : np.ndarray, shape=(n,) or (2,n) Audio signal, can be mono or stereo top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : number or callable The reference power. By default, it uses `np.max` and compares to the peak power in the signal. frame_length : int > 0 The number of samples per analysis frame hop_length : int > 0 The number of samples between analysis frames Returns ------- y_trimmed : np.ndarray, shape=(m,) or (2, m) The trimmed signal index : np.ndarray, shape=(2,) the interval of `y` corresponding to the non-silent region: `y_trimmed = y[index[0]:index[1]]` (for mono) or `y_trimmed = y[:, index[0]:index[1]]` (for stereo). Examples -------- >>> # Load some audio >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> # Trim the beginning and ending silence >>> yt, index = librosa.effects.trim(y) >>> # Print the durations >>> print(librosa.get_duration(y), librosa.get_duration(yt)) 61.45886621315193 60.58086167800454 ''' non_silent = _signal_to_frame_nonsilent(y, frame_length=frame_length, hop_length=hop_length, ref=ref, top_db=top_db) nonzero = np.flatnonzero(non_silent) if nonzero.size > 0: # Compute the start and end positions # End position goes one frame past the last non-zero start = int(core.frames_to_samples(nonzero[0], hop_length)) end = min(y.shape[-1], int(core.frames_to_samples(nonzero[-1] + 1, hop_length))) else: # The signal only contains zeros start, end = 0, 0 # Build the mono/stereo index full_index = [slice(None)] * y.ndim full_index[-1] = slice(start, end) return y[tuple(full_index)], np.asarray([start, end])
[ "Trim", "leading", "and", "trailing", "silence", "from", "an", "audio", "signal", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L432-L498
[ "def", "trim", "(", "y", ",", "top_db", "=", "60", ",", "ref", "=", "np", ".", "max", ",", "frame_length", "=", "2048", ",", "hop_length", "=", "512", ")", ":", "non_silent", "=", "_signal_to_frame_nonsilent", "(", "y", ",", "frame_length", "=", "frame_length", ",", "hop_length", "=", "hop_length", ",", "ref", "=", "ref", ",", "top_db", "=", "top_db", ")", "nonzero", "=", "np", ".", "flatnonzero", "(", "non_silent", ")", "if", "nonzero", ".", "size", ">", "0", ":", "# Compute the start and end positions", "# End position goes one frame past the last non-zero", "start", "=", "int", "(", "core", ".", "frames_to_samples", "(", "nonzero", "[", "0", "]", ",", "hop_length", ")", ")", "end", "=", "min", "(", "y", ".", "shape", "[", "-", "1", "]", ",", "int", "(", "core", ".", "frames_to_samples", "(", "nonzero", "[", "-", "1", "]", "+", "1", ",", "hop_length", ")", ")", ")", "else", ":", "# The signal only contains zeros", "start", ",", "end", "=", "0", ",", "0", "# Build the mono/stereo index", "full_index", "=", "[", "slice", "(", "None", ")", "]", "*", "y", ".", "ndim", "full_index", "[", "-", "1", "]", "=", "slice", "(", "start", ",", "end", ")", "return", "y", "[", "tuple", "(", "full_index", ")", "]", ",", "np", ".", "asarray", "(", "[", "start", ",", "end", "]", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
split
Split an audio signal into non-silent intervals. Parameters ---------- y : np.ndarray, shape=(n,) or (2, n) An audio signal top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : number or callable The reference power. By default, it uses `np.max` and compares to the peak power in the signal. frame_length : int > 0 The number of samples per analysis frame hop_length : int > 0 The number of samples between analysis frames Returns ------- intervals : np.ndarray, shape=(m, 2) `intervals[i] == (start_i, end_i)` are the start and end time (in samples) of non-silent interval `i`.
librosa/effects.py
def split(y, top_db=60, ref=np.max, frame_length=2048, hop_length=512): '''Split an audio signal into non-silent intervals. Parameters ---------- y : np.ndarray, shape=(n,) or (2, n) An audio signal top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : number or callable The reference power. By default, it uses `np.max` and compares to the peak power in the signal. frame_length : int > 0 The number of samples per analysis frame hop_length : int > 0 The number of samples between analysis frames Returns ------- intervals : np.ndarray, shape=(m, 2) `intervals[i] == (start_i, end_i)` are the start and end time (in samples) of non-silent interval `i`. ''' non_silent = _signal_to_frame_nonsilent(y, frame_length=frame_length, hop_length=hop_length, ref=ref, top_db=top_db) # Interval slicing, adapted from # https://stackoverflow.com/questions/2619413/efficiently-finding-the-interval-with-non-zeros-in-scipy-numpy-in-python # Find points where the sign flips edges = np.flatnonzero(np.diff(non_silent.astype(int))) # Pad back the sample lost in the diff edges = [edges + 1] # If the first frame had high energy, count it if non_silent[0]: edges.insert(0, [0]) # Likewise for the last frame if non_silent[-1]: edges.append([len(non_silent)]) # Convert from frames to samples edges = core.frames_to_samples(np.concatenate(edges), hop_length=hop_length) # Clip to the signal duration edges = np.minimum(edges, y.shape[-1]) # Stack the results back as an ndarray return edges.reshape((-1, 2))
def split(y, top_db=60, ref=np.max, frame_length=2048, hop_length=512): '''Split an audio signal into non-silent intervals. Parameters ---------- y : np.ndarray, shape=(n,) or (2, n) An audio signal top_db : number > 0 The threshold (in decibels) below reference to consider as silence ref : number or callable The reference power. By default, it uses `np.max` and compares to the peak power in the signal. frame_length : int > 0 The number of samples per analysis frame hop_length : int > 0 The number of samples between analysis frames Returns ------- intervals : np.ndarray, shape=(m, 2) `intervals[i] == (start_i, end_i)` are the start and end time (in samples) of non-silent interval `i`. ''' non_silent = _signal_to_frame_nonsilent(y, frame_length=frame_length, hop_length=hop_length, ref=ref, top_db=top_db) # Interval slicing, adapted from # https://stackoverflow.com/questions/2619413/efficiently-finding-the-interval-with-non-zeros-in-scipy-numpy-in-python # Find points where the sign flips edges = np.flatnonzero(np.diff(non_silent.astype(int))) # Pad back the sample lost in the diff edges = [edges + 1] # If the first frame had high energy, count it if non_silent[0]: edges.insert(0, [0]) # Likewise for the last frame if non_silent[-1]: edges.append([len(non_silent)]) # Convert from frames to samples edges = core.frames_to_samples(np.concatenate(edges), hop_length=hop_length) # Clip to the signal duration edges = np.minimum(edges, y.shape[-1]) # Stack the results back as an ndarray return edges.reshape((-1, 2))
[ "Split", "an", "audio", "signal", "into", "non", "-", "silent", "intervals", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L501-L561
[ "def", "split", "(", "y", ",", "top_db", "=", "60", ",", "ref", "=", "np", ".", "max", ",", "frame_length", "=", "2048", ",", "hop_length", "=", "512", ")", ":", "non_silent", "=", "_signal_to_frame_nonsilent", "(", "y", ",", "frame_length", "=", "frame_length", ",", "hop_length", "=", "hop_length", ",", "ref", "=", "ref", ",", "top_db", "=", "top_db", ")", "# Interval slicing, adapted from", "# https://stackoverflow.com/questions/2619413/efficiently-finding-the-interval-with-non-zeros-in-scipy-numpy-in-python", "# Find points where the sign flips", "edges", "=", "np", ".", "flatnonzero", "(", "np", ".", "diff", "(", "non_silent", ".", "astype", "(", "int", ")", ")", ")", "# Pad back the sample lost in the diff", "edges", "=", "[", "edges", "+", "1", "]", "# If the first frame had high energy, count it", "if", "non_silent", "[", "0", "]", ":", "edges", ".", "insert", "(", "0", ",", "[", "0", "]", ")", "# Likewise for the last frame", "if", "non_silent", "[", "-", "1", "]", ":", "edges", ".", "append", "(", "[", "len", "(", "non_silent", ")", "]", ")", "# Convert from frames to samples", "edges", "=", "core", ".", "frames_to_samples", "(", "np", ".", "concatenate", "(", "edges", ")", ",", "hop_length", "=", "hop_length", ")", "# Clip to the signal duration", "edges", "=", "np", ".", "minimum", "(", "edges", ",", "y", ".", "shape", "[", "-", "1", "]", ")", "# Stack the results back as an ndarray", "return", "edges", ".", "reshape", "(", "(", "-", "1", ",", "2", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
stft
Short-time Fourier transform (STFT) Returns a complex-valued matrix D such that `np.abs(D[f, t])` is the magnitude of frequency bin `f` at frame `t` `np.angle(D[f, t])` is the phase of frequency bin `f` at frame `t` Parameters ---------- y : np.ndarray [shape=(n,)], real-valued the input signal (audio time series) n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] number audio of frames between STFT columns. If unspecified, defaults `win_length / 4`. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` begins at `y[t * hop_length]` dtype : numeric type Complex numeric type for `D`. Default is 64-bit complex. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- D : np.ndarray [shape=(1 + n_fft/2, t), dtype=dtype] STFT matrix See Also -------- istft : Inverse STFT ifgram : Instantaneous frequency spectrogram np.pad : array padding Notes ----- This function caches at level 20. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = np.abs(librosa.stft(y)) >>> D array([[2.58028018e-03, 4.32422794e-02, 6.61255598e-01, ..., 6.82710262e-04, 2.51654536e-04, 7.23036574e-05], [2.49403086e-03, 5.15930466e-02, 6.00107312e-01, ..., 3.48026224e-04, 2.35853557e-04, 7.54836728e-05], [7.82410789e-04, 1.05394892e-01, 4.37517226e-01, ..., 6.29352580e-04, 3.38571583e-04, 8.38094638e-05], ..., [9.48568513e-08, 4.74725084e-07, 1.50052492e-05, ..., 1.85637656e-08, 2.89708542e-08, 5.74304337e-09], [1.25165826e-07, 8.58259284e-07, 1.11157215e-05, ..., 3.49099771e-08, 3.11740926e-08, 5.29926236e-09], [1.70630571e-07, 8.92518756e-07, 1.23656537e-05, ..., 5.33256745e-08, 3.33264900e-08, 5.13272980e-09]], dtype=float32) Use left-aligned frames, instead of centered frames >>> D_left = np.abs(librosa.stft(y, center=False)) Use a shorter hop length >>> D_short = np.abs(librosa.stft(y, hop_length=64)) Display a spectrogram >>> import matplotlib.pyplot as plt >>> librosa.display.specshow(librosa.amplitude_to_db(D, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Power spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout()
librosa/core/spectrum.py
def stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, dtype=np.complex64, pad_mode='reflect'): """Short-time Fourier transform (STFT) Returns a complex-valued matrix D such that `np.abs(D[f, t])` is the magnitude of frequency bin `f` at frame `t` `np.angle(D[f, t])` is the phase of frequency bin `f` at frame `t` Parameters ---------- y : np.ndarray [shape=(n,)], real-valued the input signal (audio time series) n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] number audio of frames between STFT columns. If unspecified, defaults `win_length / 4`. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` begins at `y[t * hop_length]` dtype : numeric type Complex numeric type for `D`. Default is 64-bit complex. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- D : np.ndarray [shape=(1 + n_fft/2, t), dtype=dtype] STFT matrix See Also -------- istft : Inverse STFT ifgram : Instantaneous frequency spectrogram np.pad : array padding Notes ----- This function caches at level 20. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = np.abs(librosa.stft(y)) >>> D array([[2.58028018e-03, 4.32422794e-02, 6.61255598e-01, ..., 6.82710262e-04, 2.51654536e-04, 7.23036574e-05], [2.49403086e-03, 5.15930466e-02, 6.00107312e-01, ..., 3.48026224e-04, 2.35853557e-04, 7.54836728e-05], [7.82410789e-04, 1.05394892e-01, 4.37517226e-01, ..., 6.29352580e-04, 3.38571583e-04, 8.38094638e-05], ..., [9.48568513e-08, 4.74725084e-07, 1.50052492e-05, ..., 1.85637656e-08, 2.89708542e-08, 5.74304337e-09], [1.25165826e-07, 8.58259284e-07, 1.11157215e-05, ..., 3.49099771e-08, 3.11740926e-08, 5.29926236e-09], [1.70630571e-07, 8.92518756e-07, 1.23656537e-05, ..., 5.33256745e-08, 3.33264900e-08, 5.13272980e-09]], dtype=float32) Use left-aligned frames, instead of centered frames >>> D_left = np.abs(librosa.stft(y, center=False)) Use a shorter hop length >>> D_short = np.abs(librosa.stft(y, hop_length=64)) Display a spectrogram >>> import matplotlib.pyplot as plt >>> librosa.display.specshow(librosa.amplitude_to_db(D, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Power spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout() """ # By default, use the entire frame if win_length is None: win_length = n_fft # Set the default hop, if it's not already specified if hop_length is None: hop_length = int(win_length // 4) fft_window = get_window(window, win_length, fftbins=True) # Pad the window out to n_fft size fft_window = util.pad_center(fft_window, n_fft) # Reshape so that the window can be broadcast fft_window = fft_window.reshape((-1, 1)) # Check audio is valid util.valid_audio(y) # Pad the time series so that frames are centered if center: y = np.pad(y, int(n_fft // 2), mode=pad_mode) # Window the time series. y_frames = util.frame(y, frame_length=n_fft, hop_length=hop_length) # Pre-allocate the STFT matrix stft_matrix = np.empty((int(1 + n_fft // 2), y_frames.shape[1]), dtype=dtype, order='F') fft = get_fftlib() # how many columns can we fit within MAX_MEM_BLOCK? n_columns = int(util.MAX_MEM_BLOCK / (stft_matrix.shape[0] * stft_matrix.itemsize)) for bl_s in range(0, stft_matrix.shape[1], n_columns): bl_t = min(bl_s + n_columns, stft_matrix.shape[1]) stft_matrix[:, bl_s:bl_t] = fft.rfft(fft_window * y_frames[:, bl_s:bl_t], axis=0) return stft_matrix
def stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, dtype=np.complex64, pad_mode='reflect'): """Short-time Fourier transform (STFT) Returns a complex-valued matrix D such that `np.abs(D[f, t])` is the magnitude of frequency bin `f` at frame `t` `np.angle(D[f, t])` is the phase of frequency bin `f` at frame `t` Parameters ---------- y : np.ndarray [shape=(n,)], real-valued the input signal (audio time series) n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] number audio of frames between STFT columns. If unspecified, defaults `win_length / 4`. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` begins at `y[t * hop_length]` dtype : numeric type Complex numeric type for `D`. Default is 64-bit complex. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- D : np.ndarray [shape=(1 + n_fft/2, t), dtype=dtype] STFT matrix See Also -------- istft : Inverse STFT ifgram : Instantaneous frequency spectrogram np.pad : array padding Notes ----- This function caches at level 20. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = np.abs(librosa.stft(y)) >>> D array([[2.58028018e-03, 4.32422794e-02, 6.61255598e-01, ..., 6.82710262e-04, 2.51654536e-04, 7.23036574e-05], [2.49403086e-03, 5.15930466e-02, 6.00107312e-01, ..., 3.48026224e-04, 2.35853557e-04, 7.54836728e-05], [7.82410789e-04, 1.05394892e-01, 4.37517226e-01, ..., 6.29352580e-04, 3.38571583e-04, 8.38094638e-05], ..., [9.48568513e-08, 4.74725084e-07, 1.50052492e-05, ..., 1.85637656e-08, 2.89708542e-08, 5.74304337e-09], [1.25165826e-07, 8.58259284e-07, 1.11157215e-05, ..., 3.49099771e-08, 3.11740926e-08, 5.29926236e-09], [1.70630571e-07, 8.92518756e-07, 1.23656537e-05, ..., 5.33256745e-08, 3.33264900e-08, 5.13272980e-09]], dtype=float32) Use left-aligned frames, instead of centered frames >>> D_left = np.abs(librosa.stft(y, center=False)) Use a shorter hop length >>> D_short = np.abs(librosa.stft(y, hop_length=64)) Display a spectrogram >>> import matplotlib.pyplot as plt >>> librosa.display.specshow(librosa.amplitude_to_db(D, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Power spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout() """ # By default, use the entire frame if win_length is None: win_length = n_fft # Set the default hop, if it's not already specified if hop_length is None: hop_length = int(win_length // 4) fft_window = get_window(window, win_length, fftbins=True) # Pad the window out to n_fft size fft_window = util.pad_center(fft_window, n_fft) # Reshape so that the window can be broadcast fft_window = fft_window.reshape((-1, 1)) # Check audio is valid util.valid_audio(y) # Pad the time series so that frames are centered if center: y = np.pad(y, int(n_fft // 2), mode=pad_mode) # Window the time series. y_frames = util.frame(y, frame_length=n_fft, hop_length=hop_length) # Pre-allocate the STFT matrix stft_matrix = np.empty((int(1 + n_fft // 2), y_frames.shape[1]), dtype=dtype, order='F') fft = get_fftlib() # how many columns can we fit within MAX_MEM_BLOCK? n_columns = int(util.MAX_MEM_BLOCK / (stft_matrix.shape[0] * stft_matrix.itemsize)) for bl_s in range(0, stft_matrix.shape[1], n_columns): bl_t = min(bl_s + n_columns, stft_matrix.shape[1]) stft_matrix[:, bl_s:bl_t] = fft.rfft(fft_window * y_frames[:, bl_s:bl_t], axis=0) return stft_matrix
[ "Short", "-", "time", "Fourier", "transform", "(", "STFT", ")" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L33-L189
[ "def", "stft", "(", "y", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "None", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "dtype", "=", "np", ".", "complex64", ",", "pad_mode", "=", "'reflect'", ")", ":", "# By default, use the entire frame", "if", "win_length", "is", "None", ":", "win_length", "=", "n_fft", "# Set the default hop, if it's not already specified", "if", "hop_length", "is", "None", ":", "hop_length", "=", "int", "(", "win_length", "//", "4", ")", "fft_window", "=", "get_window", "(", "window", ",", "win_length", ",", "fftbins", "=", "True", ")", "# Pad the window out to n_fft size", "fft_window", "=", "util", ".", "pad_center", "(", "fft_window", ",", "n_fft", ")", "# Reshape so that the window can be broadcast", "fft_window", "=", "fft_window", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "# Check audio is valid", "util", ".", "valid_audio", "(", "y", ")", "# Pad the time series so that frames are centered", "if", "center", ":", "y", "=", "np", ".", "pad", "(", "y", ",", "int", "(", "n_fft", "//", "2", ")", ",", "mode", "=", "pad_mode", ")", "# Window the time series.", "y_frames", "=", "util", ".", "frame", "(", "y", ",", "frame_length", "=", "n_fft", ",", "hop_length", "=", "hop_length", ")", "# Pre-allocate the STFT matrix", "stft_matrix", "=", "np", ".", "empty", "(", "(", "int", "(", "1", "+", "n_fft", "//", "2", ")", ",", "y_frames", ".", "shape", "[", "1", "]", ")", ",", "dtype", "=", "dtype", ",", "order", "=", "'F'", ")", "fft", "=", "get_fftlib", "(", ")", "# how many columns can we fit within MAX_MEM_BLOCK?", "n_columns", "=", "int", "(", "util", ".", "MAX_MEM_BLOCK", "/", "(", "stft_matrix", ".", "shape", "[", "0", "]", "*", "stft_matrix", ".", "itemsize", ")", ")", "for", "bl_s", "in", "range", "(", "0", ",", "stft_matrix", ".", "shape", "[", "1", "]", ",", "n_columns", ")", ":", "bl_t", "=", "min", "(", "bl_s", "+", "n_columns", ",", "stft_matrix", ".", "shape", "[", "1", "]", ")", "stft_matrix", "[", ":", ",", "bl_s", ":", "bl_t", "]", "=", "fft", ".", "rfft", "(", "fft_window", "*", "y_frames", "[", ":", ",", "bl_s", ":", "bl_t", "]", ",", "axis", "=", "0", ")", "return", "stft_matrix" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
istft
Inverse short-time Fourier transform (ISTFT). Converts a complex-valued spectrogram `stft_matrix` to time-series `y` by minimizing the mean squared error between `stft_matrix` and STFT of `y` as described in [1]_ up to Section 2 (reconstruction from MSTFT). In general, window function, hop length and other parameters should be same as in stft, which mostly leads to perfect reconstruction of a signal from unmodified `stft_matrix`. .. [1] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. Parameters ---------- stft_matrix : np.ndarray [shape=(1 + n_fft/2, t)] STFT matrix from `stft` hop_length : int > 0 [scalar] Number of frames between STFT columns. If unspecified, defaults to `win_length / 4`. win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1) When reconstructing the time series, each frame is windowed and each sample is normalized by the sum of squared window according to the `window` function (see below). If unspecified, defaults to `n_fft`. window : string, tuple, number, function, np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a user-specified window vector of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, `D` is assumed to have centered frames. - If `False`, `D` is assumed to have left-aligned frames. dtype : numeric type Real numeric type for `y`. Default is 32-bit float. length : int > 0, optional If provided, the output `y` is zero-padded or clipped to exactly `length` samples. Returns ------- y : np.ndarray [shape=(n,)] time domain signal reconstructed from `stft_matrix` See Also -------- stft : Short-time Fourier Transform Notes ----- This function caches at level 30. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> y_hat = librosa.istft(D) >>> y_hat array([ -4.812e-06, -4.267e-06, ..., 6.271e-06, 2.827e-07], dtype=float32) Exactly preserving length of the input signal requires explicit padding. Otherwise, a partial frame at the end of `y` will not be represented. >>> n = len(y) >>> n_fft = 2048 >>> y_pad = librosa.util.fix_length(y, n + n_fft // 2) >>> D = librosa.stft(y_pad, n_fft=n_fft) >>> y_out = librosa.istft(D, length=n) >>> np.max(np.abs(y - y_out)) 1.4901161e-07
librosa/core/spectrum.py
def istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, dtype=np.float32, length=None): """ Inverse short-time Fourier transform (ISTFT). Converts a complex-valued spectrogram `stft_matrix` to time-series `y` by minimizing the mean squared error between `stft_matrix` and STFT of `y` as described in [1]_ up to Section 2 (reconstruction from MSTFT). In general, window function, hop length and other parameters should be same as in stft, which mostly leads to perfect reconstruction of a signal from unmodified `stft_matrix`. .. [1] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. Parameters ---------- stft_matrix : np.ndarray [shape=(1 + n_fft/2, t)] STFT matrix from `stft` hop_length : int > 0 [scalar] Number of frames between STFT columns. If unspecified, defaults to `win_length / 4`. win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1) When reconstructing the time series, each frame is windowed and each sample is normalized by the sum of squared window according to the `window` function (see below). If unspecified, defaults to `n_fft`. window : string, tuple, number, function, np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a user-specified window vector of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, `D` is assumed to have centered frames. - If `False`, `D` is assumed to have left-aligned frames. dtype : numeric type Real numeric type for `y`. Default is 32-bit float. length : int > 0, optional If provided, the output `y` is zero-padded or clipped to exactly `length` samples. Returns ------- y : np.ndarray [shape=(n,)] time domain signal reconstructed from `stft_matrix` See Also -------- stft : Short-time Fourier Transform Notes ----- This function caches at level 30. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> y_hat = librosa.istft(D) >>> y_hat array([ -4.812e-06, -4.267e-06, ..., 6.271e-06, 2.827e-07], dtype=float32) Exactly preserving length of the input signal requires explicit padding. Otherwise, a partial frame at the end of `y` will not be represented. >>> n = len(y) >>> n_fft = 2048 >>> y_pad = librosa.util.fix_length(y, n + n_fft // 2) >>> D = librosa.stft(y_pad, n_fft=n_fft) >>> y_out = librosa.istft(D, length=n) >>> np.max(np.abs(y - y_out)) 1.4901161e-07 """ n_fft = 2 * (stft_matrix.shape[0] - 1) # By default, use the entire frame if win_length is None: win_length = n_fft # Set the default hop, if it's not already specified if hop_length is None: hop_length = int(win_length // 4) ifft_window = get_window(window, win_length, fftbins=True) # Pad out to match n_fft, and add a broadcasting axis ifft_window = util.pad_center(ifft_window, n_fft)[:, np.newaxis] n_frames = stft_matrix.shape[1] expected_signal_len = n_fft + hop_length * (n_frames - 1) y = np.zeros(expected_signal_len, dtype=dtype) n_columns = int(util.MAX_MEM_BLOCK // (stft_matrix.shape[0] * stft_matrix.itemsize)) fft = get_fftlib() frame = 0 for bl_s in range(0, n_frames, n_columns): bl_t = min(bl_s + n_columns, n_frames) # invert the block and apply the window function ytmp = ifft_window * fft.irfft(stft_matrix[:, bl_s:bl_t], axis=0) # Overlap-add the istft block starting at the i'th frame __overlap_add(y[frame * hop_length:], ytmp, hop_length) frame += (bl_t - bl_s) # Normalize by sum of squared window ifft_window_sum = window_sumsquare(window, n_frames, win_length=win_length, n_fft=n_fft, hop_length=hop_length, dtype=dtype) approx_nonzero_indices = ifft_window_sum > util.tiny(ifft_window_sum) y[approx_nonzero_indices] /= ifft_window_sum[approx_nonzero_indices] if length is None: # If we don't need to control length, just do the usual center trimming # to eliminate padded data if center: y = y[int(n_fft // 2):-int(n_fft // 2)] else: if center: # If we're centering, crop off the first n_fft//2 samples # and then trim/pad to the target length. # We don't trim the end here, so that if the signal is zero-padded # to a longer duration, the decay is smooth by windowing start = int(n_fft // 2) else: # If we're not centering, start at 0 and trim/pad as necessary start = 0 y = util.fix_length(y[start:], length) return y
def istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, dtype=np.float32, length=None): """ Inverse short-time Fourier transform (ISTFT). Converts a complex-valued spectrogram `stft_matrix` to time-series `y` by minimizing the mean squared error between `stft_matrix` and STFT of `y` as described in [1]_ up to Section 2 (reconstruction from MSTFT). In general, window function, hop length and other parameters should be same as in stft, which mostly leads to perfect reconstruction of a signal from unmodified `stft_matrix`. .. [1] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. Parameters ---------- stft_matrix : np.ndarray [shape=(1 + n_fft/2, t)] STFT matrix from `stft` hop_length : int > 0 [scalar] Number of frames between STFT columns. If unspecified, defaults to `win_length / 4`. win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1) When reconstructing the time series, each frame is windowed and each sample is normalized by the sum of squared window according to the `window` function (see below). If unspecified, defaults to `n_fft`. window : string, tuple, number, function, np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a user-specified window vector of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, `D` is assumed to have centered frames. - If `False`, `D` is assumed to have left-aligned frames. dtype : numeric type Real numeric type for `y`. Default is 32-bit float. length : int > 0, optional If provided, the output `y` is zero-padded or clipped to exactly `length` samples. Returns ------- y : np.ndarray [shape=(n,)] time domain signal reconstructed from `stft_matrix` See Also -------- stft : Short-time Fourier Transform Notes ----- This function caches at level 30. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> y_hat = librosa.istft(D) >>> y_hat array([ -4.812e-06, -4.267e-06, ..., 6.271e-06, 2.827e-07], dtype=float32) Exactly preserving length of the input signal requires explicit padding. Otherwise, a partial frame at the end of `y` will not be represented. >>> n = len(y) >>> n_fft = 2048 >>> y_pad = librosa.util.fix_length(y, n + n_fft // 2) >>> D = librosa.stft(y_pad, n_fft=n_fft) >>> y_out = librosa.istft(D, length=n) >>> np.max(np.abs(y - y_out)) 1.4901161e-07 """ n_fft = 2 * (stft_matrix.shape[0] - 1) # By default, use the entire frame if win_length is None: win_length = n_fft # Set the default hop, if it's not already specified if hop_length is None: hop_length = int(win_length // 4) ifft_window = get_window(window, win_length, fftbins=True) # Pad out to match n_fft, and add a broadcasting axis ifft_window = util.pad_center(ifft_window, n_fft)[:, np.newaxis] n_frames = stft_matrix.shape[1] expected_signal_len = n_fft + hop_length * (n_frames - 1) y = np.zeros(expected_signal_len, dtype=dtype) n_columns = int(util.MAX_MEM_BLOCK // (stft_matrix.shape[0] * stft_matrix.itemsize)) fft = get_fftlib() frame = 0 for bl_s in range(0, n_frames, n_columns): bl_t = min(bl_s + n_columns, n_frames) # invert the block and apply the window function ytmp = ifft_window * fft.irfft(stft_matrix[:, bl_s:bl_t], axis=0) # Overlap-add the istft block starting at the i'th frame __overlap_add(y[frame * hop_length:], ytmp, hop_length) frame += (bl_t - bl_s) # Normalize by sum of squared window ifft_window_sum = window_sumsquare(window, n_frames, win_length=win_length, n_fft=n_fft, hop_length=hop_length, dtype=dtype) approx_nonzero_indices = ifft_window_sum > util.tiny(ifft_window_sum) y[approx_nonzero_indices] /= ifft_window_sum[approx_nonzero_indices] if length is None: # If we don't need to control length, just do the usual center trimming # to eliminate padded data if center: y = y[int(n_fft // 2):-int(n_fft // 2)] else: if center: # If we're centering, crop off the first n_fft//2 samples # and then trim/pad to the target length. # We don't trim the end here, so that if the signal is zero-padded # to a longer duration, the decay is smooth by windowing start = int(n_fft // 2) else: # If we're not centering, start at 0 and trim/pad as necessary start = 0 y = util.fix_length(y[start:], length) return y
[ "Inverse", "short", "-", "time", "Fourier", "transform", "(", "ISTFT", ")", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L193-L343
[ "def", "istft", "(", "stft_matrix", ",", "hop_length", "=", "None", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "dtype", "=", "np", ".", "float32", ",", "length", "=", "None", ")", ":", "n_fft", "=", "2", "*", "(", "stft_matrix", ".", "shape", "[", "0", "]", "-", "1", ")", "# By default, use the entire frame", "if", "win_length", "is", "None", ":", "win_length", "=", "n_fft", "# Set the default hop, if it's not already specified", "if", "hop_length", "is", "None", ":", "hop_length", "=", "int", "(", "win_length", "//", "4", ")", "ifft_window", "=", "get_window", "(", "window", ",", "win_length", ",", "fftbins", "=", "True", ")", "# Pad out to match n_fft, and add a broadcasting axis", "ifft_window", "=", "util", ".", "pad_center", "(", "ifft_window", ",", "n_fft", ")", "[", ":", ",", "np", ".", "newaxis", "]", "n_frames", "=", "stft_matrix", ".", "shape", "[", "1", "]", "expected_signal_len", "=", "n_fft", "+", "hop_length", "*", "(", "n_frames", "-", "1", ")", "y", "=", "np", ".", "zeros", "(", "expected_signal_len", ",", "dtype", "=", "dtype", ")", "n_columns", "=", "int", "(", "util", ".", "MAX_MEM_BLOCK", "//", "(", "stft_matrix", ".", "shape", "[", "0", "]", "*", "stft_matrix", ".", "itemsize", ")", ")", "fft", "=", "get_fftlib", "(", ")", "frame", "=", "0", "for", "bl_s", "in", "range", "(", "0", ",", "n_frames", ",", "n_columns", ")", ":", "bl_t", "=", "min", "(", "bl_s", "+", "n_columns", ",", "n_frames", ")", "# invert the block and apply the window function", "ytmp", "=", "ifft_window", "*", "fft", ".", "irfft", "(", "stft_matrix", "[", ":", ",", "bl_s", ":", "bl_t", "]", ",", "axis", "=", "0", ")", "# Overlap-add the istft block starting at the i'th frame", "__overlap_add", "(", "y", "[", "frame", "*", "hop_length", ":", "]", ",", "ytmp", ",", "hop_length", ")", "frame", "+=", "(", "bl_t", "-", "bl_s", ")", "# Normalize by sum of squared window", "ifft_window_sum", "=", "window_sumsquare", "(", "window", ",", "n_frames", ",", "win_length", "=", "win_length", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "dtype", "=", "dtype", ")", "approx_nonzero_indices", "=", "ifft_window_sum", ">", "util", ".", "tiny", "(", "ifft_window_sum", ")", "y", "[", "approx_nonzero_indices", "]", "/=", "ifft_window_sum", "[", "approx_nonzero_indices", "]", "if", "length", "is", "None", ":", "# If we don't need to control length, just do the usual center trimming", "# to eliminate padded data", "if", "center", ":", "y", "=", "y", "[", "int", "(", "n_fft", "//", "2", ")", ":", "-", "int", "(", "n_fft", "//", "2", ")", "]", "else", ":", "if", "center", ":", "# If we're centering, crop off the first n_fft//2 samples", "# and then trim/pad to the target length.", "# We don't trim the end here, so that if the signal is zero-padded", "# to a longer duration, the decay is smooth by windowing", "start", "=", "int", "(", "n_fft", "//", "2", ")", "else", ":", "# If we're not centering, start at 0 and trim/pad as necessary", "start", "=", "0", "y", "=", "util", ".", "fix_length", "(", "y", "[", "start", ":", "]", ",", "length", ")", "return", "y" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
ifgram
Compute the instantaneous frequency (as a proportion of the sampling rate) obtained as the time-derivative of the phase of the complex spectrum as described by [1]_. Calculates regular STFT as a side effect. .. [1] Abe, Toshihiko, Takao Kobayashi, and Satoshi Imai. "Harmonics tracking and pitch extraction based on instantaneous frequency." International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95., Vol. 1. IEEE, 1995. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length, number samples between subsequent frames. If not supplied, defaults to `win_length / 4`. win_length : int > 0, <= n_fft Window length. Defaults to `n_fft`. See `stft` for details. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a user-specified window vector of length `n_fft` See `stft` for details. .. see also:: `filters.get_window` norm : bool Normalize the STFT. center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` (and `if_gram`) is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` at `y[t * hop_length]` ref_power : float >= 0 or callable Minimum power threshold for estimating instantaneous frequency. Any bin with `np.abs(D[f, t])**2 < ref_power` will receive the default frequency estimate. If callable, the threshold is set to `ref_power(np.abs(D)**2)`. clip : boolean - If `True`, clip estimated frequencies to the range `[0, 0.5 * sr]`. - If `False`, estimated frequencies can be negative or exceed `0.5 * sr`. dtype : numeric type Complex numeric type for `D`. Default is 64-bit complex. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- if_gram : np.ndarray [shape=(1 + n_fft/2, t), dtype=real] Instantaneous frequency spectrogram: `if_gram[f, t]` is the frequency at bin `f`, time `t` D : np.ndarray [shape=(1 + n_fft/2, t), dtype=complex] Short-time Fourier transform See Also -------- stft : Short-time Fourier Transform Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> frequencies, D = librosa.ifgram(y, sr=sr) >>> frequencies array([[ 0.000e+00, 0.000e+00, ..., 0.000e+00, 0.000e+00], [ 3.150e+01, 3.070e+01, ..., 1.077e+01, 1.077e+01], ..., [ 1.101e+04, 1.101e+04, ..., 1.101e+04, 1.101e+04], [ 1.102e+04, 1.102e+04, ..., 1.102e+04, 1.102e+04]])
