partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
spectral_bandwidth
Compute p'th-order spectral bandwidth: (sum_k S[k] * (freq[k] - centroid)**p)**(1/p) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` centroid : None or np.ndarray [shape=(1, t)] pre-computed centroid frequencies norm : bool Normalize per-frame spectral energy (sum to one) p : float > 0 Power to raise deviation from spectral centroid. Returns ------- bandwidth : np.ndarray [shape=(1, t)] frequency bandwidth for each frame Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr) >>> spec_bw array([[ 3379.878, 1429.486, ..., 3235.214, 3080.148]]) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y=y)) >>> librosa.feature.spectral_bandwidth(S=S) array([[ 3379.878, 1429.486, ..., 3235.214, 3080.148]]) Using variable bin center frequencies >>> if_gram, D = librosa.ifgram(y) >>> librosa.feature.spectral_bandwidth(S=np.abs(D), freq=if_gram) array([[ 3380.011, 1429.11 , ..., 3235.22 , 3080.148]]) Plot the result >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(spec_bw.T, label='Spectral bandwidth') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, spec_bw.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout()
librosa/feature/spectral.py
def spectral_bandwidth(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freq=None, centroid=None, norm=True, p=2): '''Compute p'th-order spectral bandwidth: (sum_k S[k] * (freq[k] - centroid)**p)**(1/p) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` centroid : None or np.ndarray [shape=(1, t)] pre-computed centroid frequencies norm : bool Normalize per-frame spectral energy (sum to one) p : float > 0 Power to raise deviation from spectral centroid. Returns ------- bandwidth : np.ndarray [shape=(1, t)] frequency bandwidth for each frame Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr) >>> spec_bw array([[ 3379.878, 1429.486, ..., 3235.214, 3080.148]]) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y=y)) >>> librosa.feature.spectral_bandwidth(S=S) array([[ 3379.878, 1429.486, ..., 3235.214, 3080.148]]) Using variable bin center frequencies >>> if_gram, D = librosa.ifgram(y) >>> librosa.feature.spectral_bandwidth(S=np.abs(D), freq=if_gram) array([[ 3380.011, 1429.11 , ..., 3235.22 , 3080.148]]) Plot the result >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(spec_bw.T, label='Spectral bandwidth') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, spec_bw.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral bandwidth is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral bandwidth is only defined ' 'with non-negative energies') if centroid is None: centroid = spectral_centroid(y=y, sr=sr, S=S, n_fft=n_fft, hop_length=hop_length, freq=freq) # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) if freq.ndim == 1: deviation = np.abs(np.subtract.outer(freq, centroid[0])) else: deviation = np.abs(freq - centroid[0]) # Column-normalize S if norm: S = util.normalize(S, norm=1, axis=0) return np.sum(S * deviation**p, axis=0, keepdims=True)**(1./p)
def spectral_bandwidth(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freq=None, centroid=None, norm=True, p=2): '''Compute p'th-order spectral bandwidth: (sum_k S[k] * (freq[k] - centroid)**p)**(1/p) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` centroid : None or np.ndarray [shape=(1, t)] pre-computed centroid frequencies norm : bool Normalize per-frame spectral energy (sum to one) p : float > 0 Power to raise deviation from spectral centroid. Returns ------- bandwidth : np.ndarray [shape=(1, t)] frequency bandwidth for each frame Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr) >>> spec_bw array([[ 3379.878, 1429.486, ..., 3235.214, 3080.148]]) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y=y)) >>> librosa.feature.spectral_bandwidth(S=S) array([[ 3379.878, 1429.486, ..., 3235.214, 3080.148]]) Using variable bin center frequencies >>> if_gram, D = librosa.ifgram(y) >>> librosa.feature.spectral_bandwidth(S=np.abs(D), freq=if_gram) array([[ 3380.011, 1429.11 , ..., 3235.22 , 3080.148]]) Plot the result >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(spec_bw.T, label='Spectral bandwidth') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, spec_bw.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral bandwidth is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral bandwidth is only defined ' 'with non-negative energies') if centroid is None: centroid = spectral_centroid(y=y, sr=sr, S=S, n_fft=n_fft, hop_length=hop_length, freq=freq) # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) if freq.ndim == 1: deviation = np.abs(np.subtract.outer(freq, centroid[0])) else: deviation = np.abs(freq - centroid[0]) # Column-normalize S if norm: S = util.normalize(S, norm=1, axis=0) return np.sum(S * deviation**p, axis=0, keepdims=True)**(1./p)
[ "Compute", "p", "th", "-", "order", "spectral", "bandwidth", ":" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L171-L311
[ "def", "spectral_bandwidth", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "freq", "=", "None", ",", "centroid", "=", "None", ",", "norm", "=", "True", ",", "p", "=", "2", ")", ":", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "if", "not", "np", ".", "isrealobj", "(", "S", ")", ":", "raise", "ParameterError", "(", "'Spectral bandwidth is only defined '", "'with real-valued input'", ")", "elif", "np", ".", "any", "(", "S", "<", "0", ")", ":", "raise", "ParameterError", "(", "'Spectral bandwidth is only defined '", "'with non-negative energies'", ")", "if", "centroid", "is", "None", ":", "centroid", "=", "spectral_centroid", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "freq", "=", "freq", ")", "# Compute the center frequencies of each bin", "if", "freq", "is", "None", ":", "freq", "=", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "if", "freq", ".", "ndim", "==", "1", ":", "deviation", "=", "np", ".", "abs", "(", "np", ".", "subtract", ".", "outer", "(", "freq", ",", "centroid", "[", "0", "]", ")", ")", "else", ":", "deviation", "=", "np", ".", "abs", "(", "freq", "-", "centroid", "[", "0", "]", ")", "# Column-normalize S", "if", "norm", ":", "S", "=", "util", ".", "normalize", "(", "S", ",", "norm", "=", "1", ",", "axis", "=", "0", ")", "return", "np", ".", "sum", "(", "S", "*", "deviation", "**", "p", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")", "**", "(", "1.", "/", "p", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
spectral_contrast
Compute spectral contrast [1]_ .. [1] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, and Lian-Hong Cai. "Music type classification by spectral contrast feature." In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on, vol. 1, pp. 113-116. IEEE, 2002. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies. fmin : float > 0 Frequency cutoff for the first bin `[0, fmin]` Subsequent bins will cover `[fmin, 2*fmin]`, `[2*fmin, 4*fmin]`, etc. n_bands : int > 1 number of frequency bands quantile : float in (0, 1) quantile for determining peaks and valleys linear : bool If `True`, return the linear difference of magnitudes: `peaks - valleys`. If `False`, return the logarithmic difference: `log(peaks) - log(valleys)`. Returns ------- contrast : np.ndarray [shape=(n_bands + 1, t)] each row of spectral contrast values corresponds to a given octave-based frequency Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> contrast = librosa.feature.spectral_contrast(S=S, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(contrast, x_axis='time') >>> plt.colorbar() >>> plt.ylabel('Frequency bands') >>> plt.title('Spectral contrast') >>> plt.tight_layout()
librosa/feature/spectral.py
def spectral_contrast(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freq=None, fmin=200.0, n_bands=6, quantile=0.02, linear=False): '''Compute spectral contrast [1]_ .. [1] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, and Lian-Hong Cai. "Music type classification by spectral contrast feature." In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on, vol. 1, pp. 113-116. IEEE, 2002. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies. fmin : float > 0 Frequency cutoff for the first bin `[0, fmin]` Subsequent bins will cover `[fmin, 2*fmin]`, `[2*fmin, 4*fmin]`, etc. n_bands : int > 1 number of frequency bands quantile : float in (0, 1) quantile for determining peaks and valleys linear : bool If `True`, return the linear difference of magnitudes: `peaks - valleys`. If `False`, return the logarithmic difference: `log(peaks) - log(valleys)`. Returns ------- contrast : np.ndarray [shape=(n_bands + 1, t)] each row of spectral contrast values corresponds to a given octave-based frequency Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> contrast = librosa.feature.spectral_contrast(S=S, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(contrast, x_axis='time') >>> plt.colorbar() >>> plt.ylabel('Frequency bands') >>> plt.title('Spectral contrast') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) freq = np.atleast_1d(freq) if freq.ndim != 1 or len(freq) != S.shape[0]: raise ParameterError('freq.shape mismatch: expected ' '({:d},)'.format(S.shape[0])) if n_bands < 1 or not isinstance(n_bands, int): raise ParameterError('n_bands must be a positive integer') if not 0.0 < quantile < 1.0: raise ParameterError('quantile must lie in the range (0, 1)') if fmin <= 0: raise ParameterError('fmin must be a positive number') octa = np.zeros(n_bands + 2) octa[1:] = fmin * (2.0**np.arange(0, n_bands + 1)) if np.any(octa[:-1] >= 0.5 * sr): raise ParameterError('Frequency band exceeds Nyquist. ' 'Reduce either fmin or n_bands.') valley = np.zeros((n_bands + 1, S.shape[1])) peak = np.zeros_like(valley) for k, (f_low, f_high) in enumerate(zip(octa[:-1], octa[1:])): current_band = np.logical_and(freq >= f_low, freq <= f_high) idx = np.flatnonzero(current_band) if k > 0: current_band[idx[0] - 1] = True if k == n_bands: current_band[idx[-1] + 1:] = True sub_band = S[current_band] if k < n_bands: sub_band = sub_band[:-1] # Always take at least one bin from each side idx = np.rint(quantile * np.sum(current_band)) idx = int(np.maximum(idx, 1)) sortedr = np.sort(sub_band, axis=0) valley[k] = np.mean(sortedr[:idx], axis=0) peak[k] = np.mean(sortedr[-idx:], axis=0) if linear: return peak - valley else: return power_to_db(peak) - power_to_db(valley)
def spectral_contrast(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freq=None, fmin=200.0, n_bands=6, quantile=0.02, linear=False): '''Compute spectral contrast [1]_ .. [1] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, and Lian-Hong Cai. "Music type classification by spectral contrast feature." In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on, vol. 1, pp. 113-116. IEEE, 2002. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies. fmin : float > 0 Frequency cutoff for the first bin `[0, fmin]` Subsequent bins will cover `[fmin, 2*fmin]`, `[2*fmin, 4*fmin]`, etc. n_bands : int > 1 number of frequency bands quantile : float in (0, 1) quantile for determining peaks and valleys linear : bool If `True`, return the linear difference of magnitudes: `peaks - valleys`. If `False`, return the logarithmic difference: `log(peaks) - log(valleys)`. Returns ------- contrast : np.ndarray [shape=(n_bands + 1, t)] each row of spectral contrast values corresponds to a given octave-based frequency Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> contrast = librosa.feature.spectral_contrast(S=S, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(contrast, x_axis='time') >>> plt.colorbar() >>> plt.ylabel('Frequency bands') >>> plt.title('Spectral contrast') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) freq = np.atleast_1d(freq) if freq.ndim != 1 or len(freq) != S.shape[0]: raise ParameterError('freq.shape mismatch: expected ' '({:d},)'.format(S.shape[0])) if n_bands < 1 or not isinstance(n_bands, int): raise ParameterError('n_bands must be a positive integer') if not 0.0 < quantile < 1.0: raise ParameterError('quantile must lie in the range (0, 1)') if fmin <= 0: raise ParameterError('fmin must be a positive number') octa = np.zeros(n_bands + 2) octa[1:] = fmin * (2.0**np.arange(0, n_bands + 1)) if np.any(octa[:-1] >= 0.5 * sr): raise ParameterError('Frequency band exceeds Nyquist. ' 'Reduce either fmin or n_bands.') valley = np.zeros((n_bands + 1, S.shape[1])) peak = np.zeros_like(valley) for k, (f_low, f_high) in enumerate(zip(octa[:-1], octa[1:])): current_band = np.logical_and(freq >= f_low, freq <= f_high) idx = np.flatnonzero(current_band) if k > 0: current_band[idx[0] - 1] = True if k == n_bands: current_band[idx[-1] + 1:] = True sub_band = S[current_band] if k < n_bands: sub_band = sub_band[:-1] # Always take at least one bin from each side idx = np.rint(quantile * np.sum(current_band)) idx = int(np.maximum(idx, 1)) sortedr = np.sort(sub_band, axis=0) valley[k] = np.mean(sortedr[:idx], axis=0) peak[k] = np.mean(sortedr[-idx:], axis=0) if linear: return peak - valley else: return power_to_db(peak) - power_to_db(valley)
[ "Compute", "spectral", "contrast", "[", "1", "]", "_" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L314-L481
[ "def", "spectral_contrast", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "freq", "=", "None", ",", "fmin", "=", "200.0", ",", "n_bands", "=", "6", ",", "quantile", "=", "0.02", ",", "linear", "=", "False", ")", ":", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "# Compute the center frequencies of each bin", "if", "freq", "is", "None", ":", "freq", "=", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "freq", "=", "np", ".", "atleast_1d", "(", "freq", ")", "if", "freq", ".", "ndim", "!=", "1", "or", "len", "(", "freq", ")", "!=", "S", ".", "shape", "[", "0", "]", ":", "raise", "ParameterError", "(", "'freq.shape mismatch: expected '", "'({:d},)'", ".", "format", "(", "S", ".", "shape", "[", "0", "]", ")", ")", "if", "n_bands", "<", "1", "or", "not", "isinstance", "(", "n_bands", ",", "int", ")", ":", "raise", "ParameterError", "(", "'n_bands must be a positive integer'", ")", "if", "not", "0.0", "<", "quantile", "<", "1.0", ":", "raise", "ParameterError", "(", "'quantile must lie in the range (0, 1)'", ")", "if", "fmin", "<=", "0", ":", "raise", "ParameterError", "(", "'fmin must be a positive number'", ")", "octa", "=", "np", ".", "zeros", "(", "n_bands", "+", "2", ")", "octa", "[", "1", ":", "]", "=", "fmin", "*", "(", "2.0", "**", "np", ".", "arange", "(", "0", ",", "n_bands", "+", "1", ")", ")", "if", "np", ".", "any", "(", "octa", "[", ":", "-", "1", "]", ">=", "0.5", "*", "sr", ")", ":", "raise", "ParameterError", "(", "'Frequency band exceeds Nyquist. '", "'Reduce either fmin or n_bands.'", ")", "valley", "=", "np", ".", "zeros", "(", "(", "n_bands", "+", "1", ",", "S", ".", "shape", "[", "1", "]", ")", ")", "peak", "=", "np", ".", "zeros_like", "(", "valley", ")", "for", "k", ",", "(", "f_low", ",", "f_high", ")", "in", "enumerate", "(", "zip", "(", "octa", "[", ":", "-", "1", "]", ",", "octa", "[", "1", ":", "]", ")", ")", ":", "current_band", "=", "np", ".", "logical_and", "(", "freq", ">=", "f_low", ",", "freq", "<=", "f_high", ")", "idx", "=", "np", ".", "flatnonzero", "(", "current_band", ")", "if", "k", ">", "0", ":", "current_band", "[", "idx", "[", "0", "]", "-", "1", "]", "=", "True", "if", "k", "==", "n_bands", ":", "current_band", "[", "idx", "[", "-", "1", "]", "+", "1", ":", "]", "=", "True", "sub_band", "=", "S", "[", "current_band", "]", "if", "k", "<", "n_bands", ":", "sub_band", "=", "sub_band", "[", ":", "-", "1", "]", "# Always take at least one bin from each side", "idx", "=", "np", ".", "rint", "(", "quantile", "*", "np", ".", "sum", "(", "current_band", ")", ")", "idx", "=", "int", "(", "np", ".", "maximum", "(", "idx", ",", "1", ")", ")", "sortedr", "=", "np", ".", "sort", "(", "sub_band", ",", "axis", "=", "0", ")", "valley", "[", "k", "]", "=", "np", ".", "mean", "(", "sortedr", "[", ":", "idx", "]", ",", "axis", "=", "0", ")", "peak", "[", "k", "]", "=", "np", ".", "mean", "(", "sortedr", "[", "-", "idx", ":", "]", ",", "axis", "=", "0", ")", "if", "linear", ":", "return", "peak", "-", "valley", "else", ":", "return", "power_to_db", "(", "peak", ")", "-", "power_to_db", "(", "valley", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
spectral_rolloff
Compute roll-off frequency. The roll-off frequency is defined for each frame as the center frequency for a spectrogram bin such that at least roll_percent (0.85 by default) of the energy of the spectrum in this frame is contained in this bin and the bins below. This can be used to, e.g., approximate the maximum (or minimum) frequency by setting roll_percent to a value close to 1 (or 0). Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, .. note:: `freq` is assumed to be sorted in increasing order roll_percent : float [0 < roll_percent < 1] Roll-off percentage. Returns ------- rolloff : np.ndarray [shape=(1, t)] roll-off frequency for each frame Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> # Approximate maximum frequencies with roll_percent=0.85 (default) >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr) >>> rolloff array([[ 8376.416, 968.994, ..., 8925.513, 9108.545]]) >>> # Approximate minimum frequencies with roll_percent=0.1 >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.1) >>> rolloff array([[ 75.36621094, 64.59960938, 64.59960938, ..., 75.36621094, 75.36621094, 64.59960938]]) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_rolloff(S=S, sr=sr) array([[ 8376.416, 968.994, ..., 8925.513, 9108.545]]) >>> # With a higher roll percentage: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.95) array([[ 10012.939, 3003.882, ..., 10034.473, 10077.539]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(rolloff.T, label='Roll-off frequency') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, rolloff.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout()
librosa/feature/spectral.py
def spectral_rolloff(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freq=None, roll_percent=0.85): '''Compute roll-off frequency. The roll-off frequency is defined for each frame as the center frequency for a spectrogram bin such that at least roll_percent (0.85 by default) of the energy of the spectrum in this frame is contained in this bin and the bins below. This can be used to, e.g., approximate the maximum (or minimum) frequency by setting roll_percent to a value close to 1 (or 0). Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, .. note:: `freq` is assumed to be sorted in increasing order roll_percent : float [0 < roll_percent < 1] Roll-off percentage. Returns ------- rolloff : np.ndarray [shape=(1, t)] roll-off frequency for each frame Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> # Approximate maximum frequencies with roll_percent=0.85 (default) >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr) >>> rolloff array([[ 8376.416, 968.994, ..., 8925.513, 9108.545]]) >>> # Approximate minimum frequencies with roll_percent=0.1 >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.1) >>> rolloff array([[ 75.36621094, 64.59960938, 64.59960938, ..., 75.36621094, 75.36621094, 64.59960938]]) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_rolloff(S=S, sr=sr) array([[ 8376.416, 968.994, ..., 8925.513, 9108.545]]) >>> # With a higher roll percentage: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.95) array([[ 10012.939, 3003.882, ..., 10034.473, 10077.539]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(rolloff.T, label='Roll-off frequency') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, rolloff.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() ''' if not 0.0 < roll_percent < 1.0: raise ParameterError('roll_percent must lie in the range (0, 1)') S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral rolloff is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral rolloff is only defined ' 'with non-negative energies') # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) # Make sure that frequency can be broadcast if freq.ndim == 1: freq = freq.reshape((-1, 1)) total_energy = np.cumsum(S, axis=0) threshold = roll_percent * total_energy[-1] ind = np.where(total_energy < threshold, np.nan, 1) return np.nanmin(ind * freq, axis=0, keepdims=True)
def spectral_rolloff(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', freq=None, roll_percent=0.85): '''Compute roll-off frequency. The roll-off frequency is defined for each frame as the center frequency for a spectrogram bin such that at least roll_percent (0.85 by default) of the energy of the spectrum in this frame is contained in this bin and the bins below. This can be used to, e.g., approximate the maximum (or minimum) frequency by setting roll_percent to a value close to 1 (or 0). Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, .. note:: `freq` is assumed to be sorted in increasing order roll_percent : float [0 < roll_percent < 1] Roll-off percentage. Returns ------- rolloff : np.ndarray [shape=(1, t)] roll-off frequency for each frame Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> # Approximate maximum frequencies with roll_percent=0.85 (default) >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr) >>> rolloff array([[ 8376.416, 968.994, ..., 8925.513, 9108.545]]) >>> # Approximate minimum frequencies with roll_percent=0.1 >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.1) >>> rolloff array([[ 75.36621094, 64.59960938, 64.59960938, ..., 75.36621094, 75.36621094, 64.59960938]]) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_rolloff(S=S, sr=sr) array([[ 8376.416, 968.994, ..., 8925.513, 9108.545]]) >>> # With a higher roll percentage: >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.95) array([[ 10012.939, 3003.882, ..., 10034.473, 10077.539]]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(rolloff.T, label='Roll-off frequency') >>> plt.ylabel('Hz') >>> plt.xticks([]) >>> plt.xlim([0, rolloff.shape[-1]]) >>> plt.legend() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() ''' if not 0.0 < roll_percent < 1.0: raise ParameterError('roll_percent must lie in the range (0, 1)') S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral rolloff is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral rolloff is only defined ' 'with non-negative energies') # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) # Make sure that frequency can be broadcast if freq.ndim == 1: freq = freq.reshape((-1, 1)) total_energy = np.cumsum(S, axis=0) threshold = roll_percent * total_energy[-1] ind = np.where(total_energy < threshold, np.nan, 1) return np.nanmin(ind * freq, axis=0, keepdims=True)
[ "Compute", "roll", "-", "off", "frequency", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L484-L623
[ "def", "spectral_rolloff", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "freq", "=", "None", ",", "roll_percent", "=", "0.85", ")", ":", "if", "not", "0.0", "<", "roll_percent", "<", "1.0", ":", "raise", "ParameterError", "(", "'roll_percent must lie in the range (0, 1)'", ")", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "if", "not", "np", ".", "isrealobj", "(", "S", ")", ":", "raise", "ParameterError", "(", "'Spectral rolloff is only defined '", "'with real-valued input'", ")", "elif", "np", ".", "any", "(", "S", "<", "0", ")", ":", "raise", "ParameterError", "(", "'Spectral rolloff is only defined '", "'with non-negative energies'", ")", "# Compute the center frequencies of each bin", "if", "freq", "is", "None", ":", "freq", "=", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "# Make sure that frequency can be broadcast", "if", "freq", ".", "ndim", "==", "1", ":", "freq", "=", "freq", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "total_energy", "=", "np", ".", "cumsum", "(", "S", ",", "axis", "=", "0", ")", "threshold", "=", "roll_percent", "*", "total_energy", "[", "-", "1", "]", "ind", "=", "np", ".", "where", "(", "total_energy", "<", "threshold", ",", "np", ".", "nan", ",", "1", ")", "return", "np", ".", "nanmin", "(", "ind", "*", "freq", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
spectral_flatness
Compute spectral flatness Spectral flatness (or tonality coefficient) is a measure to quantify how much noise-like a sound is, as opposed to being tone-like [1]_. A high spectral flatness (closer to 1.0) indicates the spectrum is similar to white noise. It is often converted to decibel. .. [1] Dubnov, Shlomo "Generalization of spectral flatness measure for non-gaussian linear processes" IEEE Signal Processing Letters, 2004, Vol. 11. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series S : np.ndarray [shape=(d, t)] or None (optional) pre-computed spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. amin : float > 0 [scalar] minimum threshold for `S` (=added noise floor for numerical stability) power : float > 0 [scalar] Exponent for the magnitude spectrogram. e.g., 1 for energy, 2 for power, etc. Power spectrogram is usually used for computing spectral flatness. Returns ------- flatness : np.ndarray [shape=(1, t)] spectral flatness for each frame. The returned value is in [0, 1] and often converted to dB scale. Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> flatness = librosa.feature.spectral_flatness(y=y) >>> flatness array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_flatness(S=S) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) From power spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> S_power = S ** 2 >>> librosa.feature.spectral_flatness(S=S_power, power=1.0) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32)
librosa/feature/spectral.py
def spectral_flatness(y=None, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', amin=1e-10, power=2.0): '''Compute spectral flatness Spectral flatness (or tonality coefficient) is a measure to quantify how much noise-like a sound is, as opposed to being tone-like [1]_. A high spectral flatness (closer to 1.0) indicates the spectrum is similar to white noise. It is often converted to decibel. .. [1] Dubnov, Shlomo "Generalization of spectral flatness measure for non-gaussian linear processes" IEEE Signal Processing Letters, 2004, Vol. 11. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series S : np.ndarray [shape=(d, t)] or None (optional) pre-computed spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. amin : float > 0 [scalar] minimum threshold for `S` (=added noise floor for numerical stability) power : float > 0 [scalar] Exponent for the magnitude spectrogram. e.g., 1 for energy, 2 for power, etc. Power spectrogram is usually used for computing spectral flatness. Returns ------- flatness : np.ndarray [shape=(1, t)] spectral flatness for each frame. The returned value is in [0, 1] and often converted to dB scale. Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> flatness = librosa.feature.spectral_flatness(y=y) >>> flatness array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_flatness(S=S) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) From power spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> S_power = S ** 2 >>> librosa.feature.spectral_flatness(S=S_power, power=1.0) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) ''' if amin <= 0: raise ParameterError('amin must be strictly positive') S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, power=1., win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral flatness is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral flatness is only defined ' 'with non-negative energies') S_thresh = np.maximum(amin, S ** power) gmean = np.exp(np.mean(np.log(S_thresh), axis=0, keepdims=True)) amean = np.mean(S_thresh, axis=0, keepdims=True) return gmean / amean
def spectral_flatness(y=None, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', amin=1e-10, power=2.0): '''Compute spectral flatness Spectral flatness (or tonality coefficient) is a measure to quantify how much noise-like a sound is, as opposed to being tone-like [1]_. A high spectral flatness (closer to 1.0) indicates the spectrum is similar to white noise. It is often converted to decibel. .. [1] Dubnov, Shlomo "Generalization of spectral flatness measure for non-gaussian linear processes" IEEE Signal Processing Letters, 2004, Vol. 11. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series S : np.ndarray [shape=(d, t)] or None (optional) pre-computed spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. amin : float > 0 [scalar] minimum threshold for `S` (=added noise floor for numerical stability) power : float > 0 [scalar] Exponent for the magnitude spectrogram. e.g., 1 for energy, 2 for power, etc. Power spectrogram is usually used for computing spectral flatness. Returns ------- flatness : np.ndarray [shape=(1, t)] spectral flatness for each frame. The returned value is in [0, 1] and often converted to dB scale. Examples -------- From time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> flatness = librosa.feature.spectral_flatness(y=y) >>> flatness array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) From spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_flatness(S=S) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) From power spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> S_power = S ** 2 >>> librosa.feature.spectral_flatness(S=S_power, power=1.0) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32) ''' if amin <= 0: raise ParameterError('amin must be strictly positive') S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, power=1., win_length=win_length, window=window, center=center, pad_mode=pad_mode) if not np.isrealobj(S): raise ParameterError('Spectral flatness is only defined ' 'with real-valued input') elif np.any(S < 0): raise ParameterError('Spectral flatness is only defined ' 'with non-negative energies') S_thresh = np.maximum(amin, S ** power) gmean = np.exp(np.mean(np.log(S_thresh), axis=0, keepdims=True)) amean = np.mean(S_thresh, axis=0, keepdims=True) return gmean / amean
[ "Compute", "spectral", "flatness" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L626-L737
[ "def", "spectral_flatness", "(", "y", "=", "None", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "amin", "=", "1e-10", ",", "power", "=", "2.0", ")", ":", "if", "amin", "<=", "0", ":", "raise", "ParameterError", "(", "'amin must be strictly positive'", ")", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "power", "=", "1.", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "if", "not", "np", ".", "isrealobj", "(", "S", ")", ":", "raise", "ParameterError", "(", "'Spectral flatness is only defined '", "'with real-valued input'", ")", "elif", "np", ".", "any", "(", "S", "<", "0", ")", ":", "raise", "ParameterError", "(", "'Spectral flatness is only defined '", "'with non-negative energies'", ")", "S_thresh", "=", "np", ".", "maximum", "(", "amin", ",", "S", "**", "power", ")", "gmean", "=", "np", ".", "exp", "(", "np", ".", "mean", "(", "np", ".", "log", "(", "S_thresh", ")", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")", ")", "amean", "=", "np", ".", "mean", "(", "S_thresh", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")", "return", "gmean", "/", "amean" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
rms
Compute root-mean-square (RMS) value for each frame, either from the audio samples `y` or from a spectrogram `S`. Computing the RMS value from audio samples is faster as it doesn't require a STFT calculation. However, using a spectrogram will give a more accurate representation of energy over time because its frames can be windowed, thus prefer using `S` if it's already available. Parameters ---------- y : np.ndarray [shape=(n,)] or None (optional) audio time series. Required if `S` is not input. S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude. Required if `y` is not input. frame_length : int > 0 [scalar] length of analysis frame (in samples) for energy calculation hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. center : bool If `True` and operating on time-domain input (`y`), pad the signal by `frame_length//2` on either side. If operating on spectrogram input, this has no effect. pad_mode : str Padding mode for centered analysis. See `np.pad` for valid values. Returns ------- rms : np.ndarray [shape=(1, t)] RMS value for each frame Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.rms(y=y) array([[ 0. , 0.056, ..., 0. , 0. ]], dtype=float32) Or from spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> rms = librosa.feature.rms(S=S) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(rms.T, label='RMS Energy') >>> plt.xticks([]) >>> plt.xlim([0, rms.shape[-1]]) >>> plt.legend(loc='best') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() Use a STFT window of constant ones and no frame centering to get consistent results with the RMS computed from the audio samples `y` >>> S = librosa.magphase(librosa.stft(y, window=np.ones, center=False))[0] >>> librosa.feature.rms(S=S)
librosa/feature/spectral.py
def rms(y=None, S=None, frame_length=2048, hop_length=512, center=True, pad_mode='reflect'): '''Compute root-mean-square (RMS) value for each frame, either from the audio samples `y` or from a spectrogram `S`. Computing the RMS value from audio samples is faster as it doesn't require a STFT calculation. However, using a spectrogram will give a more accurate representation of energy over time because its frames can be windowed, thus prefer using `S` if it's already available. Parameters ---------- y : np.ndarray [shape=(n,)] or None (optional) audio time series. Required if `S` is not input. S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude. Required if `y` is not input. frame_length : int > 0 [scalar] length of analysis frame (in samples) for energy calculation hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. center : bool If `True` and operating on time-domain input (`y`), pad the signal by `frame_length//2` on either side. If operating on spectrogram input, this has no effect. pad_mode : str Padding mode for centered analysis. See `np.pad` for valid values. Returns ------- rms : np.ndarray [shape=(1, t)] RMS value for each frame Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.rms(y=y) array([[ 0. , 0.056, ..., 0. , 0. ]], dtype=float32) Or from spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> rms = librosa.feature.rms(S=S) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(rms.T, label='RMS Energy') >>> plt.xticks([]) >>> plt.xlim([0, rms.shape[-1]]) >>> plt.legend(loc='best') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() Use a STFT window of constant ones and no frame centering to get consistent results with the RMS computed from the audio samples `y` >>> S = librosa.magphase(librosa.stft(y, window=np.ones, center=False))[0] >>> librosa.feature.rms(S=S) ''' if y is not None and S is not None: raise ValueError('Either `y` or `S` should be input.') if y is not None: y = to_mono(y) if center: y = np.pad(y, int(frame_length // 2), mode=pad_mode) x = util.frame(y, frame_length=frame_length, hop_length=hop_length) elif S is not None: x, _ = _spectrogram(y=y, S=S, n_fft=frame_length, hop_length=hop_length) else: raise ValueError('Either `y` or `S` must be input.') return np.sqrt(np.mean(np.abs(x)**2, axis=0, keepdims=True))
def rms(y=None, S=None, frame_length=2048, hop_length=512, center=True, pad_mode='reflect'): '''Compute root-mean-square (RMS) value for each frame, either from the audio samples `y` or from a spectrogram `S`. Computing the RMS value from audio samples is faster as it doesn't require a STFT calculation. However, using a spectrogram will give a more accurate representation of energy over time because its frames can be windowed, thus prefer using `S` if it's already available. Parameters ---------- y : np.ndarray [shape=(n,)] or None (optional) audio time series. Required if `S` is not input. S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude. Required if `y` is not input. frame_length : int > 0 [scalar] length of analysis frame (in samples) for energy calculation hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. center : bool If `True` and operating on time-domain input (`y`), pad the signal by `frame_length//2` on either side. If operating on spectrogram input, this has no effect. pad_mode : str Padding mode for centered analysis. See `np.pad` for valid values. Returns ------- rms : np.ndarray [shape=(1, t)] RMS value for each frame Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.rms(y=y) array([[ 0. , 0.056, ..., 0. , 0. ]], dtype=float32) Or from spectrogram input >>> S, phase = librosa.magphase(librosa.stft(y)) >>> rms = librosa.feature.rms(S=S) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> plt.semilogy(rms.T, label='RMS Energy') >>> plt.xticks([]) >>> plt.xlim([0, rms.shape[-1]]) >>> plt.legend(loc='best') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.title('log Power spectrogram') >>> plt.tight_layout() Use a STFT window of constant ones and no frame centering to get consistent results with the RMS computed from the audio samples `y` >>> S = librosa.magphase(librosa.stft(y, window=np.ones, center=False))[0] >>> librosa.feature.rms(S=S) ''' if y is not None and S is not None: raise ValueError('Either `y` or `S` should be input.') if y is not None: y = to_mono(y) if center: y = np.pad(y, int(frame_length // 2), mode=pad_mode) x = util.frame(y, frame_length=frame_length, hop_length=hop_length) elif S is not None: x, _ = _spectrogram(y=y, S=S, n_fft=frame_length, hop_length=hop_length) else: raise ValueError('Either `y` or `S` must be input.') return np.sqrt(np.mean(np.abs(x)**2, axis=0, keepdims=True))
[ "Compute", "root", "-", "mean", "-", "square", "(", "RMS", ")", "value", "for", "each", "frame", "either", "from", "the", "audio", "samples", "y", "or", "from", "a", "spectrogram", "S", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L740-L828
[ "def", "rms", "(", "y", "=", "None", ",", "S", "=", "None", ",", "frame_length", "=", "2048", ",", "hop_length", "=", "512", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ")", ":", "if", "y", "is", "not", "None", "and", "S", "is", "not", "None", ":", "raise", "ValueError", "(", "'Either `y` or `S` should be input.'", ")", "if", "y", "is", "not", "None", ":", "y", "=", "to_mono", "(", "y", ")", "if", "center", ":", "y", "=", "np", ".", "pad", "(", "y", ",", "int", "(", "frame_length", "//", "2", ")", ",", "mode", "=", "pad_mode", ")", "x", "=", "util", ".", "frame", "(", "y", ",", "frame_length", "=", "frame_length", ",", "hop_length", "=", "hop_length", ")", "elif", "S", "is", "not", "None", ":", "x", ",", "_", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "frame_length", ",", "hop_length", "=", "hop_length", ")", "else", ":", "raise", "ValueError", "(", "'Either `y` or `S` must be input.'", ")", "return", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "np", ".", "abs", "(", "x", ")", "**", "2", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
poly_features
Get coefficients of fitting an nth-order polynomial to the columns of a spectrogram. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. order : int > 0 order of the polynomial to fit freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` Returns ------- coefficients : np.ndarray [shape=(order+1, t)] polynomial coefficients for each frame. `coeffecients[0]` corresponds to the highest degree (`order`), `coefficients[1]` corresponds to the next highest degree (`order-1`), down to the constant term `coefficients[order]`. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) Fit a degree-0 polynomial (constant) to each frame >>> p0 = librosa.feature.poly_features(S=S, order=0) Fit a linear polynomial to each frame >>> p1 = librosa.feature.poly_features(S=S, order=1) Fit a quadratic to each frame >>> p2 = librosa.feature.poly_features(S=S, order=2) Plot the results for comparison >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> ax = plt.subplot(4,1,1) >>> plt.plot(p2[2], label='order=2', alpha=0.8) >>> plt.plot(p1[1], label='order=1', alpha=0.8) >>> plt.plot(p0[0], label='order=0', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Constant') >>> plt.legend() >>> plt.subplot(4,1,2, sharex=ax) >>> plt.plot(p2[1], label='order=2', alpha=0.8) >>> plt.plot(p1[0], label='order=1', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Linear') >>> plt.subplot(4,1,3, sharex=ax) >>> plt.plot(p2[0], label='order=2', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Quadratic') >>> plt.subplot(4,1,4, sharex=ax) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log') >>> plt.tight_layout()
librosa/feature/spectral.py
def poly_features(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', order=1, freq=None): '''Get coefficients of fitting an nth-order polynomial to the columns of a spectrogram. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. order : int > 0 order of the polynomial to fit freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` Returns ------- coefficients : np.ndarray [shape=(order+1, t)] polynomial coefficients for each frame. `coeffecients[0]` corresponds to the highest degree (`order`), `coefficients[1]` corresponds to the next highest degree (`order-1`), down to the constant term `coefficients[order]`. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) Fit a degree-0 polynomial (constant) to each frame >>> p0 = librosa.feature.poly_features(S=S, order=0) Fit a linear polynomial to each frame >>> p1 = librosa.feature.poly_features(S=S, order=1) Fit a quadratic to each frame >>> p2 = librosa.feature.poly_features(S=S, order=2) Plot the results for comparison >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> ax = plt.subplot(4,1,1) >>> plt.plot(p2[2], label='order=2', alpha=0.8) >>> plt.plot(p1[1], label='order=1', alpha=0.8) >>> plt.plot(p0[0], label='order=0', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Constant') >>> plt.legend() >>> plt.subplot(4,1,2, sharex=ax) >>> plt.plot(p2[1], label='order=2', alpha=0.8) >>> plt.plot(p1[0], label='order=1', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Linear') >>> plt.subplot(4,1,3, sharex=ax) >>> plt.plot(p2[0], label='order=2', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Quadratic') >>> plt.subplot(4,1,4, sharex=ax) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) # If frequencies are constant over frames, then we only need to fit once if freq.ndim == 1: coefficients = np.polyfit(freq, S, order) else: # Else, fit each frame independently and stack the results coefficients = np.concatenate([[np.polyfit(freq[:, i], S[:, i], order)] for i in range(S.shape[1])], axis=0).T return coefficients