librosa/core/spectrum.py
def ifgram(y, sr=22050, n_fft=2048, hop_length=None, win_length=None, window='hann', norm=False, center=True, ref_power=1e-6, clip=True, dtype=np.complex64, pad_mode='reflect'): '''Compute the instantaneous frequency (as a proportion of the sampling rate) obtained as the time-derivative of the phase of the complex spectrum as described by [1]_. Calculates regular STFT as a side effect. .. [1] Abe, Toshihiko, Takao Kobayashi, and Satoshi Imai. "Harmonics tracking and pitch extraction based on instantaneous frequency." International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95., Vol. 1. IEEE, 1995. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length, number samples between subsequent frames. If not supplied, defaults to `win_length / 4`. win_length : int > 0, <= n_fft Window length. Defaults to `n_fft`. See `stft` for details. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a user-specified window vector of length `n_fft` See `stft` for details. .. see also:: `filters.get_window` norm : bool Normalize the STFT. center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` (and `if_gram`) is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` at `y[t * hop_length]` ref_power : float >= 0 or callable Minimum power threshold for estimating instantaneous frequency. Any bin with `np.abs(D[f, t])**2 < ref_power` will receive the default frequency estimate. If callable, the threshold is set to `ref_power(np.abs(D)**2)`. clip : boolean - If `True`, clip estimated frequencies to the range `[0, 0.5 * sr]`. - If `False`, estimated frequencies can be negative or exceed `0.5 * sr`. dtype : numeric type Complex numeric type for `D`. Default is 64-bit complex. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- if_gram : np.ndarray [shape=(1 + n_fft/2, t), dtype=real] Instantaneous frequency spectrogram: `if_gram[f, t]` is the frequency at bin `f`, time `t` D : np.ndarray [shape=(1 + n_fft/2, t), dtype=complex] Short-time Fourier transform See Also -------- stft : Short-time Fourier Transform Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> frequencies, D = librosa.ifgram(y, sr=sr) >>> frequencies array([[ 0.000e+00, 0.000e+00, ..., 0.000e+00, 0.000e+00], [ 3.150e+01, 3.070e+01, ..., 1.077e+01, 1.077e+01], ..., [ 1.101e+04, 1.101e+04, ..., 1.101e+04, 1.101e+04], [ 1.102e+04, 1.102e+04, ..., 1.102e+04, 1.102e+04]]) ''' if win_length is None: win_length = n_fft if hop_length is None: hop_length = int(win_length // 4) # Construct a padded hann window fft_window = util.pad_center(get_window(window, win_length, fftbins=True), n_fft) # Window for discrete differentiation freq_angular = np.linspace(0, 2 * np.pi, n_fft, endpoint=False) d_window = np.sin(-freq_angular) * np.pi / n_fft stft_matrix = stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, dtype=dtype, pad_mode=pad_mode) diff_stft = stft(y, n_fft=n_fft, hop_length=hop_length, window=d_window, center=center, dtype=dtype, pad_mode=pad_mode).conj() # Compute power normalization. Suppress zeros. mag, phase = magphase(stft_matrix) if six.callable(ref_power): ref_power = ref_power(mag**2) elif ref_power < 0: raise ParameterError('ref_power must be non-negative or callable.') # Pylint does not correctly infer the type here, but it's correct. # pylint: disable=maybe-no-member freq_angular = freq_angular.reshape((-1, 1)) bin_offset = (-phase * diff_stft).imag / mag bin_offset[mag < ref_power**0.5] = 0 if_gram = freq_angular[:n_fft//2 + 1] + bin_offset if norm: stft_matrix = stft_matrix * 2.0 / fft_window.sum() if clip: np.clip(if_gram, 0, np.pi, out=if_gram) if_gram *= float(sr) * 0.5 / np.pi return if_gram, stft_matrix
def ifgram(y, sr=22050, n_fft=2048, hop_length=None, win_length=None, window='hann', norm=False, center=True, ref_power=1e-6, clip=True, dtype=np.complex64, pad_mode='reflect'): '''Compute the instantaneous frequency (as a proportion of the sampling rate) obtained as the time-derivative of the phase of the complex spectrum as described by [1]_. Calculates regular STFT as a side effect. .. [1] Abe, Toshihiko, Takao Kobayashi, and Satoshi Imai. "Harmonics tracking and pitch extraction based on instantaneous frequency." International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95., Vol. 1. IEEE, 1995. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length, number samples between subsequent frames. If not supplied, defaults to `win_length / 4`. win_length : int > 0, <= n_fft Window length. Defaults to `n_fft`. See `stft` for details. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a user-specified window vector of length `n_fft` See `stft` for details. .. see also:: `filters.get_window` norm : bool Normalize the STFT. center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` (and `if_gram`) is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` at `y[t * hop_length]` ref_power : float >= 0 or callable Minimum power threshold for estimating instantaneous frequency. Any bin with `np.abs(D[f, t])**2 < ref_power` will receive the default frequency estimate. If callable, the threshold is set to `ref_power(np.abs(D)**2)`. clip : boolean - If `True`, clip estimated frequencies to the range `[0, 0.5 * sr]`. - If `False`, estimated frequencies can be negative or exceed `0.5 * sr`. dtype : numeric type Complex numeric type for `D`. Default is 64-bit complex. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- if_gram : np.ndarray [shape=(1 + n_fft/2, t), dtype=real] Instantaneous frequency spectrogram: `if_gram[f, t]` is the frequency at bin `f`, time `t` D : np.ndarray [shape=(1 + n_fft/2, t), dtype=complex] Short-time Fourier transform See Also -------- stft : Short-time Fourier Transform Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> frequencies, D = librosa.ifgram(y, sr=sr) >>> frequencies array([[ 0.000e+00, 0.000e+00, ..., 0.000e+00, 0.000e+00], [ 3.150e+01, 3.070e+01, ..., 1.077e+01, 1.077e+01], ..., [ 1.101e+04, 1.101e+04, ..., 1.101e+04, 1.101e+04], [ 1.102e+04, 1.102e+04, ..., 1.102e+04, 1.102e+04]]) ''' if win_length is None: win_length = n_fft if hop_length is None: hop_length = int(win_length // 4) # Construct a padded hann window fft_window = util.pad_center(get_window(window, win_length, fftbins=True), n_fft) # Window for discrete differentiation freq_angular = np.linspace(0, 2 * np.pi, n_fft, endpoint=False) d_window = np.sin(-freq_angular) * np.pi / n_fft stft_matrix = stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, dtype=dtype, pad_mode=pad_mode) diff_stft = stft(y, n_fft=n_fft, hop_length=hop_length, window=d_window, center=center, dtype=dtype, pad_mode=pad_mode).conj() # Compute power normalization. Suppress zeros. mag, phase = magphase(stft_matrix) if six.callable(ref_power): ref_power = ref_power(mag**2) elif ref_power < 0: raise ParameterError('ref_power must be non-negative or callable.') # Pylint does not correctly infer the type here, but it's correct. # pylint: disable=maybe-no-member freq_angular = freq_angular.reshape((-1, 1)) bin_offset = (-phase * diff_stft).imag / mag bin_offset[mag < ref_power**0.5] = 0 if_gram = freq_angular[:n_fft//2 + 1] + bin_offset if norm: stft_matrix = stft_matrix * 2.0 / fft_window.sum() if clip: np.clip(if_gram, 0, np.pi, out=if_gram) if_gram *= float(sr) * 0.5 / np.pi return if_gram, stft_matrix
[ "Compute", "the", "instantaneous", "frequency", "(", "as", "a", "proportion", "of", "the", "sampling", "rate", ")", "obtained", "as", "the", "time", "-", "derivative", "of", "the", "phase", "of", "the", "complex", "spectrum", "as", "described", "by", "[", "1", "]", "_", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L359-L507
[ "def", "ifgram", "(", "y", ",", "sr", "=", "22050", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "None", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "norm", "=", "False", ",", "center", "=", "True", ",", "ref_power", "=", "1e-6", ",", "clip", "=", "True", ",", "dtype", "=", "np", ".", "complex64", ",", "pad_mode", "=", "'reflect'", ")", ":", "if", "win_length", "is", "None", ":", "win_length", "=", "n_fft", "if", "hop_length", "is", "None", ":", "hop_length", "=", "int", "(", "win_length", "//", "4", ")", "# Construct a padded hann window", "fft_window", "=", "util", ".", "pad_center", "(", "get_window", "(", "window", ",", "win_length", ",", "fftbins", "=", "True", ")", ",", "n_fft", ")", "# Window for discrete differentiation", "freq_angular", "=", "np", ".", "linspace", "(", "0", ",", "2", "*", "np", ".", "pi", ",", "n_fft", ",", "endpoint", "=", "False", ")", "d_window", "=", "np", ".", "sin", "(", "-", "freq_angular", ")", "*", "np", ".", "pi", "/", "n_fft", "stft_matrix", "=", "stft", "(", "y", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "dtype", "=", "dtype", ",", "pad_mode", "=", "pad_mode", ")", "diff_stft", "=", "stft", "(", "y", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "window", "=", "d_window", ",", "center", "=", "center", ",", "dtype", "=", "dtype", ",", "pad_mode", "=", "pad_mode", ")", ".", "conj", "(", ")", "# Compute power normalization. Suppress zeros.", "mag", ",", "phase", "=", "magphase", "(", "stft_matrix", ")", "if", "six", ".", "callable", "(", "ref_power", ")", ":", "ref_power", "=", "ref_power", "(", "mag", "**", "2", ")", "elif", "ref_power", "<", "0", ":", "raise", "ParameterError", "(", "'ref_power must be non-negative or callable.'", ")", "# Pylint does not correctly infer the type here, but it's correct.", "# pylint: disable=maybe-no-member", "freq_angular", "=", "freq_angular", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "bin_offset", "=", "(", "-", "phase", "*", "diff_stft", ")", ".", "imag", "/", "mag", "bin_offset", "[", "mag", "<", "ref_power", "**", "0.5", "]", "=", "0", "if_gram", "=", "freq_angular", "[", ":", "n_fft", "//", "2", "+", "1", "]", "+", "bin_offset", "if", "norm", ":", "stft_matrix", "=", "stft_matrix", "*", "2.0", "/", "fft_window", ".", "sum", "(", ")", "if", "clip", ":", "np", ".", "clip", "(", "if_gram", ",", "0", ",", "np", ".", "pi", ",", "out", "=", "if_gram", ")", "if_gram", "*=", "float", "(", "sr", ")", "*", "0.5", "/", "np", ".", "pi", "return", "if_gram", ",", "stft_matrix" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
magphase
Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that `D = S * P`. Parameters ---------- D : np.ndarray [shape=(d, t), dtype=complex] complex-valued spectrogram power : float > 0 Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Returns ------- D_mag : np.ndarray [shape=(d, t), dtype=real] magnitude of `D`, raised to `power` D_phase : np.ndarray [shape=(d, t), dtype=complex] `exp(1.j * phi)` where `phi` is the phase of `D` Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> magnitude, phase = librosa.magphase(D) >>> magnitude array([[ 2.524e-03, 4.329e-02, ..., 3.217e-04, 3.520e-05], [ 2.645e-03, 5.152e-02, ..., 3.283e-04, 3.432e-04], ..., [ 1.966e-05, 9.828e-06, ..., 3.164e-07, 9.370e-06], [ 1.966e-05, 9.830e-06, ..., 3.161e-07, 9.366e-06]], dtype=float32) >>> phase array([[ 1.000e+00 +0.000e+00j, 1.000e+00 +0.000e+00j, ..., -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j], [ 1.000e+00 +1.615e-16j, 9.950e-01 -1.001e-01j, ..., 9.794e-01 +2.017e-01j, 1.492e-02 -9.999e-01j], ..., [ 1.000e+00 -5.609e-15j, -5.081e-04 +1.000e+00j, ..., -9.549e-01 -2.970e-01j, 2.938e-01 -9.559e-01j], [ -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j, ..., -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j]], dtype=complex64) Or get the phase angle (in radians) >>> np.angle(phase) array([[ 0.000e+00, 0.000e+00, ..., 3.142e+00, 3.142e+00], [ 1.615e-16, -1.003e-01, ..., 2.031e-01, -1.556e+00], ..., [ -5.609e-15, 1.571e+00, ..., -2.840e+00, -1.273e+00], [ 3.142e+00, 3.142e+00, ..., 3.142e+00, 3.142e+00]], dtype=float32)
librosa/core/spectrum.py
def magphase(D, power=1): """Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that `D = S * P`. Parameters ---------- D : np.ndarray [shape=(d, t), dtype=complex] complex-valued spectrogram power : float > 0 Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Returns ------- D_mag : np.ndarray [shape=(d, t), dtype=real] magnitude of `D`, raised to `power` D_phase : np.ndarray [shape=(d, t), dtype=complex] `exp(1.j * phi)` where `phi` is the phase of `D` Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> magnitude, phase = librosa.magphase(D) >>> magnitude array([[ 2.524e-03, 4.329e-02, ..., 3.217e-04, 3.520e-05], [ 2.645e-03, 5.152e-02, ..., 3.283e-04, 3.432e-04], ..., [ 1.966e-05, 9.828e-06, ..., 3.164e-07, 9.370e-06], [ 1.966e-05, 9.830e-06, ..., 3.161e-07, 9.366e-06]], dtype=float32) >>> phase array([[ 1.000e+00 +0.000e+00j, 1.000e+00 +0.000e+00j, ..., -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j], [ 1.000e+00 +1.615e-16j, 9.950e-01 -1.001e-01j, ..., 9.794e-01 +2.017e-01j, 1.492e-02 -9.999e-01j], ..., [ 1.000e+00 -5.609e-15j, -5.081e-04 +1.000e+00j, ..., -9.549e-01 -2.970e-01j, 2.938e-01 -9.559e-01j], [ -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j, ..., -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j]], dtype=complex64) Or get the phase angle (in radians) >>> np.angle(phase) array([[ 0.000e+00, 0.000e+00, ..., 3.142e+00, 3.142e+00], [ 1.615e-16, -1.003e-01, ..., 2.031e-01, -1.556e+00], ..., [ -5.609e-15, 1.571e+00, ..., -2.840e+00, -1.273e+00], [ 3.142e+00, 3.142e+00, ..., 3.142e+00, 3.142e+00]], dtype=float32) """ mag = np.abs(D) mag **= power phase = np.exp(1.j * np.angle(D)) return mag, phase
def magphase(D, power=1): """Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that `D = S * P`. Parameters ---------- D : np.ndarray [shape=(d, t), dtype=complex] complex-valued spectrogram power : float > 0 Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Returns ------- D_mag : np.ndarray [shape=(d, t), dtype=real] magnitude of `D`, raised to `power` D_phase : np.ndarray [shape=(d, t), dtype=complex] `exp(1.j * phi)` where `phi` is the phase of `D` Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> magnitude, phase = librosa.magphase(D) >>> magnitude array([[ 2.524e-03, 4.329e-02, ..., 3.217e-04, 3.520e-05], [ 2.645e-03, 5.152e-02, ..., 3.283e-04, 3.432e-04], ..., [ 1.966e-05, 9.828e-06, ..., 3.164e-07, 9.370e-06], [ 1.966e-05, 9.830e-06, ..., 3.161e-07, 9.366e-06]], dtype=float32) >>> phase array([[ 1.000e+00 +0.000e+00j, 1.000e+00 +0.000e+00j, ..., -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j], [ 1.000e+00 +1.615e-16j, 9.950e-01 -1.001e-01j, ..., 9.794e-01 +2.017e-01j, 1.492e-02 -9.999e-01j], ..., [ 1.000e+00 -5.609e-15j, -5.081e-04 +1.000e+00j, ..., -9.549e-01 -2.970e-01j, 2.938e-01 -9.559e-01j], [ -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j, ..., -1.000e+00 +8.742e-08j, -1.000e+00 +8.742e-08j]], dtype=complex64) Or get the phase angle (in radians) >>> np.angle(phase) array([[ 0.000e+00, 0.000e+00, ..., 3.142e+00, 3.142e+00], [ 1.615e-16, -1.003e-01, ..., 2.031e-01, -1.556e+00], ..., [ -5.609e-15, 1.571e+00, ..., -2.840e+00, -1.273e+00], [ 3.142e+00, 3.142e+00, ..., 3.142e+00, 3.142e+00]], dtype=float32) """ mag = np.abs(D) mag **= power phase = np.exp(1.j * np.angle(D)) return mag, phase
[ "Separate", "a", "complex", "-", "valued", "spectrogram", "D", "into", "its", "magnitude", "(", "S", ")", "and", "phase", "(", "P", ")", "components", "so", "that", "D", "=", "S", "*", "P", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L510-L570
[ "def", "magphase", "(", "D", ",", "power", "=", "1", ")", ":", "mag", "=", "np", ".", "abs", "(", "D", ")", "mag", "**=", "power", "phase", "=", "np", ".", "exp", "(", "1.j", "*", "np", ".", "angle", "(", "D", ")", ")", "return", "mag", ",", "phase" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
phase_vocoder
Phase vocoder. Given an STFT matrix D, speed up by a factor of `rate` Based on the implementation provided by [1]_. .. [1] Ellis, D. P. W. "A phase vocoder in Matlab." Columbia University, 2002. http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ Examples -------- >>> # Play at double speed >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y, n_fft=2048, hop_length=512) >>> D_fast = librosa.phase_vocoder(D, 2.0, hop_length=512) >>> y_fast = librosa.istft(D_fast, hop_length=512) >>> # Or play at 1/3 speed >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y, n_fft=2048, hop_length=512) >>> D_slow = librosa.phase_vocoder(D, 1./3, hop_length=512) >>> y_slow = librosa.istft(D_slow, hop_length=512) Parameters ---------- D : np.ndarray [shape=(d, t), dtype=complex] STFT matrix rate : float > 0 [scalar] Speed-up factor: `rate > 1` is faster, `rate < 1` is slower. hop_length : int > 0 [scalar] or None The number of samples between successive columns of `D`. If None, defaults to `n_fft/4 = (D.shape[0]-1)/2` Returns ------- D_stretched : np.ndarray [shape=(d, t / rate), dtype=complex] time-stretched STFT
librosa/core/spectrum.py
def phase_vocoder(D, rate, hop_length=None): """Phase vocoder. Given an STFT matrix D, speed up by a factor of `rate` Based on the implementation provided by [1]_. .. [1] Ellis, D. P. W. "A phase vocoder in Matlab." Columbia University, 2002. http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ Examples -------- >>> # Play at double speed >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y, n_fft=2048, hop_length=512) >>> D_fast = librosa.phase_vocoder(D, 2.0, hop_length=512) >>> y_fast = librosa.istft(D_fast, hop_length=512) >>> # Or play at 1/3 speed >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y, n_fft=2048, hop_length=512) >>> D_slow = librosa.phase_vocoder(D, 1./3, hop_length=512) >>> y_slow = librosa.istft(D_slow, hop_length=512) Parameters ---------- D : np.ndarray [shape=(d, t), dtype=complex] STFT matrix rate : float > 0 [scalar] Speed-up factor: `rate > 1` is faster, `rate < 1` is slower. hop_length : int > 0 [scalar] or None The number of samples between successive columns of `D`. If None, defaults to `n_fft/4 = (D.shape[0]-1)/2` Returns ------- D_stretched : np.ndarray [shape=(d, t / rate), dtype=complex] time-stretched STFT """ n_fft = 2 * (D.shape[0] - 1) if hop_length is None: hop_length = int(n_fft // 4) time_steps = np.arange(0, D.shape[1], rate, dtype=np.float) # Create an empty output array d_stretch = np.zeros((D.shape[0], len(time_steps)), D.dtype, order='F') # Expected phase advance in each bin phi_advance = np.linspace(0, np.pi * hop_length, D.shape[0]) # Phase accumulator; initialize to the first sample phase_acc = np.angle(D[:, 0]) # Pad 0 columns to simplify boundary logic D = np.pad(D, [(0, 0), (0, 2)], mode='constant') for (t, step) in enumerate(time_steps): columns = D[:, int(step):int(step + 2)] # Weighting for linear magnitude interpolation alpha = np.mod(step, 1.0) mag = ((1.0 - alpha) * np.abs(columns[:, 0]) + alpha * np.abs(columns[:, 1])) # Store to output array d_stretch[:, t] = mag * np.exp(1.j * phase_acc) # Compute phase advance dphase = (np.angle(columns[:, 1]) - np.angle(columns[:, 0]) - phi_advance) # Wrap to -pi:pi range dphase = dphase - 2.0 * np.pi * np.round(dphase / (2.0 * np.pi)) # Accumulate phase phase_acc += phi_advance + dphase return d_stretch
def phase_vocoder(D, rate, hop_length=None): """Phase vocoder. Given an STFT matrix D, speed up by a factor of `rate` Based on the implementation provided by [1]_. .. [1] Ellis, D. P. W. "A phase vocoder in Matlab." Columbia University, 2002. http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ Examples -------- >>> # Play at double speed >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y, n_fft=2048, hop_length=512) >>> D_fast = librosa.phase_vocoder(D, 2.0, hop_length=512) >>> y_fast = librosa.istft(D_fast, hop_length=512) >>> # Or play at 1/3 speed >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y, n_fft=2048, hop_length=512) >>> D_slow = librosa.phase_vocoder(D, 1./3, hop_length=512) >>> y_slow = librosa.istft(D_slow, hop_length=512) Parameters ---------- D : np.ndarray [shape=(d, t), dtype=complex] STFT matrix rate : float > 0 [scalar] Speed-up factor: `rate > 1` is faster, `rate < 1` is slower. hop_length : int > 0 [scalar] or None The number of samples between successive columns of `D`. If None, defaults to `n_fft/4 = (D.shape[0]-1)/2` Returns ------- D_stretched : np.ndarray [shape=(d, t / rate), dtype=complex] time-stretched STFT """ n_fft = 2 * (D.shape[0] - 1) if hop_length is None: hop_length = int(n_fft // 4) time_steps = np.arange(0, D.shape[1], rate, dtype=np.float) # Create an empty output array d_stretch = np.zeros((D.shape[0], len(time_steps)), D.dtype, order='F') # Expected phase advance in each bin phi_advance = np.linspace(0, np.pi * hop_length, D.shape[0]) # Phase accumulator; initialize to the first sample phase_acc = np.angle(D[:, 0]) # Pad 0 columns to simplify boundary logic D = np.pad(D, [(0, 0), (0, 2)], mode='constant') for (t, step) in enumerate(time_steps): columns = D[:, int(step):int(step + 2)] # Weighting for linear magnitude interpolation alpha = np.mod(step, 1.0) mag = ((1.0 - alpha) * np.abs(columns[:, 0]) + alpha * np.abs(columns[:, 1])) # Store to output array d_stretch[:, t] = mag * np.exp(1.j * phase_acc) # Compute phase advance dphase = (np.angle(columns[:, 1]) - np.angle(columns[:, 0]) - phi_advance) # Wrap to -pi:pi range dphase = dphase - 2.0 * np.pi * np.round(dphase / (2.0 * np.pi)) # Accumulate phase phase_acc += phi_advance + dphase return d_stretch
[ "Phase", "vocoder", ".", "Given", "an", "STFT", "matrix", "D", "speed", "up", "by", "a", "factor", "of", "rate" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L573-L657
[ "def", "phase_vocoder", "(", "D", ",", "rate", ",", "hop_length", "=", "None", ")", ":", "n_fft", "=", "2", "*", "(", "D", ".", "shape", "[", "0", "]", "-", "1", ")", "if", "hop_length", "is", "None", ":", "hop_length", "=", "int", "(", "n_fft", "//", "4", ")", "time_steps", "=", "np", ".", "arange", "(", "0", ",", "D", ".", "shape", "[", "1", "]", ",", "rate", ",", "dtype", "=", "np", ".", "float", ")", "# Create an empty output array", "d_stretch", "=", "np", ".", "zeros", "(", "(", "D", ".", "shape", "[", "0", "]", ",", "len", "(", "time_steps", ")", ")", ",", "D", ".", "dtype", ",", "order", "=", "'F'", ")", "# Expected phase advance in each bin", "phi_advance", "=", "np", ".", "linspace", "(", "0", ",", "np", ".", "pi", "*", "hop_length", ",", "D", ".", "shape", "[", "0", "]", ")", "# Phase accumulator; initialize to the first sample", "phase_acc", "=", "np", ".", "angle", "(", "D", "[", ":", ",", "0", "]", ")", "# Pad 0 columns to simplify boundary logic", "D", "=", "np", ".", "pad", "(", "D", ",", "[", "(", "0", ",", "0", ")", ",", "(", "0", ",", "2", ")", "]", ",", "mode", "=", "'constant'", ")", "for", "(", "t", ",", "step", ")", "in", "enumerate", "(", "time_steps", ")", ":", "columns", "=", "D", "[", ":", ",", "int", "(", "step", ")", ":", "int", "(", "step", "+", "2", ")", "]", "# Weighting for linear magnitude interpolation", "alpha", "=", "np", ".", "mod", "(", "step", ",", "1.0", ")", "mag", "=", "(", "(", "1.0", "-", "alpha", ")", "*", "np", ".", "abs", "(", "columns", "[", ":", ",", "0", "]", ")", "+", "alpha", "*", "np", ".", "abs", "(", "columns", "[", ":", ",", "1", "]", ")", ")", "# Store to output array", "d_stretch", "[", ":", ",", "t", "]", "=", "mag", "*", "np", ".", "exp", "(", "1.j", "*", "phase_acc", ")", "# Compute phase advance", "dphase", "=", "(", "np", ".", "angle", "(", "columns", "[", ":", ",", "1", "]", ")", "-", "np", ".", "angle", "(", "columns", "[", ":", ",", "0", "]", ")", "-", "phi_advance", ")", "# Wrap to -pi:pi range", "dphase", "=", "dphase", "-", "2.0", "*", "np", ".", "pi", "*", "np", ".", "round", "(", "dphase", "/", "(", "2.0", "*", "np", ".", "pi", ")", ")", "# Accumulate phase", "phase_acc", "+=", "phi_advance", "+", "dphase", "return", "d_stretch" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
iirt
r'''Time-frequency representation using IIR filters [1]_. This function will return a time-frequency representation using a multirate filter bank consisting of IIR filters. First, `y` is resampled as needed according to the provided `sample_rates`. Then, a filterbank with with `n` band-pass filters is designed. The resampled input signals are processed by the filterbank as a whole. (`scipy.signal.filtfilt` resp. `sosfiltfilt` is used to make the phase linear.) The output of the filterbank is cut into frames. For each band, the short-time mean-square power (STMSP) is calculated by summing `win_length` subsequent filtered time samples. When called with the default set of parameters, it will generate the TF-representation as described in [1]_ (pitch filterbank): * 85 filters with MIDI pitches [24, 108] as `center_freqs`. * each filter having a bandwith of one semitone. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` win_length : int > 0, <= n_fft Window length. hop_length : int > 0 [scalar] Hop length, number samples between subsequent frames. If not supplied, defaults to `win_length / 4`. center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` begins at `y[t * hop_length]` tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, this function uses reflection padding. flayout : string - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. kwargs : additional keyword arguments Additional arguments for `librosa.filters.semitone_filterbank()` (e.g., could be used to provide another set of `center_freqs` and `sample_rates`). Returns ------- bands_power : np.ndarray [shape=(n, t), dtype=dtype] Short-time mean-square power for the input signal. Raises ------ ParameterError If `flayout` is not None, `ba`, or `sos`. See Also -------- librosa.filters.semitone_filterbank librosa.filters._multirate_fb librosa.filters.mr_frequencies librosa.core.cqt scipy.signal.filtfilt scipy.signal.sosfiltfilt Examples -------- >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = np.abs(librosa.iirt(y)) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='cqt_hz', x_axis='time') >>> plt.title('Semitone spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout()
librosa/core/spectrum.py
def iirt(y, sr=22050, win_length=2048, hop_length=None, center=True, tuning=0.0, pad_mode='reflect', flayout=None, **kwargs): r'''Time-frequency representation using IIR filters [1]_. This function will return a time-frequency representation using a multirate filter bank consisting of IIR filters. First, `y` is resampled as needed according to the provided `sample_rates`. Then, a filterbank with with `n` band-pass filters is designed. The resampled input signals are processed by the filterbank as a whole. (`scipy.signal.filtfilt` resp. `sosfiltfilt` is used to make the phase linear.) The output of the filterbank is cut into frames. For each band, the short-time mean-square power (STMSP) is calculated by summing `win_length` subsequent filtered time samples. When called with the default set of parameters, it will generate the TF-representation as described in [1]_ (pitch filterbank): * 85 filters with MIDI pitches [24, 108] as `center_freqs`. * each filter having a bandwith of one semitone. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` win_length : int > 0, <= n_fft Window length. hop_length : int > 0 [scalar] Hop length, number samples between subsequent frames. If not supplied, defaults to `win_length / 4`. center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` begins at `y[t * hop_length]` tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, this function uses reflection padding. flayout : string - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. kwargs : additional keyword arguments Additional arguments for `librosa.filters.semitone_filterbank()` (e.g., could be used to provide another set of `center_freqs` and `sample_rates`). Returns ------- bands_power : np.ndarray [shape=(n, t), dtype=dtype] Short-time mean-square power for the input signal. Raises ------ ParameterError If `flayout` is not None, `ba`, or `sos`. See Also -------- librosa.filters.semitone_filterbank librosa.filters._multirate_fb librosa.filters.mr_frequencies librosa.core.cqt scipy.signal.filtfilt scipy.signal.sosfiltfilt Examples -------- >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = np.abs(librosa.iirt(y)) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='cqt_hz', x_axis='time') >>> plt.title('Semitone spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout() ''' if flayout is None: warnings.warn('Default filter layout for `iirt` is `ba`, but will be `sos` in 0.7.', FutureWarning) flayout = 'ba' elif flayout not in ('ba', 'sos'): raise ParameterError('Unsupported flayout={}'.format(flayout)) # check audio input util.valid_audio(y) # Set the default hop, if it's not already specified if hop_length is None: hop_length = int(win_length // 4) # Pad the time series so that frames are centered if center: y = np.pad(y, int(hop_length), mode=pad_mode) # get the semitone filterbank filterbank_ct, sample_rates = semitone_filterbank(tuning=tuning, flayout=flayout, **kwargs) # create three downsampled versions of the audio signal y_resampled = [] y_srs = np.unique(sample_rates) for cur_sr in y_srs: y_resampled.append(resample(y, sr, cur_sr)) # Compute the number of frames that will fit. The end may get truncated. n_frames = 1 + int((len(y) - win_length) / float(hop_length)) bands_power = [] for cur_sr, cur_filter in zip(sample_rates, filterbank_ct): factor = float(sr) / float(cur_sr) win_length_STMSP = int(np.round(win_length / factor)) hop_length_STMSP = int(np.round(hop_length / factor)) # filter the signal cur_sr_idx = np.flatnonzero(y_srs == cur_sr)[0] if flayout == 'ba': cur_filter_output = scipy.signal.filtfilt(cur_filter[0], cur_filter[1], y_resampled[cur_sr_idx]) elif flayout == 'sos': cur_filter_output = scipy.signal.sosfiltfilt(cur_filter, y_resampled[cur_sr_idx]) # frame the current filter output cur_frames = util.frame(np.ascontiguousarray(cur_filter_output), frame_length=win_length_STMSP, hop_length=hop_length_STMSP) bands_power.append(factor * np.sum(cur_frames**2, axis=0)[:n_frames]) return np.asarray(bands_power)
def iirt(y, sr=22050, win_length=2048, hop_length=None, center=True, tuning=0.0, pad_mode='reflect', flayout=None, **kwargs): r'''Time-frequency representation using IIR filters [1]_. This function will return a time-frequency representation using a multirate filter bank consisting of IIR filters. First, `y` is resampled as needed according to the provided `sample_rates`. Then, a filterbank with with `n` band-pass filters is designed. The resampled input signals are processed by the filterbank as a whole. (`scipy.signal.filtfilt` resp. `sosfiltfilt` is used to make the phase linear.) The output of the filterbank is cut into frames. For each band, the short-time mean-square power (STMSP) is calculated by summing `win_length` subsequent filtered time samples. When called with the default set of parameters, it will generate the TF-representation as described in [1]_ (pitch filterbank): * 85 filters with MIDI pitches [24, 108] as `center_freqs`. * each filter having a bandwith of one semitone. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 [scalar] sampling rate of `y` win_length : int > 0, <= n_fft Window length. hop_length : int > 0 [scalar] Hop length, number samples between subsequent frames. If not supplied, defaults to `win_length / 4`. center : boolean - If `True`, the signal `y` is padded so that frame `D[:, t]` is centered at `y[t * hop_length]`. - If `False`, then `D[:, t]` begins at `y[t * hop_length]` tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, this function uses reflection padding. flayout : string - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. kwargs : additional keyword arguments Additional arguments for `librosa.filters.semitone_filterbank()` (e.g., could be used to provide another set of `center_freqs` and `sample_rates`). Returns ------- bands_power : np.ndarray [shape=(n, t), dtype=dtype] Short-time mean-square power for the input signal. Raises ------ ParameterError If `flayout` is not None, `ba`, or `sos`. See Also -------- librosa.filters.semitone_filterbank librosa.filters._multirate_fb librosa.filters.mr_frequencies librosa.core.cqt scipy.signal.filtfilt scipy.signal.sosfiltfilt Examples -------- >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = np.abs(librosa.iirt(y)) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='cqt_hz', x_axis='time') >>> plt.title('Semitone spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout() ''' if flayout is None: warnings.warn('Default filter layout for `iirt` is `ba`, but will be `sos` in 0.7.', FutureWarning) flayout = 'ba' elif flayout not in ('ba', 'sos'): raise ParameterError('Unsupported flayout={}'.format(flayout)) # check audio input util.valid_audio(y) # Set the default hop, if it's not already specified if hop_length is None: hop_length = int(win_length // 4) # Pad the time series so that frames are centered if center: y = np.pad(y, int(hop_length), mode=pad_mode) # get the semitone filterbank filterbank_ct, sample_rates = semitone_filterbank(tuning=tuning, flayout=flayout, **kwargs) # create three downsampled versions of the audio signal y_resampled = [] y_srs = np.unique(sample_rates) for cur_sr in y_srs: y_resampled.append(resample(y, sr, cur_sr)) # Compute the number of frames that will fit. The end may get truncated. n_frames = 1 + int((len(y) - win_length) / float(hop_length)) bands_power = [] for cur_sr, cur_filter in zip(sample_rates, filterbank_ct): factor = float(sr) / float(cur_sr) win_length_STMSP = int(np.round(win_length / factor)) hop_length_STMSP = int(np.round(hop_length / factor)) # filter the signal cur_sr_idx = np.flatnonzero(y_srs == cur_sr)[0] if flayout == 'ba': cur_filter_output = scipy.signal.filtfilt(cur_filter[0], cur_filter[1], y_resampled[cur_sr_idx]) elif flayout == 'sos': cur_filter_output = scipy.signal.sosfiltfilt(cur_filter, y_resampled[cur_sr_idx]) # frame the current filter output cur_frames = util.frame(np.ascontiguousarray(cur_filter_output), frame_length=win_length_STMSP, hop_length=hop_length_STMSP) bands_power.append(factor * np.sum(cur_frames**2, axis=0)[:n_frames]) return np.asarray(bands_power)
[ "r", "Time", "-", "frequency", "representation", "using", "IIR", "filters", "[", "1", "]", "_", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L661-L811
[ "def", "iirt", "(", "y", ",", "sr", "=", "22050", ",", "win_length", "=", "2048", ",", "hop_length", "=", "None", ",", "center", "=", "True", ",", "tuning", "=", "0.0", ",", "pad_mode", "=", "'reflect'", ",", "flayout", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "flayout", "is", "None", ":", "warnings", ".", "warn", "(", "'Default filter layout for `iirt` is `ba`, but will be `sos` in 0.7.'", ",", "FutureWarning", ")", "flayout", "=", "'ba'", "elif", "flayout", "not", "in", "(", "'ba'", ",", "'sos'", ")", ":", "raise", "ParameterError", "(", "'Unsupported flayout={}'", ".", "format", "(", "flayout", ")", ")", "# check audio input", "util", ".", "valid_audio", "(", "y", ")", "# Set the default hop, if it's not already specified", "if", "hop_length", "is", "None", ":", "hop_length", "=", "int", "(", "win_length", "//", "4", ")", "# Pad the time series so that frames are centered", "if", "center", ":", "y", "=", "np", ".", "pad", "(", "y", ",", "int", "(", "hop_length", ")", ",", "mode", "=", "pad_mode", ")", "# get the semitone filterbank", "filterbank_ct", ",", "sample_rates", "=", "semitone_filterbank", "(", "tuning", "=", "tuning", ",", "flayout", "=", "flayout", ",", "*", "*", "kwargs", ")", "# create three downsampled versions of the audio signal", "y_resampled", "=", "[", "]", "y_srs", "=", "np", ".", "unique", "(", "sample_rates", ")", "for", "cur_sr", "in", "y_srs", ":", "y_resampled", ".", "append", "(", "resample", "(", "y", ",", "sr", ",", "cur_sr", ")", ")", "# Compute the number of frames that will fit. The end may get truncated.", "n_frames", "=", "1", "+", "int", "(", "(", "len", "(", "y", ")", "-", "win_length", ")", "/", "float", "(", "hop_length", ")", ")", "bands_power", "=", "[", "]", "for", "cur_sr", ",", "cur_filter", "in", "zip", "(", "sample_rates", ",", "filterbank_ct", ")", ":", "factor", "=", "float", "(", "sr", ")", "/", "float", "(", "cur_sr", ")", "win_length_STMSP", "=", "int", "(", "np", ".", "round", "(", "win_length", "/", "factor", ")", ")", "hop_length_STMSP", "=", "int", "(", "np", ".", "round", "(", "hop_length", "/", "factor", ")", ")", "# filter the signal", "cur_sr_idx", "=", "np", ".", "flatnonzero", "(", "y_srs", "==", "cur_sr", ")", "[", "0", "]", "if", "flayout", "==", "'ba'", ":", "cur_filter_output", "=", "scipy", ".", "signal", ".", "filtfilt", "(", "cur_filter", "[", "0", "]", ",", "cur_filter", "[", "1", "]", ",", "y_resampled", "[", "cur_sr_idx", "]", ")", "elif", "flayout", "==", "'sos'", ":", "cur_filter_output", "=", "scipy", ".", "signal", ".", "sosfiltfilt", "(", "cur_filter", ",", "y_resampled", "[", "cur_sr_idx", "]", ")", "# frame the current filter output", "cur_frames", "=", "util", ".", "frame", "(", "np", ".", "ascontiguousarray", "(", "cur_filter_output", ")", ",", "frame_length", "=", "win_length_STMSP", ",", "hop_length", "=", "hop_length_STMSP", ")", "bands_power", ".", "append", "(", "factor", "*", "np", ".", "sum", "(", "cur_frames", "**", "2", ",", "axis", "=", "0", ")", "[", ":", "n_frames", "]", ")", "return", "np", ".", "asarray", "(", "bands_power", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
power_to_db
Convert a power spectrogram (amplitude squared) to decibel (dB) units This computes the scaling ``10 * log10(S / ref)`` in a numerically stable way. Parameters ---------- S : np.ndarray input power ref : scalar or callable If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `10 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. If callable, the reference value is computed as `ref(S)`. amin : float > 0 [scalar] minimum threshold for `abs(S)` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(10 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S_db ~= 10 * log10(S) - 10 * log10(ref)`` See Also -------- perceptual_weighting db_to_power amplitude_to_db db_to_amplitude Notes ----- This function caches at level 30. Examples -------- Get a power spectrogram from a waveform ``y`` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.power_to_db(S**2) array([[-33.293, -27.32 , ..., -33.293, -33.293], [-33.293, -25.723, ..., -33.293, -33.293], ..., [-33.293, -33.293, ..., -33.293, -33.293], [-33.293, -33.293, ..., -33.293, -33.293]], dtype=float32) Compute dB relative to peak power >>> librosa.power_to_db(S**2, ref=np.max) array([[-80. , -74.027, ..., -80. , -80. ], [-80. , -72.431, ..., -80. , -80. ], ..., [-80. , -80. , ..., -80. , -80. ], [-80. , -80. , ..., -80. , -80. ]], dtype=float32) Or compare to median power >>> librosa.power_to_db(S**2, ref=np.median) array([[-0.189, 5.784, ..., -0.189, -0.189], [-0.189, 7.381, ..., -0.189, -0.189], ..., [-0.189, -0.189, ..., -0.189, -0.189], [-0.189, -0.189, ..., -0.189, -0.189]], dtype=float32) And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(S**2, sr=sr, y_axis='log') >>> plt.colorbar() >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max), ... sr=sr, y_axis='log', x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log-Power spectrogram') >>> plt.tight_layout()
librosa/core/spectrum.py
def power_to_db(S, ref=1.0, amin=1e-10, top_db=80.0): """Convert a power spectrogram (amplitude squared) to decibel (dB) units This computes the scaling ``10 * log10(S / ref)`` in a numerically stable way. Parameters ---------- S : np.ndarray input power ref : scalar or callable If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `10 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. If callable, the reference value is computed as `ref(S)`. amin : float > 0 [scalar] minimum threshold for `abs(S)` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(10 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S_db ~= 10 * log10(S) - 10 * log10(ref)`` See Also -------- perceptual_weighting db_to_power amplitude_to_db db_to_amplitude Notes ----- This function caches at level 30. Examples -------- Get a power spectrogram from a waveform ``y`` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.power_to_db(S**2) array([[-33.293, -27.32 , ..., -33.293, -33.293], [-33.293, -25.723, ..., -33.293, -33.293], ..., [-33.293, -33.293, ..., -33.293, -33.293], [-33.293, -33.293, ..., -33.293, -33.293]], dtype=float32) Compute dB relative to peak power >>> librosa.power_to_db(S**2, ref=np.max) array([[-80. , -74.027, ..., -80. , -80. ], [-80. , -72.431, ..., -80. , -80. ], ..., [-80. , -80. , ..., -80. , -80. ], [-80. , -80. , ..., -80. , -80. ]], dtype=float32) Or compare to median power >>> librosa.power_to_db(S**2, ref=np.median) array([[-0.189, 5.784, ..., -0.189, -0.189], [-0.189, 7.381, ..., -0.189, -0.189], ..., [-0.189, -0.189, ..., -0.189, -0.189], [-0.189, -0.189, ..., -0.189, -0.189]], dtype=float32) And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(S**2, sr=sr, y_axis='log') >>> plt.colorbar() >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max), ... sr=sr, y_axis='log', x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log-Power spectrogram') >>> plt.tight_layout() """ S = np.asarray(S) if amin <= 0: raise ParameterError('amin must be strictly positive') if np.issubdtype(S.dtype, np.complexfloating): warnings.warn('power_to_db was called on complex input so phase ' 'information will be discarded. To suppress this warning, ' 'call power_to_db(np.abs(D)**2) instead.') magnitude = np.abs(S) else: magnitude = S if six.callable(ref): # User supplied a function to calculate reference power ref_value = ref(magnitude) else: ref_value = np.abs(ref) log_spec = 10.0 * np.log10(np.maximum(amin, magnitude)) log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value)) if top_db is not None: if top_db < 0: raise ParameterError('top_db must be non-negative') log_spec = np.maximum(log_spec, log_spec.max() - top_db) return log_spec
def power_to_db(S, ref=1.0, amin=1e-10, top_db=80.0): """Convert a power spectrogram (amplitude squared) to decibel (dB) units This computes the scaling ``10 * log10(S / ref)`` in a numerically stable way. Parameters ---------- S : np.ndarray input power ref : scalar or callable If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `10 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. If callable, the reference value is computed as `ref(S)`. amin : float > 0 [scalar] minimum threshold for `abs(S)` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(10 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S_db ~= 10 * log10(S) - 10 * log10(ref)`` See Also -------- perceptual_weighting db_to_power amplitude_to_db db_to_amplitude Notes ----- This function caches at level 30. Examples -------- Get a power spectrogram from a waveform ``y`` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.power_to_db(S**2) array([[-33.293, -27.32 , ..., -33.293, -33.293], [-33.293, -25.723, ..., -33.293, -33.293], ..., [-33.293, -33.293, ..., -33.293, -33.293], [-33.293, -33.293, ..., -33.293, -33.293]], dtype=float32) Compute dB relative to peak power >>> librosa.power_to_db(S**2, ref=np.max) array([[-80. , -74.027, ..., -80. , -80. ], [-80. , -72.431, ..., -80. , -80. ], ..., [-80. , -80. , ..., -80. , -80. ], [-80. , -80. , ..., -80. , -80. ]], dtype=float32) Or compare to median power >>> librosa.power_to_db(S**2, ref=np.median) array([[-0.189, 5.784, ..., -0.189, -0.189], [-0.189, 7.381, ..., -0.189, -0.189], ..., [-0.189, -0.189, ..., -0.189, -0.189], [-0.189, -0.189, ..., -0.189, -0.189]], dtype=float32) And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(S**2, sr=sr, y_axis='log') >>> plt.colorbar() >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max), ... sr=sr, y_axis='log', x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Log-Power spectrogram') >>> plt.tight_layout() """ S = np.asarray(S) if amin <= 0: raise ParameterError('amin must be strictly positive') if np.issubdtype(S.dtype, np.complexfloating): warnings.warn('power_to_db was called on complex input so phase ' 'information will be discarded. To suppress this warning, ' 'call power_to_db(np.abs(D)**2) instead.') magnitude = np.abs(S) else: magnitude = S if six.callable(ref): # User supplied a function to calculate reference power ref_value = ref(magnitude) else: ref_value = np.abs(ref) log_spec = 10.0 * np.log10(np.maximum(amin, magnitude)) log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value)) if top_db is not None: if top_db < 0: raise ParameterError('top_db must be non-negative') log_spec = np.maximum(log_spec, log_spec.max() - top_db) return log_spec
[ "Convert", "a", "power", "spectrogram", "(", "amplitude", "squared", ")", "to", "decibel", "(", "dB", ")", "units" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L815-L934
[ "def", "power_to_db", "(", "S", ",", "ref", "=", "1.0", ",", "amin", "=", "1e-10", ",", "top_db", "=", "80.0", ")", ":", "S", "=", "np", ".", "asarray", "(", "S", ")", "if", "amin", "<=", "0", ":", "raise", "ParameterError", "(", "'amin must be strictly positive'", ")", "if", "np", ".", "issubdtype", "(", "S", ".", "dtype", ",", "np", ".", "complexfloating", ")", ":", "warnings", ".", "warn", "(", "'power_to_db was called on complex input so phase '", "'information will be discarded. To suppress this warning, '", "'call power_to_db(np.abs(D)**2) instead.'", ")", "magnitude", "=", "np", ".", "abs", "(", "S", ")", "else", ":", "magnitude", "=", "S", "if", "six", ".", "callable", "(", "ref", ")", ":", "# User supplied a function to calculate reference power", "ref_value", "=", "ref", "(", "magnitude", ")", "else", ":", "ref_value", "=", "np", ".", "abs", "(", "ref", ")", "log_spec", "=", "10.0", "*", "np", ".", "log10", "(", "np", ".", "maximum", "(", "amin", ",", "magnitude", ")", ")", "log_spec", "-=", "10.0", "*", "np", ".", "log10", "(", "np", ".", "maximum", "(", "amin", ",", "ref_value", ")", ")", "if", "top_db", "is", "not", "None", ":", "if", "top_db", "<", "0", ":", "raise", "ParameterError", "(", "'top_db must be non-negative'", ")", "log_spec", "=", "np", ".", "maximum", "(", "log_spec", ",", "log_spec", ".", "max", "(", ")", "-", "top_db", ")", "return", "log_spec" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
amplitude_to_db
Convert an amplitude spectrogram to dB-scaled spectrogram. This is equivalent to ``power_to_db(S**2)``, but is provided for convenience. Parameters ---------- S : np.ndarray input amplitude ref : scalar or callable If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `20 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. If callable, the reference value is computed as `ref(S)`. amin : float > 0 [scalar] minimum threshold for `S` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(20 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S`` measured in dB See Also -------- power_to_db, db_to_amplitude Notes ----- This function caches at level 30.
librosa/core/spectrum.py
def amplitude_to_db(S, ref=1.0, amin=1e-5, top_db=80.0): '''Convert an amplitude spectrogram to dB-scaled spectrogram. This is equivalent to ``power_to_db(S**2)``, but is provided for convenience. Parameters ---------- S : np.ndarray input amplitude ref : scalar or callable If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `20 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. If callable, the reference value is computed as `ref(S)`. amin : float > 0 [scalar] minimum threshold for `S` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(20 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S`` measured in dB See Also -------- power_to_db, db_to_amplitude Notes ----- This function caches at level 30. ''' S = np.asarray(S) if np.issubdtype(S.dtype, np.complexfloating): warnings.warn('amplitude_to_db was called on complex input so phase ' 'information will be discarded. To suppress this warning, ' 'call amplitude_to_db(np.abs(S)) instead.') magnitude = np.abs(S) if six.callable(ref): # User supplied a function to calculate reference power ref_value = ref(magnitude) else: ref_value = np.abs(ref) power = np.square(magnitude, out=magnitude) return power_to_db(power, ref=ref_value**2, amin=amin**2, top_db=top_db)
def amplitude_to_db(S, ref=1.0, amin=1e-5, top_db=80.0): '''Convert an amplitude spectrogram to dB-scaled spectrogram. This is equivalent to ``power_to_db(S**2)``, but is provided for convenience. Parameters ---------- S : np.ndarray input amplitude ref : scalar or callable If scalar, the amplitude `abs(S)` is scaled relative to `ref`: `20 * log10(S / ref)`. Zeros in the output correspond to positions where `S == ref`. If callable, the reference value is computed as `ref(S)`. amin : float > 0 [scalar] minimum threshold for `S` and `ref` top_db : float >= 0 [scalar] threshold the output at `top_db` below the peak: ``max(20 * log10(S)) - top_db`` Returns ------- S_db : np.ndarray ``S`` measured in dB See Also -------- power_to_db, db_to_amplitude Notes ----- This function caches at level 30. ''' S = np.asarray(S) if np.issubdtype(S.dtype, np.complexfloating): warnings.warn('amplitude_to_db was called on complex input so phase ' 'information will be discarded. To suppress this warning, ' 'call amplitude_to_db(np.abs(S)) instead.') magnitude = np.abs(S) if six.callable(ref): # User supplied a function to calculate reference power ref_value = ref(magnitude) else: ref_value = np.abs(ref) power = np.square(magnitude, out=magnitude) return power_to_db(power, ref=ref_value**2, amin=amin**2, top_db=top_db)
[ "Convert", "an", "amplitude", "spectrogram", "to", "dB", "-", "scaled", "spectrogram", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L966-L1023
[ "def", "amplitude_to_db", "(", "S", ",", "ref", "=", "1.0", ",", "amin", "=", "1e-5", ",", "top_db", "=", "80.0", ")", ":", "S", "=", "np", ".", "asarray", "(", "S", ")", "if", "np", ".", "issubdtype", "(", "S", ".", "dtype", ",", "np", ".", "complexfloating", ")", ":", "warnings", ".", "warn", "(", "'amplitude_to_db was called on complex input so phase '", "'information will be discarded. To suppress this warning, '", "'call amplitude_to_db(np.abs(S)) instead.'", ")", "magnitude", "=", "np", ".", "abs", "(", "S", ")", "if", "six", ".", "callable", "(", "ref", ")", ":", "# User supplied a function to calculate reference power", "ref_value", "=", "ref", "(", "magnitude", ")", "else", ":", "ref_value", "=", "np", ".", "abs", "(", "ref", ")", "power", "=", "np", ".", "square", "(", "magnitude", ",", "out", "=", "magnitude", ")", "return", "power_to_db", "(", "power", ",", "ref", "=", "ref_value", "**", "2", ",", "amin", "=", "amin", "**", "2", ",", "top_db", "=", "top_db", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
perceptual_weighting
Perceptual weighting of a power spectrogram: `S_p[f] = A_weighting(f) + 10*log(S[f] / ref)` Parameters ---------- S : np.ndarray [shape=(d, t)] Power spectrogram frequencies : np.ndarray [shape=(d,)] Center frequency for each row of `S` kwargs : additional keyword arguments Additional keyword arguments to `power_to_db`. Returns ------- S_p : np.ndarray [shape=(d, t)] perceptually weighted version of `S` See Also -------- power_to_db Notes ----- This function caches at level 30. Examples -------- Re-weight a CQT power spectrum, using peak power as reference >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('A1'))) >>> freqs = librosa.cqt_frequencies(C.shape[0], ... fmin=librosa.note_to_hz('A1')) >>> perceptual_CQT = librosa.perceptual_weighting(C**2, ... freqs, ... ref=np.max) >>> perceptual_CQT array([[ -80.076, -80.049, ..., -104.735, -104.735], [ -78.344, -78.555, ..., -103.725, -103.725], ..., [ -76.272, -76.272, ..., -76.272, -76.272], [ -76.485, -76.485, ..., -76.485, -76.485]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... fmin=librosa.note_to_hz('A1'), ... y_axis='cqt_hz') >>> plt.title('Log CQT power') >>> plt.colorbar(format='%+2.0f dB') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(perceptual_CQT, y_axis='cqt_hz', ... fmin=librosa.note_to_hz('A1'), ... x_axis='time') >>> plt.title('Perceptually weighted log CQT') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout()
librosa/core/spectrum.py
def perceptual_weighting(S, frequencies, **kwargs): '''Perceptual weighting of a power spectrogram: `S_p[f] = A_weighting(f) + 10*log(S[f] / ref)` Parameters ---------- S : np.ndarray [shape=(d, t)] Power spectrogram frequencies : np.ndarray [shape=(d,)] Center frequency for each row of `S` kwargs : additional keyword arguments Additional keyword arguments to `power_to_db`. Returns ------- S_p : np.ndarray [shape=(d, t)] perceptually weighted version of `S` See Also -------- power_to_db Notes ----- This function caches at level 30. Examples -------- Re-weight a CQT power spectrum, using peak power as reference >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('A1'))) >>> freqs = librosa.cqt_frequencies(C.shape[0], ... fmin=librosa.note_to_hz('A1')) >>> perceptual_CQT = librosa.perceptual_weighting(C**2, ... freqs, ... ref=np.max) >>> perceptual_CQT array([[ -80.076, -80.049, ..., -104.735, -104.735], [ -78.344, -78.555, ..., -103.725, -103.725], ..., [ -76.272, -76.272, ..., -76.272, -76.272], [ -76.485, -76.485, ..., -76.485, -76.485]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... fmin=librosa.note_to_hz('A1'), ... y_axis='cqt_hz') >>> plt.title('Log CQT power') >>> plt.colorbar(format='%+2.0f dB') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(perceptual_CQT, y_axis='cqt_hz', ... fmin=librosa.note_to_hz('A1'), ... x_axis='time') >>> plt.title('Perceptually weighted log CQT') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout() ''' offset = time_frequency.A_weighting(frequencies).reshape((-1, 1)) return offset + power_to_db(S, **kwargs)
def perceptual_weighting(S, frequencies, **kwargs): '''Perceptual weighting of a power spectrogram: `S_p[f] = A_weighting(f) + 10*log(S[f] / ref)` Parameters ---------- S : np.ndarray [shape=(d, t)] Power spectrogram frequencies : np.ndarray [shape=(d,)] Center frequency for each row of `S` kwargs : additional keyword arguments Additional keyword arguments to `power_to_db`. Returns ------- S_p : np.ndarray [shape=(d, t)] perceptually weighted version of `S` See Also -------- power_to_db Notes ----- This function caches at level 30. Examples -------- Re-weight a CQT power spectrum, using peak power as reference >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('A1'))) >>> freqs = librosa.cqt_frequencies(C.shape[0], ... fmin=librosa.note_to_hz('A1')) >>> perceptual_CQT = librosa.perceptual_weighting(C**2, ... freqs, ... ref=np.max) >>> perceptual_CQT array([[ -80.076, -80.049, ..., -104.735, -104.735], [ -78.344, -78.555, ..., -103.725, -103.725], ..., [ -76.272, -76.272, ..., -76.272, -76.272], [ -76.485, -76.485, ..., -76.485, -76.485]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... fmin=librosa.note_to_hz('A1'), ... y_axis='cqt_hz') >>> plt.title('Log CQT power') >>> plt.colorbar(format='%+2.0f dB') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(perceptual_CQT, y_axis='cqt_hz', ... fmin=librosa.note_to_hz('A1'), ... x_axis='time') >>> plt.title('Perceptually weighted log CQT') >>> plt.colorbar(format='%+2.0f dB') >>> plt.tight_layout() ''' offset = time_frequency.A_weighting(frequencies).reshape((-1, 1)) return offset + power_to_db(S, **kwargs)
[ "Perceptual", "weighting", "of", "a", "power", "spectrogram", ":" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L1055-L1123
[ "def", "perceptual_weighting", "(", "S", ",", "frequencies", ",", "*", "*", "kwargs", ")", ":", "offset", "=", "time_frequency", ".", "A_weighting", "(", "frequencies", ")", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "return", "offset", "+", "power_to_db", "(", "S", ",", "*", "*", "kwargs", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
fmt
The fast Mellin transform (FMT) [1]_ of a uniformly sampled signal y. When the Mellin parameter (beta) is 1/2, it is also known as the scale transform [2]_. The scale transform can be useful for audio analysis because its magnitude is invariant to scaling of the domain (e.g., time stretching or compression). This is analogous to the magnitude of the Fourier transform being invariant to shifts in the input domain. .. [1] De Sena, Antonio, and Davide Rocchesso. "A fast Mellin and scale transform." EURASIP Journal on Applied Signal Processing 2007.1 (2007): 75-75. .. [2] Cohen, L. "The scale representation." IEEE Transactions on Signal Processing 41, no. 12 (1993): 3275-3292. Parameters ---------- y : np.ndarray, real-valued The input signal(s). Can be multidimensional. The target axis must contain at least 3 samples. t_min : float > 0 The minimum time spacing (in samples). This value should generally be less than 1 to preserve as much information as possible. n_fmt : int > 2 or None The number of scale transform bins to use. If None, then `n_bins = over_sample * ceil(n * log((n-1)/t_min))` is taken, where `n = y.shape[axis]` kind : str The type of interpolation to use when re-sampling the input. See `scipy.interpolate.interp1d` for possible values. Note that the default is to use high-precision (cubic) interpolation. This can be slow in practice; if speed is preferred over accuracy, then consider using `kind='linear'`. beta : float The Mellin parameter. `beta=0.5` provides the scale transform. over_sample : float >= 1 Over-sampling factor for exponential resampling. axis : int The axis along which to transform `y` Returns ------- x_scale : np.ndarray [dtype=complex] The scale transform of `y` along the `axis` dimension. Raises ------ ParameterError if `n_fmt < 2` or `t_min <= 0` or if `y` is not finite or if `y.shape[axis] < 3`. Notes ----- This function caches at level 30. Examples -------- >>> # Generate a signal and time-stretch it (with energy normalization) >>> scale = 1.25 >>> freq = 3.0 >>> x1 = np.linspace(0, 1, num=1024, endpoint=False) >>> x2 = np.linspace(0, 1, num=scale * len(x1), endpoint=False) >>> y1 = np.sin(2 * np.pi * freq * x1) >>> y2 = np.sin(2 * np.pi * freq * x2) / np.sqrt(scale) >>> # Verify that the two signals have the same energy >>> np.sum(np.abs(y1)**2), np.sum(np.abs(y2)**2) (255.99999999999997, 255.99999999999969) >>> scale1 = librosa.fmt(y1, n_fmt=512) >>> scale2 = librosa.fmt(y2, n_fmt=512) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> plt.plot(y1, label='Original') >>> plt.plot(y2, linestyle='--', label='Stretched') >>> plt.xlabel('time (samples)') >>> plt.title('Input signals') >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.subplot(1, 2, 2) >>> plt.semilogy(np.abs(scale1), label='Original') >>> plt.semilogy(np.abs(scale2), linestyle='--', label='Stretched') >>> plt.xlabel('scale coefficients') >>> plt.title('Scale transform magnitude') >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.tight_layout() >>> # Plot the scale transform of an onset strength autocorrelation >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10.0, duration=30.0) >>> odf = librosa.onset.onset_strength(y=y, sr=sr) >>> # Auto-correlate with up to 10 seconds lag >>> odf_ac = librosa.autocorrelate(odf, max_size=10 * sr // 512) >>> # Normalize >>> odf_ac = librosa.util.normalize(odf_ac, norm=np.inf) >>> # Compute the scale transform >>> odf_ac_scale = librosa.fmt(librosa.util.normalize(odf_ac), n_fmt=512) >>> # Plot the results >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> plt.plot(odf, label='Onset strength') >>> plt.axis('tight') >>> plt.xlabel('Time (frames)') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.subplot(3, 1, 2) >>> plt.plot(odf_ac, label='Onset autocorrelation') >>> plt.axis('tight') >>> plt.xlabel('Lag (frames)') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.subplot(3, 1, 3) >>> plt.semilogy(np.abs(odf_ac_scale), label='Scale transform magnitude') >>> plt.axis('tight') >>> plt.xlabel('scale coefficients') >>> plt.legend(frameon=True) >>> plt.tight_layout()
librosa/core/spectrum.py
def fmt(y, t_min=0.5, n_fmt=None, kind='cubic', beta=0.5, over_sample=1, axis=-1): """The fast Mellin transform (FMT) [1]_ of a uniformly sampled signal y. When the Mellin parameter (beta) is 1/2, it is also known as the scale transform [2]_. The scale transform can be useful for audio analysis because its magnitude is invariant to scaling of the domain (e.g., time stretching or compression). This is analogous to the magnitude of the Fourier transform being invariant to shifts in the input domain. .. [1] De Sena, Antonio, and Davide Rocchesso. "A fast Mellin and scale transform." EURASIP Journal on Applied Signal Processing 2007.1 (2007): 75-75. .. [2] Cohen, L. "The scale representation." IEEE Transactions on Signal Processing 41, no. 12 (1993): 3275-3292. Parameters ---------- y : np.ndarray, real-valued The input signal(s). Can be multidimensional. The target axis must contain at least 3 samples. t_min : float > 0 The minimum time spacing (in samples). This value should generally be less than 1 to preserve as much information as possible. n_fmt : int > 2 or None The number of scale transform bins to use. If None, then `n_bins = over_sample * ceil(n * log((n-1)/t_min))` is taken, where `n = y.shape[axis]` kind : str The type of interpolation to use when re-sampling the input. See `scipy.interpolate.interp1d` for possible values. Note that the default is to use high-precision (cubic) interpolation. This can be slow in practice; if speed is preferred over accuracy, then consider using `kind='linear'`. beta : float The Mellin parameter. `beta=0.5` provides the scale transform. over_sample : float >= 1 Over-sampling factor for exponential resampling. axis : int The axis along which to transform `y` Returns ------- x_scale : np.ndarray [dtype=complex] The scale transform of `y` along the `axis` dimension. Raises ------ ParameterError if `n_fmt < 2` or `t_min <= 0` or if `y` is not finite or if `y.shape[axis] < 3`. Notes ----- This function caches at level 30. Examples -------- >>> # Generate a signal and time-stretch it (with energy normalization) >>> scale = 1.25 >>> freq = 3.0 >>> x1 = np.linspace(0, 1, num=1024, endpoint=False) >>> x2 = np.linspace(0, 1, num=scale * len(x1), endpoint=False) >>> y1 = np.sin(2 * np.pi * freq * x1) >>> y2 = np.sin(2 * np.pi * freq * x2) / np.sqrt(scale) >>> # Verify that the two signals have the same energy >>> np.sum(np.abs(y1)**2), np.sum(np.abs(y2)**2) (255.99999999999997, 255.99999999999969) >>> scale1 = librosa.fmt(y1, n_fmt=512) >>> scale2 = librosa.fmt(y2, n_fmt=512) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> plt.plot(y1, label='Original') >>> plt.plot(y2, linestyle='--', label='Stretched') >>> plt.xlabel('time (samples)') >>> plt.title('Input signals') >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.subplot(1, 2, 2) >>> plt.semilogy(np.abs(scale1), label='Original') >>> plt.semilogy(np.abs(scale2), linestyle='--', label='Stretched') >>> plt.xlabel('scale coefficients') >>> plt.title('Scale transform magnitude') >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.tight_layout() >>> # Plot the scale transform of an onset strength autocorrelation >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10.0, duration=30.0) >>> odf = librosa.onset.onset_strength(y=y, sr=sr) >>> # Auto-correlate with up to 10 seconds lag >>> odf_ac = librosa.autocorrelate(odf, max_size=10 * sr // 512) >>> # Normalize >>> odf_ac = librosa.util.normalize(odf_ac, norm=np.inf) >>> # Compute the scale transform >>> odf_ac_scale = librosa.fmt(librosa.util.normalize(odf_ac), n_fmt=512) >>> # Plot the results >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> plt.plot(odf, label='Onset strength') >>> plt.axis('tight') >>> plt.xlabel('Time (frames)') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.subplot(3, 1, 2) >>> plt.plot(odf_ac, label='Onset autocorrelation') >>> plt.axis('tight') >>> plt.xlabel('Lag (frames)') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.subplot(3, 1, 3) >>> plt.semilogy(np.abs(odf_ac_scale), label='Scale transform magnitude') >>> plt.axis('tight') >>> plt.xlabel('scale coefficients') >>> plt.legend(frameon=True) >>> plt.tight_layout() """ n = y.shape[axis] if n < 3: raise ParameterError('y.shape[{:}]=={:} < 3'.format(axis, n)) if t_min <= 0: raise ParameterError('t_min must be a positive number') if n_fmt is None: if over_sample < 1: raise ParameterError('over_sample must be >= 1') # The base is the maximum ratio between adjacent samples # Since the sample spacing is increasing, this is simply the # ratio between the positions of the last two samples: (n-1)/(n-2) log_base = np.log(n - 1) - np.log(n - 2) n_fmt = int(np.ceil(over_sample * (np.log(n - 1) - np.log(t_min)) / log_base)) elif n_fmt < 3: raise ParameterError('n_fmt=={:} < 3'.format(n_fmt)) else: log_base = (np.log(n_fmt - 1) - np.log(n_fmt - 2)) / over_sample if not np.all(np.isfinite(y)): raise ParameterError('y must be finite everywhere') base = np.exp(log_base) # original grid: signal covers [0, 1). This range is arbitrary, but convenient. # The final sample is positioned at (n-1)/n, so we omit the endpoint x = np.linspace(0, 1, num=n, endpoint=False) # build the interpolator f_interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=axis) # build the new sampling grid # exponentially spaced between t_min/n and 1 (exclusive) # we'll go one past where we need, and drop the last sample # When over-sampling, the last input sample contributions n_over samples. # To keep the spacing consistent, we over-sample by n_over, and then # trim the final samples. n_over = int(np.ceil(over_sample)) x_exp = np.logspace((np.log(t_min) - np.log(n)) / log_base, 0, num=n_fmt + n_over, endpoint=False, base=base)[:-n_over] # Clean up any rounding errors at the boundaries of the interpolation # The interpolator gets angry if we try to extrapolate, so clipping is necessary here. if x_exp[0] < t_min or x_exp[-1] > float(n - 1.0) / n: x_exp = np.clip(x_exp, float(t_min) / n, x[-1]) # Make sure that all sample points are unique # This should never happen! if len(np.unique(x_exp)) != len(x_exp): raise RuntimeError('Redundant sample positions in Mellin transform') # Resample the signal y_res = f_interp(x_exp) # Broadcast the window correctly shape = [1] * y_res.ndim shape[axis] = -1 # Apply the window and fft # Normalization is absorbed into the window here for expedience fft = get_fftlib() return fft.rfft(y_res * ((x_exp**beta).reshape(shape) * np.sqrt(n) / n_fmt), axis=axis)