def poly_features(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', order=1, freq=None): '''Get coefficients of fitting an nth-order polynomial to the columns of a spectrogram. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. order : int > 0 order of the polynomial to fit freq : None or np.ndarray [shape=(d,) or shape=(d, t)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies, or a matrix of center frequencies as constructed by `librosa.core.ifgram` Returns ------- coefficients : np.ndarray [shape=(order+1, t)] polynomial coefficients for each frame. `coeffecients[0]` corresponds to the highest degree (`order`), `coefficients[1]` corresponds to the next highest degree (`order-1`), down to the constant term `coefficients[order]`. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) Fit a degree-0 polynomial (constant) to each frame >>> p0 = librosa.feature.poly_features(S=S, order=0) Fit a linear polynomial to each frame >>> p1 = librosa.feature.poly_features(S=S, order=1) Fit a quadratic to each frame >>> p2 = librosa.feature.poly_features(S=S, order=2) Plot the results for comparison >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> ax = plt.subplot(4,1,1) >>> plt.plot(p2[2], label='order=2', alpha=0.8) >>> plt.plot(p1[1], label='order=1', alpha=0.8) >>> plt.plot(p0[0], label='order=0', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Constant') >>> plt.legend() >>> plt.subplot(4,1,2, sharex=ax) >>> plt.plot(p2[1], label='order=2', alpha=0.8) >>> plt.plot(p1[0], label='order=1', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Linear') >>> plt.subplot(4,1,3, sharex=ax) >>> plt.plot(p2[0], label='order=2', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Quadratic') >>> plt.subplot(4,1,4, sharex=ax) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log') >>> plt.tight_layout() ''' S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Compute the center frequencies of each bin if freq is None: freq = fft_frequencies(sr=sr, n_fft=n_fft) # If frequencies are constant over frames, then we only need to fit once if freq.ndim == 1: coefficients = np.polyfit(freq, S, order) else: # Else, fit each frame independently and stack the results coefficients = np.concatenate([[np.polyfit(freq[:, i], S[:, i], order)] for i in range(S.shape[1])], axis=0).T return coefficients
[ "Get", "coefficients", "of", "fitting", "an", "nth", "-", "order", "polynomial", "to", "the", "columns", "of", "a", "spectrogram", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L831-L958
[ "def", "poly_features", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "order", "=", "1", ",", "freq", "=", "None", ")", ":", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "# Compute the center frequencies of each bin", "if", "freq", "is", "None", ":", "freq", "=", "fft_frequencies", "(", "sr", "=", "sr", ",", "n_fft", "=", "n_fft", ")", "# If frequencies are constant over frames, then we only need to fit once", "if", "freq", ".", "ndim", "==", "1", ":", "coefficients", "=", "np", ".", "polyfit", "(", "freq", ",", "S", ",", "order", ")", "else", ":", "# Else, fit each frame independently and stack the results", "coefficients", "=", "np", ".", "concatenate", "(", "[", "[", "np", ".", "polyfit", "(", "freq", "[", ":", ",", "i", "]", ",", "S", "[", ":", ",", "i", "]", ",", "order", ")", "]", "for", "i", "in", "range", "(", "S", ".", "shape", "[", "1", "]", ")", "]", ",", "axis", "=", "0", ")", ".", "T", "return", "coefficients" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
zero_crossing_rate
Compute the zero-crossing rate of an audio time series. Parameters ---------- y : np.ndarray [shape=(n,)] Audio time series frame_length : int > 0 Length of the frame over which to compute zero crossing rates hop_length : int > 0 Number of samples to advance for each frame center : bool If `True`, frames are centered by padding the edges of `y`. This is similar to the padding in `librosa.core.stft`, but uses edge-value copies instead of reflection. kwargs : additional keyword arguments See `librosa.core.zero_crossings` .. note:: By default, the `pad` parameter is set to `False`, which differs from the default specified by `librosa.core.zero_crossings`. Returns ------- zcr : np.ndarray [shape=(1, t)] `zcr[0, i]` is the fraction of zero crossings in the `i` th frame See Also -------- librosa.core.zero_crossings Compute zero-crossings in a time-series Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.zero_crossing_rate(y) array([[ 0.134, 0.139, ..., 0.387, 0.322]])
librosa/feature/spectral.py
def zero_crossing_rate(y, frame_length=2048, hop_length=512, center=True, **kwargs): '''Compute the zero-crossing rate of an audio time series. Parameters ---------- y : np.ndarray [shape=(n,)] Audio time series frame_length : int > 0 Length of the frame over which to compute zero crossing rates hop_length : int > 0 Number of samples to advance for each frame center : bool If `True`, frames are centered by padding the edges of `y`. This is similar to the padding in `librosa.core.stft`, but uses edge-value copies instead of reflection. kwargs : additional keyword arguments See `librosa.core.zero_crossings` .. note:: By default, the `pad` parameter is set to `False`, which differs from the default specified by `librosa.core.zero_crossings`. Returns ------- zcr : np.ndarray [shape=(1, t)] `zcr[0, i]` is the fraction of zero crossings in the `i` th frame See Also -------- librosa.core.zero_crossings Compute zero-crossings in a time-series Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.zero_crossing_rate(y) array([[ 0.134, 0.139, ..., 0.387, 0.322]]) ''' util.valid_audio(y) if center: y = np.pad(y, int(frame_length // 2), mode='edge') y_framed = util.frame(y, frame_length, hop_length) kwargs['axis'] = 0 kwargs.setdefault('pad', False) crossings = zero_crossings(y_framed, **kwargs) return np.mean(crossings, axis=0, keepdims=True)
def zero_crossing_rate(y, frame_length=2048, hop_length=512, center=True, **kwargs): '''Compute the zero-crossing rate of an audio time series. Parameters ---------- y : np.ndarray [shape=(n,)] Audio time series frame_length : int > 0 Length of the frame over which to compute zero crossing rates hop_length : int > 0 Number of samples to advance for each frame center : bool If `True`, frames are centered by padding the edges of `y`. This is similar to the padding in `librosa.core.stft`, but uses edge-value copies instead of reflection. kwargs : additional keyword arguments See `librosa.core.zero_crossings` .. note:: By default, the `pad` parameter is set to `False`, which differs from the default specified by `librosa.core.zero_crossings`. Returns ------- zcr : np.ndarray [shape=(1, t)] `zcr[0, i]` is the fraction of zero crossings in the `i` th frame See Also -------- librosa.core.zero_crossings Compute zero-crossings in a time-series Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.zero_crossing_rate(y) array([[ 0.134, 0.139, ..., 0.387, 0.322]]) ''' util.valid_audio(y) if center: y = np.pad(y, int(frame_length // 2), mode='edge') y_framed = util.frame(y, frame_length, hop_length) kwargs['axis'] = 0 kwargs.setdefault('pad', False) crossings = zero_crossings(y_framed, **kwargs) return np.mean(crossings, axis=0, keepdims=True)
[ "Compute", "the", "zero", "-", "crossing", "rate", "of", "an", "audio", "time", "series", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L961-L1019
[ "def", "zero_crossing_rate", "(", "y", ",", "frame_length", "=", "2048", ",", "hop_length", "=", "512", ",", "center", "=", "True", ",", "*", "*", "kwargs", ")", ":", "util", ".", "valid_audio", "(", "y", ")", "if", "center", ":", "y", "=", "np", ".", "pad", "(", "y", ",", "int", "(", "frame_length", "//", "2", ")", ",", "mode", "=", "'edge'", ")", "y_framed", "=", "util", ".", "frame", "(", "y", ",", "frame_length", ",", "hop_length", ")", "kwargs", "[", "'axis'", "]", "=", "0", "kwargs", ".", "setdefault", "(", "'pad'", ",", "False", ")", "crossings", "=", "zero_crossings", "(", "y_framed", ",", "*", "*", "kwargs", ")", "return", "np", ".", "mean", "(", "crossings", ",", "axis", "=", "0", ",", "keepdims", "=", "True", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
chroma_stft
Compute a chromagram from a waveform or power spectrogram. This implementation is derived from `chromagram_E` [1]_ .. [1] Ellis, Daniel P.W. "Chroma feature analysis and synthesis" 2007/04/21 http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] or None power spectrogram norm : float or None Column-wise normalization. See `librosa.util.normalize` for details. If `None`, no normalization is performed. n_fft : int > 0 [scalar] FFT window size if provided `y, sr` instead of `S` hop_length : int > 0 [scalar] hop length if provided `y, sr` instead of `S` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. tuning : float in `[-0.5, 0.5)` [scalar] or None. Deviation from A440 tuning in fractional bins (cents). If `None`, it is automatically estimated. kwargs : additional keyword arguments Arguments to parameterize chroma filters. See `librosa.filters.chroma` for details. Returns ------- chromagram : np.ndarray [shape=(n_chroma, t)] Normalized energy for each chroma bin at each frame. See Also -------- librosa.filters.chroma Chroma filter bank construction librosa.util.normalize Vector normalization Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.chroma_stft(y=y, sr=sr) array([[ 0.974, 0.881, ..., 0.925, 1. ], [ 1. , 0.841, ..., 0.882, 0.878], ..., [ 0.658, 0.985, ..., 0.878, 0.764], [ 0.969, 0.92 , ..., 0.974, 0.915]]) Use an energy (magnitude) spectrum instead of power spectrogram >>> S = np.abs(librosa.stft(y)) >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr) >>> chroma array([[ 0.884, 0.91 , ..., 0.861, 0.858], [ 0.963, 0.785, ..., 0.968, 0.896], ..., [ 0.871, 1. , ..., 0.928, 0.829], [ 1. , 0.982, ..., 0.93 , 0.878]]) Use a pre-computed power spectrogram with a larger frame >>> S = np.abs(librosa.stft(y, n_fft=4096))**2 >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr) >>> chroma array([[ 0.685, 0.477, ..., 0.961, 0.986], [ 0.674, 0.452, ..., 0.952, 0.926], ..., [ 0.844, 0.575, ..., 0.934, 0.869], [ 0.793, 0.663, ..., 0.964, 0.972]]) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Chromagram') >>> plt.tight_layout()
librosa/feature/spectral.py
def chroma_stft(y=None, sr=22050, S=None, norm=np.inf, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', tuning=None, **kwargs): """Compute a chromagram from a waveform or power spectrogram. This implementation is derived from `chromagram_E` [1]_ .. [1] Ellis, Daniel P.W. "Chroma feature analysis and synthesis" 2007/04/21 http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] or None power spectrogram norm : float or None Column-wise normalization. See `librosa.util.normalize` for details. If `None`, no normalization is performed. n_fft : int > 0 [scalar] FFT window size if provided `y, sr` instead of `S` hop_length : int > 0 [scalar] hop length if provided `y, sr` instead of `S` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. tuning : float in `[-0.5, 0.5)` [scalar] or None. Deviation from A440 tuning in fractional bins (cents). If `None`, it is automatically estimated. kwargs : additional keyword arguments Arguments to parameterize chroma filters. See `librosa.filters.chroma` for details. Returns ------- chromagram : np.ndarray [shape=(n_chroma, t)] Normalized energy for each chroma bin at each frame. See Also -------- librosa.filters.chroma Chroma filter bank construction librosa.util.normalize Vector normalization Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.chroma_stft(y=y, sr=sr) array([[ 0.974, 0.881, ..., 0.925, 1. ], [ 1. , 0.841, ..., 0.882, 0.878], ..., [ 0.658, 0.985, ..., 0.878, 0.764], [ 0.969, 0.92 , ..., 0.974, 0.915]]) Use an energy (magnitude) spectrum instead of power spectrogram >>> S = np.abs(librosa.stft(y)) >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr) >>> chroma array([[ 0.884, 0.91 , ..., 0.861, 0.858], [ 0.963, 0.785, ..., 0.968, 0.896], ..., [ 0.871, 1. , ..., 0.928, 0.829], [ 1. , 0.982, ..., 0.93 , 0.878]]) Use a pre-computed power spectrogram with a larger frame >>> S = np.abs(librosa.stft(y, n_fft=4096))**2 >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr) >>> chroma array([[ 0.685, 0.477, ..., 0.961, 0.986], [ 0.674, 0.452, ..., 0.952, 0.926], ..., [ 0.844, 0.575, ..., 0.934, 0.869], [ 0.793, 0.663, ..., 0.964, 0.972]]) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Chromagram') >>> plt.tight_layout() """ S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, power=2, win_length=win_length, window=window, center=center, pad_mode=pad_mode) n_chroma = kwargs.get('n_chroma', 12) if tuning is None: tuning = estimate_tuning(S=S, sr=sr, bins_per_octave=n_chroma) # Get the filter bank if 'A440' not in kwargs: kwargs['A440'] = 440.0 * 2.0**(float(tuning) / n_chroma) chromafb = filters.chroma(sr, n_fft, **kwargs) # Compute raw chroma raw_chroma = np.dot(chromafb, S) # Compute normalization factor for each frame return util.normalize(raw_chroma, norm=norm, axis=0)
def chroma_stft(y=None, sr=22050, S=None, norm=np.inf, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', tuning=None, **kwargs): """Compute a chromagram from a waveform or power spectrogram. This implementation is derived from `chromagram_E` [1]_ .. [1] Ellis, Daniel P.W. "Chroma feature analysis and synthesis" 2007/04/21 http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] or None power spectrogram norm : float or None Column-wise normalization. See `librosa.util.normalize` for details. If `None`, no normalization is performed. n_fft : int > 0 [scalar] FFT window size if provided `y, sr` instead of `S` hop_length : int > 0 [scalar] hop length if provided `y, sr` instead of `S` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. tuning : float in `[-0.5, 0.5)` [scalar] or None. Deviation from A440 tuning in fractional bins (cents). If `None`, it is automatically estimated. kwargs : additional keyword arguments Arguments to parameterize chroma filters. See `librosa.filters.chroma` for details. Returns ------- chromagram : np.ndarray [shape=(n_chroma, t)] Normalized energy for each chroma bin at each frame. See Also -------- librosa.filters.chroma Chroma filter bank construction librosa.util.normalize Vector normalization Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.chroma_stft(y=y, sr=sr) array([[ 0.974, 0.881, ..., 0.925, 1. ], [ 1. , 0.841, ..., 0.882, 0.878], ..., [ 0.658, 0.985, ..., 0.878, 0.764], [ 0.969, 0.92 , ..., 0.974, 0.915]]) Use an energy (magnitude) spectrum instead of power spectrogram >>> S = np.abs(librosa.stft(y)) >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr) >>> chroma array([[ 0.884, 0.91 , ..., 0.861, 0.858], [ 0.963, 0.785, ..., 0.968, 0.896], ..., [ 0.871, 1. , ..., 0.928, 0.829], [ 1. , 0.982, ..., 0.93 , 0.878]]) Use a pre-computed power spectrogram with a larger frame >>> S = np.abs(librosa.stft(y, n_fft=4096))**2 >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr) >>> chroma array([[ 0.685, 0.477, ..., 0.961, 0.986], [ 0.674, 0.452, ..., 0.952, 0.926], ..., [ 0.844, 0.575, ..., 0.934, 0.869], [ 0.793, 0.663, ..., 0.964, 0.972]]) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Chromagram') >>> plt.tight_layout() """ S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, power=2, win_length=win_length, window=window, center=center, pad_mode=pad_mode) n_chroma = kwargs.get('n_chroma', 12) if tuning is None: tuning = estimate_tuning(S=S, sr=sr, bins_per_octave=n_chroma) # Get the filter bank if 'A440' not in kwargs: kwargs['A440'] = 440.0 * 2.0**(float(tuning) / n_chroma) chromafb = filters.chroma(sr, n_fft, **kwargs) # Compute raw chroma raw_chroma = np.dot(chromafb, S) # Compute normalization factor for each frame return util.normalize(raw_chroma, norm=norm, axis=0)
[ "Compute", "a", "chromagram", "from", "a", "waveform", "or", "power", "spectrogram", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L1023-L1162
[ "def", "chroma_stft", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "norm", "=", "np", ".", "inf", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "tuning", "=", "None", ",", "*", "*", "kwargs", ")", ":", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "power", "=", "2", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "n_chroma", "=", "kwargs", ".", "get", "(", "'n_chroma'", ",", "12", ")", "if", "tuning", "is", "None", ":", "tuning", "=", "estimate_tuning", "(", "S", "=", "S", ",", "sr", "=", "sr", ",", "bins_per_octave", "=", "n_chroma", ")", "# Get the filter bank", "if", "'A440'", "not", "in", "kwargs", ":", "kwargs", "[", "'A440'", "]", "=", "440.0", "*", "2.0", "**", "(", "float", "(", "tuning", ")", "/", "n_chroma", ")", "chromafb", "=", "filters", ".", "chroma", "(", "sr", ",", "n_fft", ",", "*", "*", "kwargs", ")", "# Compute raw chroma", "raw_chroma", "=", "np", ".", "dot", "(", "chromafb", ",", "S", ")", "# Compute normalization factor for each frame", "return", "util", ".", "normalize", "(", "raw_chroma", ",", "norm", "=", "norm", ",", "axis", "=", "0", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
chroma_cqt
r'''Constant-Q chromagram Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 sampling rate of `y` C : np.ndarray [shape=(d, t)] [Optional] a pre-computed constant-Q spectrogram hop_length : int > 0 number of samples between successive chroma frames fmin : float > 0 minimum frequency to analyze in the CQT. Default: 'C1' ~= 32.7 Hz norm : int > 0, +-np.inf, or None Column-wise normalization of the chromagram. threshold : float Pre-normalization energy threshold. Values below the threshold are discarded, resulting in a sparse chromagram. tuning : float Deviation (in cents) from A440 tuning n_chroma : int > 0 Number of chroma bins to produce n_octaves : int > 0 Number of octaves to analyze above `fmin` window : None or np.ndarray Optional window parameter to `filters.cq_to_chroma` bins_per_octave : int > 0 Number of bins per octave in the CQT. Default: matches `n_chroma` cqt_mode : ['full', 'hybrid'] Constant-Q transform mode Returns ------- chromagram : np.ndarray [shape=(n_chroma, t)] The output chromagram See Also -------- librosa.util.normalize librosa.core.cqt librosa.core.hybrid_cqt chroma_stft Examples -------- Compare a long-window STFT chromagram to the CQT chromagram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=15) >>> chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr, ... n_chroma=12, n_fft=4096) >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma_stft, y_axis='chroma') >>> plt.title('chroma_stft') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(chroma_cq, y_axis='chroma', x_axis='time') >>> plt.title('chroma_cqt') >>> plt.colorbar() >>> plt.tight_layout()
librosa/feature/spectral.py
def chroma_cqt(y=None, sr=22050, C=None, hop_length=512, fmin=None, norm=np.inf, threshold=0.0, tuning=None, n_chroma=12, n_octaves=7, window=None, bins_per_octave=None, cqt_mode='full'): r'''Constant-Q chromagram Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 sampling rate of `y` C : np.ndarray [shape=(d, t)] [Optional] a pre-computed constant-Q spectrogram hop_length : int > 0 number of samples between successive chroma frames fmin : float > 0 minimum frequency to analyze in the CQT. Default: 'C1' ~= 32.7 Hz norm : int > 0, +-np.inf, or None Column-wise normalization of the chromagram. threshold : float Pre-normalization energy threshold. Values below the threshold are discarded, resulting in a sparse chromagram. tuning : float Deviation (in cents) from A440 tuning n_chroma : int > 0 Number of chroma bins to produce n_octaves : int > 0 Number of octaves to analyze above `fmin` window : None or np.ndarray Optional window parameter to `filters.cq_to_chroma` bins_per_octave : int > 0 Number of bins per octave in the CQT. Default: matches `n_chroma` cqt_mode : ['full', 'hybrid'] Constant-Q transform mode Returns ------- chromagram : np.ndarray [shape=(n_chroma, t)] The output chromagram See Also -------- librosa.util.normalize librosa.core.cqt librosa.core.hybrid_cqt chroma_stft Examples -------- Compare a long-window STFT chromagram to the CQT chromagram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=15) >>> chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr, ... n_chroma=12, n_fft=4096) >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma_stft, y_axis='chroma') >>> plt.title('chroma_stft') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(chroma_cq, y_axis='chroma', x_axis='time') >>> plt.title('chroma_cqt') >>> plt.colorbar() >>> plt.tight_layout() ''' cqt_func = {'full': cqt, 'hybrid': hybrid_cqt} if bins_per_octave is None: bins_per_octave = n_chroma # Build the CQT if we don't have one already if C is None: C = np.abs(cqt_func[cqt_mode](y, sr=sr, hop_length=hop_length, fmin=fmin, n_bins=n_octaves * bins_per_octave, bins_per_octave=bins_per_octave, tuning=tuning)) # Map to chroma cq_to_chr = filters.cq_to_chroma(C.shape[0], bins_per_octave=bins_per_octave, n_chroma=n_chroma, fmin=fmin, window=window) chroma = cq_to_chr.dot(C) if threshold is not None: chroma[chroma < threshold] = 0.0 # Normalize if norm is not None: chroma = util.normalize(chroma, norm=norm, axis=0) return chroma
def chroma_cqt(y=None, sr=22050, C=None, hop_length=512, fmin=None, norm=np.inf, threshold=0.0, tuning=None, n_chroma=12, n_octaves=7, window=None, bins_per_octave=None, cqt_mode='full'): r'''Constant-Q chromagram Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 sampling rate of `y` C : np.ndarray [shape=(d, t)] [Optional] a pre-computed constant-Q spectrogram hop_length : int > 0 number of samples between successive chroma frames fmin : float > 0 minimum frequency to analyze in the CQT. Default: 'C1' ~= 32.7 Hz norm : int > 0, +-np.inf, or None Column-wise normalization of the chromagram. threshold : float Pre-normalization energy threshold. Values below the threshold are discarded, resulting in a sparse chromagram. tuning : float Deviation (in cents) from A440 tuning n_chroma : int > 0 Number of chroma bins to produce n_octaves : int > 0 Number of octaves to analyze above `fmin` window : None or np.ndarray Optional window parameter to `filters.cq_to_chroma` bins_per_octave : int > 0 Number of bins per octave in the CQT. Default: matches `n_chroma` cqt_mode : ['full', 'hybrid'] Constant-Q transform mode Returns ------- chromagram : np.ndarray [shape=(n_chroma, t)] The output chromagram See Also -------- librosa.util.normalize librosa.core.cqt librosa.core.hybrid_cqt chroma_stft Examples -------- Compare a long-window STFT chromagram to the CQT chromagram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=15) >>> chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr, ... n_chroma=12, n_fft=4096) >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma_stft, y_axis='chroma') >>> plt.title('chroma_stft') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(chroma_cq, y_axis='chroma', x_axis='time') >>> plt.title('chroma_cqt') >>> plt.colorbar() >>> plt.tight_layout() ''' cqt_func = {'full': cqt, 'hybrid': hybrid_cqt} if bins_per_octave is None: bins_per_octave = n_chroma # Build the CQT if we don't have one already if C is None: C = np.abs(cqt_func[cqt_mode](y, sr=sr, hop_length=hop_length, fmin=fmin, n_bins=n_octaves * bins_per_octave, bins_per_octave=bins_per_octave, tuning=tuning)) # Map to chroma cq_to_chr = filters.cq_to_chroma(C.shape[0], bins_per_octave=bins_per_octave, n_chroma=n_chroma, fmin=fmin, window=window) chroma = cq_to_chr.dot(C) if threshold is not None: chroma[chroma < threshold] = 0.0 # Normalize if norm is not None: chroma = util.normalize(chroma, norm=norm, axis=0) return chroma
[ "r", "Constant", "-", "Q", "chromagram" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L1165-L1280
[ "def", "chroma_cqt", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "C", "=", "None", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "norm", "=", "np", ".", "inf", ",", "threshold", "=", "0.0", ",", "tuning", "=", "None", ",", "n_chroma", "=", "12", ",", "n_octaves", "=", "7", ",", "window", "=", "None", ",", "bins_per_octave", "=", "None", ",", "cqt_mode", "=", "'full'", ")", ":", "cqt_func", "=", "{", "'full'", ":", "cqt", ",", "'hybrid'", ":", "hybrid_cqt", "}", "if", "bins_per_octave", "is", "None", ":", "bins_per_octave", "=", "n_chroma", "# Build the CQT if we don't have one already", "if", "C", "is", "None", ":", "C", "=", "np", ".", "abs", "(", "cqt_func", "[", "cqt_mode", "]", "(", "y", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ",", "fmin", "=", "fmin", ",", "n_bins", "=", "n_octaves", "*", "bins_per_octave", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ")", ")", "# Map to chroma", "cq_to_chr", "=", "filters", ".", "cq_to_chroma", "(", "C", ".", "shape", "[", "0", "]", ",", "bins_per_octave", "=", "bins_per_octave", ",", "n_chroma", "=", "n_chroma", ",", "fmin", "=", "fmin", ",", "window", "=", "window", ")", "chroma", "=", "cq_to_chr", ".", "dot", "(", "C", ")", "if", "threshold", "is", "not", "None", ":", "chroma", "[", "chroma", "<", "threshold", "]", "=", "0.0", "# Normalize", "if", "norm", "is", "not", "None", ":", "chroma", "=", "util", ".", "normalize", "(", "chroma", ",", "norm", "=", "norm", ",", "axis", "=", "0", ")", "return", "chroma" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
chroma_cens
r'''Computes the chroma variant "Chroma Energy Normalized" (CENS), following [1]_. To compute CENS features, following steps are taken after obtaining chroma vectors using `chroma_cqt`: 1. L-1 normalization of each chroma vector 2. Quantization of amplitude based on "log-like" amplitude thresholds 3. (optional) Smoothing with sliding window. Default window length = 41 frames 4. (not implemented) Downsampling CENS features are robust to dynamics, timbre and articulation, thus these are commonly used in audio matching and retrieval applications. .. [1] Meinard Müller and Sebastian Ewert "Chroma Toolbox: MATLAB implementations for extracting variants of chroma-based audio features" In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2011. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 sampling rate of `y` C : np.ndarray [shape=(d, t)] [Optional] a pre-computed constant-Q spectrogram hop_length : int > 0 number of samples between successive chroma frames fmin : float > 0 minimum frequency to analyze in the CQT. Default: 'C1' ~= 32.7 Hz norm : int > 0, +-np.inf, or None Column-wise normalization of the chromagram. tuning : float Deviation (in cents) from A440 tuning n_chroma : int > 0 Number of chroma bins to produce n_octaves : int > 0 Number of octaves to analyze above `fmin` window : None or np.ndarray Optional window parameter to `filters.cq_to_chroma` bins_per_octave : int > 0 Number of bins per octave in the CQT. Default: matches `n_chroma` cqt_mode : ['full', 'hybrid'] Constant-Q transform mode win_len_smooth : int > 0 or None Length of temporal smoothing window. `None` disables temporal smoothing. Default: 41 smoothing_window : str, float or tuple Type of window function for temporal smoothing. See `filters.get_window` for possible inputs. Default: 'hann' Returns ------- chroma_cens : np.ndarray [shape=(n_chroma, t)] The output cens-chromagram See Also -------- chroma_cqt Compute a chromagram from a constant-Q transform. chroma_stft Compute a chromagram from an STFT spectrogram or waveform. filters.get_window Compute a window function. Examples -------- Compare standard cqt chroma to CENS. >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=15) >>> chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr) >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma_cq, y_axis='chroma') >>> plt.title('chroma_cq') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(chroma_cens, y_axis='chroma', x_axis='time') >>> plt.title('chroma_cens') >>> plt.colorbar() >>> plt.tight_layout()
librosa/feature/spectral.py
def chroma_cens(y=None, sr=22050, C=None, hop_length=512, fmin=None, tuning=None, n_chroma=12, n_octaves=7, bins_per_octave=None, cqt_mode='full', window=None, norm=2, win_len_smooth=41, smoothing_window='hann'): r'''Computes the chroma variant "Chroma Energy Normalized" (CENS), following [1]_. To compute CENS features, following steps are taken after obtaining chroma vectors using `chroma_cqt`: 1. L-1 normalization of each chroma vector 2. Quantization of amplitude based on "log-like" amplitude thresholds 3. (optional) Smoothing with sliding window. Default window length = 41 frames 4. (not implemented) Downsampling CENS features are robust to dynamics, timbre and articulation, thus these are commonly used in audio matching and retrieval applications. .. [1] Meinard Müller and Sebastian Ewert "Chroma Toolbox: MATLAB implementations for extracting variants of chroma-based audio features" In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2011. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 sampling rate of `y` C : np.ndarray [shape=(d, t)] [Optional] a pre-computed constant-Q spectrogram hop_length : int > 0 number of samples between successive chroma frames fmin : float > 0 minimum frequency to analyze in the CQT. Default: 'C1' ~= 32.7 Hz norm : int > 0, +-np.inf, or None Column-wise normalization of the chromagram. tuning : float Deviation (in cents) from A440 tuning n_chroma : int > 0 Number of chroma bins to produce n_octaves : int > 0 Number of octaves to analyze above `fmin` window : None or np.ndarray Optional window parameter to `filters.cq_to_chroma` bins_per_octave : int > 0 Number of bins per octave in the CQT. Default: matches `n_chroma` cqt_mode : ['full', 'hybrid'] Constant-Q transform mode win_len_smooth : int > 0 or None Length of temporal smoothing window. `None` disables temporal smoothing. Default: 41 smoothing_window : str, float or tuple Type of window function for temporal smoothing. See `filters.get_window` for possible inputs. Default: 'hann' Returns ------- chroma_cens : np.ndarray [shape=(n_chroma, t)] The output cens-chromagram See Also -------- chroma_cqt Compute a chromagram from a constant-Q transform. chroma_stft Compute a chromagram from an STFT spectrogram or waveform. filters.get_window Compute a window function. Examples -------- Compare standard cqt chroma to CENS. >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=15) >>> chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr) >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma_cq, y_axis='chroma') >>> plt.title('chroma_cq') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(chroma_cens, y_axis='chroma', x_axis='time') >>> plt.title('chroma_cens') >>> plt.colorbar() >>> plt.tight_layout() ''' if not ((win_len_smooth is None) or (isinstance(win_len_smooth, int) and win_len_smooth > 0)): raise ParameterError('win_len_smooth={} must be a positive integer or None'.format(win_len_smooth)) chroma = chroma_cqt(y=y, C=C, sr=sr, hop_length=hop_length, fmin=fmin, bins_per_octave=bins_per_octave, tuning=tuning, norm=None, n_chroma=n_chroma, n_octaves=n_octaves, cqt_mode=cqt_mode, window=window) # L1-Normalization chroma = util.normalize(chroma, norm=1, axis=0) # Quantize amplitudes QUANT_STEPS = [0.4, 0.2, 0.1, 0.05] QUANT_WEIGHTS = [0.25, 0.25, 0.25, 0.25] chroma_quant = np.zeros_like(chroma) for cur_quant_step_idx, cur_quant_step in enumerate(QUANT_STEPS): chroma_quant += (chroma > cur_quant_step) * QUANT_WEIGHTS[cur_quant_step_idx] if win_len_smooth: # Apply temporal smoothing win = filters.get_window(smoothing_window, win_len_smooth + 2, fftbins=False) win /= np.sum(win) win = np.atleast_2d(win) cens = scipy.signal.convolve2d(chroma_quant, win, mode='same', boundary='fill') else: cens = chroma_quant # L2-Normalization return util.normalize(cens, norm=norm, axis=0)
def chroma_cens(y=None, sr=22050, C=None, hop_length=512, fmin=None, tuning=None, n_chroma=12, n_octaves=7, bins_per_octave=None, cqt_mode='full', window=None, norm=2, win_len_smooth=41, smoothing_window='hann'): r'''Computes the chroma variant "Chroma Energy Normalized" (CENS), following [1]_. To compute CENS features, following steps are taken after obtaining chroma vectors using `chroma_cqt`: 1. L-1 normalization of each chroma vector 2. Quantization of amplitude based on "log-like" amplitude thresholds 3. (optional) Smoothing with sliding window. Default window length = 41 frames 4. (not implemented) Downsampling CENS features are robust to dynamics, timbre and articulation, thus these are commonly used in audio matching and retrieval applications. .. [1] Meinard Müller and Sebastian Ewert "Chroma Toolbox: MATLAB implementations for extracting variants of chroma-based audio features" In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2011. Parameters ---------- y : np.ndarray [shape=(n,)] audio time series sr : number > 0 sampling rate of `y` C : np.ndarray [shape=(d, t)] [Optional] a pre-computed constant-Q spectrogram hop_length : int > 0 number of samples between successive chroma frames fmin : float > 0 minimum frequency to analyze in the CQT. Default: 'C1' ~= 32.7 Hz norm : int > 0, +-np.inf, or None Column-wise normalization of the chromagram. tuning : float Deviation (in cents) from A440 tuning n_chroma : int > 0 Number of chroma bins to produce n_octaves : int > 0 Number of octaves to analyze above `fmin` window : None or np.ndarray Optional window parameter to `filters.cq_to_chroma` bins_per_octave : int > 0 Number of bins per octave in the CQT. Default: matches `n_chroma` cqt_mode : ['full', 'hybrid'] Constant-Q transform mode win_len_smooth : int > 0 or None Length of temporal smoothing window. `None` disables temporal smoothing. Default: 41 smoothing_window : str, float or tuple Type of window function for temporal smoothing. See `filters.get_window` for possible inputs. Default: 'hann' Returns ------- chroma_cens : np.ndarray [shape=(n_chroma, t)] The output cens-chromagram See Also -------- chroma_cqt Compute a chromagram from a constant-Q transform. chroma_stft Compute a chromagram from an STFT spectrogram or waveform. filters.get_window Compute a window function. Examples -------- Compare standard cqt chroma to CENS. >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... offset=10, duration=15) >>> chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr) >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(chroma_cq, y_axis='chroma') >>> plt.title('chroma_cq') >>> plt.colorbar() >>> plt.subplot(2,1,2) >>> librosa.display.specshow(chroma_cens, y_axis='chroma', x_axis='time') >>> plt.title('chroma_cens') >>> plt.colorbar() >>> plt.tight_layout() ''' if not ((win_len_smooth is None) or (isinstance(win_len_smooth, int) and win_len_smooth > 0)): raise ParameterError('win_len_smooth={} must be a positive integer or None'.format(win_len_smooth)) chroma = chroma_cqt(y=y, C=C, sr=sr, hop_length=hop_length, fmin=fmin, bins_per_octave=bins_per_octave, tuning=tuning, norm=None, n_chroma=n_chroma, n_octaves=n_octaves, cqt_mode=cqt_mode, window=window) # L1-Normalization chroma = util.normalize(chroma, norm=1, axis=0) # Quantize amplitudes QUANT_STEPS = [0.4, 0.2, 0.1, 0.05] QUANT_WEIGHTS = [0.25, 0.25, 0.25, 0.25] chroma_quant = np.zeros_like(chroma) for cur_quant_step_idx, cur_quant_step in enumerate(QUANT_STEPS): chroma_quant += (chroma > cur_quant_step) * QUANT_WEIGHTS[cur_quant_step_idx] if win_len_smooth: # Apply temporal smoothing win = filters.get_window(smoothing_window, win_len_smooth + 2, fftbins=False) win /= np.sum(win) win = np.atleast_2d(win) cens = scipy.signal.convolve2d(chroma_quant, win, mode='same', boundary='fill') else: cens = chroma_quant # L2-Normalization return util.normalize(cens, norm=norm, axis=0)
[ "r", "Computes", "the", "chroma", "variant", "Chroma", "Energy", "Normalized", "(", "CENS", ")", "following", "[", "1", "]", "_", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L1283-L1426
[ "def", "chroma_cens", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "C", "=", "None", ",", "hop_length", "=", "512", ",", "fmin", "=", "None", ",", "tuning", "=", "None", ",", "n_chroma", "=", "12", ",", "n_octaves", "=", "7", ",", "bins_per_octave", "=", "None", ",", "cqt_mode", "=", "'full'", ",", "window", "=", "None", ",", "norm", "=", "2", ",", "win_len_smooth", "=", "41", ",", "smoothing_window", "=", "'hann'", ")", ":", "if", "not", "(", "(", "win_len_smooth", "is", "None", ")", "or", "(", "isinstance", "(", "win_len_smooth", ",", "int", ")", "and", "win_len_smooth", ">", "0", ")", ")", ":", "raise", "ParameterError", "(", "'win_len_smooth={} must be a positive integer or None'", ".", "format", "(", "win_len_smooth", ")", ")", "chroma", "=", "chroma_cqt", "(", "y", "=", "y", ",", "C", "=", "C", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ",", "fmin", "=", "fmin", ",", "bins_per_octave", "=", "bins_per_octave", ",", "tuning", "=", "tuning", ",", "norm", "=", "None", ",", "n_chroma", "=", "n_chroma", ",", "n_octaves", "=", "n_octaves", ",", "cqt_mode", "=", "cqt_mode", ",", "window", "=", "window", ")", "# L1-Normalization", "chroma", "=", "util", ".", "normalize", "(", "chroma", ",", "norm", "=", "1", ",", "axis", "=", "0", ")", "# Quantize amplitudes", "QUANT_STEPS", "=", "[", "0.4", ",", "0.2", ",", "0.1", ",", "0.05", "]", "QUANT_WEIGHTS", "=", "[", "0.25", ",", "0.25", ",", "0.25", ",", "0.25", "]", "chroma_quant", "=", "np", ".", "zeros_like", "(", "chroma", ")", "for", "cur_quant_step_idx", ",", "cur_quant_step", "in", "enumerate", "(", "QUANT_STEPS", ")", ":", "chroma_quant", "+=", "(", "chroma", ">", "cur_quant_step", ")", "*", "QUANT_WEIGHTS", "[", "cur_quant_step_idx", "]", "if", "win_len_smooth", ":", "# Apply temporal smoothing", "win", "=", "filters", ".", "get_window", "(", "smoothing_window", ",", "win_len_smooth", "+", "2", ",", "fftbins", "=", "False", ")", "win", "/=", "np", ".", "sum", "(", "win", ")", "win", "=", "np", ".", "atleast_2d", "(", "win", ")", "cens", "=", "scipy", ".", "signal", ".", "convolve2d", "(", "chroma_quant", ",", "win", ",", "mode", "=", "'same'", ",", "boundary", "=", "'fill'", ")", "else", ":", "cens", "=", "chroma_quant", "# L2-Normalization", "return", "util", ".", "normalize", "(", "cens", ",", "norm", "=", "norm", ",", "axis", "=", "0", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
tonnetz
Computes the tonal centroid features (tonnetz), following the method of [1]_. .. [1] Harte, C., Sandler, M., & Gasser, M. (2006). "Detecting Harmonic Change in Musical Audio." In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia (pp. 21-26). Santa Barbara, CA, USA: ACM Press. doi:10.1145/1178723.1178727. Parameters ---------- y : np.ndarray [shape=(n,)] or None Audio time series. sr : number > 0 [scalar] sampling rate of `y` chroma : np.ndarray [shape=(n_chroma, t)] or None Normalized energy for each chroma bin at each frame. If `None`, a cqt chromagram is performed. Returns ------- tonnetz : np.ndarray [shape(6, t)] Tonal centroid features for each frame. Tonnetz dimensions: - 0: Fifth x-axis - 1: Fifth y-axis - 2: Minor x-axis - 3: Minor y-axis - 4: Major x-axis - 5: Major y-axis See Also -------- chroma_cqt Compute a chromagram from a constant-Q transform. chroma_stft Compute a chromagram from an STFT spectrogram or waveform. Examples -------- Compute tonnetz features from the harmonic component of a song >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y = librosa.effects.harmonic(y) >>> tonnetz = librosa.feature.tonnetz(y=y, sr=sr) >>> tonnetz array([[-0.073, -0.053, ..., -0.054, -0.073], [ 0.001, 0.001, ..., -0.054, -0.062], ..., [ 0.039, 0.034, ..., 0.044, 0.064], [ 0.005, 0.002, ..., 0.011, 0.017]]) Compare the tonnetz features to `chroma_cqt` >>> import matplotlib.pyplot as plt >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(tonnetz, y_axis='tonnetz') >>> plt.colorbar() >>> plt.title('Tonal Centroids (Tonnetz)') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.feature.chroma_cqt(y, sr=sr), ... y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Chroma') >>> plt.tight_layout()
librosa/feature/spectral.py
def tonnetz(y=None, sr=22050, chroma=None): '''Computes the tonal centroid features (tonnetz), following the method of [1]_. .. [1] Harte, C., Sandler, M., & Gasser, M. (2006). "Detecting Harmonic Change in Musical Audio." In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia (pp. 21-26). Santa Barbara, CA, USA: ACM Press. doi:10.1145/1178723.1178727. Parameters ---------- y : np.ndarray [shape=(n,)] or None Audio time series. sr : number > 0 [scalar] sampling rate of `y` chroma : np.ndarray [shape=(n_chroma, t)] or None Normalized energy for each chroma bin at each frame. If `None`, a cqt chromagram is performed. Returns ------- tonnetz : np.ndarray [shape(6, t)] Tonal centroid features for each frame. Tonnetz dimensions: - 0: Fifth x-axis - 1: Fifth y-axis - 2: Minor x-axis - 3: Minor y-axis - 4: Major x-axis - 5: Major y-axis See Also -------- chroma_cqt Compute a chromagram from a constant-Q transform. chroma_stft Compute a chromagram from an STFT spectrogram or waveform. Examples -------- Compute tonnetz features from the harmonic component of a song >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y = librosa.effects.harmonic(y) >>> tonnetz = librosa.feature.tonnetz(y=y, sr=sr) >>> tonnetz array([[-0.073, -0.053, ..., -0.054, -0.073], [ 0.001, 0.001, ..., -0.054, -0.062], ..., [ 0.039, 0.034, ..., 0.044, 0.064], [ 0.005, 0.002, ..., 0.011, 0.017]]) Compare the tonnetz features to `chroma_cqt` >>> import matplotlib.pyplot as plt >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(tonnetz, y_axis='tonnetz') >>> plt.colorbar() >>> plt.title('Tonal Centroids (Tonnetz)') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.feature.chroma_cqt(y, sr=sr), ... y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Chroma') >>> plt.tight_layout() ''' if y is None and chroma is None: raise ParameterError('Either the audio samples or the chromagram must be ' 'passed as an argument.') if chroma is None: chroma = chroma_cqt(y=y, sr=sr) # Generate Transformation matrix dim_map = np.linspace(0, 12, num=chroma.shape[0], endpoint=False) scale = np.asarray([7. / 6, 7. / 6, 3. / 2, 3. / 2, 2. / 3, 2. / 3]) V = np.multiply.outer(scale, dim_map) # Even rows compute sin() V[::2] -= 0.5 R = np.array([1, 1, # Fifths 1, 1, # Minor 0.5, 0.5]) # Major phi = R[:, np.newaxis] * np.cos(np.pi * V) # Do the transform to tonnetz return phi.dot(util.normalize(chroma, norm=1, axis=0))
def tonnetz(y=None, sr=22050, chroma=None): '''Computes the tonal centroid features (tonnetz), following the method of [1]_. .. [1] Harte, C., Sandler, M., & Gasser, M. (2006). "Detecting Harmonic Change in Musical Audio." In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia (pp. 21-26). Santa Barbara, CA, USA: ACM Press. doi:10.1145/1178723.1178727. Parameters ---------- y : np.ndarray [shape=(n,)] or None Audio time series. sr : number > 0 [scalar] sampling rate of `y` chroma : np.ndarray [shape=(n_chroma, t)] or None Normalized energy for each chroma bin at each frame. If `None`, a cqt chromagram is performed. Returns ------- tonnetz : np.ndarray [shape(6, t)] Tonal centroid features for each frame. Tonnetz dimensions: - 0: Fifth x-axis - 1: Fifth y-axis - 2: Minor x-axis - 3: Minor y-axis - 4: Major x-axis - 5: Major y-axis See Also -------- chroma_cqt Compute a chromagram from a constant-Q transform. chroma_stft Compute a chromagram from an STFT spectrogram or waveform. Examples -------- Compute tonnetz features from the harmonic component of a song >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> y = librosa.effects.harmonic(y) >>> tonnetz = librosa.feature.tonnetz(y=y, sr=sr) >>> tonnetz array([[-0.073, -0.053, ..., -0.054, -0.073], [ 0.001, 0.001, ..., -0.054, -0.062], ..., [ 0.039, 0.034, ..., 0.044, 0.064], [ 0.005, 0.002, ..., 0.011, 0.017]]) Compare the tonnetz features to `chroma_cqt` >>> import matplotlib.pyplot as plt >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(tonnetz, y_axis='tonnetz') >>> plt.colorbar() >>> plt.title('Tonal Centroids (Tonnetz)') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(librosa.feature.chroma_cqt(y, sr=sr), ... y_axis='chroma', x_axis='time') >>> plt.colorbar() >>> plt.title('Chroma') >>> plt.tight_layout() ''' if y is None and chroma is None: raise ParameterError('Either the audio samples or the chromagram must be ' 'passed as an argument.') if chroma is None: chroma = chroma_cqt(y=y, sr=sr) # Generate Transformation matrix dim_map = np.linspace(0, 12, num=chroma.shape[0], endpoint=False) scale = np.asarray([7. / 6, 7. / 6, 3. / 2, 3. / 2, 2. / 3, 2. / 3]) V = np.multiply.outer(scale, dim_map) # Even rows compute sin() V[::2] -= 0.5 R = np.array([1, 1, # Fifths 1, 1, # Minor 0.5, 0.5]) # Major phi = R[:, np.newaxis] * np.cos(np.pi * V) # Do the transform to tonnetz return phi.dot(util.normalize(chroma, norm=1, axis=0))