def fmt(y, t_min=0.5, n_fmt=None, kind='cubic', beta=0.5, over_sample=1, axis=-1): """The fast Mellin transform (FMT) [1]_ of a uniformly sampled signal y. When the Mellin parameter (beta) is 1/2, it is also known as the scale transform [2]_. The scale transform can be useful for audio analysis because its magnitude is invariant to scaling of the domain (e.g., time stretching or compression). This is analogous to the magnitude of the Fourier transform being invariant to shifts in the input domain. .. [1] De Sena, Antonio, and Davide Rocchesso. "A fast Mellin and scale transform." EURASIP Journal on Applied Signal Processing 2007.1 (2007): 75-75. .. [2] Cohen, L. "The scale representation." IEEE Transactions on Signal Processing 41, no. 12 (1993): 3275-3292. Parameters ---------- y : np.ndarray, real-valued The input signal(s). Can be multidimensional. The target axis must contain at least 3 samples. t_min : float > 0 The minimum time spacing (in samples). This value should generally be less than 1 to preserve as much information as possible. n_fmt : int > 2 or None The number of scale transform bins to use. If None, then `n_bins = over_sample * ceil(n * log((n-1)/t_min))` is taken, where `n = y.shape[axis]` kind : str The type of interpolation to use when re-sampling the input. See `scipy.interpolate.interp1d` for possible values. Note that the default is to use high-precision (cubic) interpolation. This can be slow in practice; if speed is preferred over accuracy, then consider using `kind='linear'`. beta : float The Mellin parameter. `beta=0.5` provides the scale transform. over_sample : float >= 1 Over-sampling factor for exponential resampling. axis : int The axis along which to transform `y` Returns ------- x_scale : np.ndarray [dtype=complex] The scale transform of `y` along the `axis` dimension. Raises ------ ParameterError if `n_fmt < 2` or `t_min <= 0` or if `y` is not finite or if `y.shape[axis] < 3`. Notes ----- This function caches at level 30. Examples -------- >>> # Generate a signal and time-stretch it (with energy normalization) >>> scale = 1.25 >>> freq = 3.0 >>> x1 = np.linspace(0, 1, num=1024, endpoint=False) >>> x2 = np.linspace(0, 1, num=scale * len(x1), endpoint=False) >>> y1 = np.sin(2 * np.pi * freq * x1) >>> y2 = np.sin(2 * np.pi * freq * x2) / np.sqrt(scale) >>> # Verify that the two signals have the same energy >>> np.sum(np.abs(y1)**2), np.sum(np.abs(y2)**2) (255.99999999999997, 255.99999999999969) >>> scale1 = librosa.fmt(y1, n_fmt=512) >>> scale2 = librosa.fmt(y2, n_fmt=512) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> plt.plot(y1, label='Original') >>> plt.plot(y2, linestyle='--', label='Stretched') >>> plt.xlabel('time (samples)') >>> plt.title('Input signals') >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.subplot(1, 2, 2) >>> plt.semilogy(np.abs(scale1), label='Original') >>> plt.semilogy(np.abs(scale2), linestyle='--', label='Stretched') >>> plt.xlabel('scale coefficients') >>> plt.title('Scale transform magnitude') >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.tight_layout() >>> # Plot the scale transform of an onset strength autocorrelation >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10.0, duration=30.0) >>> odf = librosa.onset.onset_strength(y=y, sr=sr) >>> # Auto-correlate with up to 10 seconds lag >>> odf_ac = librosa.autocorrelate(odf, max_size=10 * sr // 512) >>> # Normalize >>> odf_ac = librosa.util.normalize(odf_ac, norm=np.inf) >>> # Compute the scale transform >>> odf_ac_scale = librosa.fmt(librosa.util.normalize(odf_ac), n_fmt=512) >>> # Plot the results >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> plt.plot(odf, label='Onset strength') >>> plt.axis('tight') >>> plt.xlabel('Time (frames)') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.subplot(3, 1, 2) >>> plt.plot(odf_ac, label='Onset autocorrelation') >>> plt.axis('tight') >>> plt.xlabel('Lag (frames)') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.subplot(3, 1, 3) >>> plt.semilogy(np.abs(odf_ac_scale), label='Scale transform magnitude') >>> plt.axis('tight') >>> plt.xlabel('scale coefficients') >>> plt.legend(frameon=True) >>> plt.tight_layout() """ n = y.shape[axis] if n < 3: raise ParameterError('y.shape[{:}]=={:} < 3'.format(axis, n)) if t_min <= 0: raise ParameterError('t_min must be a positive number') if n_fmt is None: if over_sample < 1: raise ParameterError('over_sample must be >= 1') # The base is the maximum ratio between adjacent samples # Since the sample spacing is increasing, this is simply the # ratio between the positions of the last two samples: (n-1)/(n-2) log_base = np.log(n - 1) - np.log(n - 2) n_fmt = int(np.ceil(over_sample * (np.log(n - 1) - np.log(t_min)) / log_base)) elif n_fmt < 3: raise ParameterError('n_fmt=={:} < 3'.format(n_fmt)) else: log_base = (np.log(n_fmt - 1) - np.log(n_fmt - 2)) / over_sample if not np.all(np.isfinite(y)): raise ParameterError('y must be finite everywhere') base = np.exp(log_base) # original grid: signal covers [0, 1). This range is arbitrary, but convenient. # The final sample is positioned at (n-1)/n, so we omit the endpoint x = np.linspace(0, 1, num=n, endpoint=False) # build the interpolator f_interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=axis) # build the new sampling grid # exponentially spaced between t_min/n and 1 (exclusive) # we'll go one past where we need, and drop the last sample # When over-sampling, the last input sample contributions n_over samples. # To keep the spacing consistent, we over-sample by n_over, and then # trim the final samples. n_over = int(np.ceil(over_sample)) x_exp = np.logspace((np.log(t_min) - np.log(n)) / log_base, 0, num=n_fmt + n_over, endpoint=False, base=base)[:-n_over] # Clean up any rounding errors at the boundaries of the interpolation # The interpolator gets angry if we try to extrapolate, so clipping is necessary here. if x_exp[0] < t_min or x_exp[-1] > float(n - 1.0) / n: x_exp = np.clip(x_exp, float(t_min) / n, x[-1]) # Make sure that all sample points are unique # This should never happen! if len(np.unique(x_exp)) != len(x_exp): raise RuntimeError('Redundant sample positions in Mellin transform') # Resample the signal y_res = f_interp(x_exp) # Broadcast the window correctly shape = [1] * y_res.ndim shape[axis] = -1 # Apply the window and fft # Normalization is absorbed into the window here for expedience fft = get_fftlib() return fft.rfft(y_res * ((x_exp**beta).reshape(shape) * np.sqrt(n) / n_fmt), axis=axis)
[ "The", "fast", "Mellin", "transform", "(", "FMT", ")", "[", "1", "]", "_", "of", "a", "uniformly", "sampled", "signal", "y", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L1127-L1328
[ "def", "fmt", "(", "y", ",", "t_min", "=", "0.5", ",", "n_fmt", "=", "None", ",", "kind", "=", "'cubic'", ",", "beta", "=", "0.5", ",", "over_sample", "=", "1", ",", "axis", "=", "-", "1", ")", ":", "n", "=", "y", ".", "shape", "[", "axis", "]", "if", "n", "<", "3", ":", "raise", "ParameterError", "(", "'y.shape[{:}]=={:} < 3'", ".", "format", "(", "axis", ",", "n", ")", ")", "if", "t_min", "<=", "0", ":", "raise", "ParameterError", "(", "'t_min must be a positive number'", ")", "if", "n_fmt", "is", "None", ":", "if", "over_sample", "<", "1", ":", "raise", "ParameterError", "(", "'over_sample must be >= 1'", ")", "# The base is the maximum ratio between adjacent samples", "# Since the sample spacing is increasing, this is simply the", "# ratio between the positions of the last two samples: (n-1)/(n-2)", "log_base", "=", "np", ".", "log", "(", "n", "-", "1", ")", "-", "np", ".", "log", "(", "n", "-", "2", ")", "n_fmt", "=", "int", "(", "np", ".", "ceil", "(", "over_sample", "*", "(", "np", ".", "log", "(", "n", "-", "1", ")", "-", "np", ".", "log", "(", "t_min", ")", ")", "/", "log_base", ")", ")", "elif", "n_fmt", "<", "3", ":", "raise", "ParameterError", "(", "'n_fmt=={:} < 3'", ".", "format", "(", "n_fmt", ")", ")", "else", ":", "log_base", "=", "(", "np", ".", "log", "(", "n_fmt", "-", "1", ")", "-", "np", ".", "log", "(", "n_fmt", "-", "2", ")", ")", "/", "over_sample", "if", "not", "np", ".", "all", "(", "np", ".", "isfinite", "(", "y", ")", ")", ":", "raise", "ParameterError", "(", "'y must be finite everywhere'", ")", "base", "=", "np", ".", "exp", "(", "log_base", ")", "# original grid: signal covers [0, 1). This range is arbitrary, but convenient.", "# The final sample is positioned at (n-1)/n, so we omit the endpoint", "x", "=", "np", ".", "linspace", "(", "0", ",", "1", ",", "num", "=", "n", ",", "endpoint", "=", "False", ")", "# build the interpolator", "f_interp", "=", "scipy", ".", "interpolate", ".", "interp1d", "(", "x", ",", "y", ",", "kind", "=", "kind", ",", "axis", "=", "axis", ")", "# build the new sampling grid", "# exponentially spaced between t_min/n and 1 (exclusive)", "# we'll go one past where we need, and drop the last sample", "# When over-sampling, the last input sample contributions n_over samples.", "# To keep the spacing consistent, we over-sample by n_over, and then", "# trim the final samples.", "n_over", "=", "int", "(", "np", ".", "ceil", "(", "over_sample", ")", ")", "x_exp", "=", "np", ".", "logspace", "(", "(", "np", ".", "log", "(", "t_min", ")", "-", "np", ".", "log", "(", "n", ")", ")", "/", "log_base", ",", "0", ",", "num", "=", "n_fmt", "+", "n_over", ",", "endpoint", "=", "False", ",", "base", "=", "base", ")", "[", ":", "-", "n_over", "]", "# Clean up any rounding errors at the boundaries of the interpolation", "# The interpolator gets angry if we try to extrapolate, so clipping is necessary here.", "if", "x_exp", "[", "0", "]", "<", "t_min", "or", "x_exp", "[", "-", "1", "]", ">", "float", "(", "n", "-", "1.0", ")", "/", "n", ":", "x_exp", "=", "np", ".", "clip", "(", "x_exp", ",", "float", "(", "t_min", ")", "/", "n", ",", "x", "[", "-", "1", "]", ")", "# Make sure that all sample points are unique", "# This should never happen!", "if", "len", "(", "np", ".", "unique", "(", "x_exp", ")", ")", "!=", "len", "(", "x_exp", ")", ":", "raise", "RuntimeError", "(", "'Redundant sample positions in Mellin transform'", ")", "# Resample the signal", "y_res", "=", "f_interp", "(", "x_exp", ")", "# Broadcast the window correctly", "shape", "=", "[", "1", "]", "*", "y_res", ".", "ndim", "shape", "[", "axis", "]", "=", "-", "1", "# Apply the window and fft", "# Normalization is absorbed into the window here for expedience", "fft", "=", "get_fftlib", "(", ")", "return", "fft", ".", "rfft", "(", "y_res", "*", "(", "(", "x_exp", "**", "beta", ")", ".", "reshape", "(", "shape", ")", "*", "np", ".", "sqrt", "(", "n", ")", "/", "n_fmt", ")", ",", "axis", "=", "axis", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
pcen
Per-channel energy normalization (PCEN) [1]_ This function normalizes a time-frequency representation `S` by performing automatic gain control, followed by nonlinear compression: P[f, t] = (S / (eps + M[f, t])**gain + bias)**power - bias**power where `M` is the result of applying a low-pass, temporal IIR filter to `S`: M[f, t] = (1 - b) * M[f, t - 1] + b * S[f, t] If `b` is not provided, it is calculated as: b = (sqrt(1 + 4* T**2) - 1) / (2 * T**2) where `T = time_constant * sr / hop_length`. This normalization is designed to suppress background noise and emphasize foreground signals, and can be used as an alternative to decibel scaling (`amplitude_to_db`). This implementation also supports smoothing across frequency bins by specifying `max_size > 1`. If this option is used, the filtered spectrogram `M` is computed as M[f, t] = (1 - b) * M[f, t - 1] + b * R[f, t] where `R` has been max-filtered along the frequency axis, similar to the SuperFlux algorithm implemented in `onset.onset_strength`: R[f, t] = max(S[f - max_size//2: f + max_size//2, t]) This can be used to perform automatic gain control on signals that cross or span multiple frequency bans, which may be desirable for spectrograms with high frequency resolution. .. [1] Wang, Y., Getreuer, P., Hughes, T., Lyon, R. F., & Saurous, R. A. (2017, March). Trainable frontend for robust and far-field keyword spotting. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 5670-5674). IEEE. Parameters ---------- S : np.ndarray (non-negative) The input (magnitude) spectrogram sr : number > 0 [scalar] The audio sampling rate hop_length : int > 0 [scalar] The hop length of `S`, expressed in samples gain : number >= 0 [scalar] The gain factor. Typical values should be slightly less than 1. bias : number >= 0 [scalar] The bias point of the nonlinear compression (default: 2) power : number > 0 [scalar] The compression exponent. Typical values should be between 0 and 1. Smaller values of `power` result in stronger compression. time_constant : number > 0 [scalar] The time constant for IIR filtering, measured in seconds. eps : number > 0 [scalar] A small constant used to ensure numerical stability of the filter. b : number in [0, 1] [scalar] The filter coefficient for the low-pass filter. If not provided, it will be inferred from `time_constant`. max_size : int > 0 [scalar] The width of the max filter applied to the frequency axis. If left as `1`, no filtering is performed. ref : None or np.ndarray (shape=S.shape) An optional pre-computed reference spectrum (`R` in the above). If not provided it will be computed from `S`. axis : int [scalar] The (time) axis of the input spectrogram. max_axis : None or int [scalar] The frequency axis of the input spectrogram. If `None`, and `S` is two-dimensional, it will be inferred as the opposite from `axis`. If `S` is not two-dimensional, and `max_size > 1`, an error will be raised. zi : np.ndarray The initial filter delay values. This may be the `zf` (final delay values) of a previous call to `pcen`, or computed by `scipy.signal.lfilter_zi`. return_zf : bool If `True`, return the final filter delay values along with the PCEN output `P`. This is primarily useful in streaming contexts, where the final state of one block of processing should be used to initialize the next block. If `False` (default) only the PCEN values `P` are returned. Returns ------- P : np.ndarray, non-negative [shape=(n, m)] The per-channel energy normalized version of `S`. zf : np.ndarray (optional) The final filter delay values. Only returned if `return_zf=True`. See Also -------- amplitude_to_db librosa.onset.onset_strength Examples -------- Compare PCEN to log amplitude (dB) scaling on Mel spectra >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=10) >>> # We'll use power=1 to get a magnitude spectrum >>> # instead of a power spectrum >>> S = librosa.feature.melspectrogram(y, sr=sr, power=1) >>> log_S = librosa.amplitude_to_db(S, ref=np.max) >>> pcen_S = librosa.pcen(S) >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(log_S, x_axis='time', y_axis='mel') >>> plt.title('log amplitude (dB)') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization') >>> plt.colorbar() >>> plt.tight_layout() Compare PCEN with and without max-filtering >>> pcen_max = librosa.pcen(S, max_size=3) >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization (no max-filter)') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(pcen_max, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization (max_size=3)') >>> plt.colorbar() >>> plt.tight_layout()
librosa/core/spectrum.py
def pcen(S, sr=22050, hop_length=512, gain=0.98, bias=2, power=0.5, time_constant=0.400, eps=1e-6, b=None, max_size=1, ref=None, axis=-1, max_axis=None, zi=None, return_zf=False): '''Per-channel energy normalization (PCEN) [1]_ This function normalizes a time-frequency representation `S` by performing automatic gain control, followed by nonlinear compression: P[f, t] = (S / (eps + M[f, t])**gain + bias)**power - bias**power where `M` is the result of applying a low-pass, temporal IIR filter to `S`: M[f, t] = (1 - b) * M[f, t - 1] + b * S[f, t] If `b` is not provided, it is calculated as: b = (sqrt(1 + 4* T**2) - 1) / (2 * T**2) where `T = time_constant * sr / hop_length`. This normalization is designed to suppress background noise and emphasize foreground signals, and can be used as an alternative to decibel scaling (`amplitude_to_db`). This implementation also supports smoothing across frequency bins by specifying `max_size > 1`. If this option is used, the filtered spectrogram `M` is computed as M[f, t] = (1 - b) * M[f, t - 1] + b * R[f, t] where `R` has been max-filtered along the frequency axis, similar to the SuperFlux algorithm implemented in `onset.onset_strength`: R[f, t] = max(S[f - max_size//2: f + max_size//2, t]) This can be used to perform automatic gain control on signals that cross or span multiple frequency bans, which may be desirable for spectrograms with high frequency resolution. .. [1] Wang, Y., Getreuer, P., Hughes, T., Lyon, R. F., & Saurous, R. A. (2017, March). Trainable frontend for robust and far-field keyword spotting. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 5670-5674). IEEE. Parameters ---------- S : np.ndarray (non-negative) The input (magnitude) spectrogram sr : number > 0 [scalar] The audio sampling rate hop_length : int > 0 [scalar] The hop length of `S`, expressed in samples gain : number >= 0 [scalar] The gain factor. Typical values should be slightly less than 1. bias : number >= 0 [scalar] The bias point of the nonlinear compression (default: 2) power : number > 0 [scalar] The compression exponent. Typical values should be between 0 and 1. Smaller values of `power` result in stronger compression. time_constant : number > 0 [scalar] The time constant for IIR filtering, measured in seconds. eps : number > 0 [scalar] A small constant used to ensure numerical stability of the filter. b : number in [0, 1] [scalar] The filter coefficient for the low-pass filter. If not provided, it will be inferred from `time_constant`. max_size : int > 0 [scalar] The width of the max filter applied to the frequency axis. If left as `1`, no filtering is performed. ref : None or np.ndarray (shape=S.shape) An optional pre-computed reference spectrum (`R` in the above). If not provided it will be computed from `S`. axis : int [scalar] The (time) axis of the input spectrogram. max_axis : None or int [scalar] The frequency axis of the input spectrogram. If `None`, and `S` is two-dimensional, it will be inferred as the opposite from `axis`. If `S` is not two-dimensional, and `max_size > 1`, an error will be raised. zi : np.ndarray The initial filter delay values. This may be the `zf` (final delay values) of a previous call to `pcen`, or computed by `scipy.signal.lfilter_zi`. return_zf : bool If `True`, return the final filter delay values along with the PCEN output `P`. This is primarily useful in streaming contexts, where the final state of one block of processing should be used to initialize the next block. If `False` (default) only the PCEN values `P` are returned. Returns ------- P : np.ndarray, non-negative [shape=(n, m)] The per-channel energy normalized version of `S`. zf : np.ndarray (optional) The final filter delay values. Only returned if `return_zf=True`. See Also -------- amplitude_to_db librosa.onset.onset_strength Examples -------- Compare PCEN to log amplitude (dB) scaling on Mel spectra >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=10) >>> # We'll use power=1 to get a magnitude spectrum >>> # instead of a power spectrum >>> S = librosa.feature.melspectrogram(y, sr=sr, power=1) >>> log_S = librosa.amplitude_to_db(S, ref=np.max) >>> pcen_S = librosa.pcen(S) >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(log_S, x_axis='time', y_axis='mel') >>> plt.title('log amplitude (dB)') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization') >>> plt.colorbar() >>> plt.tight_layout() Compare PCEN with and without max-filtering >>> pcen_max = librosa.pcen(S, max_size=3) >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization (no max-filter)') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(pcen_max, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization (max_size=3)') >>> plt.colorbar() >>> plt.tight_layout() ''' if power <= 0: raise ParameterError('power={} must be strictly positive'.format(power)) if gain < 0: raise ParameterError('gain={} must be non-negative'.format(gain)) if bias < 0: raise ParameterError('bias={} must be non-negative'.format(bias)) if eps <= 0: raise ParameterError('eps={} must be strictly positive'.format(eps)) if time_constant <= 0: raise ParameterError('time_constant={} must be strictly positive'.format(time_constant)) if max_size < 1 or not isinstance(max_size, int): raise ParameterError('max_size={} must be a positive integer'.format(max_size)) if b is None: t_frames = time_constant * sr / float(hop_length) # By default, this solves the equation for b: # b**2 + (1 - b) / t_frames - 2 = 0 # which approximates the full-width half-max of the # squared frequency response of the IIR low-pass filter b = (np.sqrt(1 + 4 * t_frames**2) - 1) / (2 * t_frames**2) if not 0 <= b <= 1: raise ParameterError('b={} must be between 0 and 1'.format(b)) if np.issubdtype(S.dtype, np.complexfloating): warnings.warn('pcen was called on complex input so phase ' 'information will be discarded. To suppress this warning, ' 'call pcen(np.abs(D)) instead.') S = np.abs(S) if ref is None: if max_size == 1: ref = S elif S.ndim == 1: raise ParameterError('Max-filtering cannot be applied to 1-dimensional input') else: if max_axis is None: if S.ndim != 2: raise ParameterError('Max-filtering a {:d}-dimensional spectrogram ' 'requires you to specify max_axis'.format(S.ndim)) # if axis = 0, max_axis=1 # if axis = +- 1, max_axis = 0 max_axis = np.mod(1 - axis, 2) ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=max_axis) if zi is None: # Make sure zi matches dimension to input shape = tuple([1] * ref.ndim) zi = np.empty(shape) zi[:] = scipy.signal.lfilter_zi([b], [1, b - 1])[:] S_smooth, zf = scipy.signal.lfilter([b], [1, b - 1], ref, zi=zi, axis=axis) # Working in log-space gives us some stability, and a slight speedup smooth = np.exp(-gain * (np.log(eps) + np.log1p(S_smooth / eps))) S_out = (S * smooth + bias)**power - bias**power if return_zf: return S_out, zf else: return S_out
def pcen(S, sr=22050, hop_length=512, gain=0.98, bias=2, power=0.5, time_constant=0.400, eps=1e-6, b=None, max_size=1, ref=None, axis=-1, max_axis=None, zi=None, return_zf=False): '''Per-channel energy normalization (PCEN) [1]_ This function normalizes a time-frequency representation `S` by performing automatic gain control, followed by nonlinear compression: P[f, t] = (S / (eps + M[f, t])**gain + bias)**power - bias**power where `M` is the result of applying a low-pass, temporal IIR filter to `S`: M[f, t] = (1 - b) * M[f, t - 1] + b * S[f, t] If `b` is not provided, it is calculated as: b = (sqrt(1 + 4* T**2) - 1) / (2 * T**2) where `T = time_constant * sr / hop_length`. This normalization is designed to suppress background noise and emphasize foreground signals, and can be used as an alternative to decibel scaling (`amplitude_to_db`). This implementation also supports smoothing across frequency bins by specifying `max_size > 1`. If this option is used, the filtered spectrogram `M` is computed as M[f, t] = (1 - b) * M[f, t - 1] + b * R[f, t] where `R` has been max-filtered along the frequency axis, similar to the SuperFlux algorithm implemented in `onset.onset_strength`: R[f, t] = max(S[f - max_size//2: f + max_size//2, t]) This can be used to perform automatic gain control on signals that cross or span multiple frequency bans, which may be desirable for spectrograms with high frequency resolution. .. [1] Wang, Y., Getreuer, P., Hughes, T., Lyon, R. F., & Saurous, R. A. (2017, March). Trainable frontend for robust and far-field keyword spotting. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 5670-5674). IEEE. Parameters ---------- S : np.ndarray (non-negative) The input (magnitude) spectrogram sr : number > 0 [scalar] The audio sampling rate hop_length : int > 0 [scalar] The hop length of `S`, expressed in samples gain : number >= 0 [scalar] The gain factor. Typical values should be slightly less than 1. bias : number >= 0 [scalar] The bias point of the nonlinear compression (default: 2) power : number > 0 [scalar] The compression exponent. Typical values should be between 0 and 1. Smaller values of `power` result in stronger compression. time_constant : number > 0 [scalar] The time constant for IIR filtering, measured in seconds. eps : number > 0 [scalar] A small constant used to ensure numerical stability of the filter. b : number in [0, 1] [scalar] The filter coefficient for the low-pass filter. If not provided, it will be inferred from `time_constant`. max_size : int > 0 [scalar] The width of the max filter applied to the frequency axis. If left as `1`, no filtering is performed. ref : None or np.ndarray (shape=S.shape) An optional pre-computed reference spectrum (`R` in the above). If not provided it will be computed from `S`. axis : int [scalar] The (time) axis of the input spectrogram. max_axis : None or int [scalar] The frequency axis of the input spectrogram. If `None`, and `S` is two-dimensional, it will be inferred as the opposite from `axis`. If `S` is not two-dimensional, and `max_size > 1`, an error will be raised. zi : np.ndarray The initial filter delay values. This may be the `zf` (final delay values) of a previous call to `pcen`, or computed by `scipy.signal.lfilter_zi`. return_zf : bool If `True`, return the final filter delay values along with the PCEN output `P`. This is primarily useful in streaming contexts, where the final state of one block of processing should be used to initialize the next block. If `False` (default) only the PCEN values `P` are returned. Returns ------- P : np.ndarray, non-negative [shape=(n, m)] The per-channel energy normalized version of `S`. zf : np.ndarray (optional) The final filter delay values. Only returned if `return_zf=True`. See Also -------- amplitude_to_db librosa.onset.onset_strength Examples -------- Compare PCEN to log amplitude (dB) scaling on Mel spectra >>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=10) >>> # We'll use power=1 to get a magnitude spectrum >>> # instead of a power spectrum >>> S = librosa.feature.melspectrogram(y, sr=sr, power=1) >>> log_S = librosa.amplitude_to_db(S, ref=np.max) >>> pcen_S = librosa.pcen(S) >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(log_S, x_axis='time', y_axis='mel') >>> plt.title('log amplitude (dB)') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization') >>> plt.colorbar() >>> plt.tight_layout() Compare PCEN with and without max-filtering >>> pcen_max = librosa.pcen(S, max_size=3) >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization (no max-filter)') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(pcen_max, x_axis='time', y_axis='mel') >>> plt.title('Per-channel energy normalization (max_size=3)') >>> plt.colorbar() >>> plt.tight_layout() ''' if power <= 0: raise ParameterError('power={} must be strictly positive'.format(power)) if gain < 0: raise ParameterError('gain={} must be non-negative'.format(gain)) if bias < 0: raise ParameterError('bias={} must be non-negative'.format(bias)) if eps <= 0: raise ParameterError('eps={} must be strictly positive'.format(eps)) if time_constant <= 0: raise ParameterError('time_constant={} must be strictly positive'.format(time_constant)) if max_size < 1 or not isinstance(max_size, int): raise ParameterError('max_size={} must be a positive integer'.format(max_size)) if b is None: t_frames = time_constant * sr / float(hop_length) # By default, this solves the equation for b: # b**2 + (1 - b) / t_frames - 2 = 0 # which approximates the full-width half-max of the # squared frequency response of the IIR low-pass filter b = (np.sqrt(1 + 4 * t_frames**2) - 1) / (2 * t_frames**2) if not 0 <= b <= 1: raise ParameterError('b={} must be between 0 and 1'.format(b)) if np.issubdtype(S.dtype, np.complexfloating): warnings.warn('pcen was called on complex input so phase ' 'information will be discarded. To suppress this warning, ' 'call pcen(np.abs(D)) instead.') S = np.abs(S) if ref is None: if max_size == 1: ref = S elif S.ndim == 1: raise ParameterError('Max-filtering cannot be applied to 1-dimensional input') else: if max_axis is None: if S.ndim != 2: raise ParameterError('Max-filtering a {:d}-dimensional spectrogram ' 'requires you to specify max_axis'.format(S.ndim)) # if axis = 0, max_axis=1 # if axis = +- 1, max_axis = 0 max_axis = np.mod(1 - axis, 2) ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=max_axis) if zi is None: # Make sure zi matches dimension to input shape = tuple([1] * ref.ndim) zi = np.empty(shape) zi[:] = scipy.signal.lfilter_zi([b], [1, b - 1])[:] S_smooth, zf = scipy.signal.lfilter([b], [1, b - 1], ref, zi=zi, axis=axis) # Working in log-space gives us some stability, and a slight speedup smooth = np.exp(-gain * (np.log(eps) + np.log1p(S_smooth / eps))) S_out = (S * smooth + bias)**power - bias**power if return_zf: return S_out, zf else: return S_out
[ "Per", "-", "channel", "energy", "normalization", "(", "PCEN", ")", "[", "1", "]", "_" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L1332-L1562
[ "def", "pcen", "(", "S", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "gain", "=", "0.98", ",", "bias", "=", "2", ",", "power", "=", "0.5", ",", "time_constant", "=", "0.400", ",", "eps", "=", "1e-6", ",", "b", "=", "None", ",", "max_size", "=", "1", ",", "ref", "=", "None", ",", "axis", "=", "-", "1", ",", "max_axis", "=", "None", ",", "zi", "=", "None", ",", "return_zf", "=", "False", ")", ":", "if", "power", "<=", "0", ":", "raise", "ParameterError", "(", "'power={} must be strictly positive'", ".", "format", "(", "power", ")", ")", "if", "gain", "<", "0", ":", "raise", "ParameterError", "(", "'gain={} must be non-negative'", ".", "format", "(", "gain", ")", ")", "if", "bias", "<", "0", ":", "raise", "ParameterError", "(", "'bias={} must be non-negative'", ".", "format", "(", "bias", ")", ")", "if", "eps", "<=", "0", ":", "raise", "ParameterError", "(", "'eps={} must be strictly positive'", ".", "format", "(", "eps", ")", ")", "if", "time_constant", "<=", "0", ":", "raise", "ParameterError", "(", "'time_constant={} must be strictly positive'", ".", "format", "(", "time_constant", ")", ")", "if", "max_size", "<", "1", "or", "not", "isinstance", "(", "max_size", ",", "int", ")", ":", "raise", "ParameterError", "(", "'max_size={} must be a positive integer'", ".", "format", "(", "max_size", ")", ")", "if", "b", "is", "None", ":", "t_frames", "=", "time_constant", "*", "sr", "/", "float", "(", "hop_length", ")", "# By default, this solves the equation for b:", "# b**2 + (1 - b) / t_frames - 2 = 0", "# which approximates the full-width half-max of the", "# squared frequency response of the IIR low-pass filter", "b", "=", "(", "np", ".", "sqrt", "(", "1", "+", "4", "*", "t_frames", "**", "2", ")", "-", "1", ")", "/", "(", "2", "*", "t_frames", "**", "2", ")", "if", "not", "0", "<=", "b", "<=", "1", ":", "raise", "ParameterError", "(", "'b={} must be between 0 and 1'", ".", "format", "(", "b", ")", ")", "if", "np", ".", "issubdtype", "(", "S", ".", "dtype", ",", "np", ".", "complexfloating", ")", ":", "warnings", ".", "warn", "(", "'pcen was called on complex input so phase '", "'information will be discarded. To suppress this warning, '", "'call pcen(np.abs(D)) instead.'", ")", "S", "=", "np", ".", "abs", "(", "S", ")", "if", "ref", "is", "None", ":", "if", "max_size", "==", "1", ":", "ref", "=", "S", "elif", "S", ".", "ndim", "==", "1", ":", "raise", "ParameterError", "(", "'Max-filtering cannot be applied to 1-dimensional input'", ")", "else", ":", "if", "max_axis", "is", "None", ":", "if", "S", ".", "ndim", "!=", "2", ":", "raise", "ParameterError", "(", "'Max-filtering a {:d}-dimensional spectrogram '", "'requires you to specify max_axis'", ".", "format", "(", "S", ".", "ndim", ")", ")", "# if axis = 0, max_axis=1", "# if axis = +- 1, max_axis = 0", "max_axis", "=", "np", ".", "mod", "(", "1", "-", "axis", ",", "2", ")", "ref", "=", "scipy", ".", "ndimage", ".", "maximum_filter1d", "(", "S", ",", "max_size", ",", "axis", "=", "max_axis", ")", "if", "zi", "is", "None", ":", "# Make sure zi matches dimension to input", "shape", "=", "tuple", "(", "[", "1", "]", "*", "ref", ".", "ndim", ")", "zi", "=", "np", ".", "empty", "(", "shape", ")", "zi", "[", ":", "]", "=", "scipy", ".", "signal", ".", "lfilter_zi", "(", "[", "b", "]", ",", "[", "1", ",", "b", "-", "1", "]", ")", "[", ":", "]", "S_smooth", ",", "zf", "=", "scipy", ".", "signal", ".", "lfilter", "(", "[", "b", "]", ",", "[", "1", ",", "b", "-", "1", "]", ",", "ref", ",", "zi", "=", "zi", ",", "axis", "=", "axis", ")", "# Working in log-space gives us some stability, and a slight speedup", "smooth", "=", "np", ".", "exp", "(", "-", "gain", "*", "(", "np", ".", "log", "(", "eps", ")", "+", "np", ".", "log1p", "(", "S_smooth", "/", "eps", ")", ")", ")", "S_out", "=", "(", "S", "*", "smooth", "+", "bias", ")", "**", "power", "-", "bias", "**", "power", "if", "return_zf", ":", "return", "S_out", ",", "zf", "else", ":", "return", "S_out" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
_spectrogram
Helper function to retrieve a magnitude spectrogram. This is primarily used in feature extraction functions that can operate on either audio time-series or spectrogram input. Parameters ---------- y : None or np.ndarray [ndim=1] If provided, an audio time series S : None or np.ndarray Spectrogram input, optional n_fft : int > 0 STFT window size hop_length : int > 0 STFT hop length power : float > 0 Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- S_out : np.ndarray [dtype=np.float32] - If `S` is provided as input, then `S_out == S` - Else, `S_out = |stft(y, ...)|**power` n_fft : int > 0 - If `S` is provided, then `n_fft` is inferred from `S` - Else, copied from input
librosa/core/spectrum.py
def _spectrogram(y=None, S=None, n_fft=2048, hop_length=512, power=1, win_length=None, window='hann', center=True, pad_mode='reflect'): '''Helper function to retrieve a magnitude spectrogram. This is primarily used in feature extraction functions that can operate on either audio time-series or spectrogram input. Parameters ---------- y : None or np.ndarray [ndim=1] If provided, an audio time series S : None or np.ndarray Spectrogram input, optional n_fft : int > 0 STFT window size hop_length : int > 0 STFT hop length power : float > 0 Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- S_out : np.ndarray [dtype=np.float32] - If `S` is provided as input, then `S_out == S` - Else, `S_out = |stft(y, ...)|**power` n_fft : int > 0 - If `S` is provided, then `n_fft` is inferred from `S` - Else, copied from input ''' if S is not None: # Infer n_fft from spectrogram shape n_fft = 2 * (S.shape[0] - 1) else: # Otherwise, compute a magnitude spectrogram from input S = np.abs(stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=center, window=window, pad_mode=pad_mode))**power return S, n_fft
def _spectrogram(y=None, S=None, n_fft=2048, hop_length=512, power=1, win_length=None, window='hann', center=True, pad_mode='reflect'): '''Helper function to retrieve a magnitude spectrogram. This is primarily used in feature extraction functions that can operate on either audio time-series or spectrogram input. Parameters ---------- y : None or np.ndarray [ndim=1] If provided, an audio time series S : None or np.ndarray Spectrogram input, optional n_fft : int > 0 STFT window size hop_length : int > 0 STFT hop length power : float > 0 Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- S_out : np.ndarray [dtype=np.float32] - If `S` is provided as input, then `S_out == S` - Else, `S_out = |stft(y, ...)|**power` n_fft : int > 0 - If `S` is provided, then `n_fft` is inferred from `S` - Else, copied from input ''' if S is not None: # Infer n_fft from spectrogram shape n_fft = 2 * (S.shape[0] - 1) else: # Otherwise, compute a magnitude spectrogram from input S = np.abs(stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=center, window=window, pad_mode=pad_mode))**power return S, n_fft
[ "Helper", "function", "to", "retrieve", "a", "magnitude", "spectrogram", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/spectrum.py#L1565-L1636
[ "def", "_spectrogram", "(", "y", "=", "None", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "power", "=", "1", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ")", ":", "if", "S", "is", "not", "None", ":", "# Infer n_fft from spectrogram shape", "n_fft", "=", "2", "*", "(", "S", ".", "shape", "[", "0", "]", "-", "1", ")", "else", ":", "# Otherwise, compute a magnitude spectrogram from input", "S", "=", "np", ".", "abs", "(", "stft", "(", "y", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "center", "=", "center", ",", "window", "=", "window", ",", "pad_mode", "=", "pad_mode", ")", ")", "**", "power", "return", "S", ",", "n_fft" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hpss_beats
HPSS beat tracking :parameters: - input_file : str Path to input audio file (wav, mp3, m4a, flac, etc.) - output_file : str Path to save beat event timestamps as a CSV file
examples/hpss_beats.py
def hpss_beats(input_file, output_csv): '''HPSS beat tracking :parameters: - input_file : str Path to input audio file (wav, mp3, m4a, flac, etc.) - output_file : str Path to save beat event timestamps as a CSV file ''' # Load the file print('Loading ', input_file) y, sr = librosa.load(input_file) # Do HPSS print('Harmonic-percussive separation ... ') y = librosa.effects.percussive(y) # Construct onset envelope from percussive component print('Tracking beats on percussive component') onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=HOP_LENGTH, n_fft=N_FFT, aggregate=np.median) # Track the beats tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr, hop_length=HOP_LENGTH) beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=HOP_LENGTH) # Save the output print('Saving beats to ', output_csv) librosa.output.times_csv(output_csv, beat_times)
def hpss_beats(input_file, output_csv): '''HPSS beat tracking :parameters: - input_file : str Path to input audio file (wav, mp3, m4a, flac, etc.) - output_file : str Path to save beat event timestamps as a CSV file ''' # Load the file print('Loading ', input_file) y, sr = librosa.load(input_file) # Do HPSS print('Harmonic-percussive separation ... ') y = librosa.effects.percussive(y) # Construct onset envelope from percussive component print('Tracking beats on percussive component') onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=HOP_LENGTH, n_fft=N_FFT, aggregate=np.median) # Track the beats tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr, hop_length=HOP_LENGTH) beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=HOP_LENGTH) # Save the output print('Saving beats to ', output_csv) librosa.output.times_csv(output_csv, beat_times)
[ "HPSS", "beat", "tracking" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/hpss_beats.py#L24-L62
[ "def", "hpss_beats", "(", "input_file", ",", "output_csv", ")", ":", "# Load the file", "print", "(", "'Loading '", ",", "input_file", ")", "y", ",", "sr", "=", "librosa", ".", "load", "(", "input_file", ")", "# Do HPSS", "print", "(", "'Harmonic-percussive separation ... '", ")", "y", "=", "librosa", ".", "effects", ".", "percussive", "(", "y", ")", "# Construct onset envelope from percussive component", "print", "(", "'Tracking beats on percussive component'", ")", "onset_env", "=", "librosa", ".", "onset", ".", "onset_strength", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "hop_length", "=", "HOP_LENGTH", ",", "n_fft", "=", "N_FFT", ",", "aggregate", "=", "np", ".", "median", ")", "# Track the beats", "tempo", ",", "beats", "=", "librosa", ".", "beat", ".", "beat_track", "(", "onset_envelope", "=", "onset_env", ",", "sr", "=", "sr", ",", "hop_length", "=", "HOP_LENGTH", ")", "beat_times", "=", "librosa", ".", "frames_to_time", "(", "beats", ",", "sr", "=", "sr", ",", "hop_length", "=", "HOP_LENGTH", ")", "# Save the output", "print", "(", "'Saving beats to '", ",", "output_csv", ")", "librosa", ".", "output", ".", "times_csv", "(", "output_csv", ",", "beat_times", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
decompose
Decompose a feature matrix. Given a spectrogram `S`, produce a decomposition into `components` and `activations` such that `S ~= components.dot(activations)`. By default, this is done with with non-negative matrix factorization (NMF), but any `sklearn.decomposition`-type object will work. Parameters ---------- S : np.ndarray [shape=(n_features, n_samples), dtype=float] The input feature matrix (e.g., magnitude spectrogram) n_components : int > 0 [scalar] or None number of desired components if None, then `n_features` components are used transformer : None or object If None, use `sklearn.decomposition.NMF` Otherwise, any object with a similar interface to NMF should work. `transformer` must follow the scikit-learn convention, where input data is `(n_samples, n_features)`. `transformer.fit_transform()` will be run on `S.T` (not `S`), the return value of which is stored (transposed) as `activations` The components will be retrieved as `transformer.components_.T` `S ~= np.dot(activations, transformer.components_).T` or equivalently: `S ~= np.dot(transformer.components_.T, activations.T)` sort : bool If `True`, components are sorted by ascending peak frequency. .. note:: If used with `transformer`, sorting is applied to copies of the decomposition parameters, and not to `transformer`'s internal parameters. fit : bool If `True`, components are estimated from the input ``S``. If `False`, components are assumed to be pre-computed and stored in ``transformer``, and are not changed. kwargs : Additional keyword arguments to the default transformer `sklearn.decomposition.NMF` Returns ------- components: np.ndarray [shape=(n_features, n_components)] matrix of components (basis elements). activations: np.ndarray [shape=(n_components, n_samples)] transformed matrix/activation matrix Raises ------ ParameterError if `fit` is False and no `transformer` object is provided. See Also -------- sklearn.decomposition : SciKit-Learn matrix decomposition modules Examples -------- Decompose a magnitude spectrogram into 32 components with NMF >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> comps, acts = librosa.decompose.decompose(S, n_components=8) >>> comps array([[ 1.876e-01, 5.559e-02, ..., 1.687e-01, 4.907e-02], [ 3.148e-01, 1.719e-01, ..., 2.314e-01, 9.493e-02], ..., [ 1.561e-07, 8.564e-08, ..., 7.167e-08, 4.997e-08], [ 1.531e-07, 7.880e-08, ..., 5.632e-08, 4.028e-08]]) >>> acts array([[ 4.197e-05, 8.512e-03, ..., 3.056e-05, 9.159e-06], [ 9.568e-06, 1.718e-02, ..., 3.322e-05, 7.869e-06], ..., [ 5.982e-05, 1.311e-02, ..., -0.000e+00, 6.323e-06], [ 3.782e-05, 7.056e-03, ..., 3.290e-05, -0.000e+00]]) Sort components by ascending peak frequency >>> comps, acts = librosa.decompose.decompose(S, n_components=16, ... sort=True) Or with sparse dictionary learning >>> import sklearn.decomposition >>> T = sklearn.decomposition.MiniBatchDictionaryLearning(n_components=16) >>> scomps, sacts = librosa.decompose.decompose(S, transformer=T, sort=True) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10,8)) >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Input spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.subplot(3, 2, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(comps, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Components') >>> plt.subplot(3, 2, 4) >>> librosa.display.specshow(acts, x_axis='time') >>> plt.ylabel('Components') >>> plt.title('Activations') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> S_approx = comps.dot(acts) >>> librosa.display.specshow(librosa.amplitude_to_db(S_approx, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Reconstructed spectrogram') >>> plt.tight_layout()
librosa/decompose.py
def decompose(S, n_components=None, transformer=None, sort=False, fit=True, **kwargs): """Decompose a feature matrix. Given a spectrogram `S`, produce a decomposition into `components` and `activations` such that `S ~= components.dot(activations)`. By default, this is done with with non-negative matrix factorization (NMF), but any `sklearn.decomposition`-type object will work. Parameters ---------- S : np.ndarray [shape=(n_features, n_samples), dtype=float] The input feature matrix (e.g., magnitude spectrogram) n_components : int > 0 [scalar] or None number of desired components if None, then `n_features` components are used transformer : None or object If None, use `sklearn.decomposition.NMF` Otherwise, any object with a similar interface to NMF should work. `transformer` must follow the scikit-learn convention, where input data is `(n_samples, n_features)`. `transformer.fit_transform()` will be run on `S.T` (not `S`), the return value of which is stored (transposed) as `activations` The components will be retrieved as `transformer.components_.T` `S ~= np.dot(activations, transformer.components_).T` or equivalently: `S ~= np.dot(transformer.components_.T, activations.T)` sort : bool If `True`, components are sorted by ascending peak frequency. .. note:: If used with `transformer`, sorting is applied to copies of the decomposition parameters, and not to `transformer`'s internal parameters. fit : bool If `True`, components are estimated from the input ``S``. If `False`, components are assumed to be pre-computed and stored in ``transformer``, and are not changed. kwargs : Additional keyword arguments to the default transformer `sklearn.decomposition.NMF` Returns ------- components: np.ndarray [shape=(n_features, n_components)] matrix of components (basis elements). activations: np.ndarray [shape=(n_components, n_samples)] transformed matrix/activation matrix Raises ------ ParameterError if `fit` is False and no `transformer` object is provided. See Also -------- sklearn.decomposition : SciKit-Learn matrix decomposition modules Examples -------- Decompose a magnitude spectrogram into 32 components with NMF >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> comps, acts = librosa.decompose.decompose(S, n_components=8) >>> comps array([[ 1.876e-01, 5.559e-02, ..., 1.687e-01, 4.907e-02], [ 3.148e-01, 1.719e-01, ..., 2.314e-01, 9.493e-02], ..., [ 1.561e-07, 8.564e-08, ..., 7.167e-08, 4.997e-08], [ 1.531e-07, 7.880e-08, ..., 5.632e-08, 4.028e-08]]) >>> acts array([[ 4.197e-05, 8.512e-03, ..., 3.056e-05, 9.159e-06], [ 9.568e-06, 1.718e-02, ..., 3.322e-05, 7.869e-06], ..., [ 5.982e-05, 1.311e-02, ..., -0.000e+00, 6.323e-06], [ 3.782e-05, 7.056e-03, ..., 3.290e-05, -0.000e+00]]) Sort components by ascending peak frequency >>> comps, acts = librosa.decompose.decompose(S, n_components=16, ... sort=True) Or with sparse dictionary learning >>> import sklearn.decomposition >>> T = sklearn.decomposition.MiniBatchDictionaryLearning(n_components=16) >>> scomps, sacts = librosa.decompose.decompose(S, transformer=T, sort=True) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10,8)) >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Input spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.subplot(3, 2, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(comps, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Components') >>> plt.subplot(3, 2, 4) >>> librosa.display.specshow(acts, x_axis='time') >>> plt.ylabel('Components') >>> plt.title('Activations') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> S_approx = comps.dot(acts) >>> librosa.display.specshow(librosa.amplitude_to_db(S_approx, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Reconstructed spectrogram') >>> plt.tight_layout() """ if transformer is None: if fit is False: raise ParameterError('fit must be True if transformer is None') transformer = sklearn.decomposition.NMF(n_components=n_components, **kwargs) if n_components is None: n_components = S.shape[0] if fit: activations = transformer.fit_transform(S.T).T else: activations = transformer.transform(S.T).T components = transformer.components_.T if sort: components, idx = util.axis_sort(components, index=True) activations = activations[idx] return components, activations
def decompose(S, n_components=None, transformer=None, sort=False, fit=True, **kwargs): """Decompose a feature matrix. Given a spectrogram `S`, produce a decomposition into `components` and `activations` such that `S ~= components.dot(activations)`. By default, this is done with with non-negative matrix factorization (NMF), but any `sklearn.decomposition`-type object will work. Parameters ---------- S : np.ndarray [shape=(n_features, n_samples), dtype=float] The input feature matrix (e.g., magnitude spectrogram) n_components : int > 0 [scalar] or None number of desired components if None, then `n_features` components are used transformer : None or object If None, use `sklearn.decomposition.NMF` Otherwise, any object with a similar interface to NMF should work. `transformer` must follow the scikit-learn convention, where input data is `(n_samples, n_features)`. `transformer.fit_transform()` will be run on `S.T` (not `S`), the return value of which is stored (transposed) as `activations` The components will be retrieved as `transformer.components_.T` `S ~= np.dot(activations, transformer.components_).T` or equivalently: `S ~= np.dot(transformer.components_.T, activations.T)` sort : bool If `True`, components are sorted by ascending peak frequency. .. note:: If used with `transformer`, sorting is applied to copies of the decomposition parameters, and not to `transformer`'s internal parameters. fit : bool If `True`, components are estimated from the input ``S``. If `False`, components are assumed to be pre-computed and stored in ``transformer``, and are not changed. kwargs : Additional keyword arguments to the default transformer `sklearn.decomposition.NMF` Returns ------- components: np.ndarray [shape=(n_features, n_components)] matrix of components (basis elements). activations: np.ndarray [shape=(n_components, n_samples)] transformed matrix/activation matrix Raises ------ ParameterError if `fit` is False and no `transformer` object is provided. See Also -------- sklearn.decomposition : SciKit-Learn matrix decomposition modules Examples -------- Decompose a magnitude spectrogram into 32 components with NMF >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> comps, acts = librosa.decompose.decompose(S, n_components=8) >>> comps array([[ 1.876e-01, 5.559e-02, ..., 1.687e-01, 4.907e-02], [ 3.148e-01, 1.719e-01, ..., 2.314e-01, 9.493e-02], ..., [ 1.561e-07, 8.564e-08, ..., 7.167e-08, 4.997e-08], [ 1.531e-07, 7.880e-08, ..., 5.632e-08, 4.028e-08]]) >>> acts array([[ 4.197e-05, 8.512e-03, ..., 3.056e-05, 9.159e-06], [ 9.568e-06, 1.718e-02, ..., 3.322e-05, 7.869e-06], ..., [ 5.982e-05, 1.311e-02, ..., -0.000e+00, 6.323e-06], [ 3.782e-05, 7.056e-03, ..., 3.290e-05, -0.000e+00]]) Sort components by ascending peak frequency >>> comps, acts = librosa.decompose.decompose(S, n_components=16, ... sort=True) Or with sparse dictionary learning >>> import sklearn.decomposition >>> T = sklearn.decomposition.MiniBatchDictionaryLearning(n_components=16) >>> scomps, sacts = librosa.decompose.decompose(S, transformer=T, sort=True) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10,8)) >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('Input spectrogram') >>> plt.colorbar(format='%+2.0f dB') >>> plt.subplot(3, 2, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(comps, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Components') >>> plt.subplot(3, 2, 4) >>> librosa.display.specshow(acts, x_axis='time') >>> plt.ylabel('Components') >>> plt.title('Activations') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> S_approx = comps.dot(acts) >>> librosa.display.specshow(librosa.amplitude_to_db(S_approx, ... ref=np.max), ... y_axis='log', x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Reconstructed spectrogram') >>> plt.tight_layout() """ if transformer is None: if fit is False: raise ParameterError('fit must be True if transformer is None') transformer = sklearn.decomposition.NMF(n_components=n_components, **kwargs) if n_components is None: n_components = S.shape[0] if fit: activations = transformer.fit_transform(S.T).T else: activations = transformer.transform(S.T).T components = transformer.components_.T if sort: components, idx = util.axis_sort(components, index=True) activations = activations[idx] return components, activations
[ "Decompose", "a", "feature", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/decompose.py#L30-L187
[ "def", "decompose", "(", "S", ",", "n_components", "=", "None", ",", "transformer", "=", "None", ",", "sort", "=", "False", ",", "fit", "=", "True", ",", "*", "*", "kwargs", ")", ":", "if", "transformer", "is", "None", ":", "if", "fit", "is", "False", ":", "raise", "ParameterError", "(", "'fit must be True if transformer is None'", ")", "transformer", "=", "sklearn", ".", "decomposition", ".", "NMF", "(", "n_components", "=", "n_components", ",", "*", "*", "kwargs", ")", "if", "n_components", "is", "None", ":", "n_components", "=", "S", ".", "shape", "[", "0", "]", "if", "fit", ":", "activations", "=", "transformer", ".", "fit_transform", "(", "S", ".", "T", ")", ".", "T", "else", ":", "activations", "=", "transformer", ".", "transform", "(", "S", ".", "T", ")", ".", "T", "components", "=", "transformer", ".", "components_", ".", "T", "if", "sort", ":", "components", ",", "idx", "=", "util", ".", "axis_sort", "(", "components", ",", "index", "=", "True", ")", "activations", "=", "activations", "[", "idx", "]", "return", "components", ",", "activations" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hpss
Median-filtering harmonic percussive source separation (HPSS). If `margin = 1.0`, decomposes an input spectrogram `S = H + P` where `H` contains the harmonic components, and `P` contains the percussive components. If `margin > 1.0`, decomposes an input spectrogram `S = H + P + R` where `R` contains residual components not included in `H` or `P`. This implementation is based upon the algorithm described by [1]_ and [2]_. .. [1] Fitzgerald, Derry. "Harmonic/percussive separation using median filtering." 13th International Conference on Digital Audio Effects (DAFX10), Graz, Austria, 2010. .. [2] Driedger, Müller, Disch. "Extending harmonic-percussive separation of audio." 15th International Society for Music Information Retrieval Conference (ISMIR 2014), Taipei, Taiwan, 2014. Parameters ---------- S : np.ndarray [shape=(d, n)] input spectrogram. May be real (magnitude) or complex. kernel_size : int or tuple (kernel_harmonic, kernel_percussive) kernel size(s) for the median filters. - If scalar, the same size is used for both harmonic and percussive. - If tuple, the first value specifies the width of the harmonic filter, and the second value specifies the width of the percussive filter. power : float > 0 [scalar] Exponent for the Wiener filter when constructing soft mask matrices. mask : bool Return the masking matrices instead of components. Masking matrices contain non-negative real values that can be used to measure the assignment of energy from `S` into harmonic or percussive components. Components can be recovered by multiplying `S * mask_H` or `S * mask_P`. margin : float or tuple (margin_harmonic, margin_percussive) margin size(s) for the masks (as described in [2]_) - If scalar, the same size is used for both harmonic and percussive. - If tuple, the first value specifies the margin of the harmonic mask, and the second value specifies the margin of the percussive mask. Returns ------- harmonic : np.ndarray [shape=(d, n)] harmonic component (or mask) percussive : np.ndarray [shape=(d, n)] percussive component (or mask) See Also -------- util.softmask Notes ----- This function caches at level 30. Examples -------- Separate into harmonic and percussive >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> D = librosa.stft(y) >>> H, P = librosa.decompose.hpss(D) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(D), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Full power spectrogram') >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(H), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Harmonic power spectrogram') >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(P), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Percussive power spectrogram') >>> plt.tight_layout() Or with a narrower horizontal filter >>> H, P = librosa.decompose.hpss(D, kernel_size=(13, 31)) Just get harmonic/percussive masks, not the spectra >>> mask_H, mask_P = librosa.decompose.hpss(D, mask=True) >>> mask_H array([[ 1.000e+00, 1.469e-01, ..., 2.648e-03, 2.164e-03], [ 1.000e+00, 2.368e-01, ..., 9.413e-03, 7.703e-03], ..., [ 8.869e-01, 5.673e-02, ..., 4.603e-02, 1.247e-05], [ 7.068e-01, 2.194e-02, ..., 4.453e-02, 1.205e-05]], dtype=float32) >>> mask_P array([[ 2.858e-05, 8.531e-01, ..., 9.974e-01, 9.978e-01], [ 1.586e-05, 7.632e-01, ..., 9.906e-01, 9.923e-01], ..., [ 1.131e-01, 9.433e-01, ..., 9.540e-01, 1.000e+00], [ 2.932e-01, 9.781e-01, ..., 9.555e-01, 1.000e+00]], dtype=float32) Separate into harmonic/percussive/residual components by using a margin > 1.0 >>> H, P = librosa.decompose.hpss(D, margin=3.0) >>> R = D - (H+P) >>> y_harm = librosa.core.istft(H) >>> y_perc = librosa.core.istft(P) >>> y_resi = librosa.core.istft(R) Get a more isolated percussive component by widening its margin >>> H, P = librosa.decompose.hpss(D, margin=(1.0,5.0))
librosa/decompose.py
def hpss(S, kernel_size=31, power=2.0, mask=False, margin=1.0): """Median-filtering harmonic percussive source separation (HPSS). If `margin = 1.0`, decomposes an input spectrogram `S = H + P` where `H` contains the harmonic components, and `P` contains the percussive components. If `margin > 1.0`, decomposes an input spectrogram `S = H + P + R` where `R` contains residual components not included in `H` or `P`. This implementation is based upon the algorithm described by [1]_ and [2]_. .. [1] Fitzgerald, Derry. "Harmonic/percussive separation using median filtering." 13th International Conference on Digital Audio Effects (DAFX10), Graz, Austria, 2010. .. [2] Driedger, Müller, Disch. "Extending harmonic-percussive separation of audio." 15th International Society for Music Information Retrieval Conference (ISMIR 2014), Taipei, Taiwan, 2014. Parameters ---------- S : np.ndarray [shape=(d, n)] input spectrogram. May be real (magnitude) or complex. kernel_size : int or tuple (kernel_harmonic, kernel_percussive) kernel size(s) for the median filters. - If scalar, the same size is used for both harmonic and percussive. - If tuple, the first value specifies the width of the harmonic filter, and the second value specifies the width of the percussive filter. power : float > 0 [scalar] Exponent for the Wiener filter when constructing soft mask matrices. mask : bool Return the masking matrices instead of components. Masking matrices contain non-negative real values that can be used to measure the assignment of energy from `S` into harmonic or percussive components. Components can be recovered by multiplying `S * mask_H` or `S * mask_P`. margin : float or tuple (margin_harmonic, margin_percussive) margin size(s) for the masks (as described in [2]_) - If scalar, the same size is used for both harmonic and percussive. - If tuple, the first value specifies the margin of the harmonic mask, and the second value specifies the margin of the percussive mask. Returns ------- harmonic : np.ndarray [shape=(d, n)] harmonic component (or mask) percussive : np.ndarray [shape=(d, n)] percussive component (or mask) See Also -------- util.softmask Notes ----- This function caches at level 30. Examples -------- Separate into harmonic and percussive >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> D = librosa.stft(y) >>> H, P = librosa.decompose.hpss(D) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(D), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Full power spectrogram') >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(H), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Harmonic power spectrogram') >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(P), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Percussive power spectrogram') >>> plt.tight_layout() Or with a narrower horizontal filter >>> H, P = librosa.decompose.hpss(D, kernel_size=(13, 31)) Just get harmonic/percussive masks, not the spectra >>> mask_H, mask_P = librosa.decompose.hpss(D, mask=True) >>> mask_H array([[ 1.000e+00, 1.469e-01, ..., 2.648e-03, 2.164e-03], [ 1.000e+00, 2.368e-01, ..., 9.413e-03, 7.703e-03], ..., [ 8.869e-01, 5.673e-02, ..., 4.603e-02, 1.247e-05], [ 7.068e-01, 2.194e-02, ..., 4.453e-02, 1.205e-05]], dtype=float32) >>> mask_P array([[ 2.858e-05, 8.531e-01, ..., 9.974e-01, 9.978e-01], [ 1.586e-05, 7.632e-01, ..., 9.906e-01, 9.923e-01], ..., [ 1.131e-01, 9.433e-01, ..., 9.540e-01, 1.000e+00], [ 2.932e-01, 9.781e-01, ..., 9.555e-01, 1.000e+00]], dtype=float32) Separate into harmonic/percussive/residual components by using a margin > 1.0 >>> H, P = librosa.decompose.hpss(D, margin=3.0) >>> R = D - (H+P) >>> y_harm = librosa.core.istft(H) >>> y_perc = librosa.core.istft(P) >>> y_resi = librosa.core.istft(R) Get a more isolated percussive component by widening its margin >>> H, P = librosa.decompose.hpss(D, margin=(1.0,5.0)) """ if np.iscomplexobj(S): S, phase = core.magphase(S) else: phase = 1 if np.isscalar(kernel_size): win_harm = kernel_size win_perc = kernel_size else: win_harm = kernel_size[0] win_perc = kernel_size[1] if np.isscalar(margin): margin_harm = margin margin_perc = margin else: margin_harm = margin[0] margin_perc = margin[1] # margin minimum is 1.0 if margin_harm < 1 or margin_perc < 1: raise ParameterError("Margins must be >= 1.0. " "A typical range is between 1 and 10.") # Compute median filters. Pre-allocation here preserves memory layout. harm = np.empty_like(S) harm[:] = median_filter(S, size=(1, win_harm), mode='reflect') perc = np.empty_like(S) perc[:] = median_filter(S, size=(win_perc, 1), mode='reflect') split_zeros = (margin_harm == 1 and margin_perc == 1) mask_harm = util.softmask(harm, perc * margin_harm, power=power, split_zeros=split_zeros) mask_perc = util.softmask(perc, harm * margin_perc, power=power, split_zeros=split_zeros) if mask: return mask_harm, mask_perc return ((S * mask_harm) * phase, (S * mask_perc) * phase)
def hpss(S, kernel_size=31, power=2.0, mask=False, margin=1.0): """Median-filtering harmonic percussive source separation (HPSS). If `margin = 1.0`, decomposes an input spectrogram `S = H + P` where `H` contains the harmonic components, and `P` contains the percussive components. If `margin > 1.0`, decomposes an input spectrogram `S = H + P + R` where `R` contains residual components not included in `H` or `P`. This implementation is based upon the algorithm described by [1]_ and [2]_. .. [1] Fitzgerald, Derry. "Harmonic/percussive separation using median filtering." 13th International Conference on Digital Audio Effects (DAFX10), Graz, Austria, 2010. .. [2] Driedger, Müller, Disch. "Extending harmonic-percussive separation of audio." 15th International Society for Music Information Retrieval Conference (ISMIR 2014), Taipei, Taiwan, 2014. Parameters ---------- S : np.ndarray [shape=(d, n)] input spectrogram. May be real (magnitude) or complex. kernel_size : int or tuple (kernel_harmonic, kernel_percussive) kernel size(s) for the median filters. - If scalar, the same size is used for both harmonic and percussive. - If tuple, the first value specifies the width of the harmonic filter, and the second value specifies the width of the percussive filter. power : float > 0 [scalar] Exponent for the Wiener filter when constructing soft mask matrices. mask : bool Return the masking matrices instead of components. Masking matrices contain non-negative real values that can be used to measure the assignment of energy from `S` into harmonic or percussive components. Components can be recovered by multiplying `S * mask_H` or `S * mask_P`. margin : float or tuple (margin_harmonic, margin_percussive) margin size(s) for the masks (as described in [2]_) - If scalar, the same size is used for both harmonic and percussive. - If tuple, the first value specifies the margin of the harmonic mask, and the second value specifies the margin of the percussive mask. Returns ------- harmonic : np.ndarray [shape=(d, n)] harmonic component (or mask) percussive : np.ndarray [shape=(d, n)] percussive component (or mask) See Also -------- util.softmask Notes ----- This function caches at level 30. Examples -------- Separate into harmonic and percussive >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> D = librosa.stft(y) >>> H, P = librosa.decompose.hpss(D) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(D), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Full power spectrogram') >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(H), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Harmonic power spectrogram') >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(P), ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Percussive power spectrogram') >>> plt.tight_layout() Or with a narrower horizontal filter >>> H, P = librosa.decompose.hpss(D, kernel_size=(13, 31)) Just get harmonic/percussive masks, not the spectra >>> mask_H, mask_P = librosa.decompose.hpss(D, mask=True) >>> mask_H array([[ 1.000e+00, 1.469e-01, ..., 2.648e-03, 2.164e-03], [ 1.000e+00, 2.368e-01, ..., 9.413e-03, 7.703e-03], ..., [ 8.869e-01, 5.673e-02, ..., 4.603e-02, 1.247e-05], [ 7.068e-01, 2.194e-02, ..., 4.453e-02, 1.205e-05]], dtype=float32) >>> mask_P array([[ 2.858e-05, 8.531e-01, ..., 9.974e-01, 9.978e-01], [ 1.586e-05, 7.632e-01, ..., 9.906e-01, 9.923e-01], ..., [ 1.131e-01, 9.433e-01, ..., 9.540e-01, 1.000e+00], [ 2.932e-01, 9.781e-01, ..., 9.555e-01, 1.000e+00]], dtype=float32) Separate into harmonic/percussive/residual components by using a margin > 1.0 >>> H, P = librosa.decompose.hpss(D, margin=3.0) >>> R = D - (H+P) >>> y_harm = librosa.core.istft(H) >>> y_perc = librosa.core.istft(P) >>> y_resi = librosa.core.istft(R) Get a more isolated percussive component by widening its margin >>> H, P = librosa.decompose.hpss(D, margin=(1.0,5.0)) """ if np.iscomplexobj(S): S, phase = core.magphase(S) else: phase = 1 if np.isscalar(kernel_size): win_harm = kernel_size win_perc = kernel_size else: win_harm = kernel_size[0] win_perc = kernel_size[1] if np.isscalar(margin): margin_harm = margin margin_perc = margin else: margin_harm = margin[0] margin_perc = margin[1] # margin minimum is 1.0 if margin_harm < 1 or margin_perc < 1: raise ParameterError("Margins must be >= 1.0. " "A typical range is between 1 and 10.") # Compute median filters. Pre-allocation here preserves memory layout. harm = np.empty_like(S) harm[:] = median_filter(S, size=(1, win_harm), mode='reflect') perc = np.empty_like(S) perc[:] = median_filter(S, size=(win_perc, 1), mode='reflect') split_zeros = (margin_harm == 1 and margin_perc == 1) mask_harm = util.softmask(harm, perc * margin_harm, power=power, split_zeros=split_zeros) mask_perc = util.softmask(perc, harm * margin_perc, power=power, split_zeros=split_zeros) if mask: return mask_harm, mask_perc return ((S * mask_harm) * phase, (S * mask_perc) * phase)
[ "Median", "-", "filtering", "harmonic", "percussive", "source", "separation", "(", "HPSS", ")", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/decompose.py#L191-L375
[ "def", "hpss", "(", "S", ",", "kernel_size", "=", "31", ",", "power", "=", "2.0", ",", "mask", "=", "False", ",", "margin", "=", "1.0", ")", ":", "if", "np", ".", "iscomplexobj", "(", "S", ")", ":", "S", ",", "phase", "=", "core", ".", "magphase", "(", "S", ")", "else", ":", "phase", "=", "1", "if", "np", ".", "isscalar", "(", "kernel_size", ")", ":", "win_harm", "=", "kernel_size", "win_perc", "=", "kernel_size", "else", ":", "win_harm", "=", "kernel_size", "[", "0", "]", "win_perc", "=", "kernel_size", "[", "1", "]", "if", "np", ".", "isscalar", "(", "margin", ")", ":", "margin_harm", "=", "margin", "margin_perc", "=", "margin", "else", ":", "margin_harm", "=", "margin", "[", "0", "]", "margin_perc", "=", "margin", "[", "1", "]", "# margin minimum is 1.0", "if", "margin_harm", "<", "1", "or", "margin_perc", "<", "1", ":", "raise", "ParameterError", "(", "\"Margins must be >= 1.0. \"", "\"A typical range is between 1 and 10.\"", ")", "# Compute median filters. Pre-allocation here preserves memory layout.", "harm", "=", "np", ".", "empty_like", "(", "S", ")", "harm", "[", ":", "]", "=", "median_filter", "(", "S", ",", "size", "=", "(", "1", ",", "win_harm", ")", ",", "mode", "=", "'reflect'", ")", "perc", "=", "np", ".", "empty_like", "(", "S", ")", "perc", "[", ":", "]", "=", "median_filter", "(", "S", ",", "size", "=", "(", "win_perc", ",", "1", ")", ",", "mode", "=", "'reflect'", ")", "split_zeros", "=", "(", "margin_harm", "==", "1", "and", "margin_perc", "==", "1", ")", "mask_harm", "=", "util", ".", "softmask", "(", "harm", ",", "perc", "*", "margin_harm", ",", "power", "=", "power", ",", "split_zeros", "=", "split_zeros", ")", "mask_perc", "=", "util", ".", "softmask", "(", "perc", ",", "harm", "*", "margin_perc", ",", "power", "=", "power", ",", "split_zeros", "=", "split_zeros", ")", "if", "mask", ":", "return", "mask_harm", ",", "mask_perc", "return", "(", "(", "S", "*", "mask_harm", ")", "*", "phase", ",", "(", "S", "*", "mask_perc", ")", "*", "phase", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
nn_filter
Filtering by nearest-neighbors. Each data point (e.g, spectrogram column) is replaced by aggregating its nearest neighbors in feature space. This can be useful for de-noising a spectrogram or feature matrix. The non-local means method [1]_ can be recovered by providing a weighted recurrence matrix as input and specifying `aggregate=np.average`. Similarly, setting `aggregate=np.median` produces sparse de-noising as in REPET-SIM [2]_. .. [1] Buades, A., Coll, B., & Morel, J. M. (2005, June). A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE. .. [2] Rafii, Z., & Pardo, B. (2012, October). "Music/Voice Separation Using the Similarity Matrix." International Society for Music Information Retrieval Conference, 2012. Parameters ---------- S : np.ndarray The input data (spectrogram) to filter rec : (optional) scipy.sparse.spmatrix or np.ndarray Optionally, a pre-computed nearest-neighbor matrix as provided by `librosa.segment.recurrence_matrix` aggregate : function aggregation function (default: `np.mean`) If `aggregate=np.average`, then a weighted average is computed according to the (per-row) weights in `rec`. For all other aggregation functions, all neighbors are treated equally. axis : int The axis along which to filter (by default, columns) kwargs Additional keyword arguments provided to `librosa.segment.recurrence_matrix` if `rec` is not provided Returns ------- S_filtered : np.ndarray The filtered data Raises ------ ParameterError if `rec` is provided and its shape is incompatible with `S`. See also -------- decompose hpss librosa.segment.recurrence_matrix Notes ----- This function caches at level 30. Examples -------- De-noise a chromagram by non-local median filtering. By default this would use euclidean distance to select neighbors, but this can be overridden directly by setting the `metric` parameter. >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=10) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> chroma_med = librosa.decompose.nn_filter(chroma, ... aggregate=np.median, ... metric='cosine') To use non-local means, provide an affinity matrix and `aggregate=np.average`. >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity', ... metric='cosine', sparse=True) >>> chroma_nlm = librosa.decompose.nn_filter(chroma, rec=rec, ... aggregate=np.average) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 8)) >>> plt.subplot(5, 1, 1) >>> librosa.display.specshow(chroma, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Unfiltered') >>> plt.subplot(5, 1, 2) >>> librosa.display.specshow(chroma_med, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Median-filtered') >>> plt.subplot(5, 1, 3) >>> librosa.display.specshow(chroma_nlm, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Non-local means') >>> plt.subplot(5, 1, 4) >>> librosa.display.specshow(chroma - chroma_med, ... y_axis='chroma') >>> plt.colorbar() >>> plt.title('Original - median') >>> plt.subplot(5, 1, 5) >>> librosa.display.specshow(chroma - chroma_nlm, ... y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Original - NLM') >>> plt.tight_layout()