[ "Computes", "the", "tonal", "centroid", "features", "(", "tonnetz", ")", "following", "the", "method", "of", "[", "1", "]", "_", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L1429-L1528
[ "def", "tonnetz", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "chroma", "=", "None", ")", ":", "if", "y", "is", "None", "and", "chroma", "is", "None", ":", "raise", "ParameterError", "(", "'Either the audio samples or the chromagram must be '", "'passed as an argument.'", ")", "if", "chroma", "is", "None", ":", "chroma", "=", "chroma_cqt", "(", "y", "=", "y", ",", "sr", "=", "sr", ")", "# Generate Transformation matrix", "dim_map", "=", "np", ".", "linspace", "(", "0", ",", "12", ",", "num", "=", "chroma", ".", "shape", "[", "0", "]", ",", "endpoint", "=", "False", ")", "scale", "=", "np", ".", "asarray", "(", "[", "7.", "/", "6", ",", "7.", "/", "6", ",", "3.", "/", "2", ",", "3.", "/", "2", ",", "2.", "/", "3", ",", "2.", "/", "3", "]", ")", "V", "=", "np", ".", "multiply", ".", "outer", "(", "scale", ",", "dim_map", ")", "# Even rows compute sin()", "V", "[", ":", ":", "2", "]", "-=", "0.5", "R", "=", "np", ".", "array", "(", "[", "1", ",", "1", ",", "# Fifths", "1", ",", "1", ",", "# Minor", "0.5", ",", "0.5", "]", ")", "# Major", "phi", "=", "R", "[", ":", ",", "np", ".", "newaxis", "]", "*", "np", ".", "cos", "(", "np", ".", "pi", "*", "V", ")", "# Do the transform to tonnetz", "return", "phi", ".", "dot", "(", "util", ".", "normalize", "(", "chroma", ",", "norm", "=", "1", ",", "axis", "=", "0", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
mfcc
Mel-frequency cepstral coefficients (MFCCs) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] or None log-power Mel spectrogram n_mfcc: int > 0 [scalar] number of MFCCs to return dct_type : None, or {1, 2, 3} Discrete cosine transform (DCT) type. By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an ortho-normal DCT basis. Normalization is not supported for `dct_type=1`. kwargs : additional keyword arguments Arguments to `melspectrogram`, if operating on time series input Returns ------- M : np.ndarray [shape=(n_mfcc, t)] MFCC sequence See Also -------- melspectrogram scipy.fftpack.dct Examples -------- Generate mfccs from a time series >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, duration=5) >>> librosa.feature.mfcc(y=y, sr=sr) array([[ -5.229e+02, -4.944e+02, ..., -5.229e+02, -5.229e+02], [ 7.105e-15, 3.787e+01, ..., -7.105e-15, -7.105e-15], ..., [ 1.066e-14, -7.500e+00, ..., 1.421e-14, 1.421e-14], [ 3.109e-14, -5.058e+00, ..., 2.931e-14, 2.931e-14]]) Use a pre-computed log-power Mel spectrogram >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000) >>> librosa.feature.mfcc(S=librosa.power_to_db(S)) array([[ -5.207e+02, -4.898e+02, ..., -5.207e+02, -5.207e+02], [ -2.576e-14, 4.054e+01, ..., -3.997e-14, -3.997e-14], ..., [ 7.105e-15, -3.534e+00, ..., 0.000e+00, 0.000e+00], [ 3.020e-14, -2.613e+00, ..., 3.553e-14, 3.553e-14]]) Get more components >>> mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) Visualize the MFCC series >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(mfccs, x_axis='time') >>> plt.colorbar() >>> plt.title('MFCC') >>> plt.tight_layout() Compare different DCT bases >>> m_slaney = librosa.feature.mfcc(y=y, sr=sr, dct_type=2) >>> m_htk = librosa.feature.mfcc(y=y, sr=sr, dct_type=3) >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(m_slaney, x_axis='time') >>> plt.title('RASTAMAT / Auditory toolbox (dct_type=2)') >>> plt.colorbar() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(m_htk, x_axis='time') >>> plt.title('HTK-style (dct_type=3)') >>> plt.colorbar() >>> plt.tight_layout()
librosa/feature/spectral.py
def mfcc(y=None, sr=22050, S=None, n_mfcc=20, dct_type=2, norm='ortho', **kwargs): """Mel-frequency cepstral coefficients (MFCCs) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] or None log-power Mel spectrogram n_mfcc: int > 0 [scalar] number of MFCCs to return dct_type : None, or {1, 2, 3} Discrete cosine transform (DCT) type. By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an ortho-normal DCT basis. Normalization is not supported for `dct_type=1`. kwargs : additional keyword arguments Arguments to `melspectrogram`, if operating on time series input Returns ------- M : np.ndarray [shape=(n_mfcc, t)] MFCC sequence See Also -------- melspectrogram scipy.fftpack.dct Examples -------- Generate mfccs from a time series >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, duration=5) >>> librosa.feature.mfcc(y=y, sr=sr) array([[ -5.229e+02, -4.944e+02, ..., -5.229e+02, -5.229e+02], [ 7.105e-15, 3.787e+01, ..., -7.105e-15, -7.105e-15], ..., [ 1.066e-14, -7.500e+00, ..., 1.421e-14, 1.421e-14], [ 3.109e-14, -5.058e+00, ..., 2.931e-14, 2.931e-14]]) Use a pre-computed log-power Mel spectrogram >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000) >>> librosa.feature.mfcc(S=librosa.power_to_db(S)) array([[ -5.207e+02, -4.898e+02, ..., -5.207e+02, -5.207e+02], [ -2.576e-14, 4.054e+01, ..., -3.997e-14, -3.997e-14], ..., [ 7.105e-15, -3.534e+00, ..., 0.000e+00, 0.000e+00], [ 3.020e-14, -2.613e+00, ..., 3.553e-14, 3.553e-14]]) Get more components >>> mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) Visualize the MFCC series >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(mfccs, x_axis='time') >>> plt.colorbar() >>> plt.title('MFCC') >>> plt.tight_layout() Compare different DCT bases >>> m_slaney = librosa.feature.mfcc(y=y, sr=sr, dct_type=2) >>> m_htk = librosa.feature.mfcc(y=y, sr=sr, dct_type=3) >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(m_slaney, x_axis='time') >>> plt.title('RASTAMAT / Auditory toolbox (dct_type=2)') >>> plt.colorbar() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(m_htk, x_axis='time') >>> plt.title('HTK-style (dct_type=3)') >>> plt.colorbar() >>> plt.tight_layout() """ if S is None: S = power_to_db(melspectrogram(y=y, sr=sr, **kwargs)) return scipy.fftpack.dct(S, axis=0, type=dct_type, norm=norm)[:n_mfcc]
def mfcc(y=None, sr=22050, S=None, n_mfcc=20, dct_type=2, norm='ortho', **kwargs): """Mel-frequency cepstral coefficients (MFCCs) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] or None log-power Mel spectrogram n_mfcc: int > 0 [scalar] number of MFCCs to return dct_type : None, or {1, 2, 3} Discrete cosine transform (DCT) type. By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an ortho-normal DCT basis. Normalization is not supported for `dct_type=1`. kwargs : additional keyword arguments Arguments to `melspectrogram`, if operating on time series input Returns ------- M : np.ndarray [shape=(n_mfcc, t)] MFCC sequence See Also -------- melspectrogram scipy.fftpack.dct Examples -------- Generate mfccs from a time series >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, duration=5) >>> librosa.feature.mfcc(y=y, sr=sr) array([[ -5.229e+02, -4.944e+02, ..., -5.229e+02, -5.229e+02], [ 7.105e-15, 3.787e+01, ..., -7.105e-15, -7.105e-15], ..., [ 1.066e-14, -7.500e+00, ..., 1.421e-14, 1.421e-14], [ 3.109e-14, -5.058e+00, ..., 2.931e-14, 2.931e-14]]) Use a pre-computed log-power Mel spectrogram >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000) >>> librosa.feature.mfcc(S=librosa.power_to_db(S)) array([[ -5.207e+02, -4.898e+02, ..., -5.207e+02, -5.207e+02], [ -2.576e-14, 4.054e+01, ..., -3.997e-14, -3.997e-14], ..., [ 7.105e-15, -3.534e+00, ..., 0.000e+00, 0.000e+00], [ 3.020e-14, -2.613e+00, ..., 3.553e-14, 3.553e-14]]) Get more components >>> mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) Visualize the MFCC series >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(mfccs, x_axis='time') >>> plt.colorbar() >>> plt.title('MFCC') >>> plt.tight_layout() Compare different DCT bases >>> m_slaney = librosa.feature.mfcc(y=y, sr=sr, dct_type=2) >>> m_htk = librosa.feature.mfcc(y=y, sr=sr, dct_type=3) >>> plt.figure(figsize=(10, 6)) >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(m_slaney, x_axis='time') >>> plt.title('RASTAMAT / Auditory toolbox (dct_type=2)') >>> plt.colorbar() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(m_htk, x_axis='time') >>> plt.title('HTK-style (dct_type=3)') >>> plt.colorbar() >>> plt.tight_layout() """ if S is None: S = power_to_db(melspectrogram(y=y, sr=sr, **kwargs)) return scipy.fftpack.dct(S, axis=0, type=dct_type, norm=norm)[:n_mfcc]
[ "Mel", "-", "frequency", "cepstral", "coefficients", "(", "MFCCs", ")" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L1532-L1628
[ "def", "mfcc", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_mfcc", "=", "20", ",", "dct_type", "=", "2", ",", "norm", "=", "'ortho'", ",", "*", "*", "kwargs", ")", ":", "if", "S", "is", "None", ":", "S", "=", "power_to_db", "(", "melspectrogram", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "*", "*", "kwargs", ")", ")", "return", "scipy", ".", "fftpack", ".", "dct", "(", "S", ",", "axis", "=", "0", ",", "type", "=", "dct_type", ",", "norm", "=", "norm", ")", "[", ":", "n_mfcc", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
melspectrogram
Compute a mel-scaled spectrogram. If a spectrogram input `S` is provided, then it is mapped directly onto the mel basis `mel_f` by `mel_f.dot(S)`. If a time-series input `y, sr` is provided, then its magnitude spectrogram `S` is first computed, and then mapped onto the mel scale by `mel_f.dot(S**power)`. By default, `power=2` operates on a power spectrum. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] spectrogram n_fft : int > 0 [scalar] length of the FFT window hop_length : int > 0 [scalar] number of samples between successive frames. See `librosa.core.stft` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. power : float > 0 [scalar] Exponent for the magnitude melspectrogram. e.g., 1 for energy, 2 for power, etc. kwargs : additional keyword arguments Mel filter bank parameters. See `librosa.filters.mel` for details. Returns ------- S : np.ndarray [shape=(n_mels, t)] Mel spectrogram See Also -------- librosa.filters.mel Mel filter bank construction librosa.core.stft Short-time Fourier Transform Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.melspectrogram(y=y, sr=sr) array([[ 2.891e-07, 2.548e-03, ..., 8.116e-09, 5.633e-09], [ 1.986e-07, 1.162e-02, ..., 9.332e-08, 6.716e-09], ..., [ 3.668e-09, 2.029e-08, ..., 3.208e-09, 2.864e-09], [ 2.561e-10, 2.096e-09, ..., 7.543e-10, 6.101e-10]]) Using a pre-computed power spectrogram >>> D = np.abs(librosa.stft(y))**2 >>> S = librosa.feature.melspectrogram(S=D) >>> # Passing through arguments to the Mel filters >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(librosa.power_to_db(S, ... ref=np.max), ... y_axis='mel', fmax=8000, ... x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Mel spectrogram') >>> plt.tight_layout()
librosa/feature/spectral.py
def melspectrogram(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', power=2.0, **kwargs): """Compute a mel-scaled spectrogram. If a spectrogram input `S` is provided, then it is mapped directly onto the mel basis `mel_f` by `mel_f.dot(S)`. If a time-series input `y, sr` is provided, then its magnitude spectrogram `S` is first computed, and then mapped onto the mel scale by `mel_f.dot(S**power)`. By default, `power=2` operates on a power spectrum. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] spectrogram n_fft : int > 0 [scalar] length of the FFT window hop_length : int > 0 [scalar] number of samples between successive frames. See `librosa.core.stft` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. power : float > 0 [scalar] Exponent for the magnitude melspectrogram. e.g., 1 for energy, 2 for power, etc. kwargs : additional keyword arguments Mel filter bank parameters. See `librosa.filters.mel` for details. Returns ------- S : np.ndarray [shape=(n_mels, t)] Mel spectrogram See Also -------- librosa.filters.mel Mel filter bank construction librosa.core.stft Short-time Fourier Transform Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.melspectrogram(y=y, sr=sr) array([[ 2.891e-07, 2.548e-03, ..., 8.116e-09, 5.633e-09], [ 1.986e-07, 1.162e-02, ..., 9.332e-08, 6.716e-09], ..., [ 3.668e-09, 2.029e-08, ..., 3.208e-09, 2.864e-09], [ 2.561e-10, 2.096e-09, ..., 7.543e-10, 6.101e-10]]) Using a pre-computed power spectrogram >>> D = np.abs(librosa.stft(y))**2 >>> S = librosa.feature.melspectrogram(S=D) >>> # Passing through arguments to the Mel filters >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(librosa.power_to_db(S, ... ref=np.max), ... y_axis='mel', fmax=8000, ... x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Mel spectrogram') >>> plt.tight_layout() """ S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, power=power, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Build a Mel filter mel_basis = filters.mel(sr, n_fft, **kwargs) return np.dot(mel_basis, S)
def melspectrogram(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', power=2.0, **kwargs): """Compute a mel-scaled spectrogram. If a spectrogram input `S` is provided, then it is mapped directly onto the mel basis `mel_f` by `mel_f.dot(S)`. If a time-series input `y, sr` is provided, then its magnitude spectrogram `S` is first computed, and then mapped onto the mel scale by `mel_f.dot(S**power)`. By default, `power=2` operates on a power spectrum. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time-series sr : number > 0 [scalar] sampling rate of `y` S : np.ndarray [shape=(d, t)] spectrogram n_fft : int > 0 [scalar] length of the FFT window hop_length : int > 0 [scalar] number of samples between successive frames. See `librosa.core.stft` win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. power : float > 0 [scalar] Exponent for the magnitude melspectrogram. e.g., 1 for energy, 2 for power, etc. kwargs : additional keyword arguments Mel filter bank parameters. See `librosa.filters.mel` for details. Returns ------- S : np.ndarray [shape=(n_mels, t)] Mel spectrogram See Also -------- librosa.filters.mel Mel filter bank construction librosa.core.stft Short-time Fourier Transform Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.feature.melspectrogram(y=y, sr=sr) array([[ 2.891e-07, 2.548e-03, ..., 8.116e-09, 5.633e-09], [ 1.986e-07, 1.162e-02, ..., 9.332e-08, 6.716e-09], ..., [ 3.668e-09, 2.029e-08, ..., 3.208e-09, 2.864e-09], [ 2.561e-10, 2.096e-09, ..., 7.543e-10, 6.101e-10]]) Using a pre-computed power spectrogram >>> D = np.abs(librosa.stft(y))**2 >>> S = librosa.feature.melspectrogram(S=D) >>> # Passing through arguments to the Mel filters >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(10, 4)) >>> librosa.display.specshow(librosa.power_to_db(S, ... ref=np.max), ... y_axis='mel', fmax=8000, ... x_axis='time') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Mel spectrogram') >>> plt.tight_layout() """ S, n_fft = _spectrogram(y=y, S=S, n_fft=n_fft, hop_length=hop_length, power=power, win_length=win_length, window=window, center=center, pad_mode=pad_mode) # Build a Mel filter mel_basis = filters.mel(sr, n_fft, **kwargs) return np.dot(mel_basis, S)
[ "Compute", "a", "mel", "-", "scaled", "spectrogram", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/spectral.py#L1631-L1744
[ "def", "melspectrogram", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "win_length", "=", "None", ",", "window", "=", "'hann'", ",", "center", "=", "True", ",", "pad_mode", "=", "'reflect'", ",", "power", "=", "2.0", ",", "*", "*", "kwargs", ")", ":", "S", ",", "n_fft", "=", "_spectrogram", "(", "y", "=", "y", ",", "S", "=", "S", ",", "n_fft", "=", "n_fft", ",", "hop_length", "=", "hop_length", ",", "power", "=", "power", ",", "win_length", "=", "win_length", ",", "window", "=", "window", ",", "center", "=", "center", ",", "pad_mode", "=", "pad_mode", ")", "# Build a Mel filter", "mel_basis", "=", "filters", ".", "mel", "(", "sr", ",", "n_fft", ",", "*", "*", "kwargs", ")", "return", "np", ".", "dot", "(", "mel_basis", ",", "S", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
estimate_tuning
Load an audio file and estimate tuning (in cents)
examples/estimate_tuning.py
def estimate_tuning(input_file): '''Load an audio file and estimate tuning (in cents)''' print('Loading ', input_file) y, sr = librosa.load(input_file) print('Separating harmonic component ... ') y_harm = librosa.effects.harmonic(y) print('Estimating tuning ... ') # Just track the pitches associated with high magnitude tuning = librosa.estimate_tuning(y=y_harm, sr=sr) print('{:+0.2f} cents'.format(100 * tuning))
def estimate_tuning(input_file): '''Load an audio file and estimate tuning (in cents)''' print('Loading ', input_file) y, sr = librosa.load(input_file) print('Separating harmonic component ... ') y_harm = librosa.effects.harmonic(y) print('Estimating tuning ... ') # Just track the pitches associated with high magnitude tuning = librosa.estimate_tuning(y=y_harm, sr=sr) print('{:+0.2f} cents'.format(100 * tuning))
[ "Load", "an", "audio", "file", "and", "estimate", "tuning", "(", "in", "cents", ")" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/estimate_tuning.py#L15-L28
[ "def", "estimate_tuning", "(", "input_file", ")", ":", "print", "(", "'Loading '", ",", "input_file", ")", "y", ",", "sr", "=", "librosa", ".", "load", "(", "input_file", ")", "print", "(", "'Separating harmonic component ... '", ")", "y_harm", "=", "librosa", ".", "effects", ".", "harmonic", "(", "y", ")", "print", "(", "'Estimating tuning ... '", ")", "# Just track the pitches associated with high magnitude", "tuning", "=", "librosa", ".", "estimate_tuning", "(", "y", "=", "y_harm", ",", "sr", "=", "sr", ")", "print", "(", "'{:+0.2f} cents'", ".", "format", "(", "100", "*", "tuning", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__jaccard
Jaccard similarity between two intervals Parameters ---------- int_a, int_b : np.ndarrays, shape=(2,) Returns ------- Jaccard similarity between intervals
librosa/util/matching.py
def __jaccard(int_a, int_b): # pragma: no cover '''Jaccard similarity between two intervals Parameters ---------- int_a, int_b : np.ndarrays, shape=(2,) Returns ------- Jaccard similarity between intervals ''' ends = [int_a[1], int_b[1]] if ends[1] < ends[0]: ends.reverse() starts = [int_a[0], int_b[0]] if starts[1] < starts[0]: starts.reverse() intersection = ends[0] - starts[1] if intersection < 0: intersection = 0. union = ends[1] - starts[0] if union > 0: return intersection / union return 0.0
def __jaccard(int_a, int_b): # pragma: no cover '''Jaccard similarity between two intervals Parameters ---------- int_a, int_b : np.ndarrays, shape=(2,) Returns ------- Jaccard similarity between intervals ''' ends = [int_a[1], int_b[1]] if ends[1] < ends[0]: ends.reverse() starts = [int_a[0], int_b[0]] if starts[1] < starts[0]: starts.reverse() intersection = ends[0] - starts[1] if intersection < 0: intersection = 0. union = ends[1] - starts[0] if union > 0: return intersection / union return 0.0
[ "Jaccard", "similarity", "between", "two", "intervals" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/matching.py#L17-L45
[ "def", "__jaccard", "(", "int_a", ",", "int_b", ")", ":", "# pragma: no cover", "ends", "=", "[", "int_a", "[", "1", "]", ",", "int_b", "[", "1", "]", "]", "if", "ends", "[", "1", "]", "<", "ends", "[", "0", "]", ":", "ends", ".", "reverse", "(", ")", "starts", "=", "[", "int_a", "[", "0", "]", ",", "int_b", "[", "0", "]", "]", "if", "starts", "[", "1", "]", "<", "starts", "[", "0", "]", ":", "starts", ".", "reverse", "(", ")", "intersection", "=", "ends", "[", "0", "]", "-", "starts", "[", "1", "]", "if", "intersection", "<", "0", ":", "intersection", "=", "0.", "union", "=", "ends", "[", "1", "]", "-", "starts", "[", "0", "]", "if", "union", ">", "0", ":", "return", "intersection", "/", "union", "return", "0.0" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__match_interval_overlaps
Find the best Jaccard match from query to candidates
librosa/util/matching.py
def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover '''Find the best Jaccard match from query to candidates''' best_score = -1 best_idx = -1 for idx in candidates: score = __jaccard(query, intervals_to[idx]) if score > best_score: best_score, best_idx = score, idx return best_idx
def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover '''Find the best Jaccard match from query to candidates''' best_score = -1 best_idx = -1 for idx in candidates: score = __jaccard(query, intervals_to[idx]) if score > best_score: best_score, best_idx = score, idx return best_idx
[ "Find", "the", "best", "Jaccard", "match", "from", "query", "to", "candidates" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/matching.py#L49-L59
[ "def", "__match_interval_overlaps", "(", "query", ",", "intervals_to", ",", "candidates", ")", ":", "# pragma: no cover", "best_score", "=", "-", "1", "best_idx", "=", "-", "1", "for", "idx", "in", "candidates", ":", "score", "=", "__jaccard", "(", "query", ",", "intervals_to", "[", "idx", "]", ")", "if", "score", ">", "best_score", ":", "best_score", ",", "best_idx", "=", "score", ",", "idx", "return", "best_idx" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__match_intervals
Numba-accelerated interval matching algorithm.
librosa/util/matching.py
def __match_intervals(intervals_from, intervals_to, strict=True): # pragma: no cover '''Numba-accelerated interval matching algorithm. ''' # sort index of the interval starts start_index = np.argsort(intervals_to[:, 0]) # sort index of the interval ends end_index = np.argsort(intervals_to[:, 1]) # and sorted values of starts start_sorted = intervals_to[start_index, 0] # and ends end_sorted = intervals_to[end_index, 1] search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side='right') search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side='left') output = np.empty(len(intervals_from), dtype=numba.uint32) for i in range(len(intervals_from)): query = intervals_from[i] # Find the intervals that start after our query ends after_query = search_ends[i] # And the intervals that end after our query begins before_query = search_starts[i] # Candidates for overlapping have to (end after we start) and (begin before we end) candidates = set(start_index[:after_query]) & set(end_index[before_query:]) # Proceed as before if len(candidates) > 0: output[i] = __match_interval_overlaps(query, intervals_to, candidates) elif strict: # Numba only lets us use compile-time constants in exception messages raise ParameterError else: # Find the closest interval # (start_index[after_query] - query[1]) is the distance to the next interval # (query[0] - end_index[before_query]) dist_before = np.inf dist_after = np.inf if search_starts[i] > 0: dist_before = query[0] - end_sorted[search_starts[i]-1] if search_ends[i] + 1 < len(intervals_to): dist_after = start_sorted[search_ends[i]+1] - query[1] if dist_before < dist_after: output[i] = end_index[search_starts[i]-1] else: output[i] = start_index[search_ends[i]+1] return output
def __match_intervals(intervals_from, intervals_to, strict=True): # pragma: no cover '''Numba-accelerated interval matching algorithm. ''' # sort index of the interval starts start_index = np.argsort(intervals_to[:, 0]) # sort index of the interval ends end_index = np.argsort(intervals_to[:, 1]) # and sorted values of starts start_sorted = intervals_to[start_index, 0] # and ends end_sorted = intervals_to[end_index, 1] search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side='right') search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side='left') output = np.empty(len(intervals_from), dtype=numba.uint32) for i in range(len(intervals_from)): query = intervals_from[i] # Find the intervals that start after our query ends after_query = search_ends[i] # And the intervals that end after our query begins before_query = search_starts[i] # Candidates for overlapping have to (end after we start) and (begin before we end) candidates = set(start_index[:after_query]) & set(end_index[before_query:]) # Proceed as before if len(candidates) > 0: output[i] = __match_interval_overlaps(query, intervals_to, candidates) elif strict: # Numba only lets us use compile-time constants in exception messages raise ParameterError else: # Find the closest interval # (start_index[after_query] - query[1]) is the distance to the next interval # (query[0] - end_index[before_query]) dist_before = np.inf dist_after = np.inf if search_starts[i] > 0: dist_before = query[0] - end_sorted[search_starts[i]-1] if search_ends[i] + 1 < len(intervals_to): dist_after = start_sorted[search_ends[i]+1] - query[1] if dist_before < dist_after: output[i] = end_index[search_starts[i]-1] else: output[i] = start_index[search_ends[i]+1] return output
[ "Numba", "-", "accelerated", "interval", "matching", "algorithm", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/matching.py#L63-L113
[ "def", "__match_intervals", "(", "intervals_from", ",", "intervals_to", ",", "strict", "=", "True", ")", ":", "# pragma: no cover", "# sort index of the interval starts", "start_index", "=", "np", ".", "argsort", "(", "intervals_to", "[", ":", ",", "0", "]", ")", "# sort index of the interval ends", "end_index", "=", "np", ".", "argsort", "(", "intervals_to", "[", ":", ",", "1", "]", ")", "# and sorted values of starts", "start_sorted", "=", "intervals_to", "[", "start_index", ",", "0", "]", "# and ends", "end_sorted", "=", "intervals_to", "[", "end_index", ",", "1", "]", "search_ends", "=", "np", ".", "searchsorted", "(", "start_sorted", ",", "intervals_from", "[", ":", ",", "1", "]", ",", "side", "=", "'right'", ")", "search_starts", "=", "np", ".", "searchsorted", "(", "end_sorted", ",", "intervals_from", "[", ":", ",", "0", "]", ",", "side", "=", "'left'", ")", "output", "=", "np", ".", "empty", "(", "len", "(", "intervals_from", ")", ",", "dtype", "=", "numba", ".", "uint32", ")", "for", "i", "in", "range", "(", "len", "(", "intervals_from", ")", ")", ":", "query", "=", "intervals_from", "[", "i", "]", "# Find the intervals that start after our query ends", "after_query", "=", "search_ends", "[", "i", "]", "# And the intervals that end after our query begins", "before_query", "=", "search_starts", "[", "i", "]", "# Candidates for overlapping have to (end after we start) and (begin before we end)", "candidates", "=", "set", "(", "start_index", "[", ":", "after_query", "]", ")", "&", "set", "(", "end_index", "[", "before_query", ":", "]", ")", "# Proceed as before", "if", "len", "(", "candidates", ")", ">", "0", ":", "output", "[", "i", "]", "=", "__match_interval_overlaps", "(", "query", ",", "intervals_to", ",", "candidates", ")", "elif", "strict", ":", "# Numba only lets us use compile-time constants in exception messages", "raise", "ParameterError", "else", ":", "# Find the closest interval", "# (start_index[after_query] - query[1]) is the distance to the next interval", "# (query[0] - end_index[before_query])", "dist_before", "=", "np", ".", "inf", "dist_after", "=", "np", ".", "inf", "if", "search_starts", "[", "i", "]", ">", "0", ":", "dist_before", "=", "query", "[", "0", "]", "-", "end_sorted", "[", "search_starts", "[", "i", "]", "-", "1", "]", "if", "search_ends", "[", "i", "]", "+", "1", "<", "len", "(", "intervals_to", ")", ":", "dist_after", "=", "start_sorted", "[", "search_ends", "[", "i", "]", "+", "1", "]", "-", "query", "[", "1", "]", "if", "dist_before", "<", "dist_after", ":", "output", "[", "i", "]", "=", "end_index", "[", "search_starts", "[", "i", "]", "-", "1", "]", "else", ":", "output", "[", "i", "]", "=", "start_index", "[", "search_ends", "[", "i", "]", "+", "1", "]", "return", "output" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
match_intervals
Match one set of time intervals to another. This can be useful for tasks such as mapping beat timings to segments. Each element `[a, b]` of `intervals_from` is matched to the element `[c, d]` of `intervals_to` which maximizes the Jaccard similarity between the intervals: `max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|` In `strict=True` mode, if there is no interval with positive intersection with `[a,b]`, an exception is thrown. In `strict=False` mode, any interval `[a, b]` that has no intersection with any element of `intervals_to` is instead matched to the interval `[c, d]` which minimizes `min(|b - c|, |a - d|)` that is, the disjoint interval `[c, d]` with a boundary closest to `[a, b]`. .. note:: An element of `intervals_to` may be matched to multiple entries of `intervals_from`. Parameters ---------- intervals_from : np.ndarray [shape=(n, 2)] The time range for source intervals. The `i` th interval spans time `intervals_from[i, 0]` to `intervals_from[i, 1]`. `intervals_from[0, 0]` should be 0, `intervals_from[-1, 1]` should be the track duration. intervals_to : np.ndarray [shape=(m, 2)] Analogous to `intervals_from`. strict : bool If `True`, intervals can only match if they intersect. If `False`, disjoint intervals can match. Returns ------- interval_mapping : np.ndarray [shape=(n,)] For each interval in `intervals_from`, the corresponding interval in `intervals_to`. See Also -------- match_events Raises ------ ParameterError If either array of input intervals is not the correct shape If `strict=True` and some element of `intervals_from` is disjoint from every element of `intervals_to`. Examples -------- >>> ints_from = np.array([[3, 5], [1, 4], [4, 5]]) >>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]]) >>> librosa.util.match_intervals(ints_from, ints_to) array([2, 1, 2], dtype=uint32) >>> # [3, 5] => [4, 5] (ints_to[2]) >>> # [1, 4] => [1, 3] (ints_to[1]) >>> # [4, 5] => [4, 5] (ints_to[2]) The reverse matching of the above is not possible in `strict` mode because `[6, 7]` is disjoint from all intervals in `ints_from`. With `strict=False`, we get the following: >>> librosa.util.match_intervals(ints_to, ints_from, strict=False) array([1, 1, 2, 2], dtype=uint32) >>> # [0, 2] => [1, 4] (ints_from[1]) >>> # [1, 3] => [1, 4] (ints_from[1]) >>> # [4, 5] => [4, 5] (ints_from[2]) >>> # [6, 7] => [4, 5] (ints_from[2])
librosa/util/matching.py
def match_intervals(intervals_from, intervals_to, strict=True): '''Match one set of time intervals to another. This can be useful for tasks such as mapping beat timings to segments. Each element `[a, b]` of `intervals_from` is matched to the element `[c, d]` of `intervals_to` which maximizes the Jaccard similarity between the intervals: `max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|` In `strict=True` mode, if there is no interval with positive intersection with `[a,b]`, an exception is thrown. In `strict=False` mode, any interval `[a, b]` that has no intersection with any element of `intervals_to` is instead matched to the interval `[c, d]` which minimizes `min(|b - c|, |a - d|)` that is, the disjoint interval `[c, d]` with a boundary closest to `[a, b]`. .. note:: An element of `intervals_to` may be matched to multiple entries of `intervals_from`. Parameters ---------- intervals_from : np.ndarray [shape=(n, 2)] The time range for source intervals. The `i` th interval spans time `intervals_from[i, 0]` to `intervals_from[i, 1]`. `intervals_from[0, 0]` should be 0, `intervals_from[-1, 1]` should be the track duration. intervals_to : np.ndarray [shape=(m, 2)] Analogous to `intervals_from`. strict : bool If `True`, intervals can only match if they intersect. If `False`, disjoint intervals can match. Returns ------- interval_mapping : np.ndarray [shape=(n,)] For each interval in `intervals_from`, the corresponding interval in `intervals_to`. See Also -------- match_events Raises ------ ParameterError If either array of input intervals is not the correct shape If `strict=True` and some element of `intervals_from` is disjoint from every element of `intervals_to`. Examples -------- >>> ints_from = np.array([[3, 5], [1, 4], [4, 5]]) >>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]]) >>> librosa.util.match_intervals(ints_from, ints_to) array([2, 1, 2], dtype=uint32) >>> # [3, 5] => [4, 5] (ints_to[2]) >>> # [1, 4] => [1, 3] (ints_to[1]) >>> # [4, 5] => [4, 5] (ints_to[2]) The reverse matching of the above is not possible in `strict` mode because `[6, 7]` is disjoint from all intervals in `ints_from`. With `strict=False`, we get the following: >>> librosa.util.match_intervals(ints_to, ints_from, strict=False) array([1, 1, 2, 2], dtype=uint32) >>> # [0, 2] => [1, 4] (ints_from[1]) >>> # [1, 3] => [1, 4] (ints_from[1]) >>> # [4, 5] => [4, 5] (ints_from[2]) >>> # [6, 7] => [4, 5] (ints_from[2]) ''' if len(intervals_from) == 0 or len(intervals_to) == 0: raise ParameterError('Attempting to match empty interval list') # Verify that the input intervals has correct shape and size valid_intervals(intervals_from) valid_intervals(intervals_to) try: return __match_intervals(intervals_from, intervals_to, strict=strict) except ParameterError: six.reraise(ParameterError, ParameterError('Unable to match intervals with strict={}'.format(strict)), sys.exc_info()[2])
def match_intervals(intervals_from, intervals_to, strict=True): '''Match one set of time intervals to another. This can be useful for tasks such as mapping beat timings to segments. Each element `[a, b]` of `intervals_from` is matched to the element `[c, d]` of `intervals_to` which maximizes the Jaccard similarity between the intervals: `max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|` In `strict=True` mode, if there is no interval with positive intersection with `[a,b]`, an exception is thrown. In `strict=False` mode, any interval `[a, b]` that has no intersection with any element of `intervals_to` is instead matched to the interval `[c, d]` which minimizes `min(|b - c|, |a - d|)` that is, the disjoint interval `[c, d]` with a boundary closest to `[a, b]`. .. note:: An element of `intervals_to` may be matched to multiple entries of `intervals_from`. Parameters ---------- intervals_from : np.ndarray [shape=(n, 2)] The time range for source intervals. The `i` th interval spans time `intervals_from[i, 0]` to `intervals_from[i, 1]`. `intervals_from[0, 0]` should be 0, `intervals_from[-1, 1]` should be the track duration. intervals_to : np.ndarray [shape=(m, 2)] Analogous to `intervals_from`. strict : bool If `True`, intervals can only match if they intersect. If `False`, disjoint intervals can match. Returns ------- interval_mapping : np.ndarray [shape=(n,)] For each interval in `intervals_from`, the corresponding interval in `intervals_to`. See Also -------- match_events Raises ------ ParameterError If either array of input intervals is not the correct shape If `strict=True` and some element of `intervals_from` is disjoint from every element of `intervals_to`. Examples -------- >>> ints_from = np.array([[3, 5], [1, 4], [4, 5]]) >>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]]) >>> librosa.util.match_intervals(ints_from, ints_to) array([2, 1, 2], dtype=uint32) >>> # [3, 5] => [4, 5] (ints_to[2]) >>> # [1, 4] => [1, 3] (ints_to[1]) >>> # [4, 5] => [4, 5] (ints_to[2]) The reverse matching of the above is not possible in `strict` mode because `[6, 7]` is disjoint from all intervals in `ints_from`. With `strict=False`, we get the following: >>> librosa.util.match_intervals(ints_to, ints_from, strict=False) array([1, 1, 2, 2], dtype=uint32) >>> # [0, 2] => [1, 4] (ints_from[1]) >>> # [1, 3] => [1, 4] (ints_from[1]) >>> # [4, 5] => [4, 5] (ints_from[2]) >>> # [6, 7] => [4, 5] (ints_from[2]) ''' if len(intervals_from) == 0 or len(intervals_to) == 0: raise ParameterError('Attempting to match empty interval list') # Verify that the input intervals has correct shape and size valid_intervals(intervals_from) valid_intervals(intervals_to) try: return __match_intervals(intervals_from, intervals_to, strict=strict) except ParameterError: six.reraise(ParameterError, ParameterError('Unable to match intervals with strict={}'.format(strict)), sys.exc_info()[2])
[ "Match", "one", "set", "of", "time", "intervals", "to", "another", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/matching.py#L116-L210
[ "def", "match_intervals", "(", "intervals_from", ",", "intervals_to", ",", "strict", "=", "True", ")", ":", "if", "len", "(", "intervals_from", ")", "==", "0", "or", "len", "(", "intervals_to", ")", "==", "0", ":", "raise", "ParameterError", "(", "'Attempting to match empty interval list'", ")", "# Verify that the input intervals has correct shape and size", "valid_intervals", "(", "intervals_from", ")", "valid_intervals", "(", "intervals_to", ")", "try", ":", "return", "__match_intervals", "(", "intervals_from", ",", "intervals_to", ",", "strict", "=", "strict", ")", "except", "ParameterError", ":", "six", ".", "reraise", "(", "ParameterError", ",", "ParameterError", "(", "'Unable to match intervals with strict={}'", ".", "format", "(", "strict", ")", ")", ",", "sys", ".", "exc_info", "(", ")", "[", "2", "]", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
match_events
Match one set of events to another. This is useful for tasks such as matching beats to the nearest detected onsets, or frame-aligned events to the nearest zero-crossing. .. note:: A target event may be matched to multiple source events. Examples -------- >>> # Sources are multiples of 7 >>> s_from = np.arange(0, 100, 7) >>> s_from array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]) >>> # Targets are multiples of 10 >>> s_to = np.arange(0, 100, 10) >>> s_to array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) >>> # Find the matching >>> idx = librosa.util.match_events(s_from, s_to) >>> idx array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9]) >>> # Print each source value to its matching target >>> zip(s_from, s_to[idx]) [(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30), (42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80), (84, 80), (91, 90), (98, 90)] Parameters ---------- events_from : ndarray [shape=(n,)] Array of events (eg, times, sample or frame indices) to match from. events_to : ndarray [shape=(m,)] Array of events (eg, times, sample or frame indices) to match against. left : bool right : bool If `False`, then matched events cannot be to the left (or right) of source events. Returns ------- event_mapping : np.ndarray [shape=(n,)] For each event in `events_from`, the corresponding event index in `events_to`. `event_mapping[i] == arg min |events_from[i] - events_to[:]|` See Also -------- match_intervals Raises ------ ParameterError If either array of input events is not the correct shape
librosa/util/matching.py
def match_events(events_from, events_to, left=True, right=True): '''Match one set of events to another. This is useful for tasks such as matching beats to the nearest detected onsets, or frame-aligned events to the nearest zero-crossing. .. note:: A target event may be matched to multiple source events. Examples -------- >>> # Sources are multiples of 7 >>> s_from = np.arange(0, 100, 7) >>> s_from array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]) >>> # Targets are multiples of 10 >>> s_to = np.arange(0, 100, 10) >>> s_to array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) >>> # Find the matching >>> idx = librosa.util.match_events(s_from, s_to) >>> idx array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9]) >>> # Print each source value to its matching target >>> zip(s_from, s_to[idx]) [(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30), (42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80), (84, 80), (91, 90), (98, 90)] Parameters ---------- events_from : ndarray [shape=(n,)] Array of events (eg, times, sample or frame indices) to match from. events_to : ndarray [shape=(m,)] Array of events (eg, times, sample or frame indices) to match against. left : bool right : bool If `False`, then matched events cannot be to the left (or right) of source events. Returns ------- event_mapping : np.ndarray [shape=(n,)] For each event in `events_from`, the corresponding event index in `events_to`. `event_mapping[i] == arg min |events_from[i] - events_to[:]|` See Also -------- match_intervals Raises ------ ParameterError If either array of input events is not the correct shape ''' if len(events_from) == 0 or len(events_to) == 0: raise ParameterError('Attempting to match empty event list') # If we can't match left or right, then only strict equivalence # counts as a match. if not (left or right) and not np.all(np.in1d(events_from, events_to)): raise ParameterError('Cannot match events with left=right=False ' 'and events_from is not contained ' 'in events_to') # If we can't match to the left, then there should be at least one # target event greater-equal to every source event if (not left) and max(events_to) < max(events_from): raise ParameterError('Cannot match events with left=False ' 'and max(events_to) < max(events_from)') # If we can't match to the right, then there should be at least one # target event less-equal to every source event if (not right) and min(events_to) > min(events_from): raise ParameterError('Cannot match events with right=False ' 'and min(events_to) > min(events_from)') # array of matched items output = np.empty_like(events_from, dtype=np.int) return __match_events_helper(output, events_from, events_to, left, right)