librosa/decompose.py
def nn_filter(S, rec=None, aggregate=None, axis=-1, **kwargs): '''Filtering by nearest-neighbors. Each data point (e.g, spectrogram column) is replaced by aggregating its nearest neighbors in feature space. This can be useful for de-noising a spectrogram or feature matrix. The non-local means method [1]_ can be recovered by providing a weighted recurrence matrix as input and specifying `aggregate=np.average`. Similarly, setting `aggregate=np.median` produces sparse de-noising as in REPET-SIM [2]_. .. [1] Buades, A., Coll, B., & Morel, J. M. (2005, June). A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE. .. [2] Rafii, Z., & Pardo, B. (2012, October). "Music/Voice Separation Using the Similarity Matrix." International Society for Music Information Retrieval Conference, 2012. Parameters ---------- S : np.ndarray The input data (spectrogram) to filter rec : (optional) scipy.sparse.spmatrix or np.ndarray Optionally, a pre-computed nearest-neighbor matrix as provided by `librosa.segment.recurrence_matrix` aggregate : function aggregation function (default: `np.mean`) If `aggregate=np.average`, then a weighted average is computed according to the (per-row) weights in `rec`. For all other aggregation functions, all neighbors are treated equally. axis : int The axis along which to filter (by default, columns) kwargs Additional keyword arguments provided to `librosa.segment.recurrence_matrix` if `rec` is not provided Returns ------- S_filtered : np.ndarray The filtered data Raises ------ ParameterError if `rec` is provided and its shape is incompatible with `S`. See also -------- decompose hpss librosa.segment.recurrence_matrix Notes ----- This function caches at level 30. Examples -------- De-noise a chromagram by non-local median filtering. By default this would use euclidean distance to select neighbors, but this can be overridden directly by setting the `metric` parameter. >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=10) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> chroma_med = librosa.decompose.nn_filter(chroma, ... aggregate=np.median, ... metric='cosine') To use non-local means, provide an affinity matrix and `aggregate=np.average`. >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity', ... metric='cosine', sparse=True) >>> chroma_nlm = librosa.decompose.nn_filter(chroma, rec=rec, ... aggregate=np.average) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 8)) >>> plt.subplot(5, 1, 1) >>> librosa.display.specshow(chroma, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Unfiltered') >>> plt.subplot(5, 1, 2) >>> librosa.display.specshow(chroma_med, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Median-filtered') >>> plt.subplot(5, 1, 3) >>> librosa.display.specshow(chroma_nlm, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Non-local means') >>> plt.subplot(5, 1, 4) >>> librosa.display.specshow(chroma - chroma_med, ... y_axis='chroma') >>> plt.colorbar() >>> plt.title('Original - median') >>> plt.subplot(5, 1, 5) >>> librosa.display.specshow(chroma - chroma_nlm, ... y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Original - NLM') >>> plt.tight_layout() ''' if aggregate is None: aggregate = np.mean if rec is None: kwargs = dict(kwargs) kwargs['sparse'] = True rec = segment.recurrence_matrix(S, axis=axis, **kwargs) elif not scipy.sparse.issparse(rec): rec = scipy.sparse.csr_matrix(rec) if rec.shape[0] != S.shape[axis] or rec.shape[0] != rec.shape[1]: raise ParameterError('Invalid self-similarity matrix shape ' 'rec.shape={} for S.shape={}'.format(rec.shape, S.shape)) return __nn_filter_helper(rec.data, rec.indices, rec.indptr, S.swapaxes(0, axis), aggregate).swapaxes(0, axis)
def nn_filter(S, rec=None, aggregate=None, axis=-1, **kwargs): '''Filtering by nearest-neighbors. Each data point (e.g, spectrogram column) is replaced by aggregating its nearest neighbors in feature space. This can be useful for de-noising a spectrogram or feature matrix. The non-local means method [1]_ can be recovered by providing a weighted recurrence matrix as input and specifying `aggregate=np.average`. Similarly, setting `aggregate=np.median` produces sparse de-noising as in REPET-SIM [2]_. .. [1] Buades, A., Coll, B., & Morel, J. M. (2005, June). A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE. .. [2] Rafii, Z., & Pardo, B. (2012, October). "Music/Voice Separation Using the Similarity Matrix." International Society for Music Information Retrieval Conference, 2012. Parameters ---------- S : np.ndarray The input data (spectrogram) to filter rec : (optional) scipy.sparse.spmatrix or np.ndarray Optionally, a pre-computed nearest-neighbor matrix as provided by `librosa.segment.recurrence_matrix` aggregate : function aggregation function (default: `np.mean`) If `aggregate=np.average`, then a weighted average is computed according to the (per-row) weights in `rec`. For all other aggregation functions, all neighbors are treated equally. axis : int The axis along which to filter (by default, columns) kwargs Additional keyword arguments provided to `librosa.segment.recurrence_matrix` if `rec` is not provided Returns ------- S_filtered : np.ndarray The filtered data Raises ------ ParameterError if `rec` is provided and its shape is incompatible with `S`. See also -------- decompose hpss librosa.segment.recurrence_matrix Notes ----- This function caches at level 30. Examples -------- De-noise a chromagram by non-local median filtering. By default this would use euclidean distance to select neighbors, but this can be overridden directly by setting the `metric` parameter. >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=30, duration=10) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> chroma_med = librosa.decompose.nn_filter(chroma, ... aggregate=np.median, ... metric='cosine') To use non-local means, provide an affinity matrix and `aggregate=np.average`. >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity', ... metric='cosine', sparse=True) >>> chroma_nlm = librosa.decompose.nn_filter(chroma, rec=rec, ... aggregate=np.average) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 8)) >>> plt.subplot(5, 1, 1) >>> librosa.display.specshow(chroma, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Unfiltered') >>> plt.subplot(5, 1, 2) >>> librosa.display.specshow(chroma_med, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Median-filtered') >>> plt.subplot(5, 1, 3) >>> librosa.display.specshow(chroma_nlm, y_axis='chroma') >>> plt.colorbar() >>> plt.title('Non-local means') >>> plt.subplot(5, 1, 4) >>> librosa.display.specshow(chroma - chroma_med, ... y_axis='chroma') >>> plt.colorbar() >>> plt.title('Original - median') >>> plt.subplot(5, 1, 5) >>> librosa.display.specshow(chroma - chroma_nlm, ... y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Original - NLM') >>> plt.tight_layout() ''' if aggregate is None: aggregate = np.mean if rec is None: kwargs = dict(kwargs) kwargs['sparse'] = True rec = segment.recurrence_matrix(S, axis=axis, **kwargs) elif not scipy.sparse.issparse(rec): rec = scipy.sparse.csr_matrix(rec) if rec.shape[0] != S.shape[axis] or rec.shape[0] != rec.shape[1]: raise ParameterError('Invalid self-similarity matrix shape ' 'rec.shape={} for S.shape={}'.format(rec.shape, S.shape)) return __nn_filter_helper(rec.data, rec.indices, rec.indptr, S.swapaxes(0, axis), aggregate).swapaxes(0, axis)
[ "Filtering", "by", "nearest", "-", "neighbors", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/decompose.py#L379-L513
[ "def", "nn_filter", "(", "S", ",", "rec", "=", "None", ",", "aggregate", "=", "None", ",", "axis", "=", "-", "1", ",", "*", "*", "kwargs", ")", ":", "if", "aggregate", "is", "None", ":", "aggregate", "=", "np", ".", "mean", "if", "rec", "is", "None", ":", "kwargs", "=", "dict", "(", "kwargs", ")", "kwargs", "[", "'sparse'", "]", "=", "True", "rec", "=", "segment", ".", "recurrence_matrix", "(", "S", ",", "axis", "=", "axis", ",", "*", "*", "kwargs", ")", "elif", "not", "scipy", ".", "sparse", ".", "issparse", "(", "rec", ")", ":", "rec", "=", "scipy", ".", "sparse", ".", "csr_matrix", "(", "rec", ")", "if", "rec", ".", "shape", "[", "0", "]", "!=", "S", ".", "shape", "[", "axis", "]", "or", "rec", ".", "shape", "[", "0", "]", "!=", "rec", ".", "shape", "[", "1", "]", ":", "raise", "ParameterError", "(", "'Invalid self-similarity matrix shape '", "'rec.shape={} for S.shape={}'", ".", "format", "(", "rec", ".", "shape", ",", "S", ".", "shape", ")", ")", "return", "__nn_filter_helper", "(", "rec", ".", "data", ",", "rec", ".", "indices", ",", "rec", ".", "indptr", ",", "S", ".", "swapaxes", "(", "0", ",", "axis", ")", ",", "aggregate", ")", ".", "swapaxes", "(", "0", ",", "axis", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__nn_filter_helper
Nearest-neighbor filter helper function. This is an internal function, not for use outside of the decompose module. It applies the nearest-neighbor filter to S, assuming that the first index corresponds to observations. Parameters ---------- R_data, R_indices, R_ptr : np.ndarrays The `data`, `indices`, and `indptr` of a scipy.sparse matrix S : np.ndarray The observation data to filter aggregate : callable The aggregation operator Returns ------- S_out : np.ndarray like S The filtered data array
librosa/decompose.py
def __nn_filter_helper(R_data, R_indices, R_ptr, S, aggregate): '''Nearest-neighbor filter helper function. This is an internal function, not for use outside of the decompose module. It applies the nearest-neighbor filter to S, assuming that the first index corresponds to observations. Parameters ---------- R_data, R_indices, R_ptr : np.ndarrays The `data`, `indices`, and `indptr` of a scipy.sparse matrix S : np.ndarray The observation data to filter aggregate : callable The aggregation operator Returns ------- S_out : np.ndarray like S The filtered data array ''' s_out = np.empty_like(S) for i in range(len(R_ptr)-1): # Get the non-zeros out of the recurrence matrix targets = R_indices[R_ptr[i]:R_ptr[i+1]] if not len(targets): s_out[i] = S[i] continue neighbors = np.take(S, targets, axis=0) if aggregate is np.average: weights = R_data[R_ptr[i]:R_ptr[i+1]] s_out[i] = aggregate(neighbors, axis=0, weights=weights) else: s_out[i] = aggregate(neighbors, axis=0) return s_out
def __nn_filter_helper(R_data, R_indices, R_ptr, S, aggregate): '''Nearest-neighbor filter helper function. This is an internal function, not for use outside of the decompose module. It applies the nearest-neighbor filter to S, assuming that the first index corresponds to observations. Parameters ---------- R_data, R_indices, R_ptr : np.ndarrays The `data`, `indices`, and `indptr` of a scipy.sparse matrix S : np.ndarray The observation data to filter aggregate : callable The aggregation operator Returns ------- S_out : np.ndarray like S The filtered data array ''' s_out = np.empty_like(S) for i in range(len(R_ptr)-1): # Get the non-zeros out of the recurrence matrix targets = R_indices[R_ptr[i]:R_ptr[i+1]] if not len(targets): s_out[i] = S[i] continue neighbors = np.take(S, targets, axis=0) if aggregate is np.average: weights = R_data[R_ptr[i]:R_ptr[i+1]] s_out[i] = aggregate(neighbors, axis=0, weights=weights) else: s_out[i] = aggregate(neighbors, axis=0) return s_out
[ "Nearest", "-", "neighbor", "filter", "helper", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/decompose.py#L516-L560
[ "def", "__nn_filter_helper", "(", "R_data", ",", "R_indices", ",", "R_ptr", ",", "S", ",", "aggregate", ")", ":", "s_out", "=", "np", ".", "empty_like", "(", "S", ")", "for", "i", "in", "range", "(", "len", "(", "R_ptr", ")", "-", "1", ")", ":", "# Get the non-zeros out of the recurrence matrix", "targets", "=", "R_indices", "[", "R_ptr", "[", "i", "]", ":", "R_ptr", "[", "i", "+", "1", "]", "]", "if", "not", "len", "(", "targets", ")", ":", "s_out", "[", "i", "]", "=", "S", "[", "i", "]", "continue", "neighbors", "=", "np", ".", "take", "(", "S", ",", "targets", ",", "axis", "=", "0", ")", "if", "aggregate", "is", "np", ".", "average", ":", "weights", "=", "R_data", "[", "R_ptr", "[", "i", "]", ":", "R_ptr", "[", "i", "+", "1", "]", "]", "s_out", "[", "i", "]", "=", "aggregate", "(", "neighbors", ",", "axis", "=", "0", ",", "weights", "=", "weights", ")", "else", ":", "s_out", "[", "i", "]", "=", "aggregate", "(", "neighbors", ",", "axis", "=", "0", ")", "return", "s_out" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
mel
Create a Filterbank matrix to combine FFT bins into Mel-frequency bins Parameters ---------- sr : number > 0 [scalar] sampling rate of the incoming signal n_fft : int > 0 [scalar] number of FFT components n_mels : int > 0 [scalar] number of Mel bands to generate fmin : float >= 0 [scalar] lowest frequency (in Hz) fmax : float >= 0 [scalar] highest frequency (in Hz). If `None`, use `fmax = sr / 2.0` htk : bool [scalar] use HTK formula instead of Slaney norm : {None, 1, np.inf} [scalar] if 1, divide the triangular mel weights by the width of the mel band (area normalization). Otherwise, leave all the triangles aiming for a peak value of 1.0 dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- M : np.ndarray [shape=(n_mels, 1 + n_fft/2)] Mel transform matrix Notes ----- This function caches at level 10. Examples -------- >>> melfb = librosa.filters.mel(22050, 2048) >>> melfb array([[ 0. , 0.016, ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ], ..., [ 0. , 0. , ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ]]) Clip the maximum frequency to 8KHz >>> librosa.filters.mel(22050, 2048, fmax=8000) array([[ 0. , 0.02, ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ], ..., [ 0. , 0. , ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(melfb, x_axis='linear') >>> plt.ylabel('Mel filter') >>> plt.title('Mel filter bank') >>> plt.colorbar() >>> plt.tight_layout()
librosa/filters.py
def mel(sr, n_fft, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1, dtype=np.float32): """Create a Filterbank matrix to combine FFT bins into Mel-frequency bins Parameters ---------- sr : number > 0 [scalar] sampling rate of the incoming signal n_fft : int > 0 [scalar] number of FFT components n_mels : int > 0 [scalar] number of Mel bands to generate fmin : float >= 0 [scalar] lowest frequency (in Hz) fmax : float >= 0 [scalar] highest frequency (in Hz). If `None`, use `fmax = sr / 2.0` htk : bool [scalar] use HTK formula instead of Slaney norm : {None, 1, np.inf} [scalar] if 1, divide the triangular mel weights by the width of the mel band (area normalization). Otherwise, leave all the triangles aiming for a peak value of 1.0 dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- M : np.ndarray [shape=(n_mels, 1 + n_fft/2)] Mel transform matrix Notes ----- This function caches at level 10. Examples -------- >>> melfb = librosa.filters.mel(22050, 2048) >>> melfb array([[ 0. , 0.016, ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ], ..., [ 0. , 0. , ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ]]) Clip the maximum frequency to 8KHz >>> librosa.filters.mel(22050, 2048, fmax=8000) array([[ 0. , 0.02, ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ], ..., [ 0. , 0. , ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(melfb, x_axis='linear') >>> plt.ylabel('Mel filter') >>> plt.title('Mel filter bank') >>> plt.colorbar() >>> plt.tight_layout() """ if fmax is None: fmax = float(sr) / 2 if norm is not None and norm != 1 and norm != np.inf: raise ParameterError('Unsupported norm: {}'.format(repr(norm))) # Initialize the weights n_mels = int(n_mels) weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype) # Center freqs of each FFT bin fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft) # 'Center freqs' of mel bands - uniformly spaced between limits mel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk) fdiff = np.diff(mel_f) ramps = np.subtract.outer(mel_f, fftfreqs) for i in range(n_mels): # lower and upper slopes for all bins lower = -ramps[i] / fdiff[i] upper = ramps[i+2] / fdiff[i+1] # .. then intersect them with each other and zero weights[i] = np.maximum(0, np.minimum(lower, upper)) if norm == 1: # Slaney-style mel is scaled to be approx constant energy per channel enorm = 2.0 / (mel_f[2:n_mels+2] - mel_f[:n_mels]) weights *= enorm[:, np.newaxis] # Only check weights if f_mel[0] is positive if not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)): # This means we have an empty channel somewhere warnings.warn('Empty filters detected in mel frequency basis. ' 'Some channels will produce empty responses. ' 'Try increasing your sampling rate (and fmax) or ' 'reducing n_mels.') return weights
def mel(sr, n_fft, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1, dtype=np.float32): """Create a Filterbank matrix to combine FFT bins into Mel-frequency bins Parameters ---------- sr : number > 0 [scalar] sampling rate of the incoming signal n_fft : int > 0 [scalar] number of FFT components n_mels : int > 0 [scalar] number of Mel bands to generate fmin : float >= 0 [scalar] lowest frequency (in Hz) fmax : float >= 0 [scalar] highest frequency (in Hz). If `None`, use `fmax = sr / 2.0` htk : bool [scalar] use HTK formula instead of Slaney norm : {None, 1, np.inf} [scalar] if 1, divide the triangular mel weights by the width of the mel band (area normalization). Otherwise, leave all the triangles aiming for a peak value of 1.0 dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- M : np.ndarray [shape=(n_mels, 1 + n_fft/2)] Mel transform matrix Notes ----- This function caches at level 10. Examples -------- >>> melfb = librosa.filters.mel(22050, 2048) >>> melfb array([[ 0. , 0.016, ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ], ..., [ 0. , 0. , ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ]]) Clip the maximum frequency to 8KHz >>> librosa.filters.mel(22050, 2048, fmax=8000) array([[ 0. , 0.02, ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ], ..., [ 0. , 0. , ..., 0. , 0. ], [ 0. , 0. , ..., 0. , 0. ]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(melfb, x_axis='linear') >>> plt.ylabel('Mel filter') >>> plt.title('Mel filter bank') >>> plt.colorbar() >>> plt.tight_layout() """ if fmax is None: fmax = float(sr) / 2 if norm is not None and norm != 1 and norm != np.inf: raise ParameterError('Unsupported norm: {}'.format(repr(norm))) # Initialize the weights n_mels = int(n_mels) weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype) # Center freqs of each FFT bin fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft) # 'Center freqs' of mel bands - uniformly spaced between limits mel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk) fdiff = np.diff(mel_f) ramps = np.subtract.outer(mel_f, fftfreqs) for i in range(n_mels): # lower and upper slopes for all bins lower = -ramps[i] / fdiff[i] upper = ramps[i+2] / fdiff[i+1] # .. then intersect them with each other and zero weights[i] = np.maximum(0, np.minimum(lower, upper)) if norm == 1: # Slaney-style mel is scaled to be approx constant energy per channel enorm = 2.0 / (mel_f[2:n_mels+2] - mel_f[:n_mels]) weights *= enorm[:, np.newaxis] # Only check weights if f_mel[0] is positive if not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)): # This means we have an empty channel somewhere warnings.warn('Empty filters detected in mel frequency basis. ' 'Some channels will produce empty responses. ' 'Try increasing your sampling rate (and fmax) or ' 'reducing n_mels.') return weights
[ "Create", "a", "Filterbank", "matrix", "to", "combine", "FFT", "bins", "into", "Mel", "-", "frequency", "bins" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L112-L225
[ "def", "mel", "(", "sr", ",", "n_fft", ",", "n_mels", "=", "128", ",", "fmin", "=", "0.0", ",", "fmax", "=", "None", ",", "htk", "=", "False", ",", "norm", "=", "1", ",", "dtype", "=", "np", ".", "float32", ")", ":", "if", "fmax", "is", "None", ":", "fmax", "=", "float", "(", "sr", ")", "/", "2", "if", "norm", "is", "not", "None", "and", "norm", "!=", "1", "and", "norm", "!=", "np", ".", "inf", ":", "raise", "ParameterError", "(", "'Unsupported norm: {}'", ".", "format", "(", "repr", "(", "norm", ")", ")", ")", "# Initialize the weights", "n_mels", "=", "int", "(", "n_mels", ")", "weights", "=", "np", ".", "zeros", "(", "(", "n_mels", ",", "int", "(", "1", "+", "n_fft", "//", "2", ")", ")", ",", "dtype", "=", "dtype", ")", "# Center freqs of each FFT bin", "fftfreqs", "=", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "# 'Center freqs' of mel bands - uniformly spaced between limits", "mel_f", "=", "mel_frequencies", "(", "n_mels", "+", "2", ",", "fmin", "=", "fmin", ",", "fmax", "=", "fmax", ",", "htk", "=", "htk", ")", "fdiff", "=", "np", ".", "diff", "(", "mel_f", ")", "ramps", "=", "np", ".", "subtract", ".", "outer", "(", "mel_f", ",", "fftfreqs", ")", "for", "i", "in", "range", "(", "n_mels", ")", ":", "# lower and upper slopes for all bins", "lower", "=", "-", "ramps", "[", "i", "]", "/", "fdiff", "[", "i", "]", "upper", "=", "ramps", "[", "i", "+", "2", "]", "/", "fdiff", "[", "i", "+", "1", "]", "# .. then intersect them with each other and zero", "weights", "[", "i", "]", "=", "np", ".", "maximum", "(", "0", ",", "np", ".", "minimum", "(", "lower", ",", "upper", ")", ")", "if", "norm", "==", "1", ":", "# Slaney-style mel is scaled to be approx constant energy per channel", "enorm", "=", "2.0", "/", "(", "mel_f", "[", "2", ":", "n_mels", "+", "2", "]", "-", "mel_f", "[", ":", "n_mels", "]", ")", "weights", "*=", "enorm", "[", ":", ",", "np", ".", "newaxis", "]", "# Only check weights if f_mel[0] is positive", "if", "not", "np", ".", "all", "(", "(", "mel_f", "[", ":", "-", "2", "]", "==", "0", ")", "|", "(", "weights", ".", "max", "(", "axis", "=", "1", ")", ">", "0", ")", ")", ":", "# This means we have an empty channel somewhere", "warnings", ".", "warn", "(", "'Empty filters detected in mel frequency basis. '", "'Some channels will produce empty responses. '", "'Try increasing your sampling rate (and fmax) or '", "'reducing n_mels.'", ")", "return", "weights" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
chroma
Create a Filterbank matrix to convert STFT to chroma Parameters ---------- sr : number > 0 [scalar] audio sampling rate n_fft : int > 0 [scalar] number of FFT bins n_chroma : int > 0 [scalar] number of chroma bins A440 : float > 0 [scalar] Reference frequency for A440 ctroct : float > 0 [scalar] octwidth : float > 0 or None [scalar] `ctroct` and `octwidth` specify a dominance window - a Gaussian weighting centered on `ctroct` (in octs, A0 = 27.5Hz) and with a gaussian half-width of `octwidth`. Set `octwidth` to `None` to use a flat weighting. norm : float > 0 or np.inf Normalization factor for each filter base_c : bool If True, the filter bank will start at 'C'. If False, the filter bank will start at 'A'. dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- wts : ndarray [shape=(n_chroma, 1 + n_fft / 2)] Chroma filter matrix See Also -------- util.normalize feature.chroma_stft Notes ----- This function caches at level 10. Examples -------- Build a simple chroma filter bank >>> chromafb = librosa.filters.chroma(22050, 4096) array([[ 1.689e-05, 3.024e-04, ..., 4.639e-17, 5.327e-17], [ 1.716e-05, 2.652e-04, ..., 2.674e-25, 3.176e-25], ..., [ 1.578e-05, 3.619e-04, ..., 8.577e-06, 9.205e-06], [ 1.643e-05, 3.355e-04, ..., 1.474e-10, 1.636e-10]]) Use quarter-tones instead of semitones >>> librosa.filters.chroma(22050, 4096, n_chroma=24) array([[ 1.194e-05, 2.138e-04, ..., 6.297e-64, 1.115e-63], [ 1.206e-05, 2.009e-04, ..., 1.546e-79, 2.929e-79], ..., [ 1.162e-05, 2.372e-04, ..., 6.417e-38, 9.923e-38], [ 1.180e-05, 2.260e-04, ..., 4.697e-50, 7.772e-50]]) Equally weight all octaves >>> librosa.filters.chroma(22050, 4096, octwidth=None) array([[ 3.036e-01, 2.604e-01, ..., 2.445e-16, 2.809e-16], [ 3.084e-01, 2.283e-01, ..., 1.409e-24, 1.675e-24], ..., [ 2.836e-01, 3.116e-01, ..., 4.520e-05, 4.854e-05], [ 2.953e-01, 2.888e-01, ..., 7.768e-10, 8.629e-10]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(chromafb, x_axis='linear') >>> plt.ylabel('Chroma filter') >>> plt.title('Chroma filter bank') >>> plt.colorbar() >>> plt.tight_layout()
librosa/filters.py
def chroma(sr, n_fft, n_chroma=12, A440=440.0, ctroct=5.0, octwidth=2, norm=2, base_c=True, dtype=np.float32): """Create a Filterbank matrix to convert STFT to chroma Parameters ---------- sr : number > 0 [scalar] audio sampling rate n_fft : int > 0 [scalar] number of FFT bins n_chroma : int > 0 [scalar] number of chroma bins A440 : float > 0 [scalar] Reference frequency for A440 ctroct : float > 0 [scalar] octwidth : float > 0 or None [scalar] `ctroct` and `octwidth` specify a dominance window - a Gaussian weighting centered on `ctroct` (in octs, A0 = 27.5Hz) and with a gaussian half-width of `octwidth`. Set `octwidth` to `None` to use a flat weighting. norm : float > 0 or np.inf Normalization factor for each filter base_c : bool If True, the filter bank will start at 'C'. If False, the filter bank will start at 'A'. dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- wts : ndarray [shape=(n_chroma, 1 + n_fft / 2)] Chroma filter matrix See Also -------- util.normalize feature.chroma_stft Notes ----- This function caches at level 10. Examples -------- Build a simple chroma filter bank >>> chromafb = librosa.filters.chroma(22050, 4096) array([[ 1.689e-05, 3.024e-04, ..., 4.639e-17, 5.327e-17], [ 1.716e-05, 2.652e-04, ..., 2.674e-25, 3.176e-25], ..., [ 1.578e-05, 3.619e-04, ..., 8.577e-06, 9.205e-06], [ 1.643e-05, 3.355e-04, ..., 1.474e-10, 1.636e-10]]) Use quarter-tones instead of semitones >>> librosa.filters.chroma(22050, 4096, n_chroma=24) array([[ 1.194e-05, 2.138e-04, ..., 6.297e-64, 1.115e-63], [ 1.206e-05, 2.009e-04, ..., 1.546e-79, 2.929e-79], ..., [ 1.162e-05, 2.372e-04, ..., 6.417e-38, 9.923e-38], [ 1.180e-05, 2.260e-04, ..., 4.697e-50, 7.772e-50]]) Equally weight all octaves >>> librosa.filters.chroma(22050, 4096, octwidth=None) array([[ 3.036e-01, 2.604e-01, ..., 2.445e-16, 2.809e-16], [ 3.084e-01, 2.283e-01, ..., 1.409e-24, 1.675e-24], ..., [ 2.836e-01, 3.116e-01, ..., 4.520e-05, 4.854e-05], [ 2.953e-01, 2.888e-01, ..., 7.768e-10, 8.629e-10]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(chromafb, x_axis='linear') >>> plt.ylabel('Chroma filter') >>> plt.title('Chroma filter bank') >>> plt.colorbar() >>> plt.tight_layout() """ wts = np.zeros((n_chroma, n_fft)) # Get the FFT bins, not counting the DC component frequencies = np.linspace(0, sr, n_fft, endpoint=False)[1:] frqbins = n_chroma * hz_to_octs(frequencies, A440) # make up a value for the 0 Hz bin = 1.5 octaves below bin 1 # (so chroma is 50% rotated from bin 1, and bin width is broad) frqbins = np.concatenate(([frqbins[0] - 1.5 * n_chroma], frqbins)) binwidthbins = np.concatenate((np.maximum(frqbins[1:] - frqbins[:-1], 1.0), [1])) D = np.subtract.outer(frqbins, np.arange(0, n_chroma, dtype='d')).T n_chroma2 = np.round(float(n_chroma) / 2) # Project into range -n_chroma/2 .. n_chroma/2 # add on fixed offset of 10*n_chroma to ensure all values passed to # rem are positive D = np.remainder(D + n_chroma2 + 10*n_chroma, n_chroma) - n_chroma2 # Gaussian bumps - 2*D to make them narrower wts = np.exp(-0.5 * (2*D / np.tile(binwidthbins, (n_chroma, 1)))**2) # normalize each column wts = util.normalize(wts, norm=norm, axis=0) # Maybe apply scaling for fft bins if octwidth is not None: wts *= np.tile( np.exp(-0.5 * (((frqbins/n_chroma - ctroct)/octwidth)**2)), (n_chroma, 1)) if base_c: wts = np.roll(wts, -3, axis=0) # remove aliasing columns, copy to ensure row-contiguity return np.ascontiguousarray(wts[:, :int(1 + n_fft/2)], dtype=dtype)
def chroma(sr, n_fft, n_chroma=12, A440=440.0, ctroct=5.0, octwidth=2, norm=2, base_c=True, dtype=np.float32): """Create a Filterbank matrix to convert STFT to chroma Parameters ---------- sr : number > 0 [scalar] audio sampling rate n_fft : int > 0 [scalar] number of FFT bins n_chroma : int > 0 [scalar] number of chroma bins A440 : float > 0 [scalar] Reference frequency for A440 ctroct : float > 0 [scalar] octwidth : float > 0 or None [scalar] `ctroct` and `octwidth` specify a dominance window - a Gaussian weighting centered on `ctroct` (in octs, A0 = 27.5Hz) and with a gaussian half-width of `octwidth`. Set `octwidth` to `None` to use a flat weighting. norm : float > 0 or np.inf Normalization factor for each filter base_c : bool If True, the filter bank will start at 'C'. If False, the filter bank will start at 'A'. dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- wts : ndarray [shape=(n_chroma, 1 + n_fft / 2)] Chroma filter matrix See Also -------- util.normalize feature.chroma_stft Notes ----- This function caches at level 10. Examples -------- Build a simple chroma filter bank >>> chromafb = librosa.filters.chroma(22050, 4096) array([[ 1.689e-05, 3.024e-04, ..., 4.639e-17, 5.327e-17], [ 1.716e-05, 2.652e-04, ..., 2.674e-25, 3.176e-25], ..., [ 1.578e-05, 3.619e-04, ..., 8.577e-06, 9.205e-06], [ 1.643e-05, 3.355e-04, ..., 1.474e-10, 1.636e-10]]) Use quarter-tones instead of semitones >>> librosa.filters.chroma(22050, 4096, n_chroma=24) array([[ 1.194e-05, 2.138e-04, ..., 6.297e-64, 1.115e-63], [ 1.206e-05, 2.009e-04, ..., 1.546e-79, 2.929e-79], ..., [ 1.162e-05, 2.372e-04, ..., 6.417e-38, 9.923e-38], [ 1.180e-05, 2.260e-04, ..., 4.697e-50, 7.772e-50]]) Equally weight all octaves >>> librosa.filters.chroma(22050, 4096, octwidth=None) array([[ 3.036e-01, 2.604e-01, ..., 2.445e-16, 2.809e-16], [ 3.084e-01, 2.283e-01, ..., 1.409e-24, 1.675e-24], ..., [ 2.836e-01, 3.116e-01, ..., 4.520e-05, 4.854e-05], [ 2.953e-01, 2.888e-01, ..., 7.768e-10, 8.629e-10]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(chromafb, x_axis='linear') >>> plt.ylabel('Chroma filter') >>> plt.title('Chroma filter bank') >>> plt.colorbar() >>> plt.tight_layout() """ wts = np.zeros((n_chroma, n_fft)) # Get the FFT bins, not counting the DC component frequencies = np.linspace(0, sr, n_fft, endpoint=False)[1:] frqbins = n_chroma * hz_to_octs(frequencies, A440) # make up a value for the 0 Hz bin = 1.5 octaves below bin 1 # (so chroma is 50% rotated from bin 1, and bin width is broad) frqbins = np.concatenate(([frqbins[0] - 1.5 * n_chroma], frqbins)) binwidthbins = np.concatenate((np.maximum(frqbins[1:] - frqbins[:-1], 1.0), [1])) D = np.subtract.outer(frqbins, np.arange(0, n_chroma, dtype='d')).T n_chroma2 = np.round(float(n_chroma) / 2) # Project into range -n_chroma/2 .. n_chroma/2 # add on fixed offset of 10*n_chroma to ensure all values passed to # rem are positive D = np.remainder(D + n_chroma2 + 10*n_chroma, n_chroma) - n_chroma2 # Gaussian bumps - 2*D to make them narrower wts = np.exp(-0.5 * (2*D / np.tile(binwidthbins, (n_chroma, 1)))**2) # normalize each column wts = util.normalize(wts, norm=norm, axis=0) # Maybe apply scaling for fft bins if octwidth is not None: wts *= np.tile( np.exp(-0.5 * (((frqbins/n_chroma - ctroct)/octwidth)**2)), (n_chroma, 1)) if base_c: wts = np.roll(wts, -3, axis=0) # remove aliasing columns, copy to ensure row-contiguity return np.ascontiguousarray(wts[:, :int(1 + n_fft/2)], dtype=dtype)
[ "Create", "a", "Filterbank", "matrix", "to", "convert", "STFT", "to", "chroma" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L229-L359
[ "def", "chroma", "(", "sr", ",", "n_fft", ",", "n_chroma", "=", "12", ",", "A440", "=", "440.0", ",", "ctroct", "=", "5.0", ",", "octwidth", "=", "2", ",", "norm", "=", "2", ",", "base_c", "=", "True", ",", "dtype", "=", "np", ".", "float32", ")", ":", "wts", "=", "np", ".", "zeros", "(", "(", "n_chroma", ",", "n_fft", ")", ")", "# Get the FFT bins, not counting the DC component", "frequencies", "=", "np", ".", "linspace", "(", "0", ",", "sr", ",", "n_fft", ",", "endpoint", "=", "False", ")", "[", "1", ":", "]", "frqbins", "=", "n_chroma", "*", "hz_to_octs", "(", "frequencies", ",", "A440", ")", "# make up a value for the 0 Hz bin = 1.5 octaves below bin 1", "# (so chroma is 50% rotated from bin 1, and bin width is broad)", "frqbins", "=", "np", ".", "concatenate", "(", "(", "[", "frqbins", "[", "0", "]", "-", "1.5", "*", "n_chroma", "]", ",", "frqbins", ")", ")", "binwidthbins", "=", "np", ".", "concatenate", "(", "(", "np", ".", "maximum", "(", "frqbins", "[", "1", ":", "]", "-", "frqbins", "[", ":", "-", "1", "]", ",", "1.0", ")", ",", "[", "1", "]", ")", ")", "D", "=", "np", ".", "subtract", ".", "outer", "(", "frqbins", ",", "np", ".", "arange", "(", "0", ",", "n_chroma", ",", "dtype", "=", "'d'", ")", ")", ".", "T", "n_chroma2", "=", "np", ".", "round", "(", "float", "(", "n_chroma", ")", "/", "2", ")", "# Project into range -n_chroma/2 .. n_chroma/2", "# add on fixed offset of 10*n_chroma to ensure all values passed to", "# rem are positive", "D", "=", "np", ".", "remainder", "(", "D", "+", "n_chroma2", "+", "10", "*", "n_chroma", ",", "n_chroma", ")", "-", "n_chroma2", "# Gaussian bumps - 2*D to make them narrower", "wts", "=", "np", ".", "exp", "(", "-", "0.5", "*", "(", "2", "*", "D", "/", "np", ".", "tile", "(", "binwidthbins", ",", "(", "n_chroma", ",", "1", ")", ")", ")", "**", "2", ")", "# normalize each column", "wts", "=", "util", ".", "normalize", "(", "wts", ",", "norm", "=", "norm", ",", "axis", "=", "0", ")", "# Maybe apply scaling for fft bins", "if", "octwidth", "is", "not", "None", ":", "wts", "*=", "np", ".", "tile", "(", "np", ".", "exp", "(", "-", "0.5", "*", "(", "(", "(", "frqbins", "/", "n_chroma", "-", "ctroct", ")", "/", "octwidth", ")", "**", "2", ")", ")", ",", "(", "n_chroma", ",", "1", ")", ")", "if", "base_c", ":", "wts", "=", "np", ".", "roll", "(", "wts", ",", "-", "3", ",", "axis", "=", "0", ")", "# remove aliasing columns, copy to ensure row-contiguity", "return", "np", ".", "ascontiguousarray", "(", "wts", "[", ":", ",", ":", "int", "(", "1", "+", "n_fft", "/", "2", ")", "]", ",", "dtype", "=", "dtype", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__float_window
Decorator function for windows with fractional input. This function guarantees that for fractional `x`, the following hold: 1. `__float_window(window_function)(x)` has length `np.ceil(x)` 2. all values from `np.floor(x)` are set to 0. For integer-valued `x`, there should be no change in behavior.