def match_events(events_from, events_to, left=True, right=True): '''Match one set of events to another. This is useful for tasks such as matching beats to the nearest detected onsets, or frame-aligned events to the nearest zero-crossing. .. note:: A target event may be matched to multiple source events. Examples -------- >>> # Sources are multiples of 7 >>> s_from = np.arange(0, 100, 7) >>> s_from array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]) >>> # Targets are multiples of 10 >>> s_to = np.arange(0, 100, 10) >>> s_to array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) >>> # Find the matching >>> idx = librosa.util.match_events(s_from, s_to) >>> idx array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9]) >>> # Print each source value to its matching target >>> zip(s_from, s_to[idx]) [(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30), (42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80), (84, 80), (91, 90), (98, 90)] Parameters ---------- events_from : ndarray [shape=(n,)] Array of events (eg, times, sample or frame indices) to match from. events_to : ndarray [shape=(m,)] Array of events (eg, times, sample or frame indices) to match against. left : bool right : bool If `False`, then matched events cannot be to the left (or right) of source events. Returns ------- event_mapping : np.ndarray [shape=(n,)] For each event in `events_from`, the corresponding event index in `events_to`. `event_mapping[i] == arg min |events_from[i] - events_to[:]|` See Also -------- match_intervals Raises ------ ParameterError If either array of input events is not the correct shape ''' if len(events_from) == 0 or len(events_to) == 0: raise ParameterError('Attempting to match empty event list') # If we can't match left or right, then only strict equivalence # counts as a match. if not (left or right) and not np.all(np.in1d(events_from, events_to)): raise ParameterError('Cannot match events with left=right=False ' 'and events_from is not contained ' 'in events_to') # If we can't match to the left, then there should be at least one # target event greater-equal to every source event if (not left) and max(events_to) < max(events_from): raise ParameterError('Cannot match events with left=False ' 'and max(events_to) < max(events_from)') # If we can't match to the right, then there should be at least one # target event less-equal to every source event if (not right) and min(events_to) > min(events_from): raise ParameterError('Cannot match events with right=False ' 'and min(events_to) > min(events_from)') # array of matched items output = np.empty_like(events_from, dtype=np.int) return __match_events_helper(output, events_from, events_to, left, right)
[ "Match", "one", "set", "of", "events", "to", "another", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/matching.py#L213-L298
[ "def", "match_events", "(", "events_from", ",", "events_to", ",", "left", "=", "True", ",", "right", "=", "True", ")", ":", "if", "len", "(", "events_from", ")", "==", "0", "or", "len", "(", "events_to", ")", "==", "0", ":", "raise", "ParameterError", "(", "'Attempting to match empty event list'", ")", "# If we can't match left or right, then only strict equivalence", "# counts as a match.", "if", "not", "(", "left", "or", "right", ")", "and", "not", "np", ".", "all", "(", "np", ".", "in1d", "(", "events_from", ",", "events_to", ")", ")", ":", "raise", "ParameterError", "(", "'Cannot match events with left=right=False '", "'and events_from is not contained '", "'in events_to'", ")", "# If we can't match to the left, then there should be at least one", "# target event greater-equal to every source event", "if", "(", "not", "left", ")", "and", "max", "(", "events_to", ")", "<", "max", "(", "events_from", ")", ":", "raise", "ParameterError", "(", "'Cannot match events with left=False '", "'and max(events_to) < max(events_from)'", ")", "# If we can't match to the right, then there should be at least one", "# target event less-equal to every source event", "if", "(", "not", "right", ")", "and", "min", "(", "events_to", ")", ">", "min", "(", "events_from", ")", ":", "raise", "ParameterError", "(", "'Cannot match events with right=False '", "'and min(events_to) > min(events_from)'", ")", "# array of matched items", "output", "=", "np", ".", "empty_like", "(", "events_from", ",", "dtype", "=", "np", ".", "int", ")", "return", "__match_events_helper", "(", "output", ",", "events_from", ",", "events_to", ",", "left", ",", "right", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
salience
Harmonic salience function. Parameters ---------- S : np.ndarray [shape=(d, n)] input time frequency magnitude representation (stft, ifgram, etc). Must be real-valued and non-negative. freqs : np.ndarray, shape=(S.shape[axis]) The frequency values corresponding to S's elements along the chosen axis. h_range : list-like, non-negative Harmonics to include in salience computation. The first harmonic (1) corresponds to `S` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. weights : list-like The weight to apply to each harmonic in the summation. (default: uniform weights). Must be the same length as `harmonics`. aggregate : function aggregation function (default: `np.average`) If `aggregate=np.average`, then a weighted average is computed per-harmonic according to the specified weights. For all other aggregation functions, all harmonics are treated equally. filter_peaks : bool If true, returns harmonic summation only on frequencies of peak magnitude. Otherwise returns harmonic summation over the full spectrum. Defaults to True. fill_value : float The value to fill non-peaks in the output representation. (default: np.nan) Only used if `filter_peaks == True`. kind : str Interpolation type for harmonic estimation. See `scipy.interpolate.interp1d`. axis : int The axis along which to compute harmonics Returns ------- S_sal : np.ndarray, shape=(len(h_range), [x.shape]) `S_sal` will have the same shape as `S`, and measure the overal harmonic energy at each frequency. See Also -------- interp_harmonics Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> S = np.abs(librosa.stft(y)) >>> freqs = librosa.core.fft_frequencies(sr) >>> harms = [1, 2, 3, 4] >>> weights = [1.0, 0.5, 0.33, 0.25] >>> S_sal = librosa.salience(S, freqs, harms, weights, fill_value=0) >>> print(S_sal.shape) (1025, 646) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(librosa.amplitude_to_db(S_sal, ... ref=np.max), ... sr=sr, y_axis='log', x_axis='time') >>> plt.colorbar() >>> plt.title('Salience spectrogram') >>> plt.tight_layout()
librosa/core/harmonic.py
def salience(S, freqs, h_range, weights=None, aggregate=None, filter_peaks=True, fill_value=np.nan, kind='linear', axis=0): """Harmonic salience function. Parameters ---------- S : np.ndarray [shape=(d, n)] input time frequency magnitude representation (stft, ifgram, etc). Must be real-valued and non-negative. freqs : np.ndarray, shape=(S.shape[axis]) The frequency values corresponding to S's elements along the chosen axis. h_range : list-like, non-negative Harmonics to include in salience computation. The first harmonic (1) corresponds to `S` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. weights : list-like The weight to apply to each harmonic in the summation. (default: uniform weights). Must be the same length as `harmonics`. aggregate : function aggregation function (default: `np.average`) If `aggregate=np.average`, then a weighted average is computed per-harmonic according to the specified weights. For all other aggregation functions, all harmonics are treated equally. filter_peaks : bool If true, returns harmonic summation only on frequencies of peak magnitude. Otherwise returns harmonic summation over the full spectrum. Defaults to True. fill_value : float The value to fill non-peaks in the output representation. (default: np.nan) Only used if `filter_peaks == True`. kind : str Interpolation type for harmonic estimation. See `scipy.interpolate.interp1d`. axis : int The axis along which to compute harmonics Returns ------- S_sal : np.ndarray, shape=(len(h_range), [x.shape]) `S_sal` will have the same shape as `S`, and measure the overal harmonic energy at each frequency. See Also -------- interp_harmonics Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> S = np.abs(librosa.stft(y)) >>> freqs = librosa.core.fft_frequencies(sr) >>> harms = [1, 2, 3, 4] >>> weights = [1.0, 0.5, 0.33, 0.25] >>> S_sal = librosa.salience(S, freqs, harms, weights, fill_value=0) >>> print(S_sal.shape) (1025, 646) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(librosa.amplitude_to_db(S_sal, ... ref=np.max), ... sr=sr, y_axis='log', x_axis='time') >>> plt.colorbar() >>> plt.title('Salience spectrogram') >>> plt.tight_layout() """ if aggregate is None: aggregate = np.average if weights is None: weights = np.ones((len(h_range), )) else: weights = np.array(weights, dtype=float) S_harm = interp_harmonics(S, freqs, h_range, kind=kind, axis=axis) if aggregate is np.average: S_sal = aggregate(S_harm, axis=0, weights=weights) else: S_sal = aggregate(S_harm, axis=0) if filter_peaks: S_peaks = scipy.signal.argrelmax(S, axis=0) S_out = np.empty(S.shape) S_out.fill(fill_value) S_out[S_peaks[0], S_peaks[1]] = S_sal[S_peaks[0], S_peaks[1]] S_sal = S_out return S_sal
def salience(S, freqs, h_range, weights=None, aggregate=None, filter_peaks=True, fill_value=np.nan, kind='linear', axis=0): """Harmonic salience function. Parameters ---------- S : np.ndarray [shape=(d, n)] input time frequency magnitude representation (stft, ifgram, etc). Must be real-valued and non-negative. freqs : np.ndarray, shape=(S.shape[axis]) The frequency values corresponding to S's elements along the chosen axis. h_range : list-like, non-negative Harmonics to include in salience computation. The first harmonic (1) corresponds to `S` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. weights : list-like The weight to apply to each harmonic in the summation. (default: uniform weights). Must be the same length as `harmonics`. aggregate : function aggregation function (default: `np.average`) If `aggregate=np.average`, then a weighted average is computed per-harmonic according to the specified weights. For all other aggregation functions, all harmonics are treated equally. filter_peaks : bool If true, returns harmonic summation only on frequencies of peak magnitude. Otherwise returns harmonic summation over the full spectrum. Defaults to True. fill_value : float The value to fill non-peaks in the output representation. (default: np.nan) Only used if `filter_peaks == True`. kind : str Interpolation type for harmonic estimation. See `scipy.interpolate.interp1d`. axis : int The axis along which to compute harmonics Returns ------- S_sal : np.ndarray, shape=(len(h_range), [x.shape]) `S_sal` will have the same shape as `S`, and measure the overal harmonic energy at each frequency. See Also -------- interp_harmonics Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> S = np.abs(librosa.stft(y)) >>> freqs = librosa.core.fft_frequencies(sr) >>> harms = [1, 2, 3, 4] >>> weights = [1.0, 0.5, 0.33, 0.25] >>> S_sal = librosa.salience(S, freqs, harms, weights, fill_value=0) >>> print(S_sal.shape) (1025, 646) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(librosa.amplitude_to_db(S_sal, ... ref=np.max), ... sr=sr, y_axis='log', x_axis='time') >>> plt.colorbar() >>> plt.title('Salience spectrogram') >>> plt.tight_layout() """ if aggregate is None: aggregate = np.average if weights is None: weights = np.ones((len(h_range), )) else: weights = np.array(weights, dtype=float) S_harm = interp_harmonics(S, freqs, h_range, kind=kind, axis=axis) if aggregate is np.average: S_sal = aggregate(S_harm, axis=0, weights=weights) else: S_sal = aggregate(S_harm, axis=0) if filter_peaks: S_peaks = scipy.signal.argrelmax(S, axis=0) S_out = np.empty(S.shape) S_out.fill(fill_value) S_out[S_peaks[0], S_peaks[1]] = S_sal[S_peaks[0], S_peaks[1]] S_sal = S_out return S_sal
[ "Harmonic", "salience", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/harmonic.py#L13-L104
[ "def", "salience", "(", "S", ",", "freqs", ",", "h_range", ",", "weights", "=", "None", ",", "aggregate", "=", "None", ",", "filter_peaks", "=", "True", ",", "fill_value", "=", "np", ".", "nan", ",", "kind", "=", "'linear'", ",", "axis", "=", "0", ")", ":", "if", "aggregate", "is", "None", ":", "aggregate", "=", "np", ".", "average", "if", "weights", "is", "None", ":", "weights", "=", "np", ".", "ones", "(", "(", "len", "(", "h_range", ")", ",", ")", ")", "else", ":", "weights", "=", "np", ".", "array", "(", "weights", ",", "dtype", "=", "float", ")", "S_harm", "=", "interp_harmonics", "(", "S", ",", "freqs", ",", "h_range", ",", "kind", "=", "kind", ",", "axis", "=", "axis", ")", "if", "aggregate", "is", "np", ".", "average", ":", "S_sal", "=", "aggregate", "(", "S_harm", ",", "axis", "=", "0", ",", "weights", "=", "weights", ")", "else", ":", "S_sal", "=", "aggregate", "(", "S_harm", ",", "axis", "=", "0", ")", "if", "filter_peaks", ":", "S_peaks", "=", "scipy", ".", "signal", ".", "argrelmax", "(", "S", ",", "axis", "=", "0", ")", "S_out", "=", "np", ".", "empty", "(", "S", ".", "shape", ")", "S_out", ".", "fill", "(", "fill_value", ")", "S_out", "[", "S_peaks", "[", "0", "]", ",", "S_peaks", "[", "1", "]", "]", "=", "S_sal", "[", "S_peaks", "[", "0", "]", ",", "S_peaks", "[", "1", "]", "]", "S_sal", "=", "S_out", "return", "S_sal" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
interp_harmonics
Compute the energy at harmonics of time-frequency representation. Given a frequency-based energy representation such as a spectrogram or tempogram, this function computes the energy at the chosen harmonics of the frequency axis. (See examples below.) The resulting harmonic array can then be used as input to a salience computation. Parameters ---------- x : np.ndarray The input energy freqs : np.ndarray, shape=(X.shape[axis]) The frequency values corresponding to X's elements along the chosen axis. h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics Returns ------- x_harm : np.ndarray, shape=(len(h_range), [x.shape]) `x_harm[i]` will have the same shape as `x`, and measure the energy at the `h_range[i]` harmonic of each frequency. See Also -------- scipy.interpolate.interp1d Examples -------- Estimate the harmonics of a time-averaged tempogram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> # Compute the time-varying tempogram and average over time >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1) >>> # We'll measure the first five harmonics >>> h_range = [1, 2, 3, 4, 5] >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr) >>> # Build the harmonic tensor >>> t_harmonics = librosa.interp_harmonics(tempi, f_tempo, h_range) >>> print(t_harmonics.shape) (5, 384) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr) >>> plt.yticks(0.5 + np.arange(len(h_range)), ... ['{:.3g}'.format(_) for _ in h_range]) >>> plt.ylabel('Harmonic') >>> plt.xlabel('Tempo (BPM)') >>> plt.tight_layout() We can also compute frequency harmonics for spectrograms. To calculate sub-harmonic energy, use values < 1. >>> h_range = [1./3, 1./2, 1, 2, 3, 4] >>> S = np.abs(librosa.stft(y)) >>> fft_freqs = librosa.fft_frequencies(sr=sr) >>> S_harm = librosa.interp_harmonics(S, fft_freqs, h_range, axis=0) >>> print(S_harm.shape) (6, 1025, 646) >>> plt.figure() >>> for i, _sh in enumerate(S_harm, 1): ... plt.subplot(3, 2, i) ... librosa.display.specshow(librosa.amplitude_to_db(_sh, ... ref=S.max()), ... sr=sr, y_axis='log') ... plt.title('h={:.3g}'.format(h_range[i-1])) ... plt.yticks([]) >>> plt.tight_layout()
librosa/core/harmonic.py
def interp_harmonics(x, freqs, h_range, kind='linear', fill_value=0, axis=0): '''Compute the energy at harmonics of time-frequency representation. Given a frequency-based energy representation such as a spectrogram or tempogram, this function computes the energy at the chosen harmonics of the frequency axis. (See examples below.) The resulting harmonic array can then be used as input to a salience computation. Parameters ---------- x : np.ndarray The input energy freqs : np.ndarray, shape=(X.shape[axis]) The frequency values corresponding to X's elements along the chosen axis. h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics Returns ------- x_harm : np.ndarray, shape=(len(h_range), [x.shape]) `x_harm[i]` will have the same shape as `x`, and measure the energy at the `h_range[i]` harmonic of each frequency. See Also -------- scipy.interpolate.interp1d Examples -------- Estimate the harmonics of a time-averaged tempogram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> # Compute the time-varying tempogram and average over time >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1) >>> # We'll measure the first five harmonics >>> h_range = [1, 2, 3, 4, 5] >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr) >>> # Build the harmonic tensor >>> t_harmonics = librosa.interp_harmonics(tempi, f_tempo, h_range) >>> print(t_harmonics.shape) (5, 384) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr) >>> plt.yticks(0.5 + np.arange(len(h_range)), ... ['{:.3g}'.format(_) for _ in h_range]) >>> plt.ylabel('Harmonic') >>> plt.xlabel('Tempo (BPM)') >>> plt.tight_layout() We can also compute frequency harmonics for spectrograms. To calculate sub-harmonic energy, use values < 1. >>> h_range = [1./3, 1./2, 1, 2, 3, 4] >>> S = np.abs(librosa.stft(y)) >>> fft_freqs = librosa.fft_frequencies(sr=sr) >>> S_harm = librosa.interp_harmonics(S, fft_freqs, h_range, axis=0) >>> print(S_harm.shape) (6, 1025, 646) >>> plt.figure() >>> for i, _sh in enumerate(S_harm, 1): ... plt.subplot(3, 2, i) ... librosa.display.specshow(librosa.amplitude_to_db(_sh, ... ref=S.max()), ... sr=sr, y_axis='log') ... plt.title('h={:.3g}'.format(h_range[i-1])) ... plt.yticks([]) >>> plt.tight_layout() ''' # X_out will be the same shape as X, plus a leading # axis that has length = len(h_range) out_shape = [len(h_range)] out_shape.extend(x.shape) x_out = np.zeros(out_shape, dtype=x.dtype) if freqs.ndim == 1 and len(freqs) == x.shape[axis]: harmonics_1d(x_out, x, freqs, h_range, kind=kind, fill_value=fill_value, axis=axis) elif freqs.ndim == 2 and freqs.shape == x.shape: harmonics_2d(x_out, x, freqs, h_range, kind=kind, fill_value=fill_value, axis=axis) else: raise ParameterError('freqs.shape={} does not match ' 'input shape={}'.format(freqs.shape, x.shape)) return x_out
def interp_harmonics(x, freqs, h_range, kind='linear', fill_value=0, axis=0): '''Compute the energy at harmonics of time-frequency representation. Given a frequency-based energy representation such as a spectrogram or tempogram, this function computes the energy at the chosen harmonics of the frequency axis. (See examples below.) The resulting harmonic array can then be used as input to a salience computation. Parameters ---------- x : np.ndarray The input energy freqs : np.ndarray, shape=(X.shape[axis]) The frequency values corresponding to X's elements along the chosen axis. h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics Returns ------- x_harm : np.ndarray, shape=(len(h_range), [x.shape]) `x_harm[i]` will have the same shape as `x`, and measure the energy at the `h_range[i]` harmonic of each frequency. See Also -------- scipy.interpolate.interp1d Examples -------- Estimate the harmonics of a time-averaged tempogram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> # Compute the time-varying tempogram and average over time >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1) >>> # We'll measure the first five harmonics >>> h_range = [1, 2, 3, 4, 5] >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr) >>> # Build the harmonic tensor >>> t_harmonics = librosa.interp_harmonics(tempi, f_tempo, h_range) >>> print(t_harmonics.shape) (5, 384) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr) >>> plt.yticks(0.5 + np.arange(len(h_range)), ... ['{:.3g}'.format(_) for _ in h_range]) >>> plt.ylabel('Harmonic') >>> plt.xlabel('Tempo (BPM)') >>> plt.tight_layout() We can also compute frequency harmonics for spectrograms. To calculate sub-harmonic energy, use values < 1. >>> h_range = [1./3, 1./2, 1, 2, 3, 4] >>> S = np.abs(librosa.stft(y)) >>> fft_freqs = librosa.fft_frequencies(sr=sr) >>> S_harm = librosa.interp_harmonics(S, fft_freqs, h_range, axis=0) >>> print(S_harm.shape) (6, 1025, 646) >>> plt.figure() >>> for i, _sh in enumerate(S_harm, 1): ... plt.subplot(3, 2, i) ... librosa.display.specshow(librosa.amplitude_to_db(_sh, ... ref=S.max()), ... sr=sr, y_axis='log') ... plt.title('h={:.3g}'.format(h_range[i-1])) ... plt.yticks([]) >>> plt.tight_layout() ''' # X_out will be the same shape as X, plus a leading # axis that has length = len(h_range) out_shape = [len(h_range)] out_shape.extend(x.shape) x_out = np.zeros(out_shape, dtype=x.dtype) if freqs.ndim == 1 and len(freqs) == x.shape[axis]: harmonics_1d(x_out, x, freqs, h_range, kind=kind, fill_value=fill_value, axis=axis) elif freqs.ndim == 2 and freqs.shape == x.shape: harmonics_2d(x_out, x, freqs, h_range, kind=kind, fill_value=fill_value, axis=axis) else: raise ParameterError('freqs.shape={} does not match ' 'input shape={}'.format(freqs.shape, x.shape)) return x_out
[ "Compute", "the", "energy", "at", "harmonics", "of", "time", "-", "frequency", "representation", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/harmonic.py#L107-L218
[ "def", "interp_harmonics", "(", "x", ",", "freqs", ",", "h_range", ",", "kind", "=", "'linear'", ",", "fill_value", "=", "0", ",", "axis", "=", "0", ")", ":", "# X_out will be the same shape as X, plus a leading", "# axis that has length = len(h_range)", "out_shape", "=", "[", "len", "(", "h_range", ")", "]", "out_shape", ".", "extend", "(", "x", ".", "shape", ")", "x_out", "=", "np", ".", "zeros", "(", "out_shape", ",", "dtype", "=", "x", ".", "dtype", ")", "if", "freqs", ".", "ndim", "==", "1", "and", "len", "(", "freqs", ")", "==", "x", ".", "shape", "[", "axis", "]", ":", "harmonics_1d", "(", "x_out", ",", "x", ",", "freqs", ",", "h_range", ",", "kind", "=", "kind", ",", "fill_value", "=", "fill_value", ",", "axis", "=", "axis", ")", "elif", "freqs", ".", "ndim", "==", "2", "and", "freqs", ".", "shape", "==", "x", ".", "shape", ":", "harmonics_2d", "(", "x_out", ",", "x", ",", "freqs", ",", "h_range", ",", "kind", "=", "kind", ",", "fill_value", "=", "fill_value", ",", "axis", "=", "axis", ")", "else", ":", "raise", "ParameterError", "(", "'freqs.shape={} does not match '", "'input shape={}'", ".", "format", "(", "freqs", ".", "shape", ",", "x", ".", "shape", ")", ")", "return", "x_out" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
harmonics_1d
Populate a harmonic tensor from a time-frequency representation. Parameters ---------- harmonic_out : np.ndarray, shape=(len(h_range), X.shape) The output array to store harmonics X : np.ndarray The input energy freqs : np.ndarray, shape=(x.shape[axis]) The frequency values corresponding to x's elements along the chosen axis. h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics See Also -------- harmonics scipy.interpolate.interp1d Examples -------- Estimate the harmonics of a time-averaged tempogram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> # Compute the time-varying tempogram and average over time >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1) >>> # We'll measure the first five harmonics >>> h_range = [1, 2, 3, 4, 5] >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr) >>> # Build the harmonic tensor >>> t_harmonics = librosa.interp_harmonics(tempi, f_tempo, h_range) >>> print(t_harmonics.shape) (5, 384) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr) >>> plt.yticks(0.5 + np.arange(len(h_range)), ... ['{:.3g}'.format(_) for _ in h_range]) >>> plt.ylabel('Harmonic') >>> plt.xlabel('Tempo (BPM)') >>> plt.tight_layout() We can also compute frequency harmonics for spectrograms. To calculate subharmonic energy, use values < 1. >>> h_range = [1./3, 1./2, 1, 2, 3, 4] >>> S = np.abs(librosa.stft(y)) >>> fft_freqs = librosa.fft_frequencies(sr=sr) >>> S_harm = librosa.interp_harmonics(S, fft_freqs, h_range, axis=0) >>> print(S_harm.shape) (6, 1025, 646) >>> plt.figure() >>> for i, _sh in enumerate(S_harm, 1): ... plt.subplot(3,2,i) ... librosa.display.specshow(librosa.amplitude_to_db(_sh, ... ref=S.max()), ... sr=sr, y_axis='log') ... plt.title('h={:.3g}'.format(h_range[i-1])) ... plt.yticks([]) >>> plt.tight_layout()
librosa/core/harmonic.py
def harmonics_1d(harmonic_out, x, freqs, h_range, kind='linear', fill_value=0, axis=0): '''Populate a harmonic tensor from a time-frequency representation. Parameters ---------- harmonic_out : np.ndarray, shape=(len(h_range), X.shape) The output array to store harmonics X : np.ndarray The input energy freqs : np.ndarray, shape=(x.shape[axis]) The frequency values corresponding to x's elements along the chosen axis. h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics See Also -------- harmonics scipy.interpolate.interp1d Examples -------- Estimate the harmonics of a time-averaged tempogram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> # Compute the time-varying tempogram and average over time >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1) >>> # We'll measure the first five harmonics >>> h_range = [1, 2, 3, 4, 5] >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr) >>> # Build the harmonic tensor >>> t_harmonics = librosa.interp_harmonics(tempi, f_tempo, h_range) >>> print(t_harmonics.shape) (5, 384) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr) >>> plt.yticks(0.5 + np.arange(len(h_range)), ... ['{:.3g}'.format(_) for _ in h_range]) >>> plt.ylabel('Harmonic') >>> plt.xlabel('Tempo (BPM)') >>> plt.tight_layout() We can also compute frequency harmonics for spectrograms. To calculate subharmonic energy, use values < 1. >>> h_range = [1./3, 1./2, 1, 2, 3, 4] >>> S = np.abs(librosa.stft(y)) >>> fft_freqs = librosa.fft_frequencies(sr=sr) >>> S_harm = librosa.interp_harmonics(S, fft_freqs, h_range, axis=0) >>> print(S_harm.shape) (6, 1025, 646) >>> plt.figure() >>> for i, _sh in enumerate(S_harm, 1): ... plt.subplot(3,2,i) ... librosa.display.specshow(librosa.amplitude_to_db(_sh, ... ref=S.max()), ... sr=sr, y_axis='log') ... plt.title('h={:.3g}'.format(h_range[i-1])) ... plt.yticks([]) >>> plt.tight_layout() ''' # Note: this only works for fixed-grid, 1d interpolation f_interp = scipy.interpolate.interp1d(freqs, x, kind=kind, axis=axis, copy=False, bounds_error=False, fill_value=fill_value) idx_out = [slice(None)] * harmonic_out.ndim # Compute the output index of the interpolated values interp_axis = 1 + (axis % x.ndim) # Iterate over the harmonics range for h_index, harmonic in enumerate(h_range): idx_out[0] = h_index # Iterate over frequencies for f_index, frequency in enumerate(freqs): # Offset the output axis by 1 to account for the harmonic index idx_out[interp_axis] = f_index # Estimate the harmonic energy at this frequency across time harmonic_out[tuple(idx_out)] = f_interp(harmonic * frequency)
def harmonics_1d(harmonic_out, x, freqs, h_range, kind='linear', fill_value=0, axis=0): '''Populate a harmonic tensor from a time-frequency representation. Parameters ---------- harmonic_out : np.ndarray, shape=(len(h_range), X.shape) The output array to store harmonics X : np.ndarray The input energy freqs : np.ndarray, shape=(x.shape[axis]) The frequency values corresponding to x's elements along the chosen axis. h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics See Also -------- harmonics scipy.interpolate.interp1d Examples -------- Estimate the harmonics of a time-averaged tempogram >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=15, offset=30) >>> # Compute the time-varying tempogram and average over time >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1) >>> # We'll measure the first five harmonics >>> h_range = [1, 2, 3, 4, 5] >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr) >>> # Build the harmonic tensor >>> t_harmonics = librosa.interp_harmonics(tempi, f_tempo, h_range) >>> print(t_harmonics.shape) (5, 384) >>> # And plot the results >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr) >>> plt.yticks(0.5 + np.arange(len(h_range)), ... ['{:.3g}'.format(_) for _ in h_range]) >>> plt.ylabel('Harmonic') >>> plt.xlabel('Tempo (BPM)') >>> plt.tight_layout() We can also compute frequency harmonics for spectrograms. To calculate subharmonic energy, use values < 1. >>> h_range = [1./3, 1./2, 1, 2, 3, 4] >>> S = np.abs(librosa.stft(y)) >>> fft_freqs = librosa.fft_frequencies(sr=sr) >>> S_harm = librosa.interp_harmonics(S, fft_freqs, h_range, axis=0) >>> print(S_harm.shape) (6, 1025, 646) >>> plt.figure() >>> for i, _sh in enumerate(S_harm, 1): ... plt.subplot(3,2,i) ... librosa.display.specshow(librosa.amplitude_to_db(_sh, ... ref=S.max()), ... sr=sr, y_axis='log') ... plt.title('h={:.3g}'.format(h_range[i-1])) ... plt.yticks([]) >>> plt.tight_layout() ''' # Note: this only works for fixed-grid, 1d interpolation f_interp = scipy.interpolate.interp1d(freqs, x, kind=kind, axis=axis, copy=False, bounds_error=False, fill_value=fill_value) idx_out = [slice(None)] * harmonic_out.ndim # Compute the output index of the interpolated values interp_axis = 1 + (axis % x.ndim) # Iterate over the harmonics range for h_index, harmonic in enumerate(h_range): idx_out[0] = h_index # Iterate over frequencies for f_index, frequency in enumerate(freqs): # Offset the output axis by 1 to account for the harmonic index idx_out[interp_axis] = f_index # Estimate the harmonic energy at this frequency across time harmonic_out[tuple(idx_out)] = f_interp(harmonic * frequency)
[ "Populate", "a", "harmonic", "tensor", "from", "a", "time", "-", "frequency", "representation", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/harmonic.py#L221-L328
[ "def", "harmonics_1d", "(", "harmonic_out", ",", "x", ",", "freqs", ",", "h_range", ",", "kind", "=", "'linear'", ",", "fill_value", "=", "0", ",", "axis", "=", "0", ")", ":", "# Note: this only works for fixed-grid, 1d interpolation", "f_interp", "=", "scipy", ".", "interpolate", ".", "interp1d", "(", "freqs", ",", "x", ",", "kind", "=", "kind", ",", "axis", "=", "axis", ",", "copy", "=", "False", ",", "bounds_error", "=", "False", ",", "fill_value", "=", "fill_value", ")", "idx_out", "=", "[", "slice", "(", "None", ")", "]", "*", "harmonic_out", ".", "ndim", "# Compute the output index of the interpolated values", "interp_axis", "=", "1", "+", "(", "axis", "%", "x", ".", "ndim", ")", "# Iterate over the harmonics range", "for", "h_index", ",", "harmonic", "in", "enumerate", "(", "h_range", ")", ":", "idx_out", "[", "0", "]", "=", "h_index", "# Iterate over frequencies", "for", "f_index", ",", "frequency", "in", "enumerate", "(", "freqs", ")", ":", "# Offset the output axis by 1 to account for the harmonic index", "idx_out", "[", "interp_axis", "]", "=", "f_index", "# Estimate the harmonic energy at this frequency across time", "harmonic_out", "[", "tuple", "(", "idx_out", ")", "]", "=", "f_interp", "(", "harmonic", "*", "frequency", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
harmonics_2d
Populate a harmonic tensor from a time-frequency representation with time-varying frequencies. Parameters ---------- harmonic_out : np.ndarray The output array to store harmonics x : np.ndarray The input energy freqs : np.ndarray, shape=x.shape The frequency values corresponding to each element of `x` h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics See Also -------- harmonics harmonics_1d
librosa/core/harmonic.py
def harmonics_2d(harmonic_out, x, freqs, h_range, kind='linear', fill_value=0, axis=0): '''Populate a harmonic tensor from a time-frequency representation with time-varying frequencies. Parameters ---------- harmonic_out : np.ndarray The output array to store harmonics x : np.ndarray The input energy freqs : np.ndarray, shape=x.shape The frequency values corresponding to each element of `x` h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics See Also -------- harmonics harmonics_1d ''' idx_in = [slice(None)] * x.ndim idx_freq = [slice(None)] * x.ndim idx_out = [slice(None)] * harmonic_out.ndim # This is the non-interpolation axis ni_axis = (1 + axis) % x.ndim # For each value in the non-interpolated axis, compute its harmonics for i in range(x.shape[ni_axis]): idx_in[ni_axis] = slice(i, i + 1) idx_freq[ni_axis] = i idx_out[1 + ni_axis] = idx_in[ni_axis] harmonics_1d(harmonic_out[tuple(idx_out)], x[tuple(idx_in)], freqs[tuple(idx_freq)], h_range, kind=kind, fill_value=fill_value, axis=axis)
def harmonics_2d(harmonic_out, x, freqs, h_range, kind='linear', fill_value=0, axis=0): '''Populate a harmonic tensor from a time-frequency representation with time-varying frequencies. Parameters ---------- harmonic_out : np.ndarray The output array to store harmonics x : np.ndarray The input energy freqs : np.ndarray, shape=x.shape The frequency values corresponding to each element of `x` h_range : list-like, non-negative Harmonics to compute. The first harmonic (1) corresponds to `x` itself. Values less than one (e.g., 1/2) correspond to sub-harmonics. kind : str Interpolation type. See `scipy.interpolate.interp1d`. fill_value : float The value to fill when extrapolating beyond the observed frequency range. axis : int The axis along which to compute harmonics See Also -------- harmonics harmonics_1d ''' idx_in = [slice(None)] * x.ndim idx_freq = [slice(None)] * x.ndim idx_out = [slice(None)] * harmonic_out.ndim # This is the non-interpolation axis ni_axis = (1 + axis) % x.ndim # For each value in the non-interpolated axis, compute its harmonics for i in range(x.shape[ni_axis]): idx_in[ni_axis] = slice(i, i + 1) idx_freq[ni_axis] = i idx_out[1 + ni_axis] = idx_in[ni_axis] harmonics_1d(harmonic_out[tuple(idx_out)], x[tuple(idx_in)], freqs[tuple(idx_freq)], h_range, kind=kind, fill_value=fill_value, axis=axis)
[ "Populate", "a", "harmonic", "tensor", "from", "a", "time", "-", "frequency", "representation", "with", "time", "-", "varying", "frequencies", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/harmonic.py#L331-L382
[ "def", "harmonics_2d", "(", "harmonic_out", ",", "x", ",", "freqs", ",", "h_range", ",", "kind", "=", "'linear'", ",", "fill_value", "=", "0", ",", "axis", "=", "0", ")", ":", "idx_in", "=", "[", "slice", "(", "None", ")", "]", "*", "x", ".", "ndim", "idx_freq", "=", "[", "slice", "(", "None", ")", "]", "*", "x", ".", "ndim", "idx_out", "=", "[", "slice", "(", "None", ")", "]", "*", "harmonic_out", ".", "ndim", "# This is the non-interpolation axis", "ni_axis", "=", "(", "1", "+", "axis", ")", "%", "x", ".", "ndim", "# For each value in the non-interpolated axis, compute its harmonics", "for", "i", "in", "range", "(", "x", ".", "shape", "[", "ni_axis", "]", ")", ":", "idx_in", "[", "ni_axis", "]", "=", "slice", "(", "i", ",", "i", "+", "1", ")", "idx_freq", "[", "ni_axis", "]", "=", "i", "idx_out", "[", "1", "+", "ni_axis", "]", "=", "idx_in", "[", "ni_axis", "]", "harmonics_1d", "(", "harmonic_out", "[", "tuple", "(", "idx_out", ")", "]", ",", "x", "[", "tuple", "(", "idx_in", ")", "]", ",", "freqs", "[", "tuple", "(", "idx_freq", ")", "]", ",", "h_range", ",", "kind", "=", "kind", ",", "fill_value", "=", "fill_value", ",", "axis", "=", "axis", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
load
Load an audio file as a floating point time series. Audio will be automatically resampled to the given rate (default `sr=22050`). To preserve the native sampling rate of the file, use `sr=None`. Parameters ---------- path : string, int, or file-like object path to the input file. Any codec supported by `soundfile` or `audioread` will work. If the codec is supported by `soundfile`, then `path` can also be an open file descriptor (int), or any object implementing Python's file interface. If the codec is not supported by `soundfile` (e.g., MP3), then only string file paths are supported. sr : number > 0 [scalar] target sampling rate 'None' uses the native sampling rate mono : bool convert signal to mono offset : float start reading after this time (in seconds) duration : float only load up to this much audio (in seconds) dtype : numeric type data type of `y` res_type : str resample type (see note) .. note:: By default, this uses `resampy`'s high-quality mode ('kaiser_best'). For alternative resampling modes, see `resample` .. note:: `audioread` may truncate the precision of the audio data to 16 bits. See https://librosa.github.io/librosa/ioformats.html for alternate loading methods. Returns ------- y : np.ndarray [shape=(n,) or (2, n)] audio time series sr : number > 0 [scalar] sampling rate of `y` Examples -------- >>> # Load an ogg vorbis file >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename) >>> y array([ -4.756e-06, -6.020e-06, ..., -1.040e-06, 0.000e+00], dtype=float32) >>> sr 22050 >>> # Load a file and resample to 11 KHz >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename, sr=11025) >>> y array([ -2.077e-06, -2.928e-06, ..., -4.395e-06, 0.000e+00], dtype=float32) >>> sr 11025 >>> # Load 5 seconds of a file, starting 15 seconds in >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename, offset=15.0, duration=5.0) >>> y array([ 0.069, 0.1 , ..., -0.101, 0. ], dtype=float32) >>> sr 22050
librosa/core/audio.py
def load(path, sr=22050, mono=True, offset=0.0, duration=None, dtype=np.float32, res_type='kaiser_best'): """Load an audio file as a floating point time series. Audio will be automatically resampled to the given rate (default `sr=22050`). To preserve the native sampling rate of the file, use `sr=None`. Parameters ---------- path : string, int, or file-like object path to the input file. Any codec supported by `soundfile` or `audioread` will work. If the codec is supported by `soundfile`, then `path` can also be an open file descriptor (int), or any object implementing Python's file interface. If the codec is not supported by `soundfile` (e.g., MP3), then only string file paths are supported. sr : number > 0 [scalar] target sampling rate 'None' uses the native sampling rate mono : bool convert signal to mono offset : float start reading after this time (in seconds) duration : float only load up to this much audio (in seconds) dtype : numeric type data type of `y` res_type : str resample type (see note) .. note:: By default, this uses `resampy`'s high-quality mode ('kaiser_best'). For alternative resampling modes, see `resample` .. note:: `audioread` may truncate the precision of the audio data to 16 bits. See https://librosa.github.io/librosa/ioformats.html for alternate loading methods. Returns ------- y : np.ndarray [shape=(n,) or (2, n)] audio time series sr : number > 0 [scalar] sampling rate of `y` Examples -------- >>> # Load an ogg vorbis file >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename) >>> y array([ -4.756e-06, -6.020e-06, ..., -1.040e-06, 0.000e+00], dtype=float32) >>> sr 22050 >>> # Load a file and resample to 11 KHz >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename, sr=11025) >>> y array([ -2.077e-06, -2.928e-06, ..., -4.395e-06, 0.000e+00], dtype=float32) >>> sr 11025 >>> # Load 5 seconds of a file, starting 15 seconds in >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename, offset=15.0, duration=5.0) >>> y array([ 0.069, 0.1 , ..., -0.101, 0. ], dtype=float32) >>> sr 22050 """ try: with sf.SoundFile(path) as sf_desc: sr_native = sf_desc.samplerate if offset: # Seek to the start of the target read sf_desc.seek(int(offset * sr_native)) if duration is not None: frame_duration = int(duration * sr_native) else: frame_duration = -1 # Load the target number of frames, and transpose to match librosa form y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T except RuntimeError as exc: # If soundfile failed, fall back to the audioread loader y, sr_native = __audioread_load(path, offset, duration, dtype) # Final cleanup for dtype and contiguity if mono: y = to_mono(y) if sr is not None: y = resample(y, sr_native, sr, res_type=res_type) else: sr = sr_native return y, sr
def load(path, sr=22050, mono=True, offset=0.0, duration=None, dtype=np.float32, res_type='kaiser_best'): """Load an audio file as a floating point time series. Audio will be automatically resampled to the given rate (default `sr=22050`). To preserve the native sampling rate of the file, use `sr=None`. Parameters ---------- path : string, int, or file-like object path to the input file. Any codec supported by `soundfile` or `audioread` will work. If the codec is supported by `soundfile`, then `path` can also be an open file descriptor (int), or any object implementing Python's file interface. If the codec is not supported by `soundfile` (e.g., MP3), then only string file paths are supported. sr : number > 0 [scalar] target sampling rate 'None' uses the native sampling rate mono : bool convert signal to mono offset : float start reading after this time (in seconds) duration : float only load up to this much audio (in seconds) dtype : numeric type data type of `y` res_type : str resample type (see note) .. note:: By default, this uses `resampy`'s high-quality mode ('kaiser_best'). For alternative resampling modes, see `resample` .. note:: `audioread` may truncate the precision of the audio data to 16 bits. See https://librosa.github.io/librosa/ioformats.html for alternate loading methods. Returns ------- y : np.ndarray [shape=(n,) or (2, n)] audio time series sr : number > 0 [scalar] sampling rate of `y` Examples -------- >>> # Load an ogg vorbis file >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename) >>> y array([ -4.756e-06, -6.020e-06, ..., -1.040e-06, 0.000e+00], dtype=float32) >>> sr 22050 >>> # Load a file and resample to 11 KHz >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename, sr=11025) >>> y array([ -2.077e-06, -2.928e-06, ..., -4.395e-06, 0.000e+00], dtype=float32) >>> sr 11025 >>> # Load 5 seconds of a file, starting 15 seconds in >>> filename = librosa.util.example_audio_file() >>> y, sr = librosa.load(filename, offset=15.0, duration=5.0) >>> y array([ 0.069, 0.1 , ..., -0.101, 0. ], dtype=float32) >>> sr 22050 """ try: with sf.SoundFile(path) as sf_desc: sr_native = sf_desc.samplerate if offset: # Seek to the start of the target read sf_desc.seek(int(offset * sr_native)) if duration is not None: frame_duration = int(duration * sr_native) else: frame_duration = -1 # Load the target number of frames, and transpose to match librosa form y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T except RuntimeError as exc: # If soundfile failed, fall back to the audioread loader y, sr_native = __audioread_load(path, offset, duration, dtype) # Final cleanup for dtype and contiguity if mono: y = to_mono(y) if sr is not None: y = resample(y, sr_native, sr, res_type=res_type) else: sr = sr_native return y, sr
[ "Load", "an", "audio", "file", "as", "a", "floating", "point", "time", "series", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L32-L152
[ "def", "load", "(", "path", ",", "sr", "=", "22050", ",", "mono", "=", "True", ",", "offset", "=", "0.0", ",", "duration", "=", "None", ",", "dtype", "=", "np", ".", "float32", ",", "res_type", "=", "'kaiser_best'", ")", ":", "try", ":", "with", "sf", ".", "SoundFile", "(", "path", ")", "as", "sf_desc", ":", "sr_native", "=", "sf_desc", ".", "samplerate", "if", "offset", ":", "# Seek to the start of the target read", "sf_desc", ".", "seek", "(", "int", "(", "offset", "*", "sr_native", ")", ")", "if", "duration", "is", "not", "None", ":", "frame_duration", "=", "int", "(", "duration", "*", "sr_native", ")", "else", ":", "frame_duration", "=", "-", "1", "# Load the target number of frames, and transpose to match librosa form", "y", "=", "sf_desc", ".", "read", "(", "frames", "=", "frame_duration", ",", "dtype", "=", "dtype", ",", "always_2d", "=", "False", ")", ".", "T", "except", "RuntimeError", "as", "exc", ":", "# If soundfile failed, fall back to the audioread loader", "y", ",", "sr_native", "=", "__audioread_load", "(", "path", ",", "offset", ",", "duration", ",", "dtype", ")", "# Final cleanup for dtype and contiguity", "if", "mono", ":", "y", "=", "to_mono", "(", "y", ")", "if", "sr", "is", "not", "None", ":", "y", "=", "resample", "(", "y", ",", "sr_native", ",", "sr", ",", "res_type", "=", "res_type", ")", "else", ":", "sr", "=", "sr_native", "return", "y", ",", "sr" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__audioread_load
Load an audio buffer using audioread. This loads one block at a time, and then concatenates the results.
librosa/core/audio.py
def __audioread_load(path, offset, duration, dtype): '''Load an audio buffer using audioread. This loads one block at a time, and then concatenates the results. ''' y = [] with audioread.audio_open(path) as input_file: sr_native = input_file.samplerate n_channels = input_file.channels s_start = int(np.round(sr_native * offset)) * n_channels if duration is None: s_end = np.inf else: s_end = s_start + (int(np.round(sr_native * duration)) * n_channels) n = 0 for frame in input_file: frame = util.buf_to_float(frame, dtype=dtype) n_prev = n n = n + len(frame) if n < s_start: # offset is after the current frame # keep reading continue if s_end < n_prev: # we're off the end. stop reading break if s_end < n: # the end is in this frame. crop. frame = frame[:s_end - n_prev] if n_prev <= s_start <= n: # beginning is in this frame frame = frame[(s_start - n_prev):] # tack on the current frame y.append(frame) if y: y = np.concatenate(y) if n_channels > 1: y = y.reshape((-1, n_channels)).T else: y = np.empty(0, dtype=dtype) return y, sr_native
def __audioread_load(path, offset, duration, dtype): '''Load an audio buffer using audioread. This loads one block at a time, and then concatenates the results. ''' y = [] with audioread.audio_open(path) as input_file: sr_native = input_file.samplerate n_channels = input_file.channels s_start = int(np.round(sr_native * offset)) * n_channels if duration is None: s_end = np.inf else: s_end = s_start + (int(np.round(sr_native * duration)) * n_channels) n = 0 for frame in input_file: frame = util.buf_to_float(frame, dtype=dtype) n_prev = n n = n + len(frame) if n < s_start: # offset is after the current frame # keep reading continue if s_end < n_prev: # we're off the end. stop reading break if s_end < n: # the end is in this frame. crop. frame = frame[:s_end - n_prev] if n_prev <= s_start <= n: # beginning is in this frame frame = frame[(s_start - n_prev):] # tack on the current frame y.append(frame) if y: y = np.concatenate(y) if n_channels > 1: y = y.reshape((-1, n_channels)).T else: y = np.empty(0, dtype=dtype) return y, sr_native
[ "Load", "an", "audio", "buffer", "using", "audioread", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L155-L208
[ "def", "__audioread_load", "(", "path", ",", "offset", ",", "duration", ",", "dtype", ")", ":", "y", "=", "[", "]", "with", "audioread", ".", "audio_open", "(", "path", ")", "as", "input_file", ":", "sr_native", "=", "input_file", ".", "samplerate", "n_channels", "=", "input_file", ".", "channels", "s_start", "=", "int", "(", "np", ".", "round", "(", "sr_native", "*", "offset", ")", ")", "*", "n_channels", "if", "duration", "is", "None", ":", "s_end", "=", "np", ".", "inf", "else", ":", "s_end", "=", "s_start", "+", "(", "int", "(", "np", ".", "round", "(", "sr_native", "*", "duration", ")", ")", "*", "n_channels", ")", "n", "=", "0", "for", "frame", "in", "input_file", ":", "frame", "=", "util", ".", "buf_to_float", "(", "frame", ",", "dtype", "=", "dtype", ")", "n_prev", "=", "n", "n", "=", "n", "+", "len", "(", "frame", ")", "if", "n", "<", "s_start", ":", "# offset is after the current frame", "# keep reading", "continue", "if", "s_end", "<", "n_prev", ":", "# we're off the end. stop reading", "break", "if", "s_end", "<", "n", ":", "# the end is in this frame. crop.", "frame", "=", "frame", "[", ":", "s_end", "-", "n_prev", "]", "if", "n_prev", "<=", "s_start", "<=", "n", ":", "# beginning is in this frame", "frame", "=", "frame", "[", "(", "s_start", "-", "n_prev", ")", ":", "]", "# tack on the current frame", "y", ".", "append", "(", "frame", ")", "if", "y", ":", "y", "=", "np", ".", "concatenate", "(", "y", ")", "if", "n_channels", ">", "1", ":", "y", "=", "y", ".", "reshape", "(", "(", "-", "1", ",", "n_channels", ")", ")", ".", "T", "else", ":", "y", "=", "np", ".", "empty", "(", "0", ",", "dtype", "=", "dtype", ")", "return", "y", ",", "sr_native" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
to_mono
Force an audio signal down to mono. Parameters ---------- y : np.ndarray [shape=(2,n) or shape=(n,)] audio time series, either stereo or mono Returns ------- y_mono : np.ndarray [shape=(n,)] `y` as a monophonic time-series Notes ----- This function caches at level 20. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), mono=False) >>> y.shape (2, 1355168) >>> y_mono = librosa.to_mono(y) >>> y_mono.shape (1355168,)
librosa/core/audio.py
def to_mono(y): '''Force an audio signal down to mono. Parameters ---------- y : np.ndarray [shape=(2,n) or shape=(n,)] audio time series, either stereo or mono Returns ------- y_mono : np.ndarray [shape=(n,)] `y` as a monophonic time-series Notes ----- This function caches at level 20. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), mono=False) >>> y.shape (2, 1355168) >>> y_mono = librosa.to_mono(y) >>> y_mono.shape (1355168,) ''' # Validate the buffer. Stereo is ok here. util.valid_audio(y, mono=False) if y.ndim > 1: y = np.mean(y, axis=0) return y
def to_mono(y): '''Force an audio signal down to mono. Parameters ---------- y : np.ndarray [shape=(2,n) or shape=(n,)] audio time series, either stereo or mono Returns ------- y_mono : np.ndarray [shape=(n,)] `y` as a monophonic time-series Notes ----- This function caches at level 20. Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), mono=False) >>> y.shape (2, 1355168) >>> y_mono = librosa.to_mono(y) >>> y_mono.shape (1355168,) ''' # Validate the buffer. Stereo is ok here. util.valid_audio(y, mono=False) if y.ndim > 1: y = np.mean(y, axis=0) return y
[ "Force", "an", "audio", "signal", "down", "to", "mono", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L212-L246
[ "def", "to_mono", "(", "y", ")", ":", "# Validate the buffer. Stereo is ok here.", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "if", "y", ".", "ndim", ">", "1", ":", "y", "=", "np", ".", "mean", "(", "y", ",", "axis", "=", "0", ")", "return", "y" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
resample
Resample a time series from orig_sr to target_sr Parameters ---------- y : np.ndarray [shape=(n,) or shape=(2, n)] audio time series. Can be mono or stereo. orig_sr : number > 0 [scalar] original sampling rate of `y` target_sr : number > 0 [scalar] target sampling rate res_type : str resample type (see note) .. note:: By default, this uses `resampy`'s high-quality mode ('kaiser_best'). To use a faster method, set `res_type='kaiser_fast'`. To use `scipy.signal.resample`, set `res_type='fft'` or `res_type='scipy'`. To use `scipy.signal.resample_poly`, set `res_type='polyphase'`. .. note:: When using `res_type='polyphase'`, only integer sampling rates are supported. fix : bool adjust the length of the resampled signal to be of size exactly `ceil(target_sr * len(y) / orig_sr)` scale : bool Scale the resampled signal so that `y` and `y_hat` have approximately equal total energy. kwargs : additional keyword arguments If `fix==True`, additional keyword arguments to pass to `librosa.util.fix_length`. Returns ------- y_hat : np.ndarray [shape=(n * target_sr / orig_sr,)] `y` resampled from `orig_sr` to `target_sr` Raises ------ ParameterError If `res_type='polyphase'` and `orig_sr` or `target_sr` are not both integer-valued. See Also -------- librosa.util.fix_length scipy.signal.resample resampy.resample Notes ----- This function caches at level 20. Examples -------- Downsample from 22 KHz to 8 KHz >>> y, sr = librosa.load(librosa.util.example_audio_file(), sr=22050) >>> y_8k = librosa.resample(y, sr, 8000) >>> y.shape, y_8k.shape ((1355168,), (491671,))
librosa/core/audio.py
def resample(y, orig_sr, target_sr, res_type='kaiser_best', fix=True, scale=False, **kwargs): """Resample a time series from orig_sr to target_sr Parameters ---------- y : np.ndarray [shape=(n,) or shape=(2, n)] audio time series. Can be mono or stereo. orig_sr : number > 0 [scalar] original sampling rate of `y` target_sr : number > 0 [scalar] target sampling rate res_type : str resample type (see note) .. note:: By default, this uses `resampy`'s high-quality mode ('kaiser_best'). To use a faster method, set `res_type='kaiser_fast'`. To use `scipy.signal.resample`, set `res_type='fft'` or `res_type='scipy'`. To use `scipy.signal.resample_poly`, set `res_type='polyphase'`. .. note:: When using `res_type='polyphase'`, only integer sampling rates are supported. fix : bool adjust the length of the resampled signal to be of size exactly `ceil(target_sr * len(y) / orig_sr)` scale : bool Scale the resampled signal so that `y` and `y_hat` have approximately equal total energy. kwargs : additional keyword arguments If `fix==True`, additional keyword arguments to pass to `librosa.util.fix_length`. Returns ------- y_hat : np.ndarray [shape=(n * target_sr / orig_sr,)] `y` resampled from `orig_sr` to `target_sr` Raises ------ ParameterError If `res_type='polyphase'` and `orig_sr` or `target_sr` are not both integer-valued. See Also -------- librosa.util.fix_length scipy.signal.resample resampy.resample Notes ----- This function caches at level 20. Examples -------- Downsample from 22 KHz to 8 KHz >>> y, sr = librosa.load(librosa.util.example_audio_file(), sr=22050) >>> y_8k = librosa.resample(y, sr, 8000) >>> y.shape, y_8k.shape ((1355168,), (491671,)) """ # First, validate the audio buffer util.valid_audio(y, mono=False) if orig_sr == target_sr: return y ratio = float(target_sr) / orig_sr n_samples = int(np.ceil(y.shape[-1] * ratio)) if res_type in ('scipy', 'fft'): y_hat = scipy.signal.resample(y, n_samples, axis=-1) elif res_type == 'polyphase': if int(orig_sr) != orig_sr or int(target_sr) != target_sr: raise ParameterError('polyphase resampling is only supported for integer-valued sampling rates.') # For polyphase resampling, we need up- and down-sampling ratios # We can get those from the greatest common divisor of the rates # as long as the rates are integrable orig_sr = int(orig_sr) target_sr = int(target_sr) gcd = np.gcd(orig_sr, target_sr) y_hat = scipy.signal.resample_poly(y, target_sr // gcd, orig_sr // gcd, axis=-1) else: y_hat = resampy.resample(y, orig_sr, target_sr, filter=res_type, axis=-1) if fix: y_hat = util.fix_length(y_hat, n_samples, **kwargs) if scale: y_hat /= np.sqrt(ratio) return np.ascontiguousarray(y_hat, dtype=y.dtype)
def resample(y, orig_sr, target_sr, res_type='kaiser_best', fix=True, scale=False, **kwargs): """Resample a time series from orig_sr to target_sr Parameters ---------- y : np.ndarray [shape=(n,) or shape=(2, n)] audio time series. Can be mono or stereo. orig_sr : number > 0 [scalar] original sampling rate of `y` target_sr : number > 0 [scalar] target sampling rate res_type : str resample type (see note) .. note:: By default, this uses `resampy`'s high-quality mode ('kaiser_best'). To use a faster method, set `res_type='kaiser_fast'`. To use `scipy.signal.resample`, set `res_type='fft'` or `res_type='scipy'`. To use `scipy.signal.resample_poly`, set `res_type='polyphase'`. .. note:: When using `res_type='polyphase'`, only integer sampling rates are supported. fix : bool adjust the length of the resampled signal to be of size exactly `ceil(target_sr * len(y) / orig_sr)` scale : bool Scale the resampled signal so that `y` and `y_hat` have approximately equal total energy. kwargs : additional keyword arguments If `fix==True`, additional keyword arguments to pass to `librosa.util.fix_length`. Returns ------- y_hat : np.ndarray [shape=(n * target_sr / orig_sr,)] `y` resampled from `orig_sr` to `target_sr` Raises ------ ParameterError If `res_type='polyphase'` and `orig_sr` or `target_sr` are not both integer-valued. See Also -------- librosa.util.fix_length scipy.signal.resample resampy.resample Notes ----- This function caches at level 20. Examples -------- Downsample from 22 KHz to 8 KHz >>> y, sr = librosa.load(librosa.util.example_audio_file(), sr=22050) >>> y_8k = librosa.resample(y, sr, 8000) >>> y.shape, y_8k.shape ((1355168,), (491671,)) """ # First, validate the audio buffer util.valid_audio(y, mono=False) if orig_sr == target_sr: return y ratio = float(target_sr) / orig_sr n_samples = int(np.ceil(y.shape[-1] * ratio)) if res_type in ('scipy', 'fft'): y_hat = scipy.signal.resample(y, n_samples, axis=-1) elif res_type == 'polyphase': if int(orig_sr) != orig_sr or int(target_sr) != target_sr: raise ParameterError('polyphase resampling is only supported for integer-valued sampling rates.') # For polyphase resampling, we need up- and down-sampling ratios # We can get those from the greatest common divisor of the rates # as long as the rates are integrable orig_sr = int(orig_sr) target_sr = int(target_sr) gcd = np.gcd(orig_sr, target_sr) y_hat = scipy.signal.resample_poly(y, target_sr // gcd, orig_sr // gcd, axis=-1) else: y_hat = resampy.resample(y, orig_sr, target_sr, filter=res_type, axis=-1) if fix: y_hat = util.fix_length(y_hat, n_samples, **kwargs) if scale: y_hat /= np.sqrt(ratio) return np.ascontiguousarray(y_hat, dtype=y.dtype)
[ "Resample", "a", "time", "series", "from", "orig_sr", "to", "target_sr" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L250-L355
[ "def", "resample", "(", "y", ",", "orig_sr", ",", "target_sr", ",", "res_type", "=", "'kaiser_best'", ",", "fix", "=", "True", ",", "scale", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# First, validate the audio buffer", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "if", "orig_sr", "==", "target_sr", ":", "return", "y", "ratio", "=", "float", "(", "target_sr", ")", "/", "orig_sr", "n_samples", "=", "int", "(", "np", ".", "ceil", "(", "y", ".", "shape", "[", "-", "1", "]", "*", "ratio", ")", ")", "if", "res_type", "in", "(", "'scipy'", ",", "'fft'", ")", ":", "y_hat", "=", "scipy", ".", "signal", ".", "resample", "(", "y", ",", "n_samples", ",", "axis", "=", "-", "1", ")", "elif", "res_type", "==", "'polyphase'", ":", "if", "int", "(", "orig_sr", ")", "!=", "orig_sr", "or", "int", "(", "target_sr", ")", "!=", "target_sr", ":", "raise", "ParameterError", "(", "'polyphase resampling is only supported for integer-valued sampling rates.'", ")", "# For polyphase resampling, we need up- and down-sampling ratios", "# We can get those from the greatest common divisor of the rates", "# as long as the rates are integrable", "orig_sr", "=", "int", "(", "orig_sr", ")", "target_sr", "=", "int", "(", "target_sr", ")", "gcd", "=", "np", ".", "gcd", "(", "orig_sr", ",", "target_sr", ")", "y_hat", "=", "scipy", ".", "signal", ".", "resample_poly", "(", "y", ",", "target_sr", "//", "gcd", ",", "orig_sr", "//", "gcd", ",", "axis", "=", "-", "1", ")", "else", ":", "y_hat", "=", "resampy", ".", "resample", "(", "y", ",", "orig_sr", ",", "target_sr", ",", "filter", "=", "res_type", ",", "axis", "=", "-", "1", ")", "if", "fix", ":", "y_hat", "=", "util", ".", "fix_length", "(", "y_hat", ",", "n_samples", ",", "*", "*", "kwargs", ")", "if", "scale", ":", "y_hat", "/=", "np", ".", "sqrt", "(", "ratio", ")", "return", "np", ".", "ascontiguousarray", "(", "y_hat", ",", "dtype", "=", "y", ".", "dtype", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
get_duration
Compute the duration (in seconds) of an audio time series, feature matrix, or filename. Examples -------- >>> # Load the example audio file >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.get_duration(y=y, sr=sr) 61.45886621315193 >>> # Or directly from an audio file >>> librosa.get_duration(filename=librosa.util.example_audio_file()) 61.4 >>> # Or compute duration from an STFT matrix >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = librosa.stft(y) >>> librosa.get_duration(S=S, sr=sr) 61.44 >>> # Or a non-centered STFT matrix >>> S_left = librosa.stft(y, center=False) >>> librosa.get_duration(S=S_left, sr=sr) 61.3471201814059 Parameters ---------- y : np.ndarray [shape=(n,), (2, n)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None STFT matrix, or any STFT-derived matrix (e.g., chromagram or mel spectrogram). Durations calculated from spectrogram inputs are only accurate up to the frame resolution. If high precision is required, it is better to use the audio time series directly. n_fft : int > 0 [scalar] FFT window size for `S` hop_length : int > 0 [ scalar] number of audio samples between columns of `S` center : boolean - If `True`, `S[:, t]` is centered at `y[t * hop_length]` - If `False`, then `S[:, t]` begins at `y[t * hop_length]` filename : str If provided, all other parameters are ignored, and the duration is calculated directly from the audio file. Note that this avoids loading the contents into memory, and is therefore useful for querying the duration of long files. Returns ------- d : float >= 0 Duration (in seconds) of the input time series or spectrogram. Raises ------ ParameterError if none of `y`, `S`, or `filename` are provided. Notes ----- `get_duration` can be applied to a file (`filename`), a spectrogram (`S`), or audio buffer (`y, sr`). Only one of these three options should be provided. If you do provide multiple options (e.g., `filename` and `S`), then `filename` takes precedence over `S`, and `S` takes precedence over `(y, sr)`.
librosa/core/audio.py
def get_duration(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, center=True, filename=None): """Compute the duration (in seconds) of an audio time series, feature matrix, or filename. Examples -------- >>> # Load the example audio file >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.get_duration(y=y, sr=sr) 61.45886621315193 >>> # Or directly from an audio file >>> librosa.get_duration(filename=librosa.util.example_audio_file()) 61.4 >>> # Or compute duration from an STFT matrix >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = librosa.stft(y) >>> librosa.get_duration(S=S, sr=sr) 61.44 >>> # Or a non-centered STFT matrix >>> S_left = librosa.stft(y, center=False) >>> librosa.get_duration(S=S_left, sr=sr) 61.3471201814059 Parameters ---------- y : np.ndarray [shape=(n,), (2, n)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None STFT matrix, or any STFT-derived matrix (e.g., chromagram or mel spectrogram). Durations calculated from spectrogram inputs are only accurate up to the frame resolution. If high precision is required, it is better to use the audio time series directly. n_fft : int > 0 [scalar] FFT window size for `S` hop_length : int > 0 [ scalar] number of audio samples between columns of `S` center : boolean - If `True`, `S[:, t]` is centered at `y[t * hop_length]` - If `False`, then `S[:, t]` begins at `y[t * hop_length]` filename : str If provided, all other parameters are ignored, and the duration is calculated directly from the audio file. Note that this avoids loading the contents into memory, and is therefore useful for querying the duration of long files. Returns ------- d : float >= 0 Duration (in seconds) of the input time series or spectrogram. Raises ------ ParameterError if none of `y`, `S`, or `filename` are provided. Notes ----- `get_duration` can be applied to a file (`filename`), a spectrogram (`S`), or audio buffer (`y, sr`). Only one of these three options should be provided. If you do provide multiple options (e.g., `filename` and `S`), then `filename` takes precedence over `S`, and `S` takes precedence over `(y, sr)`. """ if filename is not None: try: return sf.info(filename).duration except: with audioread.audio_open(filename) as fdesc: return fdesc.duration if y is None: if S is None: raise ParameterError('At least one of (y, sr), S, or filename must be provided') n_frames = S.shape[1] n_samples = n_fft + hop_length * (n_frames - 1) # If centered, we lose half a window from each end of S if center: n_samples = n_samples - 2 * int(n_fft / 2) else: # Validate the audio buffer. Stereo is okay here. util.valid_audio(y, mono=False) if y.ndim == 1: n_samples = len(y) else: n_samples = y.shape[-1] return float(n_samples) / sr
def get_duration(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, center=True, filename=None): """Compute the duration (in seconds) of an audio time series, feature matrix, or filename. Examples -------- >>> # Load the example audio file >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.get_duration(y=y, sr=sr) 61.45886621315193 >>> # Or directly from an audio file >>> librosa.get_duration(filename=librosa.util.example_audio_file()) 61.4 >>> # Or compute duration from an STFT matrix >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = librosa.stft(y) >>> librosa.get_duration(S=S, sr=sr) 61.44 >>> # Or a non-centered STFT matrix >>> S_left = librosa.stft(y, center=False) >>> librosa.get_duration(S=S_left, sr=sr) 61.3471201814059 Parameters ---------- y : np.ndarray [shape=(n,), (2, n)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None STFT matrix, or any STFT-derived matrix (e.g., chromagram or mel spectrogram). Durations calculated from spectrogram inputs are only accurate up to the frame resolution. If high precision is required, it is better to use the audio time series directly. n_fft : int > 0 [scalar] FFT window size for `S` hop_length : int > 0 [ scalar] number of audio samples between columns of `S` center : boolean - If `True`, `S[:, t]` is centered at `y[t * hop_length]` - If `False`, then `S[:, t]` begins at `y[t * hop_length]` filename : str If provided, all other parameters are ignored, and the duration is calculated directly from the audio file. Note that this avoids loading the contents into memory, and is therefore useful for querying the duration of long files. Returns ------- d : float >= 0 Duration (in seconds) of the input time series or spectrogram. Raises ------ ParameterError if none of `y`, `S`, or `filename` are provided. Notes ----- `get_duration` can be applied to a file (`filename`), a spectrogram (`S`), or audio buffer (`y, sr`). Only one of these three options should be provided. If you do provide multiple options (e.g., `filename` and `S`), then `filename` takes precedence over `S`, and `S` takes precedence over `(y, sr)`. """ if filename is not None: try: return sf.info(filename).duration except: with audioread.audio_open(filename) as fdesc: return fdesc.duration if y is None: if S is None: raise ParameterError('At least one of (y, sr), S, or filename must be provided') n_frames = S.shape[1] n_samples = n_fft + hop_length * (n_frames - 1) # If centered, we lose half a window from each end of S if center: n_samples = n_samples - 2 * int(n_fft / 2) else: # Validate the audio buffer. Stereo is okay here. util.valid_audio(y, mono=False) if y.ndim == 1: n_samples = len(y) else: n_samples = y.shape[-1] return float(n_samples) / sr
[ "Compute", "the", "duration", "(", "in", "seconds", ")", "of", "an", "audio", "time", "series", "feature", "matrix", "or", "filename", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L358-L462
[ "def", "get_duration", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "S", "=", "None", ",", "n_fft", "=", "2048", ",", "hop_length", "=", "512", ",", "center", "=", "True", ",", "filename", "=", "None", ")", ":", "if", "filename", "is", "not", "None", ":", "try", ":", "return", "sf", ".", "info", "(", "filename", ")", ".", "duration", "except", ":", "with", "audioread", ".", "audio_open", "(", "filename", ")", "as", "fdesc", ":", "return", "fdesc", ".", "duration", "if", "y", "is", "None", ":", "if", "S", "is", "None", ":", "raise", "ParameterError", "(", "'At least one of (y, sr), S, or filename must be provided'", ")", "n_frames", "=", "S", ".", "shape", "[", "1", "]", "n_samples", "=", "n_fft", "+", "hop_length", "*", "(", "n_frames", "-", "1", ")", "# If centered, we lose half a window from each end of S", "if", "center", ":", "n_samples", "=", "n_samples", "-", "2", "*", "int", "(", "n_fft", "/", "2", ")", "else", ":", "# Validate the audio buffer. Stereo is okay here.", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "if", "y", ".", "ndim", "==", "1", ":", "n_samples", "=", "len", "(", "y", ")", "else", ":", "n_samples", "=", "y", ".", "shape", "[", "-", "1", "]", "return", "float", "(", "n_samples", ")", "/", "sr" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
autocorrelate
Bounded auto-correlation Parameters ---------- y : np.ndarray array to autocorrelate max_size : int > 0 or None maximum correlation lag. If unspecified, defaults to `y.shape[axis]` (unbounded) axis : int The axis along which to autocorrelate. By default, the last axis (-1) is taken. Returns ------- z : np.ndarray truncated autocorrelation `y*y` along the specified axis. If `max_size` is specified, then `z.shape[axis]` is bounded to `max_size`. Notes ----- This function caches at level 20. Examples -------- Compute full autocorrelation of y >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=20, duration=10) >>> librosa.autocorrelate(y) array([ 3.226e+03, 3.217e+03, ..., 8.277e-04, 3.575e-04], dtype=float32) Compute onset strength auto-correlation up to 4 seconds >>> import matplotlib.pyplot as plt >>> odf = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512) >>> ac = librosa.autocorrelate(odf, max_size=4* sr / 512) >>> plt.plot(ac) >>> plt.title('Auto-correlation') >>> plt.xlabel('Lag (frames)')
librosa/core/audio.py
def autocorrelate(y, max_size=None, axis=-1): """Bounded auto-correlation Parameters ---------- y : np.ndarray array to autocorrelate max_size : int > 0 or None maximum correlation lag. If unspecified, defaults to `y.shape[axis]` (unbounded) axis : int The axis along which to autocorrelate. By default, the last axis (-1) is taken. Returns ------- z : np.ndarray truncated autocorrelation `y*y` along the specified axis. If `max_size` is specified, then `z.shape[axis]` is bounded to `max_size`. Notes ----- This function caches at level 20. Examples -------- Compute full autocorrelation of y >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=20, duration=10) >>> librosa.autocorrelate(y) array([ 3.226e+03, 3.217e+03, ..., 8.277e-04, 3.575e-04], dtype=float32) Compute onset strength auto-correlation up to 4 seconds >>> import matplotlib.pyplot as plt >>> odf = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512) >>> ac = librosa.autocorrelate(odf, max_size=4* sr / 512) >>> plt.plot(ac) >>> plt.title('Auto-correlation') >>> plt.xlabel('Lag (frames)') """ if max_size is None: max_size = y.shape[axis] max_size = int(min(max_size, y.shape[axis])) # Compute the power spectrum along the chosen axis # Pad out the signal to support full-length auto-correlation. fft = get_fftlib() powspec = np.abs(fft.fft(y, n=2 * y.shape[axis] + 1, axis=axis))**2 # Convert back to time domain autocorr = fft.ifft(powspec, axis=axis) # Slice down to max_size subslice = [slice(None)] * autocorr.ndim subslice[axis] = slice(max_size) autocorr = autocorr[tuple(subslice)] if not np.iscomplexobj(y): autocorr = autocorr.real return autocorr
def autocorrelate(y, max_size=None, axis=-1): """Bounded auto-correlation Parameters ---------- y : np.ndarray array to autocorrelate max_size : int > 0 or None maximum correlation lag. If unspecified, defaults to `y.shape[axis]` (unbounded) axis : int The axis along which to autocorrelate. By default, the last axis (-1) is taken. Returns ------- z : np.ndarray truncated autocorrelation `y*y` along the specified axis. If `max_size` is specified, then `z.shape[axis]` is bounded to `max_size`. Notes ----- This function caches at level 20. Examples -------- Compute full autocorrelation of y >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=20, duration=10) >>> librosa.autocorrelate(y) array([ 3.226e+03, 3.217e+03, ..., 8.277e-04, 3.575e-04], dtype=float32) Compute onset strength auto-correlation up to 4 seconds >>> import matplotlib.pyplot as plt >>> odf = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512) >>> ac = librosa.autocorrelate(odf, max_size=4* sr / 512) >>> plt.plot(ac) >>> plt.title('Auto-correlation') >>> plt.xlabel('Lag (frames)') """ if max_size is None: max_size = y.shape[axis] max_size = int(min(max_size, y.shape[axis])) # Compute the power spectrum along the chosen axis # Pad out the signal to support full-length auto-correlation. fft = get_fftlib() powspec = np.abs(fft.fft(y, n=2 * y.shape[axis] + 1, axis=axis))**2 # Convert back to time domain autocorr = fft.ifft(powspec, axis=axis) # Slice down to max_size subslice = [slice(None)] * autocorr.ndim subslice[axis] = slice(max_size) autocorr = autocorr[tuple(subslice)] if not np.iscomplexobj(y): autocorr = autocorr.real return autocorr
[ "Bounded", "auto", "-", "correlation" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L465-L533
[ "def", "autocorrelate", "(", "y", ",", "max_size", "=", "None", ",", "axis", "=", "-", "1", ")", ":", "if", "max_size", "is", "None", ":", "max_size", "=", "y", ".", "shape", "[", "axis", "]", "max_size", "=", "int", "(", "min", "(", "max_size", ",", "y", ".", "shape", "[", "axis", "]", ")", ")", "# Compute the power spectrum along the chosen axis", "# Pad out the signal to support full-length auto-correlation.", "fft", "=", "get_fftlib", "(", ")", "powspec", "=", "np", ".", "abs", "(", "fft", ".", "fft", "(", "y", ",", "n", "=", "2", "*", "y", ".", "shape", "[", "axis", "]", "+", "1", ",", "axis", "=", "axis", ")", ")", "**", "2", "# Convert back to time domain", "autocorr", "=", "fft", ".", "ifft", "(", "powspec", ",", "axis", "=", "axis", ")", "# Slice down to max_size", "subslice", "=", "[", "slice", "(", "None", ")", "]", "*", "autocorr", ".", "ndim", "subslice", "[", "axis", "]", "=", "slice", "(", "max_size", ")", "autocorr", "=", "autocorr", "[", "tuple", "(", "subslice", ")", "]", "if", "not", "np", ".", "iscomplexobj", "(", "y", ")", ":", "autocorr", "=", "autocorr", ".", "real", "return", "autocorr" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
lpc
Linear Prediction Coefficients via Burg's method This function applies Burg's method to estimate coefficients of a linear filter on `y` of order `order`. Burg's method is an extension to the Yule-Walker approach, which are both sometimes referred to as LPC parameter estimation by autocorrelation. It follows the description and implementation approach described in the introduction in [1]_. N.B. This paper describes a different method, which is not implemented here, but has been chosen for its clear explanation of Burg's technique in its introduction. .. [1] Larry Marple A New Autoregressive Spectrum Analysis Algorithm IEEE Transactions on Accoustics, Speech, and Signal Processing vol 28, no. 4, 1980 Parameters ---------- y : np.ndarray Time series to fit order : int > 0 Order of the linear filter Returns ------- a : np.ndarray of length order + 1 LP prediction error coefficients, i.e. filter denominator polynomial Raises ------ ParameterError - If y is not valid audio as per `util.valid_audio` - If order < 1 or not integer FloatingPointError - If y is ill-conditioned See also -------- scipy.signal.lfilter Examples -------- Compute LP coefficients of y at order 16 on entire series >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, ... duration=10) >>> librosa.lpc(y, 16) Compute LP coefficients, and plot LP estimate of original series >>> import matplotlib.pyplot as plt >>> import scipy >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, ... duration=0.020) >>> a = librosa.lpc(y, 2) >>> y_hat = scipy.signal.lfilter([0] + -1*a[1:], [1], y) >>> plt.figure() >>> plt.plot(y) >>> plt.plot(y_hat) >>> plt.legend(['y', 'y_hat']) >>> plt.title('LP Model Forward Prediction')
librosa/core/audio.py
def lpc(y, order): """Linear Prediction Coefficients via Burg's method This function applies Burg's method to estimate coefficients of a linear filter on `y` of order `order`. Burg's method is an extension to the Yule-Walker approach, which are both sometimes referred to as LPC parameter estimation by autocorrelation. It follows the description and implementation approach described in the introduction in [1]_. N.B. This paper describes a different method, which is not implemented here, but has been chosen for its clear explanation of Burg's technique in its introduction. .. [1] Larry Marple A New Autoregressive Spectrum Analysis Algorithm IEEE Transactions on Accoustics, Speech, and Signal Processing vol 28, no. 4, 1980 Parameters ---------- y : np.ndarray Time series to fit order : int > 0 Order of the linear filter Returns ------- a : np.ndarray of length order + 1 LP prediction error coefficients, i.e. filter denominator polynomial Raises ------ ParameterError - If y is not valid audio as per `util.valid_audio` - If order < 1 or not integer FloatingPointError - If y is ill-conditioned See also -------- scipy.signal.lfilter Examples -------- Compute LP coefficients of y at order 16 on entire series >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, ... duration=10) >>> librosa.lpc(y, 16) Compute LP coefficients, and plot LP estimate of original series >>> import matplotlib.pyplot as plt >>> import scipy >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, ... duration=0.020) >>> a = librosa.lpc(y, 2) >>> y_hat = scipy.signal.lfilter([0] + -1*a[1:], [1], y) >>> plt.figure() >>> plt.plot(y) >>> plt.plot(y_hat) >>> plt.legend(['y', 'y_hat']) >>> plt.title('LP Model Forward Prediction') """ if not isinstance(order, int) or order < 1: raise ParameterError("order must be an integer > 0") util.valid_audio(y, mono=True) return __lpc(y, order)
def lpc(y, order): """Linear Prediction Coefficients via Burg's method This function applies Burg's method to estimate coefficients of a linear filter on `y` of order `order`. Burg's method is an extension to the Yule-Walker approach, which are both sometimes referred to as LPC parameter estimation by autocorrelation. It follows the description and implementation approach described in the introduction in [1]_. N.B. This paper describes a different method, which is not implemented here, but has been chosen for its clear explanation of Burg's technique in its introduction. .. [1] Larry Marple A New Autoregressive Spectrum Analysis Algorithm IEEE Transactions on Accoustics, Speech, and Signal Processing vol 28, no. 4, 1980 Parameters ---------- y : np.ndarray Time series to fit order : int > 0 Order of the linear filter Returns ------- a : np.ndarray of length order + 1 LP prediction error coefficients, i.e. filter denominator polynomial Raises ------ ParameterError - If y is not valid audio as per `util.valid_audio` - If order < 1 or not integer FloatingPointError - If y is ill-conditioned See also -------- scipy.signal.lfilter Examples -------- Compute LP coefficients of y at order 16 on entire series >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, ... duration=10) >>> librosa.lpc(y, 16) Compute LP coefficients, and plot LP estimate of original series >>> import matplotlib.pyplot as plt >>> import scipy >>> y, sr = librosa.load(librosa.util.example_audio_file(), offset=30, ... duration=0.020) >>> a = librosa.lpc(y, 2) >>> y_hat = scipy.signal.lfilter([0] + -1*a[1:], [1], y) >>> plt.figure() >>> plt.plot(y) >>> plt.plot(y_hat) >>> plt.legend(['y', 'y_hat']) >>> plt.title('LP Model Forward Prediction') """ if not isinstance(order, int) or order < 1: raise ParameterError("order must be an integer > 0") util.valid_audio(y, mono=True) return __lpc(y, order)
[ "Linear", "Prediction", "Coefficients", "via", "Burg", "s", "method" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L536-L607
[ "def", "lpc", "(", "y", ",", "order", ")", ":", "if", "not", "isinstance", "(", "order", ",", "int", ")", "or", "order", "<", "1", ":", "raise", "ParameterError", "(", "\"order must be an integer > 0\"", ")", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "True", ")", "return", "__lpc", "(", "y", ",", "order", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
zero_crossings
Find the zero-crossings of a signal `y`: indices `i` such that `sign(y[i]) != sign(y[j])`. If `y` is multi-dimensional, then zero-crossings are computed along the specified `axis`. Parameters ---------- y : np.ndarray The input array threshold : float > 0 or None If specified, values where `-threshold <= y <= threshold` are clipped to 0. ref_magnitude : float > 0 or callable If numeric, the threshold is scaled relative to `ref_magnitude`. If callable, the threshold is scaled relative to `ref_magnitude(np.abs(y))`. pad : boolean If `True`, then `y[0]` is considered a valid zero-crossing. zero_pos : boolean If `True` then the value 0 is interpreted as having positive sign. If `False`, then 0, -1, and +1 all have distinct signs. axis : int Axis along which to compute zero-crossings. Returns ------- zero_crossings : np.ndarray [shape=y.shape, dtype=boolean] Indicator array of zero-crossings in `y` along the selected axis. Notes ----- This function caches at level 20. Examples -------- >>> # Generate a time-series >>> y = np.sin(np.linspace(0, 4 * 2 * np.pi, 20)) >>> y array([ 0.000e+00, 9.694e-01, 4.759e-01, -7.357e-01, -8.372e-01, 3.247e-01, 9.966e-01, 1.646e-01, -9.158e-01, -6.142e-01, 6.142e-01, 9.158e-01, -1.646e-01, -9.966e-01, -3.247e-01, 8.372e-01, 7.357e-01, -4.759e-01, -9.694e-01, -9.797e-16]) >>> # Compute zero-crossings >>> z = librosa.zero_crossings(y) >>> z array([ True, False, False, True, False, True, False, False, True, False, True, False, True, False, False, True, False, True, False, True], dtype=bool) >>> # Stack y against the zero-crossing indicator >>> np.vstack([y, z]).T array([[ 0.000e+00, 1.000e+00], [ 9.694e-01, 0.000e+00], [ 4.759e-01, 0.000e+00], [ -7.357e-01, 1.000e+00], [ -8.372e-01, 0.000e+00], [ 3.247e-01, 1.000e+00], [ 9.966e-01, 0.000e+00], [ 1.646e-01, 0.000e+00], [ -9.158e-01, 1.000e+00], [ -6.142e-01, 0.000e+00], [ 6.142e-01, 1.000e+00], [ 9.158e-01, 0.000e+00], [ -1.646e-01, 1.000e+00], [ -9.966e-01, 0.000e+00], [ -3.247e-01, 0.000e+00], [ 8.372e-01, 1.000e+00], [ 7.357e-01, 0.000e+00], [ -4.759e-01, 1.000e+00], [ -9.694e-01, 0.000e+00], [ -9.797e-16, 1.000e+00]]) >>> # Find the indices of zero-crossings >>> np.nonzero(z) (array([ 0, 3, 5, 8, 10, 12, 15, 17, 19]),)
librosa/core/audio.py
def zero_crossings(y, threshold=1e-10, ref_magnitude=None, pad=True, zero_pos=True, axis=-1): '''Find the zero-crossings of a signal `y`: indices `i` such that `sign(y[i]) != sign(y[j])`. If `y` is multi-dimensional, then zero-crossings are computed along the specified `axis`. Parameters ---------- y : np.ndarray The input array threshold : float > 0 or None If specified, values where `-threshold <= y <= threshold` are clipped to 0. ref_magnitude : float > 0 or callable If numeric, the threshold is scaled relative to `ref_magnitude`. If callable, the threshold is scaled relative to `ref_magnitude(np.abs(y))`. pad : boolean If `True`, then `y[0]` is considered a valid zero-crossing. zero_pos : boolean If `True` then the value 0 is interpreted as having positive sign. If `False`, then 0, -1, and +1 all have distinct signs. axis : int Axis along which to compute zero-crossings. Returns ------- zero_crossings : np.ndarray [shape=y.shape, dtype=boolean] Indicator array of zero-crossings in `y` along the selected axis. Notes ----- This function caches at level 20. Examples -------- >>> # Generate a time-series >>> y = np.sin(np.linspace(0, 4 * 2 * np.pi, 20)) >>> y array([ 0.000e+00, 9.694e-01, 4.759e-01, -7.357e-01, -8.372e-01, 3.247e-01, 9.966e-01, 1.646e-01, -9.158e-01, -6.142e-01, 6.142e-01, 9.158e-01, -1.646e-01, -9.966e-01, -3.247e-01, 8.372e-01, 7.357e-01, -4.759e-01, -9.694e-01, -9.797e-16]) >>> # Compute zero-crossings >>> z = librosa.zero_crossings(y) >>> z array([ True, False, False, True, False, True, False, False, True, False, True, False, True, False, False, True, False, True, False, True], dtype=bool) >>> # Stack y against the zero-crossing indicator >>> np.vstack([y, z]).T array([[ 0.000e+00, 1.000e+00], [ 9.694e-01, 0.000e+00], [ 4.759e-01, 0.000e+00], [ -7.357e-01, 1.000e+00], [ -8.372e-01, 0.000e+00], [ 3.247e-01, 1.000e+00], [ 9.966e-01, 0.000e+00], [ 1.646e-01, 0.000e+00], [ -9.158e-01, 1.000e+00], [ -6.142e-01, 0.000e+00], [ 6.142e-01, 1.000e+00], [ 9.158e-01, 0.000e+00], [ -1.646e-01, 1.000e+00], [ -9.966e-01, 0.000e+00], [ -3.247e-01, 0.000e+00], [ 8.372e-01, 1.000e+00], [ 7.357e-01, 0.000e+00], [ -4.759e-01, 1.000e+00], [ -9.694e-01, 0.000e+00], [ -9.797e-16, 1.000e+00]]) >>> # Find the indices of zero-crossings >>> np.nonzero(z) (array([ 0, 3, 5, 8, 10, 12, 15, 17, 19]),) ''' # Clip within the threshold if threshold is None: threshold = 0.0 if six.callable(ref_magnitude): threshold = threshold * ref_magnitude(np.abs(y)) elif ref_magnitude is not None: threshold = threshold * ref_magnitude if threshold > 0: y = y.copy() y[np.abs(y) <= threshold] = 0 # Extract the sign bit if zero_pos: y_sign = np.signbit(y) else: y_sign = np.sign(y) # Find the change-points by slicing slice_pre = [slice(None)] * y.ndim slice_pre[axis] = slice(1, None) slice_post = [slice(None)] * y.ndim slice_post[axis] = slice(-1) # Since we've offset the input by one, pad back onto the front padding = [(0, 0)] * y.ndim padding[axis] = (1, 0) return np.pad((y_sign[tuple(slice_post)] != y_sign[tuple(slice_pre)]), padding, mode='constant', constant_values=pad)
def zero_crossings(y, threshold=1e-10, ref_magnitude=None, pad=True, zero_pos=True, axis=-1): '''Find the zero-crossings of a signal `y`: indices `i` such that `sign(y[i]) != sign(y[j])`. If `y` is multi-dimensional, then zero-crossings are computed along the specified `axis`. Parameters ---------- y : np.ndarray The input array threshold : float > 0 or None If specified, values where `-threshold <= y <= threshold` are clipped to 0. ref_magnitude : float > 0 or callable If numeric, the threshold is scaled relative to `ref_magnitude`. If callable, the threshold is scaled relative to `ref_magnitude(np.abs(y))`. pad : boolean If `True`, then `y[0]` is considered a valid zero-crossing. zero_pos : boolean If `True` then the value 0 is interpreted as having positive sign. If `False`, then 0, -1, and +1 all have distinct signs. axis : int Axis along which to compute zero-crossings. Returns ------- zero_crossings : np.ndarray [shape=y.shape, dtype=boolean] Indicator array of zero-crossings in `y` along the selected axis. Notes ----- This function caches at level 20. Examples -------- >>> # Generate a time-series >>> y = np.sin(np.linspace(0, 4 * 2 * np.pi, 20)) >>> y array([ 0.000e+00, 9.694e-01, 4.759e-01, -7.357e-01, -8.372e-01, 3.247e-01, 9.966e-01, 1.646e-01, -9.158e-01, -6.142e-01, 6.142e-01, 9.158e-01, -1.646e-01, -9.966e-01, -3.247e-01, 8.372e-01, 7.357e-01, -4.759e-01, -9.694e-01, -9.797e-16]) >>> # Compute zero-crossings >>> z = librosa.zero_crossings(y) >>> z array([ True, False, False, True, False, True, False, False, True, False, True, False, True, False, False, True, False, True, False, True], dtype=bool) >>> # Stack y against the zero-crossing indicator >>> np.vstack([y, z]).T array([[ 0.000e+00, 1.000e+00], [ 9.694e-01, 0.000e+00], [ 4.759e-01, 0.000e+00], [ -7.357e-01, 1.000e+00], [ -8.372e-01, 0.000e+00], [ 3.247e-01, 1.000e+00], [ 9.966e-01, 0.000e+00], [ 1.646e-01, 0.000e+00], [ -9.158e-01, 1.000e+00], [ -6.142e-01, 0.000e+00], [ 6.142e-01, 1.000e+00], [ 9.158e-01, 0.000e+00], [ -1.646e-01, 1.000e+00], [ -9.966e-01, 0.000e+00], [ -3.247e-01, 0.000e+00], [ 8.372e-01, 1.000e+00], [ 7.357e-01, 0.000e+00], [ -4.759e-01, 1.000e+00], [ -9.694e-01, 0.000e+00], [ -9.797e-16, 1.000e+00]]) >>> # Find the indices of zero-crossings >>> np.nonzero(z) (array([ 0, 3, 5, 8, 10, 12, 15, 17, 19]),) ''' # Clip within the threshold if threshold is None: threshold = 0.0 if six.callable(ref_magnitude): threshold = threshold * ref_magnitude(np.abs(y)) elif ref_magnitude is not None: threshold = threshold * ref_magnitude if threshold > 0: y = y.copy() y[np.abs(y) <= threshold] = 0 # Extract the sign bit if zero_pos: y_sign = np.signbit(y) else: y_sign = np.sign(y) # Find the change-points by slicing slice_pre = [slice(None)] * y.ndim slice_pre[axis] = slice(1, None) slice_post = [slice(None)] * y.ndim slice_post[axis] = slice(-1) # Since we've offset the input by one, pad back onto the front padding = [(0, 0)] * y.ndim padding[axis] = (1, 0) return np.pad((y_sign[tuple(slice_post)] != y_sign[tuple(slice_pre)]), padding, mode='constant', constant_values=pad)
[ "Find", "the", "zero", "-", "crossings", "of", "a", "signal", "y", ":", "indices", "i", "such", "that", "sign", "(", "y", "[", "i", "]", ")", "!", "=", "sign", "(", "y", "[", "j", "]", ")", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L694-L815