librosa/filters.py
def __float_window(window_spec): '''Decorator function for windows with fractional input. This function guarantees that for fractional `x`, the following hold: 1. `__float_window(window_function)(x)` has length `np.ceil(x)` 2. all values from `np.floor(x)` are set to 0. For integer-valued `x`, there should be no change in behavior. ''' def _wrap(n, *args, **kwargs): '''The wrapped window''' n_min, n_max = int(np.floor(n)), int(np.ceil(n)) window = get_window(window_spec, n_min) if len(window) < n_max: window = np.pad(window, [(0, n_max - len(window))], mode='constant') window[n_min:] = 0.0 return window return _wrap
def __float_window(window_spec): '''Decorator function for windows with fractional input. This function guarantees that for fractional `x`, the following hold: 1. `__float_window(window_function)(x)` has length `np.ceil(x)` 2. all values from `np.floor(x)` are set to 0. For integer-valued `x`, there should be no change in behavior. ''' def _wrap(n, *args, **kwargs): '''The wrapped window''' n_min, n_max = int(np.floor(n)), int(np.ceil(n)) window = get_window(window_spec, n_min) if len(window) < n_max: window = np.pad(window, [(0, n_max - len(window))], mode='constant') window[n_min:] = 0.0 return window return _wrap
[ "Decorator", "function", "for", "windows", "with", "fractional", "input", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L362-L387
[ "def", "__float_window", "(", "window_spec", ")", ":", "def", "_wrap", "(", "n", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "'''The wrapped window'''", "n_min", ",", "n_max", "=", "int", "(", "np", ".", "floor", "(", "n", ")", ")", ",", "int", "(", "np", ".", "ceil", "(", "n", ")", ")", "window", "=", "get_window", "(", "window_spec", ",", "n_min", ")", "if", "len", "(", "window", ")", "<", "n_max", ":", "window", "=", "np", ".", "pad", "(", "window", ",", "[", "(", "0", ",", "n_max", "-", "len", "(", "window", ")", ")", "]", ",", "mode", "=", "'constant'", ")", "window", "[", "n_min", ":", "]", "=", "0.0", "return", "window", "return", "_wrap" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
constant_q
r'''Construct a constant-Q basis. This uses the filter bank described by [1]_. .. [1] McVicar, Matthew. "A machine learning approach to automatic chord extraction." Dissertation, University of Bristol. 2013. Parameters ---------- sr : number > 0 [scalar] Audio sampling rate fmin : float > 0 [scalar] Minimum frequency bin. Defaults to `C1 ~= 32.70` n_bins : int > 0 [scalar] Number of frequencies. Defaults to 7 octaves (84 bins). bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin window : string, tuple, number, or function Windowing function to apply to filters. filter_scale : float > 0 [scalar] Scale of filter windows. Small values (<1) use shorter windows for higher temporal resolution. pad_fft : boolean Center-pad all filters up to the nearest integral power of 2. By default, padding is done with zeros, but this can be overridden by setting the `mode=` field in *kwargs*. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See librosa.util.normalize dtype : np.dtype The data type of the output basis. By default, uses 64-bit (single precision) complex floating point. kwargs : additional keyword arguments Arguments to `np.pad()` when `pad==True`. Returns ------- filters : np.ndarray, `len(filters) == n_bins` `filters[i]` is `i`\ th time-domain CQT basis filter lengths : np.ndarray, `len(lengths) == n_bins` The (fractional) length of each filter Notes ----- This function caches at level 10. See Also -------- constant_q_lengths librosa.core.cqt librosa.util.normalize Examples -------- Use a shorter window for each filter >>> basis, lengths = librosa.filters.constant_q(22050, filter_scale=0.5) Plot one octave of filters in time and frequency >>> import matplotlib.pyplot as plt >>> basis, lengths = librosa.filters.constant_q(22050) >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2, 1, 1) >>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis))) >>> for i, (f, n) in enumerate(zip(basis, notes[:12])): ... f_scale = librosa.util.normalize(f) / 2 ... plt.plot(i + f_scale.real) ... plt.plot(i + f_scale.imag, linestyle=':') >>> plt.axis('tight') >>> plt.yticks(np.arange(len(notes[:12])), notes[:12]) >>> plt.ylabel('CQ filters') >>> plt.title('CQ filters (one octave, time domain)') >>> plt.xlabel('Time (samples at 22050 Hz)') >>> plt.legend(['Real', 'Imaginary'], frameon=True, framealpha=0.8) >>> plt.subplot(2, 1, 2) >>> F = np.abs(np.fft.fftn(basis, axes=[-1])) >>> # Keep only the positive frequencies >>> F = F[:, :(1 + F.shape[1] // 2)] >>> librosa.display.specshow(F, x_axis='linear') >>> plt.yticks(np.arange(len(notes))[::12], notes[::12]) >>> plt.ylabel('CQ filters') >>> plt.title('CQ filter magnitudes (frequency domain)') >>> plt.tight_layout()
librosa/filters.py
def constant_q(sr, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, window='hann', filter_scale=1, pad_fft=True, norm=1, dtype=np.complex64, **kwargs): r'''Construct a constant-Q basis. This uses the filter bank described by [1]_. .. [1] McVicar, Matthew. "A machine learning approach to automatic chord extraction." Dissertation, University of Bristol. 2013. Parameters ---------- sr : number > 0 [scalar] Audio sampling rate fmin : float > 0 [scalar] Minimum frequency bin. Defaults to `C1 ~= 32.70` n_bins : int > 0 [scalar] Number of frequencies. Defaults to 7 octaves (84 bins). bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin window : string, tuple, number, or function Windowing function to apply to filters. filter_scale : float > 0 [scalar] Scale of filter windows. Small values (<1) use shorter windows for higher temporal resolution. pad_fft : boolean Center-pad all filters up to the nearest integral power of 2. By default, padding is done with zeros, but this can be overridden by setting the `mode=` field in *kwargs*. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See librosa.util.normalize dtype : np.dtype The data type of the output basis. By default, uses 64-bit (single precision) complex floating point. kwargs : additional keyword arguments Arguments to `np.pad()` when `pad==True`. Returns ------- filters : np.ndarray, `len(filters) == n_bins` `filters[i]` is `i`\ th time-domain CQT basis filter lengths : np.ndarray, `len(lengths) == n_bins` The (fractional) length of each filter Notes ----- This function caches at level 10. See Also -------- constant_q_lengths librosa.core.cqt librosa.util.normalize Examples -------- Use a shorter window for each filter >>> basis, lengths = librosa.filters.constant_q(22050, filter_scale=0.5) Plot one octave of filters in time and frequency >>> import matplotlib.pyplot as plt >>> basis, lengths = librosa.filters.constant_q(22050) >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2, 1, 1) >>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis))) >>> for i, (f, n) in enumerate(zip(basis, notes[:12])): ... f_scale = librosa.util.normalize(f) / 2 ... plt.plot(i + f_scale.real) ... plt.plot(i + f_scale.imag, linestyle=':') >>> plt.axis('tight') >>> plt.yticks(np.arange(len(notes[:12])), notes[:12]) >>> plt.ylabel('CQ filters') >>> plt.title('CQ filters (one octave, time domain)') >>> plt.xlabel('Time (samples at 22050 Hz)') >>> plt.legend(['Real', 'Imaginary'], frameon=True, framealpha=0.8) >>> plt.subplot(2, 1, 2) >>> F = np.abs(np.fft.fftn(basis, axes=[-1])) >>> # Keep only the positive frequencies >>> F = F[:, :(1 + F.shape[1] // 2)] >>> librosa.display.specshow(F, x_axis='linear') >>> plt.yticks(np.arange(len(notes))[::12], notes[::12]) >>> plt.ylabel('CQ filters') >>> plt.title('CQ filter magnitudes (frequency domain)') >>> plt.tight_layout() ''' if fmin is None: fmin = note_to_hz('C1') # Pass-through parameters to get the filter lengths lengths = constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, window=window, filter_scale=filter_scale) # Apply tuning correction correction = 2.0**(float(tuning) / bins_per_octave) fmin = correction * fmin # Q should be capitalized here, so we suppress the name warning # pylint: disable=invalid-name Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1) # Convert lengths back to frequencies freqs = Q * sr / lengths # Build the filters filters = [] for ilen, freq in zip(lengths, freqs): # Build the filter: note, length will be ceil(ilen) sig = np.exp(np.arange(-ilen//2, ilen//2, dtype=float) * 1j * 2 * np.pi * freq / sr) # Apply the windowing function sig = sig * __float_window(window)(len(sig)) # Normalize sig = util.normalize(sig, norm=norm) filters.append(sig) # Pad and stack max_len = max(lengths) if pad_fft: max_len = int(2.0**(np.ceil(np.log2(max_len)))) else: max_len = int(np.ceil(max_len)) filters = np.asarray([util.pad_center(filt, max_len, **kwargs) for filt in filters], dtype=dtype) return filters, np.asarray(lengths)
def constant_q(sr, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, window='hann', filter_scale=1, pad_fft=True, norm=1, dtype=np.complex64, **kwargs): r'''Construct a constant-Q basis. This uses the filter bank described by [1]_. .. [1] McVicar, Matthew. "A machine learning approach to automatic chord extraction." Dissertation, University of Bristol. 2013. Parameters ---------- sr : number > 0 [scalar] Audio sampling rate fmin : float > 0 [scalar] Minimum frequency bin. Defaults to `C1 ~= 32.70` n_bins : int > 0 [scalar] Number of frequencies. Defaults to 7 octaves (84 bins). bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin window : string, tuple, number, or function Windowing function to apply to filters. filter_scale : float > 0 [scalar] Scale of filter windows. Small values (<1) use shorter windows for higher temporal resolution. pad_fft : boolean Center-pad all filters up to the nearest integral power of 2. By default, padding is done with zeros, but this can be overridden by setting the `mode=` field in *kwargs*. norm : {inf, -inf, 0, float > 0} Type of norm to use for basis function normalization. See librosa.util.normalize dtype : np.dtype The data type of the output basis. By default, uses 64-bit (single precision) complex floating point. kwargs : additional keyword arguments Arguments to `np.pad()` when `pad==True`. Returns ------- filters : np.ndarray, `len(filters) == n_bins` `filters[i]` is `i`\ th time-domain CQT basis filter lengths : np.ndarray, `len(lengths) == n_bins` The (fractional) length of each filter Notes ----- This function caches at level 10. See Also -------- constant_q_lengths librosa.core.cqt librosa.util.normalize Examples -------- Use a shorter window for each filter >>> basis, lengths = librosa.filters.constant_q(22050, filter_scale=0.5) Plot one octave of filters in time and frequency >>> import matplotlib.pyplot as plt >>> basis, lengths = librosa.filters.constant_q(22050) >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2, 1, 1) >>> notes = librosa.midi_to_note(np.arange(24, 24 + len(basis))) >>> for i, (f, n) in enumerate(zip(basis, notes[:12])): ... f_scale = librosa.util.normalize(f) / 2 ... plt.plot(i + f_scale.real) ... plt.plot(i + f_scale.imag, linestyle=':') >>> plt.axis('tight') >>> plt.yticks(np.arange(len(notes[:12])), notes[:12]) >>> plt.ylabel('CQ filters') >>> plt.title('CQ filters (one octave, time domain)') >>> plt.xlabel('Time (samples at 22050 Hz)') >>> plt.legend(['Real', 'Imaginary'], frameon=True, framealpha=0.8) >>> plt.subplot(2, 1, 2) >>> F = np.abs(np.fft.fftn(basis, axes=[-1])) >>> # Keep only the positive frequencies >>> F = F[:, :(1 + F.shape[1] // 2)] >>> librosa.display.specshow(F, x_axis='linear') >>> plt.yticks(np.arange(len(notes))[::12], notes[::12]) >>> plt.ylabel('CQ filters') >>> plt.title('CQ filter magnitudes (frequency domain)') >>> plt.tight_layout() ''' if fmin is None: fmin = note_to_hz('C1') # Pass-through parameters to get the filter lengths lengths = constant_q_lengths(sr, fmin, n_bins=n_bins, bins_per_octave=bins_per_octave, tuning=tuning, window=window, filter_scale=filter_scale) # Apply tuning correction correction = 2.0**(float(tuning) / bins_per_octave) fmin = correction * fmin # Q should be capitalized here, so we suppress the name warning # pylint: disable=invalid-name Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1) # Convert lengths back to frequencies freqs = Q * sr / lengths # Build the filters filters = [] for ilen, freq in zip(lengths, freqs): # Build the filter: note, length will be ceil(ilen) sig = np.exp(np.arange(-ilen//2, ilen//2, dtype=float) * 1j * 2 * np.pi * freq / sr) # Apply the windowing function sig = sig * __float_window(window)(len(sig)) # Normalize sig = util.normalize(sig, norm=norm) filters.append(sig) # Pad and stack max_len = max(lengths) if pad_fft: max_len = int(2.0**(np.ceil(np.log2(max_len)))) else: max_len = int(np.ceil(max_len)) filters = np.asarray([util.pad_center(filt, max_len, **kwargs) for filt in filters], dtype=dtype) return filters, np.asarray(lengths)
[ "r", "Construct", "a", "constant", "-", "Q", "basis", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L391-L543
[ "def", "constant_q", "(", "sr", ",", "fmin", "=", "None", ",", "n_bins", "=", "84", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ",", "window", "=", "'hann'", ",", "filter_scale", "=", "1", ",", "pad_fft", "=", "True", ",", "norm", "=", "1", ",", "dtype", "=", "np", ".", "complex64", ",", "*", "*", "kwargs", ")", ":", "if", "fmin", "is", "None", ":", "fmin", "=", "note_to_hz", "(", "'C1'", ")", "# Pass-through parameters to get the filter lengths", "lengths", "=", "constant_q_lengths", "(", "sr", ",", "fmin", ",", "n_bins", "=", "n_bins", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "window", "=", "window", ",", "filter_scale", "=", "filter_scale", ")", "# Apply tuning correction", "correction", "=", "2.0", "**", "(", "float", "(", "tuning", ")", "/", "bins_per_octave", ")", "fmin", "=", "correction", "*", "fmin", "# Q should be capitalized here, so we suppress the name warning", "# pylint: disable=invalid-name", "Q", "=", "float", "(", "filter_scale", ")", "/", "(", "2.0", "**", "(", "1.", "/", "bins_per_octave", ")", "-", "1", ")", "# Convert lengths back to frequencies", "freqs", "=", "Q", "*", "sr", "/", "lengths", "# Build the filters", "filters", "=", "[", "]", "for", "ilen", ",", "freq", "in", "zip", "(", "lengths", ",", "freqs", ")", ":", "# Build the filter: note, length will be ceil(ilen)", "sig", "=", "np", ".", "exp", "(", "np", ".", "arange", "(", "-", "ilen", "//", "2", ",", "ilen", "//", "2", ",", "dtype", "=", "float", ")", "*", "1j", "*", "2", "*", "np", ".", "pi", "*", "freq", "/", "sr", ")", "# Apply the windowing function", "sig", "=", "sig", "*", "__float_window", "(", "window", ")", "(", "len", "(", "sig", ")", ")", "# Normalize", "sig", "=", "util", ".", "normalize", "(", "sig", ",", "norm", "=", "norm", ")", "filters", ".", "append", "(", "sig", ")", "# Pad and stack", "max_len", "=", "max", "(", "lengths", ")", "if", "pad_fft", ":", "max_len", "=", "int", "(", "2.0", "**", "(", "np", ".", "ceil", "(", "np", ".", "log2", "(", "max_len", ")", ")", ")", ")", "else", ":", "max_len", "=", "int", "(", "np", ".", "ceil", "(", "max_len", ")", ")", "filters", "=", "np", ".", "asarray", "(", "[", "util", ".", "pad_center", "(", "filt", ",", "max_len", ",", "*", "*", "kwargs", ")", "for", "filt", "in", "filters", "]", ",", "dtype", "=", "dtype", ")", "return", "filters", ",", "np", ".", "asarray", "(", "lengths", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
constant_q_lengths
r'''Return length of each filter in a constant-Q basis. Parameters ---------- sr : number > 0 [scalar] Audio sampling rate fmin : float > 0 [scalar] Minimum frequency bin. n_bins : int > 0 [scalar] Number of frequencies. Defaults to 7 octaves (84 bins). bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin window : str or callable Window function to use on filters filter_scale : float > 0 [scalar] Resolution of filter windows. Larger values use longer windows. Returns ------- lengths : np.ndarray The length of each filter. Notes ----- This function caches at level 10. See Also -------- constant_q librosa.core.cqt
librosa/filters.py
def constant_q_lengths(sr, fmin, n_bins=84, bins_per_octave=12, tuning=0.0, window='hann', filter_scale=1): r'''Return length of each filter in a constant-Q basis. Parameters ---------- sr : number > 0 [scalar] Audio sampling rate fmin : float > 0 [scalar] Minimum frequency bin. n_bins : int > 0 [scalar] Number of frequencies. Defaults to 7 octaves (84 bins). bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin window : str or callable Window function to use on filters filter_scale : float > 0 [scalar] Resolution of filter windows. Larger values use longer windows. Returns ------- lengths : np.ndarray The length of each filter. Notes ----- This function caches at level 10. See Also -------- constant_q librosa.core.cqt ''' if fmin <= 0: raise ParameterError('fmin must be positive') if bins_per_octave <= 0: raise ParameterError('bins_per_octave must be positive') if filter_scale <= 0: raise ParameterError('filter_scale must be positive') if n_bins <= 0 or not isinstance(n_bins, int): raise ParameterError('n_bins must be a positive integer') correction = 2.0**(float(tuning) / bins_per_octave) fmin = correction * fmin # Q should be capitalized here, so we suppress the name warning # pylint: disable=invalid-name Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1) # Compute the frequencies freq = fmin * (2.0 ** (np.arange(n_bins, dtype=float) / bins_per_octave)) if freq[-1] * (1 + 0.5 * window_bandwidth(window) / Q) > sr / 2.0: raise ParameterError('Filter pass-band lies beyond Nyquist') # Convert frequencies to filter lengths lengths = Q * sr / freq return lengths
def constant_q_lengths(sr, fmin, n_bins=84, bins_per_octave=12, tuning=0.0, window='hann', filter_scale=1): r'''Return length of each filter in a constant-Q basis. Parameters ---------- sr : number > 0 [scalar] Audio sampling rate fmin : float > 0 [scalar] Minimum frequency bin. n_bins : int > 0 [scalar] Number of frequencies. Defaults to 7 octaves (84 bins). bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 in fractions of a bin window : str or callable Window function to use on filters filter_scale : float > 0 [scalar] Resolution of filter windows. Larger values use longer windows. Returns ------- lengths : np.ndarray The length of each filter. Notes ----- This function caches at level 10. See Also -------- constant_q librosa.core.cqt ''' if fmin <= 0: raise ParameterError('fmin must be positive') if bins_per_octave <= 0: raise ParameterError('bins_per_octave must be positive') if filter_scale <= 0: raise ParameterError('filter_scale must be positive') if n_bins <= 0 or not isinstance(n_bins, int): raise ParameterError('n_bins must be a positive integer') correction = 2.0**(float(tuning) / bins_per_octave) fmin = correction * fmin # Q should be capitalized here, so we suppress the name warning # pylint: disable=invalid-name Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1) # Compute the frequencies freq = fmin * (2.0 ** (np.arange(n_bins, dtype=float) / bins_per_octave)) if freq[-1] * (1 + 0.5 * window_bandwidth(window) / Q) > sr / 2.0: raise ParameterError('Filter pass-band lies beyond Nyquist') # Convert frequencies to filter lengths lengths = Q * sr / freq return lengths
[ "r", "Return", "length", "of", "each", "filter", "in", "a", "constant", "-", "Q", "basis", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L547-L618
[ "def", "constant_q_lengths", "(", "sr", ",", "fmin", ",", "n_bins", "=", "84", ",", "bins_per_octave", "=", "12", ",", "tuning", "=", "0.0", ",", "window", "=", "'hann'", ",", "filter_scale", "=", "1", ")", ":", "if", "fmin", "<=", "0", ":", "raise", "ParameterError", "(", "'fmin must be positive'", ")", "if", "bins_per_octave", "<=", "0", ":", "raise", "ParameterError", "(", "'bins_per_octave must be positive'", ")", "if", "filter_scale", "<=", "0", ":", "raise", "ParameterError", "(", "'filter_scale must be positive'", ")", "if", "n_bins", "<=", "0", "or", "not", "isinstance", "(", "n_bins", ",", "int", ")", ":", "raise", "ParameterError", "(", "'n_bins must be a positive integer'", ")", "correction", "=", "2.0", "**", "(", "float", "(", "tuning", ")", "/", "bins_per_octave", ")", "fmin", "=", "correction", "*", "fmin", "# Q should be capitalized here, so we suppress the name warning", "# pylint: disable=invalid-name", "Q", "=", "float", "(", "filter_scale", ")", "/", "(", "2.0", "**", "(", "1.", "/", "bins_per_octave", ")", "-", "1", ")", "# Compute the frequencies", "freq", "=", "fmin", "*", "(", "2.0", "**", "(", "np", ".", "arange", "(", "n_bins", ",", "dtype", "=", "float", ")", "/", "bins_per_octave", ")", ")", "if", "freq", "[", "-", "1", "]", "*", "(", "1", "+", "0.5", "*", "window_bandwidth", "(", "window", ")", "/", "Q", ")", ">", "sr", "/", "2.0", ":", "raise", "ParameterError", "(", "'Filter pass-band lies beyond Nyquist'", ")", "# Convert frequencies to filter lengths", "lengths", "=", "Q", "*", "sr", "/", "freq", "return", "lengths" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
cq_to_chroma
Convert a Constant-Q basis to Chroma. Parameters ---------- n_input : int > 0 [scalar] Number of input components (CQT bins) bins_per_octave : int > 0 [scalar] How many bins per octave in the CQT n_chroma : int > 0 [scalar] Number of output bins (per octave) in the chroma fmin : None or float > 0 Center frequency of the first constant-Q channel. Default: 'C1' ~= 32.7 Hz window : None or np.ndarray If provided, the cq_to_chroma filter bank will be convolved with `window`. base_c : bool If True, the first chroma bin will start at 'C' If False, the first chroma bin will start at 'A' dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- cq_to_chroma : np.ndarray [shape=(n_chroma, n_input)] Transformation matrix: `Chroma = np.dot(cq_to_chroma, CQT)` Raises ------ ParameterError If `n_input` is not an integer multiple of `n_chroma` Notes ----- This function caches at level 10. Examples -------- Get a CQT, and wrap bins to chroma >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> CQT = np.abs(librosa.cqt(y, sr=sr)) >>> chroma_map = librosa.filters.cq_to_chroma(CQT.shape[0]) >>> chromagram = chroma_map.dot(CQT) >>> # Max-normalize each time step >>> chromagram = librosa.util.normalize(chromagram, axis=0) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(CQT, ... ref=np.max), ... y_axis='cqt_note') >>> plt.title('CQT Power') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(chromagram, y_axis='chroma') >>> plt.title('Chroma (wrapped CQT)') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.title('librosa.feature.chroma_stft') >>> plt.colorbar() >>> plt.tight_layout()
librosa/filters.py
def cq_to_chroma(n_input, bins_per_octave=12, n_chroma=12, fmin=None, window=None, base_c=True, dtype=np.float32): '''Convert a Constant-Q basis to Chroma. Parameters ---------- n_input : int > 0 [scalar] Number of input components (CQT bins) bins_per_octave : int > 0 [scalar] How many bins per octave in the CQT n_chroma : int > 0 [scalar] Number of output bins (per octave) in the chroma fmin : None or float > 0 Center frequency of the first constant-Q channel. Default: 'C1' ~= 32.7 Hz window : None or np.ndarray If provided, the cq_to_chroma filter bank will be convolved with `window`. base_c : bool If True, the first chroma bin will start at 'C' If False, the first chroma bin will start at 'A' dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- cq_to_chroma : np.ndarray [shape=(n_chroma, n_input)] Transformation matrix: `Chroma = np.dot(cq_to_chroma, CQT)` Raises ------ ParameterError If `n_input` is not an integer multiple of `n_chroma` Notes ----- This function caches at level 10. Examples -------- Get a CQT, and wrap bins to chroma >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> CQT = np.abs(librosa.cqt(y, sr=sr)) >>> chroma_map = librosa.filters.cq_to_chroma(CQT.shape[0]) >>> chromagram = chroma_map.dot(CQT) >>> # Max-normalize each time step >>> chromagram = librosa.util.normalize(chromagram, axis=0) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(CQT, ... ref=np.max), ... y_axis='cqt_note') >>> plt.title('CQT Power') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(chromagram, y_axis='chroma') >>> plt.title('Chroma (wrapped CQT)') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.title('librosa.feature.chroma_stft') >>> plt.colorbar() >>> plt.tight_layout() ''' # How many fractional bins are we merging? n_merge = float(bins_per_octave) / n_chroma if fmin is None: fmin = note_to_hz('C1') if np.mod(n_merge, 1) != 0: raise ParameterError('Incompatible CQ merge: ' 'input bins must be an ' 'integer multiple of output bins.') # Tile the identity to merge fractional bins cq_to_ch = np.repeat(np.eye(n_chroma), n_merge, axis=1) # Roll it left to center on the target bin cq_to_ch = np.roll(cq_to_ch, - int(n_merge // 2), axis=1) # How many octaves are we repeating? n_octaves = np.ceil(np.float(n_input) / bins_per_octave) # Repeat and trim cq_to_ch = np.tile(cq_to_ch, int(n_octaves))[:, :n_input] # What's the note number of the first bin in the CQT? # midi uses 12 bins per octave here midi_0 = np.mod(hz_to_midi(fmin), 12) if base_c: # rotate to C roll = midi_0 else: # rotate to A roll = midi_0 - 9 # Adjust the roll in terms of how many chroma we want out # We need to be careful with rounding here roll = int(np.round(roll * (n_chroma / 12.))) # Apply the roll cq_to_ch = np.roll(cq_to_ch, roll, axis=0).astype(dtype) if window is not None: cq_to_ch = scipy.signal.convolve(cq_to_ch, np.atleast_2d(window), mode='same') return cq_to_ch
def cq_to_chroma(n_input, bins_per_octave=12, n_chroma=12, fmin=None, window=None, base_c=True, dtype=np.float32): '''Convert a Constant-Q basis to Chroma. Parameters ---------- n_input : int > 0 [scalar] Number of input components (CQT bins) bins_per_octave : int > 0 [scalar] How many bins per octave in the CQT n_chroma : int > 0 [scalar] Number of output bins (per octave) in the chroma fmin : None or float > 0 Center frequency of the first constant-Q channel. Default: 'C1' ~= 32.7 Hz window : None or np.ndarray If provided, the cq_to_chroma filter bank will be convolved with `window`. base_c : bool If True, the first chroma bin will start at 'C' If False, the first chroma bin will start at 'A' dtype : np.dtype The data type of the output basis. By default, uses 32-bit (single-precision) floating point. Returns ------- cq_to_chroma : np.ndarray [shape=(n_chroma, n_input)] Transformation matrix: `Chroma = np.dot(cq_to_chroma, CQT)` Raises ------ ParameterError If `n_input` is not an integer multiple of `n_chroma` Notes ----- This function caches at level 10. Examples -------- Get a CQT, and wrap bins to chroma >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> CQT = np.abs(librosa.cqt(y, sr=sr)) >>> chroma_map = librosa.filters.cq_to_chroma(CQT.shape[0]) >>> chromagram = chroma_map.dot(CQT) >>> # Max-normalize each time step >>> chromagram = librosa.util.normalize(chromagram, axis=0) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(CQT, ... ref=np.max), ... y_axis='cqt_note') >>> plt.title('CQT Power') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(chromagram, y_axis='chroma') >>> plt.title('Chroma (wrapped CQT)') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.title('librosa.feature.chroma_stft') >>> plt.colorbar() >>> plt.tight_layout() ''' # How many fractional bins are we merging? n_merge = float(bins_per_octave) / n_chroma if fmin is None: fmin = note_to_hz('C1') if np.mod(n_merge, 1) != 0: raise ParameterError('Incompatible CQ merge: ' 'input bins must be an ' 'integer multiple of output bins.') # Tile the identity to merge fractional bins cq_to_ch = np.repeat(np.eye(n_chroma), n_merge, axis=1) # Roll it left to center on the target bin cq_to_ch = np.roll(cq_to_ch, - int(n_merge // 2), axis=1) # How many octaves are we repeating? n_octaves = np.ceil(np.float(n_input) / bins_per_octave) # Repeat and trim cq_to_ch = np.tile(cq_to_ch, int(n_octaves))[:, :n_input] # What's the note number of the first bin in the CQT? # midi uses 12 bins per octave here midi_0 = np.mod(hz_to_midi(fmin), 12) if base_c: # rotate to C roll = midi_0 else: # rotate to A roll = midi_0 - 9 # Adjust the roll in terms of how many chroma we want out # We need to be careful with rounding here roll = int(np.round(roll * (n_chroma / 12.))) # Apply the roll cq_to_ch = np.roll(cq_to_ch, roll, axis=0).astype(dtype) if window is not None: cq_to_ch = scipy.signal.convolve(cq_to_ch, np.atleast_2d(window), mode='same') return cq_to_ch
[ "Convert", "a", "Constant", "-", "Q", "basis", "to", "Chroma", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L622-L746
[ "def", "cq_to_chroma", "(", "n_input", ",", "bins_per_octave", "=", "12", ",", "n_chroma", "=", "12", ",", "fmin", "=", "None", ",", "window", "=", "None", ",", "base_c", "=", "True", ",", "dtype", "=", "np", ".", "float32", ")", ":", "# How many fractional bins are we merging?", "n_merge", "=", "float", "(", "bins_per_octave", ")", "/", "n_chroma", "if", "fmin", "is", "None", ":", "fmin", "=", "note_to_hz", "(", "'C1'", ")", "if", "np", ".", "mod", "(", "n_merge", ",", "1", ")", "!=", "0", ":", "raise", "ParameterError", "(", "'Incompatible CQ merge: '", "'input bins must be an '", "'integer multiple of output bins.'", ")", "# Tile the identity to merge fractional bins", "cq_to_ch", "=", "np", ".", "repeat", "(", "np", ".", "eye", "(", "n_chroma", ")", ",", "n_merge", ",", "axis", "=", "1", ")", "# Roll it left to center on the target bin", "cq_to_ch", "=", "np", ".", "roll", "(", "cq_to_ch", ",", "-", "int", "(", "n_merge", "//", "2", ")", ",", "axis", "=", "1", ")", "# How many octaves are we repeating?", "n_octaves", "=", "np", ".", "ceil", "(", "np", ".", "float", "(", "n_input", ")", "/", "bins_per_octave", ")", "# Repeat and trim", "cq_to_ch", "=", "np", ".", "tile", "(", "cq_to_ch", ",", "int", "(", "n_octaves", ")", ")", "[", ":", ",", ":", "n_input", "]", "# What's the note number of the first bin in the CQT?", "# midi uses 12 bins per octave here", "midi_0", "=", "np", ".", "mod", "(", "hz_to_midi", "(", "fmin", ")", ",", "12", ")", "if", "base_c", ":", "# rotate to C", "roll", "=", "midi_0", "else", ":", "# rotate to A", "roll", "=", "midi_0", "-", "9", "# Adjust the roll in terms of how many chroma we want out", "# We need to be careful with rounding here", "roll", "=", "int", "(", "np", ".", "round", "(", "roll", "*", "(", "n_chroma", "/", "12.", ")", ")", ")", "# Apply the roll", "cq_to_ch", "=", "np", ".", "roll", "(", "cq_to_ch", ",", "roll", ",", "axis", "=", "0", ")", ".", "astype", "(", "dtype", ")", "if", "window", "is", "not", "None", ":", "cq_to_ch", "=", "scipy", ".", "signal", ".", "convolve", "(", "cq_to_ch", ",", "np", ".", "atleast_2d", "(", "window", ")", ",", "mode", "=", "'same'", ")", "return", "cq_to_ch" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
window_bandwidth
Get the equivalent noise bandwidth of a window function. Parameters ---------- window : callable or string A window function, or the name of a window function. Examples: - scipy.signal.hann - 'boxcar' n : int > 0 The number of coefficients to use in estimating the window bandwidth Returns ------- bandwidth : float The equivalent noise bandwidth (in FFT bins) of the given window function Notes ----- This function caches at level 10. See Also -------- get_window
librosa/filters.py
def window_bandwidth(window, n=1000): '''Get the equivalent noise bandwidth of a window function. Parameters ---------- window : callable or string A window function, or the name of a window function. Examples: - scipy.signal.hann - 'boxcar' n : int > 0 The number of coefficients to use in estimating the window bandwidth Returns ------- bandwidth : float The equivalent noise bandwidth (in FFT bins) of the given window function Notes ----- This function caches at level 10. See Also -------- get_window ''' if hasattr(window, '__name__'): key = window.__name__ else: key = window if key not in WINDOW_BANDWIDTHS: win = get_window(window, n) WINDOW_BANDWIDTHS[key] = n * np.sum(win**2) / np.sum(np.abs(win))**2 return WINDOW_BANDWIDTHS[key]
def window_bandwidth(window, n=1000): '''Get the equivalent noise bandwidth of a window function. Parameters ---------- window : callable or string A window function, or the name of a window function. Examples: - scipy.signal.hann - 'boxcar' n : int > 0 The number of coefficients to use in estimating the window bandwidth Returns ------- bandwidth : float The equivalent noise bandwidth (in FFT bins) of the given window function Notes ----- This function caches at level 10. See Also -------- get_window ''' if hasattr(window, '__name__'): key = window.__name__ else: key = window if key not in WINDOW_BANDWIDTHS: win = get_window(window, n) WINDOW_BANDWIDTHS[key] = n * np.sum(win**2) / np.sum(np.abs(win))**2 return WINDOW_BANDWIDTHS[key]
[ "Get", "the", "equivalent", "noise", "bandwidth", "of", "a", "window", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L750-L790
[ "def", "window_bandwidth", "(", "window", ",", "n", "=", "1000", ")", ":", "if", "hasattr", "(", "window", ",", "'__name__'", ")", ":", "key", "=", "window", ".", "__name__", "else", ":", "key", "=", "window", "if", "key", "not", "in", "WINDOW_BANDWIDTHS", ":", "win", "=", "get_window", "(", "window", ",", "n", ")", "WINDOW_BANDWIDTHS", "[", "key", "]", "=", "n", "*", "np", ".", "sum", "(", "win", "**", "2", ")", "/", "np", ".", "sum", "(", "np", ".", "abs", "(", "win", ")", ")", "**", "2", "return", "WINDOW_BANDWIDTHS", "[", "key", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
get_window
Compute a window function. This is a wrapper for `scipy.signal.get_window` that additionally supports callable or pre-computed windows. Parameters ---------- window : string, tuple, number, callable, or list-like The window specification: - If string, it's the name of the window function (e.g., `'hann'`) - If tuple, it's the name of the window function and any parameters (e.g., `('kaiser', 4.0)`) - If numeric, it is treated as the beta parameter of the `'kaiser'` window, as in `scipy.signal.get_window`. - If callable, it's a function that accepts one integer argument (the window length) - If list-like, it's a pre-computed window of the correct length `Nx` Nx : int > 0 The length of the window fftbins : bool, optional If True (default), create a periodic window for use with FFT If False, create a symmetric window for filter design applications. Returns ------- get_window : np.ndarray A window of length `Nx` and type `window` See Also -------- scipy.signal.get_window Notes ----- This function caches at level 10. Raises ------ ParameterError If `window` is supplied as a vector of length != `n_fft`, or is otherwise mis-specified.