[ "def", "zero_crossings", "(", "y", ",", "threshold", "=", "1e-10", ",", "ref_magnitude", "=", "None", ",", "pad", "=", "True", ",", "zero_pos", "=", "True", ",", "axis", "=", "-", "1", ")", ":", "# Clip within the threshold", "if", "threshold", "is", "None", ":", "threshold", "=", "0.0", "if", "six", ".", "callable", "(", "ref_magnitude", ")", ":", "threshold", "=", "threshold", "*", "ref_magnitude", "(", "np", ".", "abs", "(", "y", ")", ")", "elif", "ref_magnitude", "is", "not", "None", ":", "threshold", "=", "threshold", "*", "ref_magnitude", "if", "threshold", ">", "0", ":", "y", "=", "y", ".", "copy", "(", ")", "y", "[", "np", ".", "abs", "(", "y", ")", "<=", "threshold", "]", "=", "0", "# Extract the sign bit", "if", "zero_pos", ":", "y_sign", "=", "np", ".", "signbit", "(", "y", ")", "else", ":", "y_sign", "=", "np", ".", "sign", "(", "y", ")", "# Find the change-points by slicing", "slice_pre", "=", "[", "slice", "(", "None", ")", "]", "*", "y", ".", "ndim", "slice_pre", "[", "axis", "]", "=", "slice", "(", "1", ",", "None", ")", "slice_post", "=", "[", "slice", "(", "None", ")", "]", "*", "y", ".", "ndim", "slice_post", "[", "axis", "]", "=", "slice", "(", "-", "1", ")", "# Since we've offset the input by one, pad back onto the front", "padding", "=", "[", "(", "0", ",", "0", ")", "]", "*", "y", ".", "ndim", "padding", "[", "axis", "]", "=", "(", "1", ",", "0", ")", "return", "np", ".", "pad", "(", "(", "y_sign", "[", "tuple", "(", "slice_post", ")", "]", "!=", "y_sign", "[", "tuple", "(", "slice_pre", ")", "]", ")", ",", "padding", ",", "mode", "=", "'constant'", ",", "constant_values", "=", "pad", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
clicks
Returns a signal with the signal `click` placed at each specified time Parameters ---------- times : np.ndarray or None times to place clicks, in seconds frames : np.ndarray or None frame indices to place clicks sr : number > 0 desired sampling rate of the output signal hop_length : int > 0 if positions are specified by `frames`, the number of samples between frames. click_freq : float > 0 frequency (in Hz) of the default click signal. Default is 1KHz. click_duration : float > 0 duration (in seconds) of the default click signal. Default is 100ms. click : np.ndarray or None optional click signal sample to use instead of the default blip. length : int > 0 desired number of samples in the output signal Returns ------- click_signal : np.ndarray Synthesized click signal Raises ------ ParameterError - If neither `times` nor `frames` are provided. - If any of `click_freq`, `click_duration`, or `length` are out of range. Examples -------- >>> # Sonify detected beat events >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> y_beats = librosa.clicks(frames=beats, sr=sr) >>> # Or generate a signal of the same length as y >>> y_beats = librosa.clicks(frames=beats, sr=sr, length=len(y)) >>> # Or use timing instead of frame indices >>> times = librosa.frames_to_time(beats, sr=sr) >>> y_beat_times = librosa.clicks(times=times, sr=sr) >>> # Or with a click frequency of 880Hz and a 500ms sample >>> y_beat_times880 = librosa.clicks(times=times, sr=sr, ... click_freq=880, click_duration=0.5) Display click waveform next to the spectrogram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S = librosa.feature.melspectrogram(y=y, sr=sr) >>> ax = plt.subplot(2,1,2) >>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.subplot(2,1,1, sharex=ax) >>> librosa.display.waveplot(y_beat_times, sr=sr, label='Beat clicks') >>> plt.legend() >>> plt.xlim(15, 30) >>> plt.tight_layout()
librosa/core/audio.py
def clicks(times=None, frames=None, sr=22050, hop_length=512, click_freq=1000.0, click_duration=0.1, click=None, length=None): """Returns a signal with the signal `click` placed at each specified time Parameters ---------- times : np.ndarray or None times to place clicks, in seconds frames : np.ndarray or None frame indices to place clicks sr : number > 0 desired sampling rate of the output signal hop_length : int > 0 if positions are specified by `frames`, the number of samples between frames. click_freq : float > 0 frequency (in Hz) of the default click signal. Default is 1KHz. click_duration : float > 0 duration (in seconds) of the default click signal. Default is 100ms. click : np.ndarray or None optional click signal sample to use instead of the default blip. length : int > 0 desired number of samples in the output signal Returns ------- click_signal : np.ndarray Synthesized click signal Raises ------ ParameterError - If neither `times` nor `frames` are provided. - If any of `click_freq`, `click_duration`, or `length` are out of range. Examples -------- >>> # Sonify detected beat events >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> y_beats = librosa.clicks(frames=beats, sr=sr) >>> # Or generate a signal of the same length as y >>> y_beats = librosa.clicks(frames=beats, sr=sr, length=len(y)) >>> # Or use timing instead of frame indices >>> times = librosa.frames_to_time(beats, sr=sr) >>> y_beat_times = librosa.clicks(times=times, sr=sr) >>> # Or with a click frequency of 880Hz and a 500ms sample >>> y_beat_times880 = librosa.clicks(times=times, sr=sr, ... click_freq=880, click_duration=0.5) Display click waveform next to the spectrogram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S = librosa.feature.melspectrogram(y=y, sr=sr) >>> ax = plt.subplot(2,1,2) >>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.subplot(2,1,1, sharex=ax) >>> librosa.display.waveplot(y_beat_times, sr=sr, label='Beat clicks') >>> plt.legend() >>> plt.xlim(15, 30) >>> plt.tight_layout() """ # Compute sample positions from time or frames if times is None: if frames is None: raise ParameterError('either "times" or "frames" must be provided') positions = frames_to_samples(frames, hop_length=hop_length) else: # Convert times to positions positions = time_to_samples(times, sr=sr) if click is not None: # Check that we have a well-formed audio buffer util.valid_audio(click, mono=True) else: # Create default click signal if click_duration <= 0: raise ParameterError('click_duration must be strictly positive') if click_freq <= 0: raise ParameterError('click_freq must be strictly positive') angular_freq = 2 * np.pi * click_freq / float(sr) click = np.logspace(0, -10, num=int(np.round(sr * click_duration)), base=2.0) click *= np.sin(angular_freq * np.arange(len(click))) # Set default length if length is None: length = positions.max() + click.shape[0] else: if length < 1: raise ParameterError('length must be a positive integer') # Filter out any positions past the length boundary positions = positions[positions < length] # Pre-allocate click signal click_signal = np.zeros(length, dtype=np.float32) # Place clicks for start in positions: # Compute the end-point of this click end = start + click.shape[0] if end >= length: click_signal[start:] += click[:length - start] else: # Normally, just add a click here click_signal[start:end] += click return click_signal
def clicks(times=None, frames=None, sr=22050, hop_length=512, click_freq=1000.0, click_duration=0.1, click=None, length=None): """Returns a signal with the signal `click` placed at each specified time Parameters ---------- times : np.ndarray or None times to place clicks, in seconds frames : np.ndarray or None frame indices to place clicks sr : number > 0 desired sampling rate of the output signal hop_length : int > 0 if positions are specified by `frames`, the number of samples between frames. click_freq : float > 0 frequency (in Hz) of the default click signal. Default is 1KHz. click_duration : float > 0 duration (in seconds) of the default click signal. Default is 100ms. click : np.ndarray or None optional click signal sample to use instead of the default blip. length : int > 0 desired number of samples in the output signal Returns ------- click_signal : np.ndarray Synthesized click signal Raises ------ ParameterError - If neither `times` nor `frames` are provided. - If any of `click_freq`, `click_duration`, or `length` are out of range. Examples -------- >>> # Sonify detected beat events >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> y_beats = librosa.clicks(frames=beats, sr=sr) >>> # Or generate a signal of the same length as y >>> y_beats = librosa.clicks(frames=beats, sr=sr, length=len(y)) >>> # Or use timing instead of frame indices >>> times = librosa.frames_to_time(beats, sr=sr) >>> y_beat_times = librosa.clicks(times=times, sr=sr) >>> # Or with a click frequency of 880Hz and a 500ms sample >>> y_beat_times880 = librosa.clicks(times=times, sr=sr, ... click_freq=880, click_duration=0.5) Display click waveform next to the spectrogram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S = librosa.feature.melspectrogram(y=y, sr=sr) >>> ax = plt.subplot(2,1,2) >>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.subplot(2,1,1, sharex=ax) >>> librosa.display.waveplot(y_beat_times, sr=sr, label='Beat clicks') >>> plt.legend() >>> plt.xlim(15, 30) >>> plt.tight_layout() """ # Compute sample positions from time or frames if times is None: if frames is None: raise ParameterError('either "times" or "frames" must be provided') positions = frames_to_samples(frames, hop_length=hop_length) else: # Convert times to positions positions = time_to_samples(times, sr=sr) if click is not None: # Check that we have a well-formed audio buffer util.valid_audio(click, mono=True) else: # Create default click signal if click_duration <= 0: raise ParameterError('click_duration must be strictly positive') if click_freq <= 0: raise ParameterError('click_freq must be strictly positive') angular_freq = 2 * np.pi * click_freq / float(sr) click = np.logspace(0, -10, num=int(np.round(sr * click_duration)), base=2.0) click *= np.sin(angular_freq * np.arange(len(click))) # Set default length if length is None: length = positions.max() + click.shape[0] else: if length < 1: raise ParameterError('length must be a positive integer') # Filter out any positions past the length boundary positions = positions[positions < length] # Pre-allocate click signal click_signal = np.zeros(length, dtype=np.float32) # Place clicks for start in positions: # Compute the end-point of this click end = start + click.shape[0] if end >= length: click_signal[start:] += click[:length - start] else: # Normally, just add a click here click_signal[start:end] += click return click_signal
[ "Returns", "a", "signal", "with", "the", "signal", "click", "placed", "at", "each", "specified", "time" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L818-L949
[ "def", "clicks", "(", "times", "=", "None", ",", "frames", "=", "None", ",", "sr", "=", "22050", ",", "hop_length", "=", "512", ",", "click_freq", "=", "1000.0", ",", "click_duration", "=", "0.1", ",", "click", "=", "None", ",", "length", "=", "None", ")", ":", "# Compute sample positions from time or frames", "if", "times", "is", "None", ":", "if", "frames", "is", "None", ":", "raise", "ParameterError", "(", "'either \"times\" or \"frames\" must be provided'", ")", "positions", "=", "frames_to_samples", "(", "frames", ",", "hop_length", "=", "hop_length", ")", "else", ":", "# Convert times to positions", "positions", "=", "time_to_samples", "(", "times", ",", "sr", "=", "sr", ")", "if", "click", "is", "not", "None", ":", "# Check that we have a well-formed audio buffer", "util", ".", "valid_audio", "(", "click", ",", "mono", "=", "True", ")", "else", ":", "# Create default click signal", "if", "click_duration", "<=", "0", ":", "raise", "ParameterError", "(", "'click_duration must be strictly positive'", ")", "if", "click_freq", "<=", "0", ":", "raise", "ParameterError", "(", "'click_freq must be strictly positive'", ")", "angular_freq", "=", "2", "*", "np", ".", "pi", "*", "click_freq", "/", "float", "(", "sr", ")", "click", "=", "np", ".", "logspace", "(", "0", ",", "-", "10", ",", "num", "=", "int", "(", "np", ".", "round", "(", "sr", "*", "click_duration", ")", ")", ",", "base", "=", "2.0", ")", "click", "*=", "np", ".", "sin", "(", "angular_freq", "*", "np", ".", "arange", "(", "len", "(", "click", ")", ")", ")", "# Set default length", "if", "length", "is", "None", ":", "length", "=", "positions", ".", "max", "(", ")", "+", "click", ".", "shape", "[", "0", "]", "else", ":", "if", "length", "<", "1", ":", "raise", "ParameterError", "(", "'length must be a positive integer'", ")", "# Filter out any positions past the length boundary", "positions", "=", "positions", "[", "positions", "<", "length", "]", "# Pre-allocate click signal", "click_signal", "=", "np", ".", "zeros", "(", "length", ",", "dtype", "=", "np", ".", "float32", ")", "# Place clicks", "for", "start", "in", "positions", ":", "# Compute the end-point of this click", "end", "=", "start", "+", "click", ".", "shape", "[", "0", "]", "if", "end", ">=", "length", ":", "click_signal", "[", "start", ":", "]", "+=", "click", "[", ":", "length", "-", "start", "]", "else", ":", "# Normally, just add a click here", "click_signal", "[", "start", ":", "end", "]", "+=", "click", "return", "click_signal" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
tone
Returns a pure tone signal. The signal generated is a cosine wave. Parameters ---------- frequency : float > 0 frequency sr : number > 0 desired sampling rate of the output signal length : int > 0 desired number of samples in the output signal. When both `duration` and `length` are defined, `length` would take priority. duration : float > 0 desired duration in seconds. When both `duration` and `length` are defined, `length` would take priority. phi : float or None phase offset, in radians. If unspecified, defaults to `-np.pi * 0.5`. Returns ------- tone_signal : np.ndarray [shape=(length,), dtype=float64] Synthesized pure sine tone signal Raises ------ ParameterError - If `frequency` is not provided. - If neither `length` nor `duration` are provided. Examples -------- >>> # Generate a pure sine tone A4 >>> tone = librosa.tone(440, duration=1) >>> # Or generate the same signal using `length` >>> tone = librosa.tone(440, sr=22050, length=22050) Display spectrogram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S = librosa.feature.melspectrogram(y=tone) >>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max), ... x_axis='time', y_axis='mel')
librosa/core/audio.py
def tone(frequency, sr=22050, length=None, duration=None, phi=None): """Returns a pure tone signal. The signal generated is a cosine wave. Parameters ---------- frequency : float > 0 frequency sr : number > 0 desired sampling rate of the output signal length : int > 0 desired number of samples in the output signal. When both `duration` and `length` are defined, `length` would take priority. duration : float > 0 desired duration in seconds. When both `duration` and `length` are defined, `length` would take priority. phi : float or None phase offset, in radians. If unspecified, defaults to `-np.pi * 0.5`. Returns ------- tone_signal : np.ndarray [shape=(length,), dtype=float64] Synthesized pure sine tone signal Raises ------ ParameterError - If `frequency` is not provided. - If neither `length` nor `duration` are provided. Examples -------- >>> # Generate a pure sine tone A4 >>> tone = librosa.tone(440, duration=1) >>> # Or generate the same signal using `length` >>> tone = librosa.tone(440, sr=22050, length=22050) Display spectrogram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S = librosa.feature.melspectrogram(y=tone) >>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max), ... x_axis='time', y_axis='mel') """ if frequency is None: raise ParameterError('"frequency" must be provided') # Compute signal length if length is None: if duration is None: raise ParameterError('either "length" or "duration" must be provided') length = duration * sr if phi is None: phi = -np.pi * 0.5 step = 1.0 / sr return np.cos(2 * np.pi * frequency * (np.arange(step * length, step=step)) + phi)
def tone(frequency, sr=22050, length=None, duration=None, phi=None): """Returns a pure tone signal. The signal generated is a cosine wave. Parameters ---------- frequency : float > 0 frequency sr : number > 0 desired sampling rate of the output signal length : int > 0 desired number of samples in the output signal. When both `duration` and `length` are defined, `length` would take priority. duration : float > 0 desired duration in seconds. When both `duration` and `length` are defined, `length` would take priority. phi : float or None phase offset, in radians. If unspecified, defaults to `-np.pi * 0.5`. Returns ------- tone_signal : np.ndarray [shape=(length,), dtype=float64] Synthesized pure sine tone signal Raises ------ ParameterError - If `frequency` is not provided. - If neither `length` nor `duration` are provided. Examples -------- >>> # Generate a pure sine tone A4 >>> tone = librosa.tone(440, duration=1) >>> # Or generate the same signal using `length` >>> tone = librosa.tone(440, sr=22050, length=22050) Display spectrogram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S = librosa.feature.melspectrogram(y=tone) >>> librosa.display.specshow(librosa.power_to_db(S, ref=np.max), ... x_axis='time', y_axis='mel') """ if frequency is None: raise ParameterError('"frequency" must be provided') # Compute signal length if length is None: if duration is None: raise ParameterError('either "length" or "duration" must be provided') length = duration * sr if phi is None: phi = -np.pi * 0.5 step = 1.0 / sr return np.cos(2 * np.pi * frequency * (np.arange(step * length, step=step)) + phi)
[ "Returns", "a", "pure", "tone", "signal", ".", "The", "signal", "generated", "is", "a", "cosine", "wave", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L952-L1017
[ "def", "tone", "(", "frequency", ",", "sr", "=", "22050", ",", "length", "=", "None", ",", "duration", "=", "None", ",", "phi", "=", "None", ")", ":", "if", "frequency", "is", "None", ":", "raise", "ParameterError", "(", "'\"frequency\" must be provided'", ")", "# Compute signal length", "if", "length", "is", "None", ":", "if", "duration", "is", "None", ":", "raise", "ParameterError", "(", "'either \"length\" or \"duration\" must be provided'", ")", "length", "=", "duration", "*", "sr", "if", "phi", "is", "None", ":", "phi", "=", "-", "np", ".", "pi", "*", "0.5", "step", "=", "1.0", "/", "sr", "return", "np", ".", "cos", "(", "2", "*", "np", ".", "pi", "*", "frequency", "*", "(", "np", ".", "arange", "(", "step", "*", "length", ",", "step", "=", "step", ")", ")", "+", "phi", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
chirp
Returns a chirp signal that goes from frequency `fmin` to frequency `fmax` Parameters ---------- fmin : float > 0 initial frequency fmax : float > 0 final frequency sr : number > 0 desired sampling rate of the output signal length : int > 0 desired number of samples in the output signal. When both `duration` and `length` are defined, `length` would take priority. duration : float > 0 desired duration in seconds. When both `duration` and `length` are defined, `length` would take priority. linear : boolean - If `True`, use a linear sweep, i.e., frequency changes linearly with time - If `False`, use a exponential sweep. Default is `False`. phi : float or None phase offset, in radians. If unspecified, defaults to `-np.pi * 0.5`. Returns ------- chirp_signal : np.ndarray [shape=(length,), dtype=float64] Synthesized chirp signal Raises ------ ParameterError - If either `fmin` or `fmax` are not provided. - If neither `length` nor `duration` are provided. See Also -------- scipy.signal.chirp Examples -------- >>> # Generate a exponential chirp from A4 to A5 >>> exponential_chirp = librosa.chirp(440, 880, duration=1) >>> # Or generate the same signal using `length` >>> exponential_chirp = librosa.chirp(440, 880, sr=22050, length=22050) >>> # Or generate a linear chirp instead >>> linear_chirp = librosa.chirp(440, 880, duration=1, linear=True) Display spectrogram for both exponential and linear chirps >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S_exponential = librosa.feature.melspectrogram(y=exponential_chirp) >>> ax = plt.subplot(2,1,1) >>> librosa.display.specshow(librosa.power_to_db(S_exponential, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.subplot(2,1,2, sharex=ax) >>> S_linear = librosa.feature.melspectrogram(y=linear_chirp) >>> librosa.display.specshow(librosa.power_to_db(S_linear, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.tight_layout()
librosa/core/audio.py
def chirp(fmin, fmax, sr=22050, length=None, duration=None, linear=False, phi=None): """Returns a chirp signal that goes from frequency `fmin` to frequency `fmax` Parameters ---------- fmin : float > 0 initial frequency fmax : float > 0 final frequency sr : number > 0 desired sampling rate of the output signal length : int > 0 desired number of samples in the output signal. When both `duration` and `length` are defined, `length` would take priority. duration : float > 0 desired duration in seconds. When both `duration` and `length` are defined, `length` would take priority. linear : boolean - If `True`, use a linear sweep, i.e., frequency changes linearly with time - If `False`, use a exponential sweep. Default is `False`. phi : float or None phase offset, in radians. If unspecified, defaults to `-np.pi * 0.5`. Returns ------- chirp_signal : np.ndarray [shape=(length,), dtype=float64] Synthesized chirp signal Raises ------ ParameterError - If either `fmin` or `fmax` are not provided. - If neither `length` nor `duration` are provided. See Also -------- scipy.signal.chirp Examples -------- >>> # Generate a exponential chirp from A4 to A5 >>> exponential_chirp = librosa.chirp(440, 880, duration=1) >>> # Or generate the same signal using `length` >>> exponential_chirp = librosa.chirp(440, 880, sr=22050, length=22050) >>> # Or generate a linear chirp instead >>> linear_chirp = librosa.chirp(440, 880, duration=1, linear=True) Display spectrogram for both exponential and linear chirps >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S_exponential = librosa.feature.melspectrogram(y=exponential_chirp) >>> ax = plt.subplot(2,1,1) >>> librosa.display.specshow(librosa.power_to_db(S_exponential, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.subplot(2,1,2, sharex=ax) >>> S_linear = librosa.feature.melspectrogram(y=linear_chirp) >>> librosa.display.specshow(librosa.power_to_db(S_linear, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.tight_layout() """ if fmin is None or fmax is None: raise ParameterError('both "fmin" and "fmax" must be provided') # Compute signal duration period = 1.0 / sr if length is None: if duration is None: raise ParameterError('either "length" or "duration" must be provided') else: duration = period * length if phi is None: phi = -np.pi * 0.5 method = 'linear' if linear else 'logarithmic' return scipy.signal.chirp( np.arange(duration, step=period), fmin, duration, fmax, method=method, phi=phi / np.pi * 180, # scipy.signal.chirp uses degrees for phase offset )
def chirp(fmin, fmax, sr=22050, length=None, duration=None, linear=False, phi=None): """Returns a chirp signal that goes from frequency `fmin` to frequency `fmax` Parameters ---------- fmin : float > 0 initial frequency fmax : float > 0 final frequency sr : number > 0 desired sampling rate of the output signal length : int > 0 desired number of samples in the output signal. When both `duration` and `length` are defined, `length` would take priority. duration : float > 0 desired duration in seconds. When both `duration` and `length` are defined, `length` would take priority. linear : boolean - If `True`, use a linear sweep, i.e., frequency changes linearly with time - If `False`, use a exponential sweep. Default is `False`. phi : float or None phase offset, in radians. If unspecified, defaults to `-np.pi * 0.5`. Returns ------- chirp_signal : np.ndarray [shape=(length,), dtype=float64] Synthesized chirp signal Raises ------ ParameterError - If either `fmin` or `fmax` are not provided. - If neither `length` nor `duration` are provided. See Also -------- scipy.signal.chirp Examples -------- >>> # Generate a exponential chirp from A4 to A5 >>> exponential_chirp = librosa.chirp(440, 880, duration=1) >>> # Or generate the same signal using `length` >>> exponential_chirp = librosa.chirp(440, 880, sr=22050, length=22050) >>> # Or generate a linear chirp instead >>> linear_chirp = librosa.chirp(440, 880, duration=1, linear=True) Display spectrogram for both exponential and linear chirps >>> import matplotlib.pyplot as plt >>> plt.figure() >>> S_exponential = librosa.feature.melspectrogram(y=exponential_chirp) >>> ax = plt.subplot(2,1,1) >>> librosa.display.specshow(librosa.power_to_db(S_exponential, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.subplot(2,1,2, sharex=ax) >>> S_linear = librosa.feature.melspectrogram(y=linear_chirp) >>> librosa.display.specshow(librosa.power_to_db(S_linear, ref=np.max), ... x_axis='time', y_axis='mel') >>> plt.tight_layout() """ if fmin is None or fmax is None: raise ParameterError('both "fmin" and "fmax" must be provided') # Compute signal duration period = 1.0 / sr if length is None: if duration is None: raise ParameterError('either "length" or "duration" must be provided') else: duration = period * length if phi is None: phi = -np.pi * 0.5 method = 'linear' if linear else 'logarithmic' return scipy.signal.chirp( np.arange(duration, step=period), fmin, duration, fmax, method=method, phi=phi / np.pi * 180, # scipy.signal.chirp uses degrees for phase offset )
[ "Returns", "a", "chirp", "signal", "that", "goes", "from", "frequency", "fmin", "to", "frequency", "fmax" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/core/audio.py#L1020-L1118
[ "def", "chirp", "(", "fmin", ",", "fmax", ",", "sr", "=", "22050", ",", "length", "=", "None", ",", "duration", "=", "None", ",", "linear", "=", "False", ",", "phi", "=", "None", ")", ":", "if", "fmin", "is", "None", "or", "fmax", "is", "None", ":", "raise", "ParameterError", "(", "'both \"fmin\" and \"fmax\" must be provided'", ")", "# Compute signal duration", "period", "=", "1.0", "/", "sr", "if", "length", "is", "None", ":", "if", "duration", "is", "None", ":", "raise", "ParameterError", "(", "'either \"length\" or \"duration\" must be provided'", ")", "else", ":", "duration", "=", "period", "*", "length", "if", "phi", "is", "None", ":", "phi", "=", "-", "np", ".", "pi", "*", "0.5", "method", "=", "'linear'", "if", "linear", "else", "'logarithmic'", "return", "scipy", ".", "signal", ".", "chirp", "(", "np", ".", "arange", "(", "duration", ",", "step", "=", "period", ")", ",", "fmin", ",", "duration", ",", "fmax", ",", "method", "=", "method", ",", "phi", "=", "phi", "/", "np", ".", "pi", "*", "180", ",", "# scipy.signal.chirp uses degrees for phase offset", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
tempogram
Compute the tempogram: local autocorrelation of the onset strength envelope. [1]_ .. [1] Grosche, Peter, Meinard Müller, and Frank Kurth. "Cyclic tempogram - A mid-level tempo representation for music signals." ICASSP, 2010. Parameters ---------- y : np.ndarray [shape=(n,)] or None Audio time series. sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(n,) or (m, n)] or None Optional pre-computed onset strength envelope as provided by `onset.onset_strength`. If multi-dimensional, tempograms are computed independently for each band (first dimension). hop_length : int > 0 number of audio samples between successive onset measurements win_length : int > 0 length of the onset autocorrelation window (in frames/onset measurements) The default settings (384) corresponds to `384 * hop_length / sr ~= 8.9s`. center : bool If `True`, onset autocorrelation windows are centered. If `False`, windows are left-aligned. window : string, function, number, tuple, or np.ndarray [shape=(win_length,)] A window specification as in `core.stft`. norm : {np.inf, -np.inf, 0, float > 0, None} Normalization mode. Set to `None` to disable normalization. Returns ------- tempogram : np.ndarray [shape=(win_length, n) or (m, win_length, n)] Localized autocorrelation of the onset strength envelope. If given multi-band input (`onset_envelope.shape==(m,n)`) then `tempogram[i]` is the tempogram of `onset_envelope[i]`. Raises ------ ParameterError if neither `y` nor `onset_envelope` are provided if `win_length < 1` See Also -------- librosa.onset.onset_strength librosa.util.normalize librosa.core.stft Examples -------- >>> # Compute local onset autocorrelation >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> hop_length = 512 >>> oenv = librosa.onset.onset_strength(y=y, sr=sr, hop_length=hop_length) >>> tempogram = librosa.feature.tempogram(onset_envelope=oenv, sr=sr, ... hop_length=hop_length) >>> # Compute global onset autocorrelation >>> ac_global = librosa.autocorrelate(oenv, max_size=tempogram.shape[0]) >>> ac_global = librosa.util.normalize(ac_global) >>> # Estimate the global tempo for display purposes >>> tempo = librosa.beat.tempo(onset_envelope=oenv, sr=sr, ... hop_length=hop_length)[0] >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> plt.subplot(4, 1, 1) >>> plt.plot(oenv, label='Onset strength') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.subplot(4, 1, 2) >>> # We'll truncate the display to a narrower range of tempi >>> librosa.display.specshow(tempogram, sr=sr, hop_length=hop_length, >>> x_axis='time', y_axis='tempo') >>> plt.axhline(tempo, color='w', linestyle='--', alpha=1, ... label='Estimated tempo={:g}'.format(tempo)) >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.subplot(4, 1, 3) >>> x = np.linspace(0, tempogram.shape[0] * float(hop_length) / sr, ... num=tempogram.shape[0]) >>> plt.plot(x, np.mean(tempogram, axis=1), label='Mean local autocorrelation') >>> plt.plot(x, ac_global, '--', alpha=0.75, label='Global autocorrelation') >>> plt.xlabel('Lag (seconds)') >>> plt.axis('tight') >>> plt.legend(frameon=True) >>> plt.subplot(4,1,4) >>> # We can also plot on a BPM axis >>> freqs = librosa.tempo_frequencies(tempogram.shape[0], hop_length=hop_length, sr=sr) >>> plt.semilogx(freqs[1:], np.mean(tempogram[1:], axis=1), ... label='Mean local autocorrelation', basex=2) >>> plt.semilogx(freqs[1:], ac_global[1:], '--', alpha=0.75, ... label='Global autocorrelation', basex=2) >>> plt.axvline(tempo, color='black', linestyle='--', alpha=.8, ... label='Estimated tempo={:g}'.format(tempo)) >>> plt.legend(frameon=True) >>> plt.xlabel('BPM') >>> plt.axis('tight') >>> plt.grid() >>> plt.tight_layout()
librosa/feature/rhythm.py
def tempogram(y=None, sr=22050, onset_envelope=None, hop_length=512, win_length=384, center=True, window='hann', norm=np.inf): '''Compute the tempogram: local autocorrelation of the onset strength envelope. [1]_ .. [1] Grosche, Peter, Meinard Müller, and Frank Kurth. "Cyclic tempogram - A mid-level tempo representation for music signals." ICASSP, 2010. Parameters ---------- y : np.ndarray [shape=(n,)] or None Audio time series. sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(n,) or (m, n)] or None Optional pre-computed onset strength envelope as provided by `onset.onset_strength`. If multi-dimensional, tempograms are computed independently for each band (first dimension). hop_length : int > 0 number of audio samples between successive onset measurements win_length : int > 0 length of the onset autocorrelation window (in frames/onset measurements) The default settings (384) corresponds to `384 * hop_length / sr ~= 8.9s`. center : bool If `True`, onset autocorrelation windows are centered. If `False`, windows are left-aligned. window : string, function, number, tuple, or np.ndarray [shape=(win_length,)] A window specification as in `core.stft`. norm : {np.inf, -np.inf, 0, float > 0, None} Normalization mode. Set to `None` to disable normalization. Returns ------- tempogram : np.ndarray [shape=(win_length, n) or (m, win_length, n)] Localized autocorrelation of the onset strength envelope. If given multi-band input (`onset_envelope.shape==(m,n)`) then `tempogram[i]` is the tempogram of `onset_envelope[i]`. Raises ------ ParameterError if neither `y` nor `onset_envelope` are provided if `win_length < 1` See Also -------- librosa.onset.onset_strength librosa.util.normalize librosa.core.stft Examples -------- >>> # Compute local onset autocorrelation >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> hop_length = 512 >>> oenv = librosa.onset.onset_strength(y=y, sr=sr, hop_length=hop_length) >>> tempogram = librosa.feature.tempogram(onset_envelope=oenv, sr=sr, ... hop_length=hop_length) >>> # Compute global onset autocorrelation >>> ac_global = librosa.autocorrelate(oenv, max_size=tempogram.shape[0]) >>> ac_global = librosa.util.normalize(ac_global) >>> # Estimate the global tempo for display purposes >>> tempo = librosa.beat.tempo(onset_envelope=oenv, sr=sr, ... hop_length=hop_length)[0] >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> plt.subplot(4, 1, 1) >>> plt.plot(oenv, label='Onset strength') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.subplot(4, 1, 2) >>> # We'll truncate the display to a narrower range of tempi >>> librosa.display.specshow(tempogram, sr=sr, hop_length=hop_length, >>> x_axis='time', y_axis='tempo') >>> plt.axhline(tempo, color='w', linestyle='--', alpha=1, ... label='Estimated tempo={:g}'.format(tempo)) >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.subplot(4, 1, 3) >>> x = np.linspace(0, tempogram.shape[0] * float(hop_length) / sr, ... num=tempogram.shape[0]) >>> plt.plot(x, np.mean(tempogram, axis=1), label='Mean local autocorrelation') >>> plt.plot(x, ac_global, '--', alpha=0.75, label='Global autocorrelation') >>> plt.xlabel('Lag (seconds)') >>> plt.axis('tight') >>> plt.legend(frameon=True) >>> plt.subplot(4,1,4) >>> # We can also plot on a BPM axis >>> freqs = librosa.tempo_frequencies(tempogram.shape[0], hop_length=hop_length, sr=sr) >>> plt.semilogx(freqs[1:], np.mean(tempogram[1:], axis=1), ... label='Mean local autocorrelation', basex=2) >>> plt.semilogx(freqs[1:], ac_global[1:], '--', alpha=0.75, ... label='Global autocorrelation', basex=2) >>> plt.axvline(tempo, color='black', linestyle='--', alpha=.8, ... label='Estimated tempo={:g}'.format(tempo)) >>> plt.legend(frameon=True) >>> plt.xlabel('BPM') >>> plt.axis('tight') >>> plt.grid() >>> plt.tight_layout() ''' from ..onset import onset_strength if win_length < 1: raise ParameterError('win_length must be a positive integer') ac_window = get_window(window, win_length, fftbins=True) if onset_envelope is None: if y is None: raise ParameterError('Either y or onset_envelope must be provided') onset_envelope = onset_strength(y=y, sr=sr, hop_length=hop_length) else: # Force row-contiguity to avoid framing errors below onset_envelope = np.ascontiguousarray(onset_envelope) if onset_envelope.ndim > 1: # If we have multi-band input, iterate over rows return np.asarray([tempogram(onset_envelope=oe_subband, hop_length=hop_length, win_length=win_length, center=center, window=window, norm=norm) for oe_subband in onset_envelope]) # Center the autocorrelation windows n = len(onset_envelope) if center: onset_envelope = np.pad(onset_envelope, int(win_length // 2), mode='linear_ramp', end_values=[0, 0]) # Carve onset envelope into frames odf_frame = util.frame(onset_envelope, frame_length=win_length, hop_length=1) # Truncate to the length of the original signal if center: odf_frame = odf_frame[:, :n] # Window, autocorrelate, and normalize return util.normalize(autocorrelate(odf_frame * ac_window[:, np.newaxis], axis=0), norm=norm, axis=0)
def tempogram(y=None, sr=22050, onset_envelope=None, hop_length=512, win_length=384, center=True, window='hann', norm=np.inf): '''Compute the tempogram: local autocorrelation of the onset strength envelope. [1]_ .. [1] Grosche, Peter, Meinard Müller, and Frank Kurth. "Cyclic tempogram - A mid-level tempo representation for music signals." ICASSP, 2010. Parameters ---------- y : np.ndarray [shape=(n,)] or None Audio time series. sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(n,) or (m, n)] or None Optional pre-computed onset strength envelope as provided by `onset.onset_strength`. If multi-dimensional, tempograms are computed independently for each band (first dimension). hop_length : int > 0 number of audio samples between successive onset measurements win_length : int > 0 length of the onset autocorrelation window (in frames/onset measurements) The default settings (384) corresponds to `384 * hop_length / sr ~= 8.9s`. center : bool If `True`, onset autocorrelation windows are centered. If `False`, windows are left-aligned. window : string, function, number, tuple, or np.ndarray [shape=(win_length,)] A window specification as in `core.stft`. norm : {np.inf, -np.inf, 0, float > 0, None} Normalization mode. Set to `None` to disable normalization. Returns ------- tempogram : np.ndarray [shape=(win_length, n) or (m, win_length, n)] Localized autocorrelation of the onset strength envelope. If given multi-band input (`onset_envelope.shape==(m,n)`) then `tempogram[i]` is the tempogram of `onset_envelope[i]`. Raises ------ ParameterError if neither `y` nor `onset_envelope` are provided if `win_length < 1` See Also -------- librosa.onset.onset_strength librosa.util.normalize librosa.core.stft Examples -------- >>> # Compute local onset autocorrelation >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> hop_length = 512 >>> oenv = librosa.onset.onset_strength(y=y, sr=sr, hop_length=hop_length) >>> tempogram = librosa.feature.tempogram(onset_envelope=oenv, sr=sr, ... hop_length=hop_length) >>> # Compute global onset autocorrelation >>> ac_global = librosa.autocorrelate(oenv, max_size=tempogram.shape[0]) >>> ac_global = librosa.util.normalize(ac_global) >>> # Estimate the global tempo for display purposes >>> tempo = librosa.beat.tempo(onset_envelope=oenv, sr=sr, ... hop_length=hop_length)[0] >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> plt.subplot(4, 1, 1) >>> plt.plot(oenv, label='Onset strength') >>> plt.xticks([]) >>> plt.legend(frameon=True) >>> plt.axis('tight') >>> plt.subplot(4, 1, 2) >>> # We'll truncate the display to a narrower range of tempi >>> librosa.display.specshow(tempogram, sr=sr, hop_length=hop_length, >>> x_axis='time', y_axis='tempo') >>> plt.axhline(tempo, color='w', linestyle='--', alpha=1, ... label='Estimated tempo={:g}'.format(tempo)) >>> plt.legend(frameon=True, framealpha=0.75) >>> plt.subplot(4, 1, 3) >>> x = np.linspace(0, tempogram.shape[0] * float(hop_length) / sr, ... num=tempogram.shape[0]) >>> plt.plot(x, np.mean(tempogram, axis=1), label='Mean local autocorrelation') >>> plt.plot(x, ac_global, '--', alpha=0.75, label='Global autocorrelation') >>> plt.xlabel('Lag (seconds)') >>> plt.axis('tight') >>> plt.legend(frameon=True) >>> plt.subplot(4,1,4) >>> # We can also plot on a BPM axis >>> freqs = librosa.tempo_frequencies(tempogram.shape[0], hop_length=hop_length, sr=sr) >>> plt.semilogx(freqs[1:], np.mean(tempogram[1:], axis=1), ... label='Mean local autocorrelation', basex=2) >>> plt.semilogx(freqs[1:], ac_global[1:], '--', alpha=0.75, ... label='Global autocorrelation', basex=2) >>> plt.axvline(tempo, color='black', linestyle='--', alpha=.8, ... label='Estimated tempo={:g}'.format(tempo)) >>> plt.legend(frameon=True) >>> plt.xlabel('BPM') >>> plt.axis('tight') >>> plt.grid() >>> plt.tight_layout() ''' from ..onset import onset_strength if win_length < 1: raise ParameterError('win_length must be a positive integer') ac_window = get_window(window, win_length, fftbins=True) if onset_envelope is None: if y is None: raise ParameterError('Either y or onset_envelope must be provided') onset_envelope = onset_strength(y=y, sr=sr, hop_length=hop_length) else: # Force row-contiguity to avoid framing errors below onset_envelope = np.ascontiguousarray(onset_envelope) if onset_envelope.ndim > 1: # If we have multi-band input, iterate over rows return np.asarray([tempogram(onset_envelope=oe_subband, hop_length=hop_length, win_length=win_length, center=center, window=window, norm=norm) for oe_subband in onset_envelope]) # Center the autocorrelation windows n = len(onset_envelope) if center: onset_envelope = np.pad(onset_envelope, int(win_length // 2), mode='linear_ramp', end_values=[0, 0]) # Carve onset envelope into frames odf_frame = util.frame(onset_envelope, frame_length=win_length, hop_length=1) # Truncate to the length of the original signal if center: odf_frame = odf_frame[:, :n] # Window, autocorrelate, and normalize return util.normalize(autocorrelate(odf_frame * ac_window[:, np.newaxis], axis=0), norm=norm, axis=0)
[ "Compute", "the", "tempogram", ":", "local", "autocorrelation", "of", "the", "onset", "strength", "envelope", ".", "[", "1", "]", "_" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/feature/rhythm.py#L18-L178
[ "def", "tempogram", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "onset_envelope", "=", "None", ",", "hop_length", "=", "512", ",", "win_length", "=", "384", ",", "center", "=", "True", ",", "window", "=", "'hann'", ",", "norm", "=", "np", ".", "inf", ")", ":", "from", ".", ".", "onset", "import", "onset_strength", "if", "win_length", "<", "1", ":", "raise", "ParameterError", "(", "'win_length must be a positive integer'", ")", "ac_window", "=", "get_window", "(", "window", ",", "win_length", ",", "fftbins", "=", "True", ")", "if", "onset_envelope", "is", "None", ":", "if", "y", "is", "None", ":", "raise", "ParameterError", "(", "'Either y or onset_envelope must be provided'", ")", "onset_envelope", "=", "onset_strength", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", "else", ":", "# Force row-contiguity to avoid framing errors below", "onset_envelope", "=", "np", ".", "ascontiguousarray", "(", "onset_envelope", ")", "if", "onset_envelope", ".", "ndim", ">", "1", ":", "# If we have multi-band input, iterate over rows", "return", "np", ".", "asarray", "(", "[", "tempogram", "(", "onset_envelope", "=", "oe_subband", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ",", "center", "=", "center", ",", "window", "=", "window", ",", "norm", "=", "norm", ")", "for", "oe_subband", "in", "onset_envelope", "]", ")", "# Center the autocorrelation windows", "n", "=", "len", "(", "onset_envelope", ")", "if", "center", ":", "onset_envelope", "=", "np", ".", "pad", "(", "onset_envelope", ",", "int", "(", "win_length", "//", "2", ")", ",", "mode", "=", "'linear_ramp'", ",", "end_values", "=", "[", "0", ",", "0", "]", ")", "# Carve onset envelope into frames", "odf_frame", "=", "util", ".", "frame", "(", "onset_envelope", ",", "frame_length", "=", "win_length", ",", "hop_length", "=", "1", ")", "# Truncate to the length of the original signal", "if", "center", ":", "odf_frame", "=", "odf_frame", "[", ":", ",", ":", "n", "]", "# Window, autocorrelate, and normalize", "return", "util", ".", "normalize", "(", "autocorrelate", "(", "odf_frame", "*", "ac_window", "[", ":", ",", "np", ".", "newaxis", "]", ",", "axis", "=", "0", ")", ",", "norm", "=", "norm", ",", "axis", "=", "0", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
find_files
Get a sorted list of (audio) files in a directory or directory sub-tree. Examples -------- >>> # Get all audio files in a directory sub-tree >>> files = librosa.util.find_files('~/Music') >>> # Look only within a specific directory, not the sub-tree >>> files = librosa.util.find_files('~/Music', recurse=False) >>> # Only look for mp3 files >>> files = librosa.util.find_files('~/Music', ext='mp3') >>> # Or just mp3 and ogg >>> files = librosa.util.find_files('~/Music', ext=['mp3', 'ogg']) >>> # Only get the first 10 files >>> files = librosa.util.find_files('~/Music', limit=10) >>> # Or last 10 files >>> files = librosa.util.find_files('~/Music', offset=-10) Parameters ---------- directory : str Path to look for files ext : str or list of str A file extension or list of file extensions to include in the search. Default: `['aac', 'au', 'flac', 'm4a', 'mp3', 'ogg', 'wav']` recurse : boolean If `True`, then all subfolders of `directory` will be searched. Otherwise, only `directory` will be searched. case_sensitive : boolean If `False`, files matching upper-case version of extensions will be included. limit : int > 0 or None Return at most `limit` files. If `None`, all files are returned. offset : int Return files starting at `offset` within the list. Use negative values to offset from the end of the list. Returns ------- files : list of str The list of audio files.
librosa/util/files.py
def find_files(directory, ext=None, recurse=True, case_sensitive=False, limit=None, offset=0): '''Get a sorted list of (audio) files in a directory or directory sub-tree. Examples -------- >>> # Get all audio files in a directory sub-tree >>> files = librosa.util.find_files('~/Music') >>> # Look only within a specific directory, not the sub-tree >>> files = librosa.util.find_files('~/Music', recurse=False) >>> # Only look for mp3 files >>> files = librosa.util.find_files('~/Music', ext='mp3') >>> # Or just mp3 and ogg >>> files = librosa.util.find_files('~/Music', ext=['mp3', 'ogg']) >>> # Only get the first 10 files >>> files = librosa.util.find_files('~/Music', limit=10) >>> # Or last 10 files >>> files = librosa.util.find_files('~/Music', offset=-10) Parameters ---------- directory : str Path to look for files ext : str or list of str A file extension or list of file extensions to include in the search. Default: `['aac', 'au', 'flac', 'm4a', 'mp3', 'ogg', 'wav']` recurse : boolean If `True`, then all subfolders of `directory` will be searched. Otherwise, only `directory` will be searched. case_sensitive : boolean If `False`, files matching upper-case version of extensions will be included. limit : int > 0 or None Return at most `limit` files. If `None`, all files are returned. offset : int Return files starting at `offset` within the list. Use negative values to offset from the end of the list. Returns ------- files : list of str The list of audio files. ''' if ext is None: ext = ['aac', 'au', 'flac', 'm4a', 'mp3', 'ogg', 'wav'] elif isinstance(ext, six.string_types): ext = [ext] # Cast into a set ext = set(ext) # Generate upper-case versions if not case_sensitive: # Force to lower-case ext = set([e.lower() for e in ext]) # Add in upper-case versions ext |= set([e.upper() for e in ext]) files = set() if recurse: for walk in os.walk(directory): files |= __get_files(walk[0], ext) else: files = __get_files(directory, ext) files = list(files) files.sort() files = files[offset:] if limit is not None: files = files[:limit] return files
def find_files(directory, ext=None, recurse=True, case_sensitive=False, limit=None, offset=0): '''Get a sorted list of (audio) files in a directory or directory sub-tree. Examples -------- >>> # Get all audio files in a directory sub-tree >>> files = librosa.util.find_files('~/Music') >>> # Look only within a specific directory, not the sub-tree >>> files = librosa.util.find_files('~/Music', recurse=False) >>> # Only look for mp3 files >>> files = librosa.util.find_files('~/Music', ext='mp3') >>> # Or just mp3 and ogg >>> files = librosa.util.find_files('~/Music', ext=['mp3', 'ogg']) >>> # Only get the first 10 files >>> files = librosa.util.find_files('~/Music', limit=10) >>> # Or last 10 files >>> files = librosa.util.find_files('~/Music', offset=-10) Parameters ---------- directory : str Path to look for files ext : str or list of str A file extension or list of file extensions to include in the search. Default: `['aac', 'au', 'flac', 'm4a', 'mp3', 'ogg', 'wav']` recurse : boolean If `True`, then all subfolders of `directory` will be searched. Otherwise, only `directory` will be searched. case_sensitive : boolean If `False`, files matching upper-case version of extensions will be included. limit : int > 0 or None Return at most `limit` files. If `None`, all files are returned. offset : int Return files starting at `offset` within the list. Use negative values to offset from the end of the list. Returns ------- files : list of str The list of audio files. ''' if ext is None: ext = ['aac', 'au', 'flac', 'm4a', 'mp3', 'ogg', 'wav'] elif isinstance(ext, six.string_types): ext = [ext] # Cast into a set ext = set(ext) # Generate upper-case versions if not case_sensitive: # Force to lower-case ext = set([e.lower() for e in ext]) # Add in upper-case versions ext |= set([e.upper() for e in ext]) files = set() if recurse: for walk in os.walk(directory): files |= __get_files(walk[0], ext) else: files = __get_files(directory, ext) files = list(files) files.sort() files = files[offset:] if limit is not None: files = files[:limit] return files
[ "Get", "a", "sorted", "list", "of", "(", "audio", ")", "files", "in", "a", "directory", "or", "directory", "sub", "-", "tree", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/files.py#L49-L136
[ "def", "find_files", "(", "directory", ",", "ext", "=", "None", ",", "recurse", "=", "True", ",", "case_sensitive", "=", "False", ",", "limit", "=", "None", ",", "offset", "=", "0", ")", ":", "if", "ext", "is", "None", ":", "ext", "=", "[", "'aac'", ",", "'au'", ",", "'flac'", ",", "'m4a'", ",", "'mp3'", ",", "'ogg'", ",", "'wav'", "]", "elif", "isinstance", "(", "ext", ",", "six", ".", "string_types", ")", ":", "ext", "=", "[", "ext", "]", "# Cast into a set", "ext", "=", "set", "(", "ext", ")", "# Generate upper-case versions", "if", "not", "case_sensitive", ":", "# Force to lower-case", "ext", "=", "set", "(", "[", "e", ".", "lower", "(", ")", "for", "e", "in", "ext", "]", ")", "# Add in upper-case versions", "ext", "|=", "set", "(", "[", "e", ".", "upper", "(", ")", "for", "e", "in", "ext", "]", ")", "files", "=", "set", "(", ")", "if", "recurse", ":", "for", "walk", "in", "os", ".", "walk", "(", "directory", ")", ":", "files", "|=", "__get_files", "(", "walk", "[", "0", "]", ",", "ext", ")", "else", ":", "files", "=", "__get_files", "(", "directory", ",", "ext", ")", "files", "=", "list", "(", "files", ")", "files", ".", "sort", "(", ")", "files", "=", "files", "[", "offset", ":", "]", "if", "limit", "is", "not", "None", ":", "files", "=", "files", "[", ":", "limit", "]", "return", "files" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__get_files
Helper function to get files in a single directory
librosa/util/files.py
def __get_files(dir_name, extensions): '''Helper function to get files in a single directory''' # Expand out the directory dir_name = os.path.abspath(os.path.expanduser(dir_name)) myfiles = set() for sub_ext in extensions: globstr = os.path.join(dir_name, '*' + os.path.extsep + sub_ext) myfiles |= set(glob.glob(globstr)) return myfiles
def __get_files(dir_name, extensions): '''Helper function to get files in a single directory''' # Expand out the directory dir_name = os.path.abspath(os.path.expanduser(dir_name)) myfiles = set() for sub_ext in extensions: globstr = os.path.join(dir_name, '*' + os.path.extsep + sub_ext) myfiles |= set(glob.glob(globstr)) return myfiles
[ "Helper", "function", "to", "get", "files", "in", "a", "single", "directory" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/files.py#L139-L151
[ "def", "__get_files", "(", "dir_name", ",", "extensions", ")", ":", "# Expand out the directory", "dir_name", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "expanduser", "(", "dir_name", ")", ")", "myfiles", "=", "set", "(", ")", "for", "sub_ext", "in", "extensions", ":", "globstr", "=", "os", ".", "path", ".", "join", "(", "dir_name", ",", "'*'", "+", "os", ".", "path", ".", "extsep", "+", "sub_ext", ")", "myfiles", "|=", "set", "(", "glob", ".", "glob", "(", "globstr", ")", ")", "return", "myfiles" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
stretch_demo
Phase-vocoder time stretch demo function. :parameters: - input_file : str path to input audio - output_file : str path to save output (wav) - speed : float > 0 speed up by this factor
examples/time_stretch.py
def stretch_demo(input_file, output_file, speed): '''Phase-vocoder time stretch demo function. :parameters: - input_file : str path to input audio - output_file : str path to save output (wav) - speed : float > 0 speed up by this factor ''' # 1. Load the wav file, resample print('Loading ', input_file) y, sr = librosa.load(input_file) # 2. Time-stretch through effects module print('Playing back at {:3.0f}% speed'.format(speed * 100)) y_stretch = librosa.effects.time_stretch(y, speed) print('Saving stretched audio to: ', output_file) librosa.output.write_wav(output_file, y_stretch, sr)
def stretch_demo(input_file, output_file, speed): '''Phase-vocoder time stretch demo function. :parameters: - input_file : str path to input audio - output_file : str path to save output (wav) - speed : float > 0 speed up by this factor ''' # 1. Load the wav file, resample print('Loading ', input_file) y, sr = librosa.load(input_file) # 2. Time-stretch through effects module print('Playing back at {:3.0f}% speed'.format(speed * 100)) y_stretch = librosa.effects.time_stretch(y, speed) print('Saving stretched audio to: ', output_file) librosa.output.write_wav(output_file, y_stretch, sr)
[ "Phase", "-", "vocoder", "time", "stretch", "demo", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/time_stretch.py#L13-L36
[ "def", "stretch_demo", "(", "input_file", ",", "output_file", ",", "speed", ")", ":", "# 1. Load the wav file, resample", "print", "(", "'Loading '", ",", "input_file", ")", "y", ",", "sr", "=", "librosa", ".", "load", "(", "input_file", ")", "# 2. Time-stretch through effects module", "print", "(", "'Playing back at {:3.0f}% speed'", ".", "format", "(", "speed", "*", "100", ")", ")", "y_stretch", "=", "librosa", ".", "effects", ".", "time_stretch", "(", "y", ",", "speed", ")", "print", "(", "'Saving stretched audio to: '", ",", "output_file", ")", "librosa", ".", "output", ".", "write_wav", "(", "output_file", ",", "y_stretch", ",", "sr", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
process_arguments
Argparse function to get the program parameters
examples/time_stretch.py
def process_arguments(args): '''Argparse function to get the program parameters''' parser = argparse.ArgumentParser(description='Time stretching example') parser.add_argument('input_file', action='store', help='path to the input file (wav, mp3, etc)') parser.add_argument('output_file', action='store', help='path to the stretched output (wav)') parser.add_argument('-s', '--speed', action='store', type=float, default=2.0, required=False, help='speed') return vars(parser.parse_args(args))
def process_arguments(args): '''Argparse function to get the program parameters''' parser = argparse.ArgumentParser(description='Time stretching example') parser.add_argument('input_file', action='store', help='path to the input file (wav, mp3, etc)') parser.add_argument('output_file', action='store', help='path to the stretched output (wav)') parser.add_argument('-s', '--speed', action='store', type=float, default=2.0, required=False, help='speed') return vars(parser.parse_args(args))
[ "Argparse", "function", "to", "get", "the", "program", "parameters" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/time_stretch.py#L39-L59
[ "def", "process_arguments", "(", "args", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Time stretching example'", ")", "parser", ".", "add_argument", "(", "'input_file'", ",", "action", "=", "'store'", ",", "help", "=", "'path to the input file (wav, mp3, etc)'", ")", "parser", ".", "add_argument", "(", "'output_file'", ",", "action", "=", "'store'", ",", "help", "=", "'path to the stretched output (wav)'", ")", "parser", ".", "add_argument", "(", "'-s'", ",", "'--speed'", ",", "action", "=", "'store'", ",", "type", "=", "float", ",", "default", "=", "2.0", ",", "required", "=", "False", ",", "help", "=", "'speed'", ")", "return", "vars", "(", "parser", ".", "parse_args", "(", "args", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
hpss_demo
HPSS demo function. :parameters: - input_file : str path to input audio - output_harmonic : str path to save output harmonic (wav) - output_percussive : str path to save output harmonic (wav)
examples/hpss.py
def hpss_demo(input_file, output_harmonic, output_percussive): '''HPSS demo function. :parameters: - input_file : str path to input audio - output_harmonic : str path to save output harmonic (wav) - output_percussive : str path to save output harmonic (wav) ''' # 1. Load the wav file, resample print('Loading ', input_file) y, sr = librosa.load(input_file) # Separate components with the effects module print('Separating harmonics and percussives... ') y_harmonic, y_percussive = librosa.effects.hpss(y) # 5. Save the results print('Saving harmonic audio to: ', output_harmonic) librosa.output.write_wav(output_harmonic, y_harmonic, sr) print('Saving percussive audio to: ', output_percussive) librosa.output.write_wav(output_percussive, y_percussive, sr)
def hpss_demo(input_file, output_harmonic, output_percussive): '''HPSS demo function. :parameters: - input_file : str path to input audio - output_harmonic : str path to save output harmonic (wav) - output_percussive : str path to save output harmonic (wav) ''' # 1. Load the wav file, resample print('Loading ', input_file) y, sr = librosa.load(input_file) # Separate components with the effects module print('Separating harmonics and percussives... ') y_harmonic, y_percussive = librosa.effects.hpss(y) # 5. Save the results print('Saving harmonic audio to: ', output_harmonic) librosa.output.write_wav(output_harmonic, y_harmonic, sr) print('Saving percussive audio to: ', output_percussive) librosa.output.write_wav(output_percussive, y_percussive, sr)
[ "HPSS", "demo", "function", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/hpss.py#L13-L39
[ "def", "hpss_demo", "(", "input_file", ",", "output_harmonic", ",", "output_percussive", ")", ":", "# 1. Load the wav file, resample", "print", "(", "'Loading '", ",", "input_file", ")", "y", ",", "sr", "=", "librosa", ".", "load", "(", "input_file", ")", "# Separate components with the effects module", "print", "(", "'Separating harmonics and percussives... '", ")", "y_harmonic", ",", "y_percussive", "=", "librosa", ".", "effects", ".", "hpss", "(", "y", ")", "# 5. Save the results", "print", "(", "'Saving harmonic audio to: '", ",", "output_harmonic", ")", "librosa", ".", "output", ".", "write_wav", "(", "output_harmonic", ",", "y_harmonic", ",", "sr", ")", "print", "(", "'Saving percussive audio to: '", ",", "output_percussive", ")", "librosa", ".", "output", ".", "write_wav", "(", "output_percussive", ",", "y_percussive", ",", "sr", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
beat_track
r'''Dynamic programming beat tracker. Beats are detected in three stages, following the method of [1]_: 1. Measure onset strength 2. Estimate tempo from onset correlation 3. Pick peaks in onset strength approximately consistent with estimated tempo .. [1] Ellis, Daniel PW. "Beat tracking by dynamic programming." Journal of New Music Research 36.1 (2007): 51-60. http://labrosa.ee.columbia.edu/projects/beattrack/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(n,)] or None (optional) pre-computed onset strength envelope. hop_length : int > 0 [scalar] number of audio samples between successive `onset_envelope` values start_bpm : float > 0 [scalar] initial guess for the tempo estimator (in beats per minute) tightness : float [scalar] tightness of beat distribution around tempo trim : bool [scalar] trim leading/trailing beats with weak onsets bpm : float [scalar] (optional) If provided, use `bpm` as the tempo instead of estimating it from `onsets`. units : {'frames', 'samples', 'time'} The units to encode detected beat events in. By default, 'frames' are used. Returns ------- tempo : float [scalar, non-negative] estimated global tempo (in beats per minute) beats : np.ndarray [shape=(m,)] estimated beat event locations in the specified units (default is frame indices) .. note:: If no onset strength could be detected, beat_tracker estimates 0 BPM and returns an empty list. Raises ------ ParameterError if neither `y` nor `onset_envelope` are provided or if `units` is not one of 'frames', 'samples', or 'time' See Also -------- librosa.onset.onset_strength Examples -------- Track beats using time series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> tempo 64.599609375 Print the first 20 beat frames >>> beats[:20] array([ 320, 357, 397, 436, 480, 525, 569, 609, 658, 698, 737, 777, 817, 857, 896, 936, 976, 1016, 1055, 1095]) Or print them as timestamps >>> librosa.frames_to_time(beats[:20], sr=sr) array([ 7.43 , 8.29 , 9.218, 10.124, 11.146, 12.19 , 13.212, 14.141, 15.279, 16.208, 17.113, 18.042, 18.971, 19.9 , 20.805, 21.734, 22.663, 23.591, 24.497, 25.426]) Track beats using a pre-computed onset envelope >>> onset_env = librosa.onset.onset_strength(y, sr=sr, ... aggregate=np.median) >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env, ... sr=sr) >>> tempo 64.599609375 >>> beats[:20] array([ 320, 357, 397, 436, 480, 525, 569, 609, 658, 698, 737, 777, 817, 857, 896, 936, 976, 1016, 1055, 1095]) Plot the beat events against the onset strength envelope >>> import matplotlib.pyplot as plt >>> hop_length = 512 >>> plt.figure(figsize=(8, 4)) >>> times = librosa.frames_to_time(np.arange(len(onset_env)), ... sr=sr, hop_length=hop_length) >>> plt.plot(times, librosa.util.normalize(onset_env), ... label='Onset strength') >>> plt.vlines(times[beats], 0, 1, alpha=0.5, color='r', ... linestyle='--', label='Beats') >>> plt.legend(frameon=True, framealpha=0.75) >>> # Limit the plot to a 15-second window >>> plt.xlim(15, 30) >>> plt.gca().xaxis.set_major_formatter(librosa.display.TimeFormatter()) >>> plt.tight_layout()
librosa/beat.py
def beat_track(y=None, sr=22050, onset_envelope=None, hop_length=512, start_bpm=120.0, tightness=100, trim=True, bpm=None, units='frames'): r'''Dynamic programming beat tracker. Beats are detected in three stages, following the method of [1]_: 1. Measure onset strength 2. Estimate tempo from onset correlation 3. Pick peaks in onset strength approximately consistent with estimated tempo .. [1] Ellis, Daniel PW. "Beat tracking by dynamic programming." Journal of New Music Research 36.1 (2007): 51-60. http://labrosa.ee.columbia.edu/projects/beattrack/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(n,)] or None (optional) pre-computed onset strength envelope. hop_length : int > 0 [scalar] number of audio samples between successive `onset_envelope` values start_bpm : float > 0 [scalar] initial guess for the tempo estimator (in beats per minute) tightness : float [scalar] tightness of beat distribution around tempo trim : bool [scalar] trim leading/trailing beats with weak onsets bpm : float [scalar] (optional) If provided, use `bpm` as the tempo instead of estimating it from `onsets`. units : {'frames', 'samples', 'time'} The units to encode detected beat events in. By default, 'frames' are used. Returns ------- tempo : float [scalar, non-negative] estimated global tempo (in beats per minute) beats : np.ndarray [shape=(m,)] estimated beat event locations in the specified units (default is frame indices) .. note:: If no onset strength could be detected, beat_tracker estimates 0 BPM and returns an empty list. Raises ------ ParameterError if neither `y` nor `onset_envelope` are provided or if `units` is not one of 'frames', 'samples', or 'time' See Also -------- librosa.onset.onset_strength Examples -------- Track beats using time series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> tempo 64.599609375 Print the first 20 beat frames >>> beats[:20] array([ 320, 357, 397, 436, 480, 525, 569, 609, 658, 698, 737, 777, 817, 857, 896, 936, 976, 1016, 1055, 1095]) Or print them as timestamps >>> librosa.frames_to_time(beats[:20], sr=sr) array([ 7.43 , 8.29 , 9.218, 10.124, 11.146, 12.19 , 13.212, 14.141, 15.279, 16.208, 17.113, 18.042, 18.971, 19.9 , 20.805, 21.734, 22.663, 23.591, 24.497, 25.426]) Track beats using a pre-computed onset envelope >>> onset_env = librosa.onset.onset_strength(y, sr=sr, ... aggregate=np.median) >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env, ... sr=sr) >>> tempo 64.599609375 >>> beats[:20] array([ 320, 357, 397, 436, 480, 525, 569, 609, 658, 698, 737, 777, 817, 857, 896, 936, 976, 1016, 1055, 1095]) Plot the beat events against the onset strength envelope >>> import matplotlib.pyplot as plt >>> hop_length = 512 >>> plt.figure(figsize=(8, 4)) >>> times = librosa.frames_to_time(np.arange(len(onset_env)), ... sr=sr, hop_length=hop_length) >>> plt.plot(times, librosa.util.normalize(onset_env), ... label='Onset strength') >>> plt.vlines(times[beats], 0, 1, alpha=0.5, color='r', ... linestyle='--', label='Beats') >>> plt.legend(frameon=True, framealpha=0.75) >>> # Limit the plot to a 15-second window >>> plt.xlim(15, 30) >>> plt.gca().xaxis.set_major_formatter(librosa.display.TimeFormatter()) >>> plt.tight_layout() ''' # First, get the frame->beat strength profile if we don't already have one if onset_envelope is None: if y is None: raise ParameterError('y or onset_envelope must be provided') onset_envelope = onset.onset_strength(y=y, sr=sr, hop_length=hop_length, aggregate=np.median) # Do we have any onsets to grab? if not onset_envelope.any(): return (0, np.array([], dtype=int)) # Estimate BPM if one was not provided if bpm is None: bpm = tempo(onset_envelope=onset_envelope, sr=sr, hop_length=hop_length, start_bpm=start_bpm)[0] # Then, run the tracker beats = __beat_tracker(onset_envelope, bpm, float(sr) / hop_length, tightness, trim) if units == 'frames': pass elif units == 'samples': beats = core.frames_to_samples(beats, hop_length=hop_length) elif units == 'time': beats = core.frames_to_time(beats, hop_length=hop_length, sr=sr) else: raise ParameterError('Invalid unit type: {}'.format(units)) return (bpm, beats)
def beat_track(y=None, sr=22050, onset_envelope=None, hop_length=512, start_bpm=120.0, tightness=100, trim=True, bpm=None, units='frames'): r'''Dynamic programming beat tracker. Beats are detected in three stages, following the method of [1]_: 1. Measure onset strength 2. Estimate tempo from onset correlation 3. Pick peaks in onset strength approximately consistent with estimated tempo .. [1] Ellis, Daniel PW. "Beat tracking by dynamic programming." Journal of New Music Research 36.1 (2007): 51-60. http://labrosa.ee.columbia.edu/projects/beattrack/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of `y` onset_envelope : np.ndarray [shape=(n,)] or None (optional) pre-computed onset strength envelope. hop_length : int > 0 [scalar] number of audio samples between successive `onset_envelope` values start_bpm : float > 0 [scalar] initial guess for the tempo estimator (in beats per minute) tightness : float [scalar] tightness of beat distribution around tempo trim : bool [scalar] trim leading/trailing beats with weak onsets bpm : float [scalar] (optional) If provided, use `bpm` as the tempo instead of estimating it from `onsets`. units : {'frames', 'samples', 'time'} The units to encode detected beat events in. By default, 'frames' are used. Returns ------- tempo : float [scalar, non-negative] estimated global tempo (in beats per minute) beats : np.ndarray [shape=(m,)] estimated beat event locations in the specified units (default is frame indices) .. note:: If no onset strength could be detected, beat_tracker estimates 0 BPM and returns an empty list. Raises ------ ParameterError if neither `y` nor `onset_envelope` are provided or if `units` is not one of 'frames', 'samples', or 'time' See Also -------- librosa.onset.onset_strength Examples -------- Track beats using time series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> tempo 64.599609375 Print the first 20 beat frames >>> beats[:20] array([ 320, 357, 397, 436, 480, 525, 569, 609, 658, 698, 737, 777, 817, 857, 896, 936, 976, 1016, 1055, 1095]) Or print them as timestamps >>> librosa.frames_to_time(beats[:20], sr=sr) array([ 7.43 , 8.29 , 9.218, 10.124, 11.146, 12.19 , 13.212, 14.141, 15.279, 16.208, 17.113, 18.042, 18.971, 19.9 , 20.805, 21.734, 22.663, 23.591, 24.497, 25.426]) Track beats using a pre-computed onset envelope >>> onset_env = librosa.onset.onset_strength(y, sr=sr, ... aggregate=np.median) >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env, ... sr=sr) >>> tempo 64.599609375 >>> beats[:20] array([ 320, 357, 397, 436, 480, 525, 569, 609, 658, 698, 737, 777, 817, 857, 896, 936, 976, 1016, 1055, 1095]) Plot the beat events against the onset strength envelope >>> import matplotlib.pyplot as plt >>> hop_length = 512 >>> plt.figure(figsize=(8, 4)) >>> times = librosa.frames_to_time(np.arange(len(onset_env)), ... sr=sr, hop_length=hop_length) >>> plt.plot(times, librosa.util.normalize(onset_env), ... label='Onset strength') >>> plt.vlines(times[beats], 0, 1, alpha=0.5, color='r', ... linestyle='--', label='Beats') >>> plt.legend(frameon=True, framealpha=0.75) >>> # Limit the plot to a 15-second window >>> plt.xlim(15, 30) >>> plt.gca().xaxis.set_major_formatter(librosa.display.TimeFormatter()) >>> plt.tight_layout() ''' # First, get the frame->beat strength profile if we don't already have one if onset_envelope is None: if y is None: raise ParameterError('y or onset_envelope must be provided') onset_envelope = onset.onset_strength(y=y, sr=sr, hop_length=hop_length, aggregate=np.median) # Do we have any onsets to grab? if not onset_envelope.any(): return (0, np.array([], dtype=int)) # Estimate BPM if one was not provided if bpm is None: bpm = tempo(onset_envelope=onset_envelope, sr=sr, hop_length=hop_length, start_bpm=start_bpm)[0] # Then, run the tracker beats = __beat_tracker(onset_envelope, bpm, float(sr) / hop_length, tightness, trim) if units == 'frames': pass elif units == 'samples': beats = core.frames_to_samples(beats, hop_length=hop_length) elif units == 'time': beats = core.frames_to_time(beats, hop_length=hop_length, sr=sr) else: raise ParameterError('Invalid unit type: {}'.format(units)) return (bpm, beats)
[ "r", "Dynamic", "programming", "beat", "tracker", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L26-L199
[ "def", "beat_track", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "onset_envelope", "=", "None", ",", "hop_length", "=", "512", ",", "start_bpm", "=", "120.0", ",", "tightness", "=", "100", ",", "trim", "=", "True", ",", "bpm", "=", "None", ",", "units", "=", "'frames'", ")", ":", "# First, get the frame->beat strength profile if we don't already have one", "if", "onset_envelope", "is", "None", ":", "if", "y", "is", "None", ":", "raise", "ParameterError", "(", "'y or onset_envelope must be provided'", ")", "onset_envelope", "=", "onset", ".", "onset_strength", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ",", "aggregate", "=", "np", ".", "median", ")", "# Do we have any onsets to grab?", "if", "not", "onset_envelope", ".", "any", "(", ")", ":", "return", "(", "0", ",", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "int", ")", ")", "# Estimate BPM if one was not provided", "if", "bpm", "is", "None", ":", "bpm", "=", "tempo", "(", "onset_envelope", "=", "onset_envelope", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ",", "start_bpm", "=", "start_bpm", ")", "[", "0", "]", "# Then, run the tracker", "beats", "=", "__beat_tracker", "(", "onset_envelope", ",", "bpm", ",", "float", "(", "sr", ")", "/", "hop_length", ",", "tightness", ",", "trim", ")", "if", "units", "==", "'frames'", ":", "pass", "elif", "units", "==", "'samples'", ":", "beats", "=", "core", ".", "frames_to_samples", "(", "beats", ",", "hop_length", "=", "hop_length", ")", "elif", "units", "==", "'time'", ":", "beats", "=", "core", ".", "frames_to_time", "(", "beats", ",", "hop_length", "=", "hop_length", ",", "sr", "=", "sr", ")", "else", ":", "raise", "ParameterError", "(", "'Invalid unit type: {}'", ".", "format", "(", "units", ")", ")", "return", "(", "bpm", ",", "beats", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
tempo
Estimate the tempo (beats per minute) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of the time series onset_envelope : np.ndarray [shape=(n,)] pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length of the time series start_bpm : float [scalar] initial guess of the BPM std_bpm : float > 0 [scalar] standard deviation of tempo distribution ac_size : float > 0 [scalar] length (in seconds) of the auto-correlation window max_tempo : float > 0 [scalar, optional] If provided, only estimate tempo below this threshold aggregate : callable [optional] Aggregation function for estimating global tempo. If `None`, then tempo is estimated independently for each frame. Returns ------- tempo : np.ndarray [scalar] estimated tempo (beats per minute) See Also -------- librosa.onset.onset_strength librosa.feature.tempogram Notes ----- This function caches at level 30. Examples -------- >>> # Estimate a static tempo >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> onset_env = librosa.onset.onset_strength(y, sr=sr) >>> tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr) >>> tempo array([129.199]) >>> # Or a dynamic tempo >>> dtempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, ... aggregate=None) >>> dtempo array([ 143.555, 143.555, 143.555, ..., 161.499, 161.499, 172.266]) Plot the estimated tempo against the onset autocorrelation >>> import matplotlib.pyplot as plt >>> # Convert to scalar >>> tempo = np.asscalar(tempo) >>> # Compute 2-second windowed autocorrelation >>> hop_length = 512 >>> ac = librosa.autocorrelate(onset_env, 2 * sr // hop_length) >>> freqs = librosa.tempo_frequencies(len(ac), sr=sr, ... hop_length=hop_length) >>> # Plot on a BPM axis. We skip the first (0-lag) bin. >>> plt.figure(figsize=(8,4)) >>> plt.semilogx(freqs[1:], librosa.util.normalize(ac)[1:], ... label='Onset autocorrelation', basex=2) >>> plt.axvline(tempo, 0, 1, color='r', alpha=0.75, linestyle='--', ... label='Tempo: {:.2f} BPM'.format(tempo)) >>> plt.xlabel('Tempo (BPM)') >>> plt.grid() >>> plt.title('Static tempo estimation') >>> plt.legend(frameon=True) >>> plt.axis('tight') Plot dynamic tempo estimates over a tempogram >>> plt.figure() >>> tg = librosa.feature.tempogram(onset_envelope=onset_env, sr=sr, ... hop_length=hop_length) >>> librosa.display.specshow(tg, x_axis='time', y_axis='tempo') >>> plt.plot(librosa.frames_to_time(np.arange(len(dtempo))), dtempo, ... color='w', linewidth=1.5, label='Tempo estimate') >>> plt.title('Dynamic tempo estimation') >>> plt.legend(frameon=True, framealpha=0.75)
librosa/beat.py
def tempo(y=None, sr=22050, onset_envelope=None, hop_length=512, start_bpm=120, std_bpm=1.0, ac_size=8.0, max_tempo=320.0, aggregate=np.mean): """Estimate the tempo (beats per minute) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of the time series onset_envelope : np.ndarray [shape=(n,)] pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length of the time series start_bpm : float [scalar] initial guess of the BPM std_bpm : float > 0 [scalar] standard deviation of tempo distribution ac_size : float > 0 [scalar] length (in seconds) of the auto-correlation window max_tempo : float > 0 [scalar, optional] If provided, only estimate tempo below this threshold aggregate : callable [optional] Aggregation function for estimating global tempo. If `None`, then tempo is estimated independently for each frame. Returns ------- tempo : np.ndarray [scalar] estimated tempo (beats per minute) See Also -------- librosa.onset.onset_strength librosa.feature.tempogram Notes ----- This function caches at level 30. Examples -------- >>> # Estimate a static tempo >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> onset_env = librosa.onset.onset_strength(y, sr=sr) >>> tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr) >>> tempo array([129.199]) >>> # Or a dynamic tempo >>> dtempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, ... aggregate=None) >>> dtempo array([ 143.555, 143.555, 143.555, ..., 161.499, 161.499, 172.266]) Plot the estimated tempo against the onset autocorrelation >>> import matplotlib.pyplot as plt >>> # Convert to scalar >>> tempo = np.asscalar(tempo) >>> # Compute 2-second windowed autocorrelation >>> hop_length = 512 >>> ac = librosa.autocorrelate(onset_env, 2 * sr // hop_length) >>> freqs = librosa.tempo_frequencies(len(ac), sr=sr, ... hop_length=hop_length) >>> # Plot on a BPM axis. We skip the first (0-lag) bin. >>> plt.figure(figsize=(8,4)) >>> plt.semilogx(freqs[1:], librosa.util.normalize(ac)[1:], ... label='Onset autocorrelation', basex=2) >>> plt.axvline(tempo, 0, 1, color='r', alpha=0.75, linestyle='--', ... label='Tempo: {:.2f} BPM'.format(tempo)) >>> plt.xlabel('Tempo (BPM)') >>> plt.grid() >>> plt.title('Static tempo estimation') >>> plt.legend(frameon=True) >>> plt.axis('tight') Plot dynamic tempo estimates over a tempogram >>> plt.figure() >>> tg = librosa.feature.tempogram(onset_envelope=onset_env, sr=sr, ... hop_length=hop_length) >>> librosa.display.specshow(tg, x_axis='time', y_axis='tempo') >>> plt.plot(librosa.frames_to_time(np.arange(len(dtempo))), dtempo, ... color='w', linewidth=1.5, label='Tempo estimate') >>> plt.title('Dynamic tempo estimation') >>> plt.legend(frameon=True, framealpha=0.75) """ if start_bpm <= 0: raise ParameterError('start_bpm must be strictly positive') win_length = np.asscalar(core.time_to_frames(ac_size, sr=sr, hop_length=hop_length)) tg = tempogram(y=y, sr=sr, onset_envelope=onset_envelope, hop_length=hop_length, win_length=win_length) # Eventually, we want this to work for time-varying tempo if aggregate is not None: tg = aggregate(tg, axis=1, keepdims=True) # Get the BPM values for each bin, skipping the 0-lag bin bpms = core.tempo_frequencies(tg.shape[0], hop_length=hop_length, sr=sr) # Weight the autocorrelation by a log-normal distribution prior = np.exp(-0.5 * ((np.log2(bpms) - np.log2(start_bpm)) / std_bpm)**2) # Kill everything above the max tempo if max_tempo is not None: max_idx = np.argmax(bpms < max_tempo) prior[:max_idx] = 0 # Really, instead of multiplying by the prior, we should set up a # probabilistic model for tempo and add log-probabilities. # This would give us a chance to recover from null signals and # rely on the prior. # it would also make time aggregation much more natural # Get the maximum, weighted by the prior best_period = np.argmax(tg * prior[:, np.newaxis], axis=0) tempi = bpms[best_period] # Wherever the best tempo is index 0, return start_bpm tempi[best_period == 0] = start_bpm return tempi
def tempo(y=None, sr=22050, onset_envelope=None, hop_length=512, start_bpm=120, std_bpm=1.0, ac_size=8.0, max_tempo=320.0, aggregate=np.mean): """Estimate the tempo (beats per minute) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of the time series onset_envelope : np.ndarray [shape=(n,)] pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length of the time series start_bpm : float [scalar] initial guess of the BPM std_bpm : float > 0 [scalar] standard deviation of tempo distribution ac_size : float > 0 [scalar] length (in seconds) of the auto-correlation window max_tempo : float > 0 [scalar, optional] If provided, only estimate tempo below this threshold aggregate : callable [optional] Aggregation function for estimating global tempo. If `None`, then tempo is estimated independently for each frame. Returns ------- tempo : np.ndarray [scalar] estimated tempo (beats per minute) See Also -------- librosa.onset.onset_strength librosa.feature.tempogram Notes ----- This function caches at level 30. Examples -------- >>> # Estimate a static tempo >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> onset_env = librosa.onset.onset_strength(y, sr=sr) >>> tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr) >>> tempo array([129.199]) >>> # Or a dynamic tempo >>> dtempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, ... aggregate=None) >>> dtempo array([ 143.555, 143.555, 143.555, ..., 161.499, 161.499, 172.266]) Plot the estimated tempo against the onset autocorrelation >>> import matplotlib.pyplot as plt >>> # Convert to scalar >>> tempo = np.asscalar(tempo) >>> # Compute 2-second windowed autocorrelation >>> hop_length = 512 >>> ac = librosa.autocorrelate(onset_env, 2 * sr // hop_length) >>> freqs = librosa.tempo_frequencies(len(ac), sr=sr, ... hop_length=hop_length) >>> # Plot on a BPM axis. We skip the first (0-lag) bin. >>> plt.figure(figsize=(8,4)) >>> plt.semilogx(freqs[1:], librosa.util.normalize(ac)[1:], ... label='Onset autocorrelation', basex=2) >>> plt.axvline(tempo, 0, 1, color='r', alpha=0.75, linestyle='--', ... label='Tempo: {:.2f} BPM'.format(tempo)) >>> plt.xlabel('Tempo (BPM)') >>> plt.grid() >>> plt.title('Static tempo estimation') >>> plt.legend(frameon=True) >>> plt.axis('tight') Plot dynamic tempo estimates over a tempogram >>> plt.figure() >>> tg = librosa.feature.tempogram(onset_envelope=onset_env, sr=sr, ... hop_length=hop_length) >>> librosa.display.specshow(tg, x_axis='time', y_axis='tempo') >>> plt.plot(librosa.frames_to_time(np.arange(len(dtempo))), dtempo, ... color='w', linewidth=1.5, label='Tempo estimate') >>> plt.title('Dynamic tempo estimation') >>> plt.legend(frameon=True, framealpha=0.75) """ if start_bpm <= 0: raise ParameterError('start_bpm must be strictly positive') win_length = np.asscalar(core.time_to_frames(ac_size, sr=sr, hop_length=hop_length)) tg = tempogram(y=y, sr=sr, onset_envelope=onset_envelope, hop_length=hop_length, win_length=win_length) # Eventually, we want this to work for time-varying tempo if aggregate is not None: tg = aggregate(tg, axis=1, keepdims=True) # Get the BPM values for each bin, skipping the 0-lag bin bpms = core.tempo_frequencies(tg.shape[0], hop_length=hop_length, sr=sr) # Weight the autocorrelation by a log-normal distribution prior = np.exp(-0.5 * ((np.log2(bpms) - np.log2(start_bpm)) / std_bpm)**2) # Kill everything above the max tempo if max_tempo is not None: max_idx = np.argmax(bpms < max_tempo) prior[:max_idx] = 0 # Really, instead of multiplying by the prior, we should set up a # probabilistic model for tempo and add log-probabilities. # This would give us a chance to recover from null signals and # rely on the prior. # it would also make time aggregation much more natural # Get the maximum, weighted by the prior best_period = np.argmax(tg * prior[:, np.newaxis], axis=0) tempi = bpms[best_period] # Wherever the best tempo is index 0, return start_bpm tempi[best_period == 0] = start_bpm return tempi
[ "Estimate", "the", "tempo", "(", "beats", "per", "minute", ")" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L203-L340