librosa/filters.py
def get_window(window, Nx, fftbins=True): '''Compute a window function. This is a wrapper for `scipy.signal.get_window` that additionally supports callable or pre-computed windows. Parameters ---------- window : string, tuple, number, callable, or list-like The window specification: - If string, it's the name of the window function (e.g., `'hann'`) - If tuple, it's the name of the window function and any parameters (e.g., `('kaiser', 4.0)`) - If numeric, it is treated as the beta parameter of the `'kaiser'` window, as in `scipy.signal.get_window`. - If callable, it's a function that accepts one integer argument (the window length) - If list-like, it's a pre-computed window of the correct length `Nx` Nx : int > 0 The length of the window fftbins : bool, optional If True (default), create a periodic window for use with FFT If False, create a symmetric window for filter design applications. Returns ------- get_window : np.ndarray A window of length `Nx` and type `window` See Also -------- scipy.signal.get_window Notes ----- This function caches at level 10. Raises ------ ParameterError If `window` is supplied as a vector of length != `n_fft`, or is otherwise mis-specified. ''' if six.callable(window): return window(Nx) elif (isinstance(window, (six.string_types, tuple)) or np.isscalar(window)): # TODO: if we add custom window functions in librosa, call them here return scipy.signal.get_window(window, Nx, fftbins=fftbins) elif isinstance(window, (np.ndarray, list)): if len(window) == Nx: return np.asarray(window) raise ParameterError('Window size mismatch: ' '{:d} != {:d}'.format(len(window), Nx)) else: raise ParameterError('Invalid window specification: {}'.format(window))
def get_window(window, Nx, fftbins=True): '''Compute a window function. This is a wrapper for `scipy.signal.get_window` that additionally supports callable or pre-computed windows. Parameters ---------- window : string, tuple, number, callable, or list-like The window specification: - If string, it's the name of the window function (e.g., `'hann'`) - If tuple, it's the name of the window function and any parameters (e.g., `('kaiser', 4.0)`) - If numeric, it is treated as the beta parameter of the `'kaiser'` window, as in `scipy.signal.get_window`. - If callable, it's a function that accepts one integer argument (the window length) - If list-like, it's a pre-computed window of the correct length `Nx` Nx : int > 0 The length of the window fftbins : bool, optional If True (default), create a periodic window for use with FFT If False, create a symmetric window for filter design applications. Returns ------- get_window : np.ndarray A window of length `Nx` and type `window` See Also -------- scipy.signal.get_window Notes ----- This function caches at level 10. Raises ------ ParameterError If `window` is supplied as a vector of length != `n_fft`, or is otherwise mis-specified. ''' if six.callable(window): return window(Nx) elif (isinstance(window, (six.string_types, tuple)) or np.isscalar(window)): # TODO: if we add custom window functions in librosa, call them here return scipy.signal.get_window(window, Nx, fftbins=fftbins) elif isinstance(window, (np.ndarray, list)): if len(window) == Nx: return np.asarray(window) raise ParameterError('Window size mismatch: ' '{:d} != {:d}'.format(len(window), Nx)) else: raise ParameterError('Invalid window specification: {}'.format(window))
[ "Compute", "a", "window", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L794-L856
[ "def", "get_window", "(", "window", ",", "Nx", ",", "fftbins", "=", "True", ")", ":", "if", "six", ".", "callable", "(", "window", ")", ":", "return", "window", "(", "Nx", ")", "elif", "(", "isinstance", "(", "window", ",", "(", "six", ".", "string_types", ",", "tuple", ")", ")", "or", "np", ".", "isscalar", "(", "window", ")", ")", ":", "# TODO: if we add custom window functions in librosa, call them here", "return", "scipy", ".", "signal", ".", "get_window", "(", "window", ",", "Nx", ",", "fftbins", "=", "fftbins", ")", "elif", "isinstance", "(", "window", ",", "(", "np", ".", "ndarray", ",", "list", ")", ")", ":", "if", "len", "(", "window", ")", "==", "Nx", ":", "return", "np", ".", "asarray", "(", "window", ")", "raise", "ParameterError", "(", "'Window size mismatch: '", "'{:d} != {:d}'", ".", "format", "(", "len", "(", "window", ")", ",", "Nx", ")", ")", "else", ":", "raise", "ParameterError", "(", "'Invalid window specification: {}'", ".", "format", "(", "window", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
_multirate_fb
r'''Helper function to construct a multirate filterbank. A filter bank consists of multiple band-pass filters which divide the input signal into subbands. In the case of a multirate filter bank, the band-pass filters operate with resampled versions of the input signal, e.g. to keep the length of a filter constant while shifting its center frequency. This implementation uses `scipy.signal.iirdesign` to design the filters. Parameters ---------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. sample_rates : np.ndarray [shape=(n,), dtype=float] Samplerate for each filter (used for multirate filterbank). Q : float Q factor (influences the filter bandwith). passband_ripple : float The maximum loss in the passband (dB) See `scipy.signal.iirdesign` for details. stopband_attenuation : float The minimum attenuation in the stopband (dB) See `scipy.signal.iirdesign` for details. ftype : str The type of IIR filter to design See `scipy.signal.iirdesign` for details. flayout : string Valid `output` argument for `scipy.signal.iirdesign`. - If `ba`, returns numerators/denominators of the transfer functions, used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, returns a series of second-order filters, used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. - If `zpk`, returns zeros, poles, and system gains of the transfer functions. Returns ------- filterbank : list [shape=(n,), dtype=float] Each list entry comprises the filter coefficients for a single filter. sample_rates : np.ndarray [shape=(n,), dtype=float] Samplerate for each filter. Notes ----- This function caches at level 10. See Also -------- scipy.signal.iirdesign Raises ------ ParameterError If `center_freqs` is `None`. If `sample_rates` is `None`. If `center_freqs.shape` does not match `sample_rates.shape`.
librosa/filters.py
def _multirate_fb(center_freqs=None, sample_rates=None, Q=25.0, passband_ripple=1, stopband_attenuation=50, ftype='ellip', flayout='ba'): r'''Helper function to construct a multirate filterbank. A filter bank consists of multiple band-pass filters which divide the input signal into subbands. In the case of a multirate filter bank, the band-pass filters operate with resampled versions of the input signal, e.g. to keep the length of a filter constant while shifting its center frequency. This implementation uses `scipy.signal.iirdesign` to design the filters. Parameters ---------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. sample_rates : np.ndarray [shape=(n,), dtype=float] Samplerate for each filter (used for multirate filterbank). Q : float Q factor (influences the filter bandwith). passband_ripple : float The maximum loss in the passband (dB) See `scipy.signal.iirdesign` for details. stopband_attenuation : float The minimum attenuation in the stopband (dB) See `scipy.signal.iirdesign` for details. ftype : str The type of IIR filter to design See `scipy.signal.iirdesign` for details. flayout : string Valid `output` argument for `scipy.signal.iirdesign`. - If `ba`, returns numerators/denominators of the transfer functions, used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, returns a series of second-order filters, used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. - If `zpk`, returns zeros, poles, and system gains of the transfer functions. Returns ------- filterbank : list [shape=(n,), dtype=float] Each list entry comprises the filter coefficients for a single filter. sample_rates : np.ndarray [shape=(n,), dtype=float] Samplerate for each filter. Notes ----- This function caches at level 10. See Also -------- scipy.signal.iirdesign Raises ------ ParameterError If `center_freqs` is `None`. If `sample_rates` is `None`. If `center_freqs.shape` does not match `sample_rates.shape`. ''' if center_freqs is None: raise ParameterError('center_freqs must be provided.') if sample_rates is None: raise ParameterError('sample_rates must be provided.') if center_freqs.shape != sample_rates.shape: raise ParameterError('Number of provided center_freqs and sample_rates must be equal.') nyquist = 0.5 * sample_rates filter_bandwidths = center_freqs / float(Q) filterbank = [] for cur_center_freq, cur_nyquist, cur_bw in zip(center_freqs, nyquist, filter_bandwidths): passband_freqs = [cur_center_freq - 0.5 * cur_bw, cur_center_freq + 0.5 * cur_bw] / cur_nyquist stopband_freqs = [cur_center_freq - cur_bw, cur_center_freq + cur_bw] / cur_nyquist cur_filter = scipy.signal.iirdesign(passband_freqs, stopband_freqs, passband_ripple, stopband_attenuation, analog=False, ftype=ftype, output=flayout) filterbank.append(cur_filter) return filterbank, sample_rates
def _multirate_fb(center_freqs=None, sample_rates=None, Q=25.0, passband_ripple=1, stopband_attenuation=50, ftype='ellip', flayout='ba'): r'''Helper function to construct a multirate filterbank. A filter bank consists of multiple band-pass filters which divide the input signal into subbands. In the case of a multirate filter bank, the band-pass filters operate with resampled versions of the input signal, e.g. to keep the length of a filter constant while shifting its center frequency. This implementation uses `scipy.signal.iirdesign` to design the filters. Parameters ---------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. sample_rates : np.ndarray [shape=(n,), dtype=float] Samplerate for each filter (used for multirate filterbank). Q : float Q factor (influences the filter bandwith). passband_ripple : float The maximum loss in the passband (dB) See `scipy.signal.iirdesign` for details. stopband_attenuation : float The minimum attenuation in the stopband (dB) See `scipy.signal.iirdesign` for details. ftype : str The type of IIR filter to design See `scipy.signal.iirdesign` for details. flayout : string Valid `output` argument for `scipy.signal.iirdesign`. - If `ba`, returns numerators/denominators of the transfer functions, used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, returns a series of second-order filters, used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. - If `zpk`, returns zeros, poles, and system gains of the transfer functions. Returns ------- filterbank : list [shape=(n,), dtype=float] Each list entry comprises the filter coefficients for a single filter. sample_rates : np.ndarray [shape=(n,), dtype=float] Samplerate for each filter. Notes ----- This function caches at level 10. See Also -------- scipy.signal.iirdesign Raises ------ ParameterError If `center_freqs` is `None`. If `sample_rates` is `None`. If `center_freqs.shape` does not match `sample_rates.shape`. ''' if center_freqs is None: raise ParameterError('center_freqs must be provided.') if sample_rates is None: raise ParameterError('sample_rates must be provided.') if center_freqs.shape != sample_rates.shape: raise ParameterError('Number of provided center_freqs and sample_rates must be equal.') nyquist = 0.5 * sample_rates filter_bandwidths = center_freqs / float(Q) filterbank = [] for cur_center_freq, cur_nyquist, cur_bw in zip(center_freqs, nyquist, filter_bandwidths): passband_freqs = [cur_center_freq - 0.5 * cur_bw, cur_center_freq + 0.5 * cur_bw] / cur_nyquist stopband_freqs = [cur_center_freq - cur_bw, cur_center_freq + cur_bw] / cur_nyquist cur_filter = scipy.signal.iirdesign(passband_freqs, stopband_freqs, passband_ripple, stopband_attenuation, analog=False, ftype=ftype, output=flayout) filterbank.append(cur_filter) return filterbank, sample_rates
[ "r", "Helper", "function", "to", "construct", "a", "multirate", "filterbank", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L860-L954
[ "def", "_multirate_fb", "(", "center_freqs", "=", "None", ",", "sample_rates", "=", "None", ",", "Q", "=", "25.0", ",", "passband_ripple", "=", "1", ",", "stopband_attenuation", "=", "50", ",", "ftype", "=", "'ellip'", ",", "flayout", "=", "'ba'", ")", ":", "if", "center_freqs", "is", "None", ":", "raise", "ParameterError", "(", "'center_freqs must be provided.'", ")", "if", "sample_rates", "is", "None", ":", "raise", "ParameterError", "(", "'sample_rates must be provided.'", ")", "if", "center_freqs", ".", "shape", "!=", "sample_rates", ".", "shape", ":", "raise", "ParameterError", "(", "'Number of provided center_freqs and sample_rates must be equal.'", ")", "nyquist", "=", "0.5", "*", "sample_rates", "filter_bandwidths", "=", "center_freqs", "/", "float", "(", "Q", ")", "filterbank", "=", "[", "]", "for", "cur_center_freq", ",", "cur_nyquist", ",", "cur_bw", "in", "zip", "(", "center_freqs", ",", "nyquist", ",", "filter_bandwidths", ")", ":", "passband_freqs", "=", "[", "cur_center_freq", "-", "0.5", "*", "cur_bw", ",", "cur_center_freq", "+", "0.5", "*", "cur_bw", "]", "/", "cur_nyquist", "stopband_freqs", "=", "[", "cur_center_freq", "-", "cur_bw", ",", "cur_center_freq", "+", "cur_bw", "]", "/", "cur_nyquist", "cur_filter", "=", "scipy", ".", "signal", ".", "iirdesign", "(", "passband_freqs", ",", "stopband_freqs", ",", "passband_ripple", ",", "stopband_attenuation", ",", "analog", "=", "False", ",", "ftype", "=", "ftype", ",", "output", "=", "flayout", ")", "filterbank", ".", "append", "(", "cur_filter", ")", "return", "filterbank", ",", "sample_rates" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
mr_frequencies
r'''Helper function for generating center frequency and sample rate pairs. This function will return center frequency and corresponding sample rates to obtain similar pitch filterbank settings as described in [1]_. Instead of starting with MIDI pitch `A0`, we start with `C0`. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440, measure as a fraction of the equally tempered semitone (1/12 of an octave). Returns ------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rate for each filter, used for multirate filterbank. Notes ----- This function caches at level 10. See Also -------- librosa.filters.semitone_filterbank librosa.filters._multirate_fb
librosa/filters.py
def mr_frequencies(tuning): r'''Helper function for generating center frequency and sample rate pairs. This function will return center frequency and corresponding sample rates to obtain similar pitch filterbank settings as described in [1]_. Instead of starting with MIDI pitch `A0`, we start with `C0`. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440, measure as a fraction of the equally tempered semitone (1/12 of an octave). Returns ------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rate for each filter, used for multirate filterbank. Notes ----- This function caches at level 10. See Also -------- librosa.filters.semitone_filterbank librosa.filters._multirate_fb ''' center_freqs = midi_to_hz(np.arange(24 + tuning, 109 + tuning)) sample_rates = np.asarray(len(np.arange(0, 36)) * [882, ] + len(np.arange(36, 70)) * [4410, ] + len(np.arange(70, 85)) * [22050, ]) return center_freqs, sample_rates
def mr_frequencies(tuning): r'''Helper function for generating center frequency and sample rate pairs. This function will return center frequency and corresponding sample rates to obtain similar pitch filterbank settings as described in [1]_. Instead of starting with MIDI pitch `A0`, we start with `C0`. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440, measure as a fraction of the equally tempered semitone (1/12 of an octave). Returns ------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rate for each filter, used for multirate filterbank. Notes ----- This function caches at level 10. See Also -------- librosa.filters.semitone_filterbank librosa.filters._multirate_fb ''' center_freqs = midi_to_hz(np.arange(24 + tuning, 109 + tuning)) sample_rates = np.asarray(len(np.arange(0, 36)) * [882, ] + len(np.arange(36, 70)) * [4410, ] + len(np.arange(70, 85)) * [22050, ]) return center_freqs, sample_rates
[ "r", "Helper", "function", "for", "generating", "center", "frequency", "and", "sample", "rate", "pairs", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L958-L1002
[ "def", "mr_frequencies", "(", "tuning", ")", ":", "center_freqs", "=", "midi_to_hz", "(", "np", ".", "arange", "(", "24", "+", "tuning", ",", "109", "+", "tuning", ")", ")", "sample_rates", "=", "np", ".", "asarray", "(", "len", "(", "np", ".", "arange", "(", "0", ",", "36", ")", ")", "*", "[", "882", ",", "]", "+", "len", "(", "np", ".", "arange", "(", "36", ",", "70", ")", ")", "*", "[", "4410", ",", "]", "+", "len", "(", "np", ".", "arange", "(", "70", ",", "85", ")", ")", "*", "[", "22050", ",", "]", ")", "return", "center_freqs", ",", "sample_rates" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
semitone_filterbank
r'''Constructs a multirate filterbank of infinite-impulse response (IIR) band-pass filters at user-defined center frequencies and sample rates. By default, these center frequencies are set equal to the 88 fundamental frequencies of the grand piano keyboard, according to a pitch tuning standard of A440, that is, note A above middle C set to 440 Hz. The center frequencies are tuned to the twelve-tone equal temperament, which means that they grow exponentially at a rate of 2**(1/12), that is, twelve notes per octave. The A440 tuning can be changed by the user while keeping twelve-tone equal temperament. While A440 is currently the international standard in the music industry (ISO 16), some orchestras tune to A441-A445, whereas baroque musicians tune to A415. See [1]_ for details. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 as a fraction of a semitone (1/12 of an octave in equal temperament). sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rates of each filter in the multirate filterbank. flayout : string - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. kwargs : additional keyword arguments Additional arguments to the private function `_multirate_fb()`. Returns ------- filterbank : list [shape=(n,), dtype=float] Each list entry contains the filter coefficients for a single filter. fb_sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rate for each filter. See Also -------- librosa.core.cqt librosa.core.iirt librosa.filters._multirate_fb librosa.filters.mr_frequencies scipy.signal.iirdesign Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import scipy.signal >>> semitone_filterbank, sample_rates = librosa.filters.semitone_filterbank() >>> plt.figure(figsize=(10, 6)) >>> for cur_sr, cur_filter in zip(sample_rates, semitone_filterbank): ... w, h = scipy.signal.freqz(cur_filter[0], cur_filter[1], worN=2000) ... plt.plot((cur_sr / (2 * np.pi)) * w, 20 * np.log10(abs(h))) >>> plt.semilogx() >>> plt.xlim([20, 10e3]) >>> plt.ylim([-60, 3]) >>> plt.title('Magnitude Responses of the Pitch Filterbank') >>> plt.xlabel('Log-Frequency (Hz)') >>> plt.ylabel('Magnitude (dB)') >>> plt.tight_layout()
librosa/filters.py
def semitone_filterbank(center_freqs=None, tuning=0.0, sample_rates=None, flayout='ba', **kwargs): r'''Constructs a multirate filterbank of infinite-impulse response (IIR) band-pass filters at user-defined center frequencies and sample rates. By default, these center frequencies are set equal to the 88 fundamental frequencies of the grand piano keyboard, according to a pitch tuning standard of A440, that is, note A above middle C set to 440 Hz. The center frequencies are tuned to the twelve-tone equal temperament, which means that they grow exponentially at a rate of 2**(1/12), that is, twelve notes per octave. The A440 tuning can be changed by the user while keeping twelve-tone equal temperament. While A440 is currently the international standard in the music industry (ISO 16), some orchestras tune to A441-A445, whereas baroque musicians tune to A415. See [1]_ for details. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 as a fraction of a semitone (1/12 of an octave in equal temperament). sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rates of each filter in the multirate filterbank. flayout : string - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. kwargs : additional keyword arguments Additional arguments to the private function `_multirate_fb()`. Returns ------- filterbank : list [shape=(n,), dtype=float] Each list entry contains the filter coefficients for a single filter. fb_sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rate for each filter. See Also -------- librosa.core.cqt librosa.core.iirt librosa.filters._multirate_fb librosa.filters.mr_frequencies scipy.signal.iirdesign Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import scipy.signal >>> semitone_filterbank, sample_rates = librosa.filters.semitone_filterbank() >>> plt.figure(figsize=(10, 6)) >>> for cur_sr, cur_filter in zip(sample_rates, semitone_filterbank): ... w, h = scipy.signal.freqz(cur_filter[0], cur_filter[1], worN=2000) ... plt.plot((cur_sr / (2 * np.pi)) * w, 20 * np.log10(abs(h))) >>> plt.semilogx() >>> plt.xlim([20, 10e3]) >>> plt.ylim([-60, 3]) >>> plt.title('Magnitude Responses of the Pitch Filterbank') >>> plt.xlabel('Log-Frequency (Hz)') >>> plt.ylabel('Magnitude (dB)') >>> plt.tight_layout() ''' if (center_freqs is None) and (sample_rates is None): center_freqs, sample_rates = mr_frequencies(tuning) filterbank, fb_sample_rates = _multirate_fb(center_freqs=center_freqs, sample_rates=sample_rates, flayout=flayout, **kwargs) return filterbank, fb_sample_rates
def semitone_filterbank(center_freqs=None, tuning=0.0, sample_rates=None, flayout='ba', **kwargs): r'''Constructs a multirate filterbank of infinite-impulse response (IIR) band-pass filters at user-defined center frequencies and sample rates. By default, these center frequencies are set equal to the 88 fundamental frequencies of the grand piano keyboard, according to a pitch tuning standard of A440, that is, note A above middle C set to 440 Hz. The center frequencies are tuned to the twelve-tone equal temperament, which means that they grow exponentially at a rate of 2**(1/12), that is, twelve notes per octave. The A440 tuning can be changed by the user while keeping twelve-tone equal temperament. While A440 is currently the international standard in the music industry (ISO 16), some orchestras tune to A441-A445, whereas baroque musicians tune to A415. See [1]_ for details. .. [1] Müller, Meinard. "Information Retrieval for Music and Motion." Springer Verlag. 2007. Parameters ---------- center_freqs : np.ndarray [shape=(n,), dtype=float] Center frequencies of the filter kernels. Also defines the number of filters in the filterbank. tuning : float in `[-0.5, +0.5)` [scalar] Tuning deviation from A440 as a fraction of a semitone (1/12 of an octave in equal temperament). sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rates of each filter in the multirate filterbank. flayout : string - If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. Can be unstable for high-order filters. - If `sos`, a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. Minimizes numerical precision errors for high-order filters, but is slower. kwargs : additional keyword arguments Additional arguments to the private function `_multirate_fb()`. Returns ------- filterbank : list [shape=(n,), dtype=float] Each list entry contains the filter coefficients for a single filter. fb_sample_rates : np.ndarray [shape=(n,), dtype=float] Sample rate for each filter. See Also -------- librosa.core.cqt librosa.core.iirt librosa.filters._multirate_fb librosa.filters.mr_frequencies scipy.signal.iirdesign Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import scipy.signal >>> semitone_filterbank, sample_rates = librosa.filters.semitone_filterbank() >>> plt.figure(figsize=(10, 6)) >>> for cur_sr, cur_filter in zip(sample_rates, semitone_filterbank): ... w, h = scipy.signal.freqz(cur_filter[0], cur_filter[1], worN=2000) ... plt.plot((cur_sr / (2 * np.pi)) * w, 20 * np.log10(abs(h))) >>> plt.semilogx() >>> plt.xlim([20, 10e3]) >>> plt.ylim([-60, 3]) >>> plt.title('Magnitude Responses of the Pitch Filterbank') >>> plt.xlabel('Log-Frequency (Hz)') >>> plt.ylabel('Magnitude (dB)') >>> plt.tight_layout() ''' if (center_freqs is None) and (sample_rates is None): center_freqs, sample_rates = mr_frequencies(tuning) filterbank, fb_sample_rates = _multirate_fb(center_freqs=center_freqs, sample_rates=sample_rates, flayout=flayout, **kwargs) return filterbank, fb_sample_rates
[ "r", "Constructs", "a", "multirate", "filterbank", "of", "infinite", "-", "impulse", "response", "(", "IIR", ")", "band", "-", "pass", "filters", "at", "user", "-", "defined", "center", "frequencies", "and", "sample", "rates", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L1005-L1090
[ "def", "semitone_filterbank", "(", "center_freqs", "=", "None", ",", "tuning", "=", "0.0", ",", "sample_rates", "=", "None", ",", "flayout", "=", "'ba'", ",", "*", "*", "kwargs", ")", ":", "if", "(", "center_freqs", "is", "None", ")", "and", "(", "sample_rates", "is", "None", ")", ":", "center_freqs", ",", "sample_rates", "=", "mr_frequencies", "(", "tuning", ")", "filterbank", ",", "fb_sample_rates", "=", "_multirate_fb", "(", "center_freqs", "=", "center_freqs", ",", "sample_rates", "=", "sample_rates", ",", "flayout", "=", "flayout", ",", "*", "*", "kwargs", ")", "return", "filterbank", ",", "fb_sample_rates" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__window_ss_fill
Helper function for window sum-square calculation.
librosa/filters.py
def __window_ss_fill(x, win_sq, n_frames, hop_length): # pragma: no cover '''Helper function for window sum-square calculation.''' n = len(x) n_fft = len(win_sq) for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
def __window_ss_fill(x, win_sq, n_frames, hop_length): # pragma: no cover '''Helper function for window sum-square calculation.''' n = len(x) n_fft = len(win_sq) for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
[ "Helper", "function", "for", "window", "sum", "-", "square", "calculation", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L1094-L1101
[ "def", "__window_ss_fill", "(", "x", ",", "win_sq", ",", "n_frames", ",", "hop_length", ")", ":", "# pragma: no cover", "n", "=", "len", "(", "x", ")", "n_fft", "=", "len", "(", "win_sq", ")", "for", "i", "in", "range", "(", "n_frames", ")", ":", "sample", "=", "i", "*", "hop_length", "x", "[", "sample", ":", "min", "(", "n", ",", "sample", "+", "n_fft", ")", "]", "+=", "win_sq", "[", ":", "max", "(", "0", ",", "min", "(", "n_fft", ",", "n", "-", "sample", ")", ")", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
window_sumsquare
Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function Examples -------- For a fixed frame length (2048), compare modulation effects for a Hann window at different hop lengths: >>> n_frames = 50 >>> wss_256 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=256) >>> wss_512 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=512) >>> wss_1024 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=1024) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(3,1,1) >>> plt.plot(wss_256) >>> plt.title('hop_length=256') >>> plt.subplot(3,1,2) >>> plt.plot(wss_512) >>> plt.title('hop_length=512') >>> plt.subplot(3,1,3) >>> plt.plot(wss_1024) >>> plt.title('hop_length=1024') >>> plt.tight_layout()
librosa/filters.py
def window_sumsquare(window, n_frames, hop_length=512, win_length=None, n_fft=2048, dtype=np.float32, norm=None): ''' Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function Examples -------- For a fixed frame length (2048), compare modulation effects for a Hann window at different hop lengths: >>> n_frames = 50 >>> wss_256 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=256) >>> wss_512 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=512) >>> wss_1024 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=1024) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(3,1,1) >>> plt.plot(wss_256) >>> plt.title('hop_length=256') >>> plt.subplot(3,1,2) >>> plt.plot(wss_512) >>> plt.title('hop_length=512') >>> plt.subplot(3,1,3) >>> plt.plot(wss_1024) >>> plt.title('hop_length=1024') >>> plt.tight_layout() ''' if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length) win_sq = util.normalize(win_sq, norm=norm)**2 win_sq = util.pad_center(win_sq, n_fft) # Fill the envelope __window_ss_fill(x, win_sq, n_frames, hop_length) return x
def window_sumsquare(window, n_frames, hop_length=512, win_length=None, n_fft=2048, dtype=np.float32, norm=None): ''' Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function Examples -------- For a fixed frame length (2048), compare modulation effects for a Hann window at different hop lengths: >>> n_frames = 50 >>> wss_256 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=256) >>> wss_512 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=512) >>> wss_1024 = librosa.filters.window_sumsquare('hann', n_frames, hop_length=1024) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(3,1,1) >>> plt.plot(wss_256) >>> plt.title('hop_length=256') >>> plt.subplot(3,1,2) >>> plt.plot(wss_512) >>> plt.title('hop_length=512') >>> plt.subplot(3,1,3) >>> plt.plot(wss_1024) >>> plt.title('hop_length=1024') >>> plt.tight_layout() ''' if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length) win_sq = util.normalize(win_sq, norm=norm)**2 win_sq = util.pad_center(win_sq, n_fft) # Fill the envelope __window_ss_fill(x, win_sq, n_frames, hop_length) return x
[ "Compute", "the", "sum", "-", "square", "envelope", "of", "a", "window", "function", "at", "a", "given", "hop", "length", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L1104-L1175
[ "def", "window_sumsquare", "(", "window", ",", "n_frames", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "n_fft", "=", "2048", ",", "dtype", "=", "np", ".", "float32", ",", "norm", "=", "None", ")", ":", "if", "win_length", "is", "None", ":", "win_length", "=", "n_fft", "n", "=", "n_fft", "+", "hop_length", "*", "(", "n_frames", "-", "1", ")", "x", "=", "np", ".", "zeros", "(", "n", ",", "dtype", "=", "dtype", ")", "# Compute the squared window at the desired length", "win_sq", "=", "get_window", "(", "window", ",", "win_length", ")", "win_sq", "=", "util", ".", "normalize", "(", "win_sq", ",", "norm", "=", "norm", ")", "**", "2", "win_sq", "=", "util", ".", "pad_center", "(", "win_sq", ",", "n_fft", ")", "# Fill the envelope", "__window_ss_fill", "(", "x", ",", "win_sq", ",", "n_frames", ",", "hop_length", ")", "return", "x" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
diagonal_filter
Build a two-dimensional diagonal filter. This is primarily used for smoothing recurrence or self-similarity matrices. Parameters ---------- window : string, tuple, number, callable, or list-like The window function to use for the filter. See `get_window` for details. Note that the window used here should be non-negative. n : int > 0 the length of the filter slope : float The slope of the diagonal filter to produce angle : float or None If given, the slope parameter is ignored, and angle directly sets the orientation of the filter (in radians). Otherwise, angle is inferred as `arctan(slope)`. zero_mean : bool If True, a zero-mean filter is used. Otherwise, a non-negative averaging filter is used. This should be enabled if you want to enhance paths and suppress blocks. Returns ------- kernel : np.ndarray, shape=[(m, m)] The 2-dimensional filter kernel Notes ----- This function caches at level 10.
librosa/filters.py
def diagonal_filter(window, n, slope=1.0, angle=None, zero_mean=False): '''Build a two-dimensional diagonal filter. This is primarily used for smoothing recurrence or self-similarity matrices. Parameters ---------- window : string, tuple, number, callable, or list-like The window function to use for the filter. See `get_window` for details. Note that the window used here should be non-negative. n : int > 0 the length of the filter slope : float The slope of the diagonal filter to produce angle : float or None If given, the slope parameter is ignored, and angle directly sets the orientation of the filter (in radians). Otherwise, angle is inferred as `arctan(slope)`. zero_mean : bool If True, a zero-mean filter is used. Otherwise, a non-negative averaging filter is used. This should be enabled if you want to enhance paths and suppress blocks. Returns ------- kernel : np.ndarray, shape=[(m, m)] The 2-dimensional filter kernel Notes ----- This function caches at level 10. ''' if angle is None: angle = np.arctan(slope) win = np.diag(get_window(window, n, fftbins=False)) if not np.isclose(angle, np.pi/4): win = scipy.ndimage.rotate(win, 45 - angle * 180 / np.pi, order=5, prefilter=False) np.clip(win, 0, None, out=win) win /= win.sum() if zero_mean: win -= win.mean() return win
def diagonal_filter(window, n, slope=1.0, angle=None, zero_mean=False): '''Build a two-dimensional diagonal filter. This is primarily used for smoothing recurrence or self-similarity matrices. Parameters ---------- window : string, tuple, number, callable, or list-like The window function to use for the filter. See `get_window` for details. Note that the window used here should be non-negative. n : int > 0 the length of the filter slope : float The slope of the diagonal filter to produce angle : float or None If given, the slope parameter is ignored, and angle directly sets the orientation of the filter (in radians). Otherwise, angle is inferred as `arctan(slope)`. zero_mean : bool If True, a zero-mean filter is used. Otherwise, a non-negative averaging filter is used. This should be enabled if you want to enhance paths and suppress blocks. Returns ------- kernel : np.ndarray, shape=[(m, m)] The 2-dimensional filter kernel Notes ----- This function caches at level 10. ''' if angle is None: angle = np.arctan(slope) win = np.diag(get_window(window, n, fftbins=False)) if not np.isclose(angle, np.pi/4): win = scipy.ndimage.rotate(win, 45 - angle * 180 / np.pi, order=5, prefilter=False) np.clip(win, 0, None, out=win) win /= win.sum() if zero_mean: win -= win.mean() return win
[ "Build", "a", "two", "-", "dimensional", "diagonal", "filter", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/filters.py#L1179-L1238
[ "def", "diagonal_filter", "(", "window", ",", "n", ",", "slope", "=", "1.0", ",", "angle", "=", "None", ",", "zero_mean", "=", "False", ")", ":", "if", "angle", "is", "None", ":", "angle", "=", "np", ".", "arctan", "(", "slope", ")", "win", "=", "np", ".", "diag", "(", "get_window", "(", "window", ",", "n", ",", "fftbins", "=", "False", ")", ")", "if", "not", "np", ".", "isclose", "(", "angle", ",", "np", ".", "pi", "/", "4", ")", ":", "win", "=", "scipy", ".", "ndimage", ".", "rotate", "(", "win", ",", "45", "-", "angle", "*", "180", "/", "np", ".", "pi", ",", "order", "=", "5", ",", "prefilter", "=", "False", ")", "np", ".", "clip", "(", "win", ",", "0", ",", "None", ",", "out", "=", "win", ")", "win", "/=", "win", ".", "sum", "(", ")", "if", "zero_mean", ":", "win", "-=", "win", ".", "mean", "(", ")", "return", "win" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
spectral_centroid
Compute the spectral centroid. Each frame of a magnitude spectrogram is normalized and treated as a distribution over frequency bins, from which the mean (centroid) is extracted per frame. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- centroid : np.ndarray [shape=(1, t)] centroid frequencies See Also -------- librosa.core.stft Short-time Fourier Transform librosa.core.ifgram Instantaneous-frequency spectrogram Examples -------- From time-series input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> cent = librosa.feature.spectral_centroid(y=y, sr=sr) >>> cent array([[ 4382.894, 626.588, ..., 5037.07 , 5413.398]]) From spectrogram input: >>> S, phase = librosa.magphase(librosa.stft(y=y)) >>> librosa.feature.spectral_centroid(S=S) array([[ 4382.894, 626.588, ..., 5037.07 , 5413.398]]) Using variable bin center frequencies: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> if_gram, D = librosa.ifgram(y) >>> librosa.feature.spectral_centroid(S=np.abs(D), freq=if_gram) array([[ 4420.719, 625.769, ..., 5011.86 , 5221.492]]) Plot the result >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(cent.T, label='Spectral centroid') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, cent.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout()
librosa/feature/spectral.py
def spectral_centroid(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, freq=None, win_length=None, window='hann', center=True, pad_mode='reflect'): '''Compute the spectral centroid. Each frame of a magnitude spectrogram is normalized and treated as a distribution over frequency bins, from which the mean (centroid) is extracted per frame. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- centroid : np.ndarray [shape=(1, t)] centroid frequencies See Also -------- librosa.core.stft Short-time Fourier Transform librosa.core.ifgram Instantaneous-frequency spectrogram Examples -------- From time-series input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> cent = librosa.feature.spectral_centroid(y=y, sr=sr) >>> cent array([[ 4382.894, 626.588, ..., 5037.07 , 5413.398]]) From spectrogram input: >>> S, phase = librosa.magphase(librosa.stft(y=y)) >>> librosa.feature.spectral_centroid(S=S) array([[ 4382.894, 626.588, ..., 5037.07 , 5413.398]]) Using variable bin center frequencies: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> if_gram, D = librosa.ifgram(y) >>> librosa.feature.spectral_centroid(S=np.abs(D), freq=if_gram) array([[ 4420.719, 625.769, ..., 5011.86 , 5221.492]]) Plot the result >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(cent.T, label='Spectral centroid') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, cent.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral centroid is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral centroid is only defined ' 'with non-negative energies') # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) if freq.ndim == 1: freq = freq.reshape((-1, 1)) # Column-normalize S return np.sum(freq * util.normalize(S, norm=1, axis=0), axis=0, keepdims=True)
def spectral_centroid(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, freq=None, win_length=None, window='hann', center=True, pad_mode='reflect'): '''Compute the spectral centroid. Each frame of a magnitude spectrogram is normalized and treated as a distribution over frequency bins, from which the mean (centroid) is extracted per frame. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. Returns ------- centroid : np.ndarray [shape=(1, t)] centroid frequencies See Also -------- librosa.core.stft Short-time Fourier Transform librosa.core.ifgram Instantaneous-frequency spectrogram Examples -------- From time-series input: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> cent = librosa.feature.spectral_centroid(y=y, sr=sr) >>> cent array([[ 4382.894, 626.588, ..., 5037.07 , 5413.398]]) From spectrogram input: >>> S, phase = librosa.magphase(librosa.stft(y=y)) >>> librosa.feature.spectral_centroid(S=S) array([[ 4382.894, 626.588, ..., 5037.07 , 5413.398]]) Using variable bin center frequencies: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> if_gram, D = librosa.ifgram(y) >>> librosa.feature.spectral_centroid(S=np.abs(D), freq=if_gram) array([[ 4420.719, 625.769, ..., 5011.86 , 5221.492]]) Plot the result >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(cent.T, label='Spectral centroid') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, cent.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral centroid is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral centroid is only defined ' 'with non-negative energies') # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) if freq.ndim == 1: freq = freq.reshape((-1, 1)) # Column-normalize S return np.sum(freq * util.normalize(S, norm=1, axis=0), axis=0, keepdims=True)
[ "Compute", "the", "spectral", "centroid", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L38-L168
[ "def", "spectral_centroid", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "freq", "=", "None", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ")", ":", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "if", "not", "np", ".", "isrealobj", "(", "S", ")", ":", "raise", "ParameterError", "(", "'Spectral centroid is only defined '", "'with real-valued input'", ")", "elif", "np", ".", "any", "(", "S", "<", "0", ")", ":", "raise", "ParameterError", "(", "'Spectral centroid is only defined '", "'with non-negative energies'", ")", "# Compute the center frequencies of each bin", "if", "freq", "is", "None", ":", "freq", "=", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "if", "freq", ".", "ndim", "==", "1", ":", "freq", "=", "freq", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "# Column-normalize S", "return", "np", ".", "sum", "(", "freq", "*", "util", ".", "normalize", "(", "S", ",", "norm", "=", "1", ",", "axis", "=", "0", ")", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247