[ "def", "tempo", "(", "y", "=", "None", ",", "sr", "=", "22050", ",", "onset_envelope", "=", "None", ",", "hop_length", "=", "512", ",", "start_bpm", "=", "120", ",", "std_bpm", "=", "1.0", ",", "ac_size", "=", "8.0", ",", "max_tempo", "=", "320.0", ",", "aggregate", "=", "np", ".", "mean", ")", ":", "if", "start_bpm", "<=", "0", ":", "raise", "ParameterError", "(", "'start_bpm must be strictly positive'", ")", "win_length", "=", "np", ".", "asscalar", "(", "core", ".", "time_to_frames", "(", "ac_size", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", ")", "tg", "=", "tempogram", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "onset_envelope", "=", "onset_envelope", ",", "hop_length", "=", "hop_length", ",", "win_length", "=", "win_length", ")", "# Eventually, we want this to work for time-varying tempo", "if", "aggregate", "is", "not", "None", ":", "tg", "=", "aggregate", "(", "tg", ",", "axis", "=", "1", ",", "keepdims", "=", "True", ")", "# Get the BPM values for each bin, skipping the 0-lag bin", "bpms", "=", "core", ".", "tempo_frequencies", "(", "tg", ".", "shape", "[", "0", "]", ",", "hop_length", "=", "hop_length", ",", "sr", "=", "sr", ")", "# Weight the autocorrelation by a log-normal distribution", "prior", "=", "np", ".", "exp", "(", "-", "0.5", "*", "(", "(", "np", ".", "log2", "(", "bpms", ")", "-", "np", ".", "log2", "(", "start_bpm", ")", ")", "/", "std_bpm", ")", "**", "2", ")", "# Kill everything above the max tempo", "if", "max_tempo", "is", "not", "None", ":", "max_idx", "=", "np", ".", "argmax", "(", "bpms", "<", "max_tempo", ")", "prior", "[", ":", "max_idx", "]", "=", "0", "# Really, instead of multiplying by the prior, we should set up a", "# probabilistic model for tempo and add log-probabilities.", "# This would give us a chance to recover from null signals and", "# rely on the prior.", "# it would also make time aggregation much more natural", "# Get the maximum, weighted by the prior", "best_period", "=", "np", ".", "argmax", "(", "tg", "*", "prior", "[", ":", ",", "np", ".", "newaxis", "]", ",", "axis", "=", "0", ")", "tempi", "=", "bpms", "[", "best_period", "]", "# Wherever the best tempo is index 0, return start_bpm", "tempi", "[", "best_period", "==", "0", "]", "=", "start_bpm", "return", "tempi" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__beat_tracker
Internal function that tracks beats in an onset strength envelope. Parameters ---------- onset_envelope : np.ndarray [shape=(n,)] onset strength envelope bpm : float [scalar] tempo estimate fft_res : float [scalar] resolution of the fft (sr / hop_length) tightness: float [scalar] how closely do we adhere to bpm? trim : bool [scalar] trim leading/trailing beats with weak onsets? Returns ------- beats : np.ndarray [shape=(n,)] frame numbers of beat events
librosa/beat.py
def __beat_tracker(onset_envelope, bpm, fft_res, tightness, trim): """Internal function that tracks beats in an onset strength envelope. Parameters ---------- onset_envelope : np.ndarray [shape=(n,)] onset strength envelope bpm : float [scalar] tempo estimate fft_res : float [scalar] resolution of the fft (sr / hop_length) tightness: float [scalar] how closely do we adhere to bpm? trim : bool [scalar] trim leading/trailing beats with weak onsets? Returns ------- beats : np.ndarray [shape=(n,)] frame numbers of beat events """ if bpm <= 0: raise ParameterError('bpm must be strictly positive') # convert bpm to a sample period for searching period = round(60.0 * fft_res / bpm) # localscore is a smoothed version of AGC'd onset envelope localscore = __beat_local_score(onset_envelope, period) # run the DP backlink, cumscore = __beat_track_dp(localscore, period, tightness) # get the position of the last beat beats = [__last_beat(cumscore)] # Reconstruct the beat path from backlinks while backlink[beats[-1]] >= 0: beats.append(backlink[beats[-1]]) # Put the beats in ascending order # Convert into an array of frame numbers beats = np.array(beats[::-1], dtype=int) # Discard spurious trailing beats beats = __trim_beats(localscore, beats, trim) return beats
def __beat_tracker(onset_envelope, bpm, fft_res, tightness, trim): """Internal function that tracks beats in an onset strength envelope. Parameters ---------- onset_envelope : np.ndarray [shape=(n,)] onset strength envelope bpm : float [scalar] tempo estimate fft_res : float [scalar] resolution of the fft (sr / hop_length) tightness: float [scalar] how closely do we adhere to bpm? trim : bool [scalar] trim leading/trailing beats with weak onsets? Returns ------- beats : np.ndarray [shape=(n,)] frame numbers of beat events """ if bpm <= 0: raise ParameterError('bpm must be strictly positive') # convert bpm to a sample period for searching period = round(60.0 * fft_res / bpm) # localscore is a smoothed version of AGC'd onset envelope localscore = __beat_local_score(onset_envelope, period) # run the DP backlink, cumscore = __beat_track_dp(localscore, period, tightness) # get the position of the last beat beats = [__last_beat(cumscore)] # Reconstruct the beat path from backlinks while backlink[beats[-1]] >= 0: beats.append(backlink[beats[-1]]) # Put the beats in ascending order # Convert into an array of frame numbers beats = np.array(beats[::-1], dtype=int) # Discard spurious trailing beats beats = __trim_beats(localscore, beats, trim) return beats
[ "Internal", "function", "that", "tracks", "beats", "in", "an", "onset", "strength", "envelope", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L343-L395
[ "def", "__beat_tracker", "(", "onset_envelope", ",", "bpm", ",", "fft_res", ",", "tightness", ",", "trim", ")", ":", "if", "bpm", "<=", "0", ":", "raise", "ParameterError", "(", "'bpm must be strictly positive'", ")", "# convert bpm to a sample period for searching", "period", "=", "round", "(", "60.0", "*", "fft_res", "/", "bpm", ")", "# localscore is a smoothed version of AGC'd onset envelope", "localscore", "=", "__beat_local_score", "(", "onset_envelope", ",", "period", ")", "# run the DP", "backlink", ",", "cumscore", "=", "__beat_track_dp", "(", "localscore", ",", "period", ",", "tightness", ")", "# get the position of the last beat", "beats", "=", "[", "__last_beat", "(", "cumscore", ")", "]", "# Reconstruct the beat path from backlinks", "while", "backlink", "[", "beats", "[", "-", "1", "]", "]", ">=", "0", ":", "beats", ".", "append", "(", "backlink", "[", "beats", "[", "-", "1", "]", "]", ")", "# Put the beats in ascending order", "# Convert into an array of frame numbers", "beats", "=", "np", ".", "array", "(", "beats", "[", ":", ":", "-", "1", "]", ",", "dtype", "=", "int", ")", "# Discard spurious trailing beats", "beats", "=", "__trim_beats", "(", "localscore", ",", "beats", ",", "trim", ")", "return", "beats" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__normalize_onsets
Maps onset strength function into the range [0, 1]
librosa/beat.py
def __normalize_onsets(onsets): '''Maps onset strength function into the range [0, 1]''' norm = onsets.std(ddof=1) if norm > 0: onsets = onsets / norm return onsets
def __normalize_onsets(onsets): '''Maps onset strength function into the range [0, 1]''' norm = onsets.std(ddof=1) if norm > 0: onsets = onsets / norm return onsets
[ "Maps", "onset", "strength", "function", "into", "the", "range", "[", "0", "1", "]" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L399-L405
[ "def", "__normalize_onsets", "(", "onsets", ")", ":", "norm", "=", "onsets", ".", "std", "(", "ddof", "=", "1", ")", "if", "norm", ">", "0", ":", "onsets", "=", "onsets", "/", "norm", "return", "onsets" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__beat_local_score
Construct the local score for an onset envlope and given period
librosa/beat.py
def __beat_local_score(onset_envelope, period): '''Construct the local score for an onset envlope and given period''' window = np.exp(-0.5 * (np.arange(-period, period+1)*32.0/period)**2) return scipy.signal.convolve(__normalize_onsets(onset_envelope), window, 'same')
def __beat_local_score(onset_envelope, period): '''Construct the local score for an onset envlope and given period''' window = np.exp(-0.5 * (np.arange(-period, period+1)*32.0/period)**2) return scipy.signal.convolve(__normalize_onsets(onset_envelope), window, 'same')
[ "Construct", "the", "local", "score", "for", "an", "onset", "envlope", "and", "given", "period" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L408-L414
[ "def", "__beat_local_score", "(", "onset_envelope", ",", "period", ")", ":", "window", "=", "np", ".", "exp", "(", "-", "0.5", "*", "(", "np", ".", "arange", "(", "-", "period", ",", "period", "+", "1", ")", "*", "32.0", "/", "period", ")", "**", "2", ")", "return", "scipy", ".", "signal", ".", "convolve", "(", "__normalize_onsets", "(", "onset_envelope", ")", ",", "window", ",", "'same'", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__beat_track_dp
Core dynamic program for beat tracking
librosa/beat.py
def __beat_track_dp(localscore, period, tightness): """Core dynamic program for beat tracking""" backlink = np.zeros_like(localscore, dtype=int) cumscore = np.zeros_like(localscore) # Search range for previous beat window = np.arange(-2 * period, -np.round(period / 2) + 1, dtype=int) # Make a score window, which begins biased toward start_bpm and skewed if tightness <= 0: raise ParameterError('tightness must be strictly positive') txwt = -tightness * (np.log(-window / period) ** 2) # Are we on the first beat? first_beat = True for i, score_i in enumerate(localscore): # Are we reaching back before time 0? z_pad = np.maximum(0, min(- window[0], len(window))) # Search over all possible predecessors candidates = txwt.copy() candidates[z_pad:] = candidates[z_pad:] + cumscore[window[z_pad:]] # Find the best preceding beat beat_location = np.argmax(candidates) # Add the local score cumscore[i] = score_i + candidates[beat_location] # Special case the first onset. Stop if the localscore is small if first_beat and score_i < 0.01 * localscore.max(): backlink[i] = -1 else: backlink[i] = window[beat_location] first_beat = False # Update the time range window = window + 1 return backlink, cumscore
def __beat_track_dp(localscore, period, tightness): """Core dynamic program for beat tracking""" backlink = np.zeros_like(localscore, dtype=int) cumscore = np.zeros_like(localscore) # Search range for previous beat window = np.arange(-2 * period, -np.round(period / 2) + 1, dtype=int) # Make a score window, which begins biased toward start_bpm and skewed if tightness <= 0: raise ParameterError('tightness must be strictly positive') txwt = -tightness * (np.log(-window / period) ** 2) # Are we on the first beat? first_beat = True for i, score_i in enumerate(localscore): # Are we reaching back before time 0? z_pad = np.maximum(0, min(- window[0], len(window))) # Search over all possible predecessors candidates = txwt.copy() candidates[z_pad:] = candidates[z_pad:] + cumscore[window[z_pad:]] # Find the best preceding beat beat_location = np.argmax(candidates) # Add the local score cumscore[i] = score_i + candidates[beat_location] # Special case the first onset. Stop if the localscore is small if first_beat and score_i < 0.01 * localscore.max(): backlink[i] = -1 else: backlink[i] = window[beat_location] first_beat = False # Update the time range window = window + 1 return backlink, cumscore
[ "Core", "dynamic", "program", "for", "beat", "tracking" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L417-L459
[ "def", "__beat_track_dp", "(", "localscore", ",", "period", ",", "tightness", ")", ":", "backlink", "=", "np", ".", "zeros_like", "(", "localscore", ",", "dtype", "=", "int", ")", "cumscore", "=", "np", ".", "zeros_like", "(", "localscore", ")", "# Search range for previous beat", "window", "=", "np", ".", "arange", "(", "-", "2", "*", "period", ",", "-", "np", ".", "round", "(", "period", "/", "2", ")", "+", "1", ",", "dtype", "=", "int", ")", "# Make a score window, which begins biased toward start_bpm and skewed", "if", "tightness", "<=", "0", ":", "raise", "ParameterError", "(", "'tightness must be strictly positive'", ")", "txwt", "=", "-", "tightness", "*", "(", "np", ".", "log", "(", "-", "window", "/", "period", ")", "**", "2", ")", "# Are we on the first beat?", "first_beat", "=", "True", "for", "i", ",", "score_i", "in", "enumerate", "(", "localscore", ")", ":", "# Are we reaching back before time 0?", "z_pad", "=", "np", ".", "maximum", "(", "0", ",", "min", "(", "-", "window", "[", "0", "]", ",", "len", "(", "window", ")", ")", ")", "# Search over all possible predecessors", "candidates", "=", "txwt", ".", "copy", "(", ")", "candidates", "[", "z_pad", ":", "]", "=", "candidates", "[", "z_pad", ":", "]", "+", "cumscore", "[", "window", "[", "z_pad", ":", "]", "]", "# Find the best preceding beat", "beat_location", "=", "np", ".", "argmax", "(", "candidates", ")", "# Add the local score", "cumscore", "[", "i", "]", "=", "score_i", "+", "candidates", "[", "beat_location", "]", "# Special case the first onset. Stop if the localscore is small", "if", "first_beat", "and", "score_i", "<", "0.01", "*", "localscore", ".", "max", "(", ")", ":", "backlink", "[", "i", "]", "=", "-", "1", "else", ":", "backlink", "[", "i", "]", "=", "window", "[", "beat_location", "]", "first_beat", "=", "False", "# Update the time range", "window", "=", "window", "+", "1", "return", "backlink", ",", "cumscore" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__last_beat
Get the last beat from the cumulative score array
librosa/beat.py
def __last_beat(cumscore): """Get the last beat from the cumulative score array""" maxes = util.localmax(cumscore) med_score = np.median(cumscore[np.argwhere(maxes)]) # The last of these is the last beat (since score generally increases) return np.argwhere((cumscore * maxes * 2 > med_score)).max()
def __last_beat(cumscore): """Get the last beat from the cumulative score array""" maxes = util.localmax(cumscore) med_score = np.median(cumscore[np.argwhere(maxes)]) # The last of these is the last beat (since score generally increases) return np.argwhere((cumscore * maxes * 2 > med_score)).max()
[ "Get", "the", "last", "beat", "from", "the", "cumulative", "score", "array" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L462-L469
[ "def", "__last_beat", "(", "cumscore", ")", ":", "maxes", "=", "util", ".", "localmax", "(", "cumscore", ")", "med_score", "=", "np", ".", "median", "(", "cumscore", "[", "np", ".", "argwhere", "(", "maxes", ")", "]", ")", "# The last of these is the last beat (since score generally increases)", "return", "np", ".", "argwhere", "(", "(", "cumscore", "*", "maxes", "*", "2", ">", "med_score", ")", ")", ".", "max", "(", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
__trim_beats
Final post-processing: throw out spurious leading/trailing beats
librosa/beat.py
def __trim_beats(localscore, beats, trim): """Final post-processing: throw out spurious leading/trailing beats""" smooth_boe = scipy.signal.convolve(localscore[beats], scipy.signal.hann(5), 'same') if trim: threshold = 0.5 * ((smooth_boe**2).mean()**0.5) else: threshold = 0.0 valid = np.argwhere(smooth_boe > threshold) return beats[valid.min():valid.max()]
def __trim_beats(localscore, beats, trim): """Final post-processing: throw out spurious leading/trailing beats""" smooth_boe = scipy.signal.convolve(localscore[beats], scipy.signal.hann(5), 'same') if trim: threshold = 0.5 * ((smooth_boe**2).mean()**0.5) else: threshold = 0.0 valid = np.argwhere(smooth_boe > threshold) return beats[valid.min():valid.max()]
[ "Final", "post", "-", "processing", ":", "throw", "out", "spurious", "leading", "/", "trailing", "beats" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/beat.py#L472-L486
[ "def", "__trim_beats", "(", "localscore", ",", "beats", ",", "trim", ")", ":", "smooth_boe", "=", "scipy", ".", "signal", ".", "convolve", "(", "localscore", "[", "beats", "]", ",", "scipy", ".", "signal", ".", "hann", "(", "5", ")", ",", "'same'", ")", "if", "trim", ":", "threshold", "=", "0.5", "*", "(", "(", "smooth_boe", "**", "2", ")", ".", "mean", "(", ")", "**", "0.5", ")", "else", ":", "threshold", "=", "0.0", "valid", "=", "np", ".", "argwhere", "(", "smooth_boe", ">", "threshold", ")", "return", "beats", "[", "valid", ".", "min", "(", ")", ":", "valid", ".", "max", "(", ")", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
recurrence_matrix
Compute a recurrence matrix from a data matrix. `rec[i, j]` is non-zero if (`data[:, i]`, `data[:, j]`) are k-nearest-neighbors and `|i - j| >= width` The specific value of `rec[i, j]` can have several forms, governed by the `mode` parameter below: - Connectivity: `rec[i, j] = 1 or 0` indicates that frames `i` and `j` are repetitions - Affinity: `rec[i, j] > 0` measures how similar frames `i` and `j` are. This is also known as a (sparse) self-similarity matrix. - Distance: `rec[, j] > 0` measures how distant frames `i` and `j` are. This is also known as a (sparse) self-distance matrix. The general term *recurrence matrix* can refer to any of the three forms above. Parameters ---------- data : np.ndarray A feature matrix k : int > 0 [scalar] or None the number of nearest-neighbors for each sample Default: `k = 2 * ceil(sqrt(t - 2 * width + 1))`, or `k = 2` if `t <= 2 * width + 1` width : int >= 1 [scalar] only link neighbors `(data[:, i], data[:, j])` if `|i - j| >= width` `width` cannot exceed the length of the data. metric : str Distance metric to use for nearest-neighbor calculation. See `sklearn.neighbors.NearestNeighbors` for details. sym : bool [scalar] set `sym=True` to only link mutual nearest-neighbors sparse : bool [scalar] if False, returns a dense type (ndarray) if True, returns a sparse type (scipy.sparse.csr_matrix) mode : str, {'connectivity', 'distance', 'affinity'} If 'connectivity', a binary connectivity matrix is produced. If 'distance', then a non-zero entry contains the distance between points. If 'affinity', then non-zero entries are mapped to `exp( - distance(i, j) / bandwidth)` where `bandwidth` is as specified below. bandwidth : None or float > 0 If using ``mode='affinity'``, this can be used to set the bandwidth on the affinity kernel. If no value is provided, it is set automatically to the median distance between furthest nearest neighbors. self : bool If `True`, then the main diagonal is populated with self-links: 0 if ``mode='distance'``, and 1 otherwise. If `False`, the main diagonal is left empty. axis : int The axis along which to compute recurrence. By default, the last index (-1) is taken. Returns ------- rec : np.ndarray or scipy.sparse.csr_matrix, [shape=(t, t)] Recurrence matrix See Also -------- sklearn.neighbors.NearestNeighbors scipy.spatial.distance.cdist librosa.feature.stack_memory recurrence_to_lag Notes ----- This function caches at level 30. Examples -------- Find nearest neighbors in MFCC space >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> R = librosa.segment.recurrence_matrix(mfcc) Or fix the number of nearest neighbors to 5 >>> R = librosa.segment.recurrence_matrix(mfcc, k=5) Suppress neighbors within +- 7 samples >>> R = librosa.segment.recurrence_matrix(mfcc, width=7) Use cosine similarity instead of Euclidean distance >>> R = librosa.segment.recurrence_matrix(mfcc, metric='cosine') Require mutual nearest neighbors >>> R = librosa.segment.recurrence_matrix(mfcc, sym=True) Use an affinity matrix instead of binary connectivity >>> R_aff = librosa.segment.recurrence_matrix(mfcc, mode='affinity') Plot the feature and recurrence matrices >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> librosa.display.specshow(R, x_axis='time', y_axis='time') >>> plt.title('Binary recurrence (symmetric)') >>> plt.subplot(1, 2, 2) >>> librosa.display.specshow(R_aff, x_axis='time', y_axis='time', ... cmap='magma_r') >>> plt.title('Affinity recurrence') >>> plt.tight_layout()
librosa/segment.py
def recurrence_matrix(data, k=None, width=1, metric='euclidean', sym=False, sparse=False, mode='connectivity', bandwidth=None, self=False, axis=-1): '''Compute a recurrence matrix from a data matrix. `rec[i, j]` is non-zero if (`data[:, i]`, `data[:, j]`) are k-nearest-neighbors and `|i - j| >= width` The specific value of `rec[i, j]` can have several forms, governed by the `mode` parameter below: - Connectivity: `rec[i, j] = 1 or 0` indicates that frames `i` and `j` are repetitions - Affinity: `rec[i, j] > 0` measures how similar frames `i` and `j` are. This is also known as a (sparse) self-similarity matrix. - Distance: `rec[, j] > 0` measures how distant frames `i` and `j` are. This is also known as a (sparse) self-distance matrix. The general term *recurrence matrix* can refer to any of the three forms above. Parameters ---------- data : np.ndarray A feature matrix k : int > 0 [scalar] or None the number of nearest-neighbors for each sample Default: `k = 2 * ceil(sqrt(t - 2 * width + 1))`, or `k = 2` if `t <= 2 * width + 1` width : int >= 1 [scalar] only link neighbors `(data[:, i], data[:, j])` if `|i - j| >= width` `width` cannot exceed the length of the data. metric : str Distance metric to use for nearest-neighbor calculation. See `sklearn.neighbors.NearestNeighbors` for details. sym : bool [scalar] set `sym=True` to only link mutual nearest-neighbors sparse : bool [scalar] if False, returns a dense type (ndarray) if True, returns a sparse type (scipy.sparse.csr_matrix) mode : str, {'connectivity', 'distance', 'affinity'} If 'connectivity', a binary connectivity matrix is produced. If 'distance', then a non-zero entry contains the distance between points. If 'affinity', then non-zero entries are mapped to `exp( - distance(i, j) / bandwidth)` where `bandwidth` is as specified below. bandwidth : None or float > 0 If using ``mode='affinity'``, this can be used to set the bandwidth on the affinity kernel. If no value is provided, it is set automatically to the median distance between furthest nearest neighbors. self : bool If `True`, then the main diagonal is populated with self-links: 0 if ``mode='distance'``, and 1 otherwise. If `False`, the main diagonal is left empty. axis : int The axis along which to compute recurrence. By default, the last index (-1) is taken. Returns ------- rec : np.ndarray or scipy.sparse.csr_matrix, [shape=(t, t)] Recurrence matrix See Also -------- sklearn.neighbors.NearestNeighbors scipy.spatial.distance.cdist librosa.feature.stack_memory recurrence_to_lag Notes ----- This function caches at level 30. Examples -------- Find nearest neighbors in MFCC space >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> R = librosa.segment.recurrence_matrix(mfcc) Or fix the number of nearest neighbors to 5 >>> R = librosa.segment.recurrence_matrix(mfcc, k=5) Suppress neighbors within +- 7 samples >>> R = librosa.segment.recurrence_matrix(mfcc, width=7) Use cosine similarity instead of Euclidean distance >>> R = librosa.segment.recurrence_matrix(mfcc, metric='cosine') Require mutual nearest neighbors >>> R = librosa.segment.recurrence_matrix(mfcc, sym=True) Use an affinity matrix instead of binary connectivity >>> R_aff = librosa.segment.recurrence_matrix(mfcc, mode='affinity') Plot the feature and recurrence matrices >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> librosa.display.specshow(R, x_axis='time', y_axis='time') >>> plt.title('Binary recurrence (symmetric)') >>> plt.subplot(1, 2, 2) >>> librosa.display.specshow(R_aff, x_axis='time', y_axis='time', ... cmap='magma_r') >>> plt.title('Affinity recurrence') >>> plt.tight_layout() ''' data = np.atleast_2d(data) # Swap observations to the first dimension and flatten the rest data = np.swapaxes(data, axis, 0) t = data.shape[0] data = data.reshape((t, -1)) if width < 1 or width > t: raise ParameterError('width={} must be at least 1 and at most data.shape[{}]={}'.format(width, axis, t)) if mode not in ['connectivity', 'distance', 'affinity']: raise ParameterError(("Invalid mode='{}'. Must be one of " "['connectivity', 'distance', " "'affinity']").format(mode)) if k is None: if t > 2 * width + 1: k = 2 * np.ceil(np.sqrt(t - 2 * width + 1)) else: k = 2 if bandwidth is not None: if bandwidth <= 0: raise ParameterError('Invalid bandwidth={}. ' 'Must be strictly positive.'.format(bandwidth)) k = int(k) # Build the neighbor search object try: knn = sklearn.neighbors.NearestNeighbors(n_neighbors=min(t-1, k + 2 * width), metric=metric, algorithm='auto') except ValueError: knn = sklearn.neighbors.NearestNeighbors(n_neighbors=min(t-1, k + 2 * width), metric=metric, algorithm='brute') knn.fit(data) # Get the knn graph if mode == 'affinity': kng_mode = 'distance' else: kng_mode = mode rec = knn.kneighbors_graph(mode=kng_mode).tolil() # Remove connections within width for diag in range(-width + 1, width): rec.setdiag(0, diag) # Retain only the top-k links per point for i in range(t): # Get the links from point i links = rec[i].nonzero()[1] # Order them ascending idx = links[np.argsort(rec[i, links].toarray())][0] # Everything past the kth closest gets squashed rec[i, idx[k:]] = 0 if self: if mode == 'connectivity': rec.setdiag(1) elif mode == 'affinity': # we need to keep the self-loop in here, but not mess up the # bandwidth estimation # # using negative distances here preserves the structure without changing # the statistics of the data rec.setdiag(-1) # symmetrize if sym: # Note: this operation produces a CSR (compressed sparse row) matrix! # This is why we have to do it after filling the diagonal in self-mode rec = rec.minimum(rec.T) rec = rec.tocsr() rec.eliminate_zeros() if mode == 'connectivity': rec = rec.astype(np.bool) elif mode == 'affinity': if bandwidth is None: bandwidth = np.nanmedian(rec.max(axis=1).data) # Set all the negatives back to 0 # Negatives are temporarily inserted above to preserve the sparsity structure # of the matrix without corrupting the bandwidth calculations rec.data[rec.data < 0] = 0.0 rec.data[:] = np.exp(rec.data / (-1 * bandwidth)) if not sparse: rec = rec.toarray() return rec
def recurrence_matrix(data, k=None, width=1, metric='euclidean', sym=False, sparse=False, mode='connectivity', bandwidth=None, self=False, axis=-1): '''Compute a recurrence matrix from a data matrix. `rec[i, j]` is non-zero if (`data[:, i]`, `data[:, j]`) are k-nearest-neighbors and `|i - j| >= width` The specific value of `rec[i, j]` can have several forms, governed by the `mode` parameter below: - Connectivity: `rec[i, j] = 1 or 0` indicates that frames `i` and `j` are repetitions - Affinity: `rec[i, j] > 0` measures how similar frames `i` and `j` are. This is also known as a (sparse) self-similarity matrix. - Distance: `rec[, j] > 0` measures how distant frames `i` and `j` are. This is also known as a (sparse) self-distance matrix. The general term *recurrence matrix* can refer to any of the three forms above. Parameters ---------- data : np.ndarray A feature matrix k : int > 0 [scalar] or None the number of nearest-neighbors for each sample Default: `k = 2 * ceil(sqrt(t - 2 * width + 1))`, or `k = 2` if `t <= 2 * width + 1` width : int >= 1 [scalar] only link neighbors `(data[:, i], data[:, j])` if `|i - j| >= width` `width` cannot exceed the length of the data. metric : str Distance metric to use for nearest-neighbor calculation. See `sklearn.neighbors.NearestNeighbors` for details. sym : bool [scalar] set `sym=True` to only link mutual nearest-neighbors sparse : bool [scalar] if False, returns a dense type (ndarray) if True, returns a sparse type (scipy.sparse.csr_matrix) mode : str, {'connectivity', 'distance', 'affinity'} If 'connectivity', a binary connectivity matrix is produced. If 'distance', then a non-zero entry contains the distance between points. If 'affinity', then non-zero entries are mapped to `exp( - distance(i, j) / bandwidth)` where `bandwidth` is as specified below. bandwidth : None or float > 0 If using ``mode='affinity'``, this can be used to set the bandwidth on the affinity kernel. If no value is provided, it is set automatically to the median distance between furthest nearest neighbors. self : bool If `True`, then the main diagonal is populated with self-links: 0 if ``mode='distance'``, and 1 otherwise. If `False`, the main diagonal is left empty. axis : int The axis along which to compute recurrence. By default, the last index (-1) is taken. Returns ------- rec : np.ndarray or scipy.sparse.csr_matrix, [shape=(t, t)] Recurrence matrix See Also -------- sklearn.neighbors.NearestNeighbors scipy.spatial.distance.cdist librosa.feature.stack_memory recurrence_to_lag Notes ----- This function caches at level 30. Examples -------- Find nearest neighbors in MFCC space >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> R = librosa.segment.recurrence_matrix(mfcc) Or fix the number of nearest neighbors to 5 >>> R = librosa.segment.recurrence_matrix(mfcc, k=5) Suppress neighbors within +- 7 samples >>> R = librosa.segment.recurrence_matrix(mfcc, width=7) Use cosine similarity instead of Euclidean distance >>> R = librosa.segment.recurrence_matrix(mfcc, metric='cosine') Require mutual nearest neighbors >>> R = librosa.segment.recurrence_matrix(mfcc, sym=True) Use an affinity matrix instead of binary connectivity >>> R_aff = librosa.segment.recurrence_matrix(mfcc, mode='affinity') Plot the feature and recurrence matrices >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> librosa.display.specshow(R, x_axis='time', y_axis='time') >>> plt.title('Binary recurrence (symmetric)') >>> plt.subplot(1, 2, 2) >>> librosa.display.specshow(R_aff, x_axis='time', y_axis='time', ... cmap='magma_r') >>> plt.title('Affinity recurrence') >>> plt.tight_layout() ''' data = np.atleast_2d(data) # Swap observations to the first dimension and flatten the rest data = np.swapaxes(data, axis, 0) t = data.shape[0] data = data.reshape((t, -1)) if width < 1 or width > t: raise ParameterError('width={} must be at least 1 and at most data.shape[{}]={}'.format(width, axis, t)) if mode not in ['connectivity', 'distance', 'affinity']: raise ParameterError(("Invalid mode='{}'. Must be one of " "['connectivity', 'distance', " "'affinity']").format(mode)) if k is None: if t > 2 * width + 1: k = 2 * np.ceil(np.sqrt(t - 2 * width + 1)) else: k = 2 if bandwidth is not None: if bandwidth <= 0: raise ParameterError('Invalid bandwidth={}. ' 'Must be strictly positive.'.format(bandwidth)) k = int(k) # Build the neighbor search object try: knn = sklearn.neighbors.NearestNeighbors(n_neighbors=min(t-1, k + 2 * width), metric=metric, algorithm='auto') except ValueError: knn = sklearn.neighbors.NearestNeighbors(n_neighbors=min(t-1, k + 2 * width), metric=metric, algorithm='brute') knn.fit(data) # Get the knn graph if mode == 'affinity': kng_mode = 'distance' else: kng_mode = mode rec = knn.kneighbors_graph(mode=kng_mode).tolil() # Remove connections within width for diag in range(-width + 1, width): rec.setdiag(0, diag) # Retain only the top-k links per point for i in range(t): # Get the links from point i links = rec[i].nonzero()[1] # Order them ascending idx = links[np.argsort(rec[i, links].toarray())][0] # Everything past the kth closest gets squashed rec[i, idx[k:]] = 0 if self: if mode == 'connectivity': rec.setdiag(1) elif mode == 'affinity': # we need to keep the self-loop in here, but not mess up the # bandwidth estimation # # using negative distances here preserves the structure without changing # the statistics of the data rec.setdiag(-1) # symmetrize if sym: # Note: this operation produces a CSR (compressed sparse row) matrix! # This is why we have to do it after filling the diagonal in self-mode rec = rec.minimum(rec.T) rec = rec.tocsr() rec.eliminate_zeros() if mode == 'connectivity': rec = rec.astype(np.bool) elif mode == 'affinity': if bandwidth is None: bandwidth = np.nanmedian(rec.max(axis=1).data) # Set all the negatives back to 0 # Negatives are temporarily inserted above to preserve the sparsity structure # of the matrix without corrupting the bandwidth calculations rec.data[rec.data < 0] = 0.0 rec.data[:] = np.exp(rec.data / (-1 * bandwidth)) if not sparse: rec = rec.toarray() return rec
[ "Compute", "a", "recurrence", "matrix", "from", "a", "data", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L54-L287
[ "def", "recurrence_matrix", "(", "data", ",", "k", "=", "None", ",", "width", "=", "1", ",", "metric", "=", "'euclidean'", ",", "sym", "=", "False", ",", "sparse", "=", "False", ",", "mode", "=", "'connectivity'", ",", "bandwidth", "=", "None", ",", "self", "=", "False", ",", "axis", "=", "-", "1", ")", ":", "data", "=", "np", ".", "atleast_2d", "(", "data", ")", "# Swap observations to the first dimension and flatten the rest", "data", "=", "np", ".", "swapaxes", "(", "data", ",", "axis", ",", "0", ")", "t", "=", "data", ".", "shape", "[", "0", "]", "data", "=", "data", ".", "reshape", "(", "(", "t", ",", "-", "1", ")", ")", "if", "width", "<", "1", "or", "width", ">", "t", ":", "raise", "ParameterError", "(", "'width={} must be at least 1 and at most data.shape[{}]={}'", ".", "format", "(", "width", ",", "axis", ",", "t", ")", ")", "if", "mode", "not", "in", "[", "'connectivity'", ",", "'distance'", ",", "'affinity'", "]", ":", "raise", "ParameterError", "(", "(", "\"Invalid mode='{}'. Must be one of \"", "\"['connectivity', 'distance', \"", "\"'affinity']\"", ")", ".", "format", "(", "mode", ")", ")", "if", "k", "is", "None", ":", "if", "t", ">", "2", "*", "width", "+", "1", ":", "k", "=", "2", "*", "np", ".", "ceil", "(", "np", ".", "sqrt", "(", "t", "-", "2", "*", "width", "+", "1", ")", ")", "else", ":", "k", "=", "2", "if", "bandwidth", "is", "not", "None", ":", "if", "bandwidth", "<=", "0", ":", "raise", "ParameterError", "(", "'Invalid bandwidth={}. '", "'Must be strictly positive.'", ".", "format", "(", "bandwidth", ")", ")", "k", "=", "int", "(", "k", ")", "# Build the neighbor search object", "try", ":", "knn", "=", "sklearn", ".", "neighbors", ".", "NearestNeighbors", "(", "n_neighbors", "=", "min", "(", "t", "-", "1", ",", "k", "+", "2", "*", "width", ")", ",", "metric", "=", "metric", ",", "algorithm", "=", "'auto'", ")", "except", "ValueError", ":", "knn", "=", "sklearn", ".", "neighbors", ".", "NearestNeighbors", "(", "n_neighbors", "=", "min", "(", "t", "-", "1", ",", "k", "+", "2", "*", "width", ")", ",", "metric", "=", "metric", ",", "algorithm", "=", "'brute'", ")", "knn", ".", "fit", "(", "data", ")", "# Get the knn graph", "if", "mode", "==", "'affinity'", ":", "kng_mode", "=", "'distance'", "else", ":", "kng_mode", "=", "mode", "rec", "=", "knn", ".", "kneighbors_graph", "(", "mode", "=", "kng_mode", ")", ".", "tolil", "(", ")", "# Remove connections within width", "for", "diag", "in", "range", "(", "-", "width", "+", "1", ",", "width", ")", ":", "rec", ".", "setdiag", "(", "0", ",", "diag", ")", "# Retain only the top-k links per point", "for", "i", "in", "range", "(", "t", ")", ":", "# Get the links from point i", "links", "=", "rec", "[", "i", "]", ".", "nonzero", "(", ")", "[", "1", "]", "# Order them ascending", "idx", "=", "links", "[", "np", ".", "argsort", "(", "rec", "[", "i", ",", "links", "]", ".", "toarray", "(", ")", ")", "]", "[", "0", "]", "# Everything past the kth closest gets squashed", "rec", "[", "i", ",", "idx", "[", "k", ":", "]", "]", "=", "0", "if", "self", ":", "if", "mode", "==", "'connectivity'", ":", "rec", ".", "setdiag", "(", "1", ")", "elif", "mode", "==", "'affinity'", ":", "# we need to keep the self-loop in here, but not mess up the", "# bandwidth estimation", "#", "# using negative distances here preserves the structure without changing", "# the statistics of the data", "rec", ".", "setdiag", "(", "-", "1", ")", "# symmetrize", "if", "sym", ":", "# Note: this operation produces a CSR (compressed sparse row) matrix!", "# This is why we have to do it after filling the diagonal in self-mode", "rec", "=", "rec", ".", "minimum", "(", "rec", ".", "T", ")", "rec", "=", "rec", ".", "tocsr", "(", ")", "rec", ".", "eliminate_zeros", "(", ")", "if", "mode", "==", "'connectivity'", ":", "rec", "=", "rec", ".", "astype", "(", "np", ".", "bool", ")", "elif", "mode", "==", "'affinity'", ":", "if", "bandwidth", "is", "None", ":", "bandwidth", "=", "np", ".", "nanmedian", "(", "rec", ".", "max", "(", "axis", "=", "1", ")", ".", "data", ")", "# Set all the negatives back to 0", "# Negatives are temporarily inserted above to preserve the sparsity structure", "# of the matrix without corrupting the bandwidth calculations", "rec", ".", "data", "[", "rec", ".", "data", "<", "0", "]", "=", "0.0", "rec", ".", "data", "[", ":", "]", "=", "np", ".", "exp", "(", "rec", ".", "data", "/", "(", "-", "1", "*", "bandwidth", ")", ")", "if", "not", "sparse", ":", "rec", "=", "rec", ".", "toarray", "(", ")", "return", "rec" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
recurrence_to_lag
Convert a recurrence matrix into a lag matrix. `lag[i, j] == rec[i+j, j]` Parameters ---------- rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)] A (binary) recurrence matrix, as returned by `recurrence_matrix` pad : bool If False, `lag` matrix is square, which is equivalent to assuming that the signal repeats itself indefinitely. If True, `lag` is padded with `n` zeros, which eliminates the assumption of repetition. axis : int The axis to keep as the `time` axis. The alternate axis will be converted to lag coordinates. Returns ------- lag : np.ndarray The recurrence matrix in (lag, time) (if `axis=1`) or (time, lag) (if `axis=0`) coordinates Raises ------ ParameterError : if `rec` is non-square See Also -------- recurrence_matrix lag_to_recurrence Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfccs = librosa.feature.mfcc(y=y, sr=sr) >>> recurrence = librosa.segment.recurrence_matrix(mfccs) >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True) >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag') >>> plt.title('Lag (zero-padded)') >>> plt.subplot(1, 2, 2) >>> librosa.display.specshow(lag_nopad, x_axis='time') >>> plt.title('Lag (no padding)') >>> plt.tight_layout()
librosa/segment.py
def recurrence_to_lag(rec, pad=True, axis=-1): '''Convert a recurrence matrix into a lag matrix. `lag[i, j] == rec[i+j, j]` Parameters ---------- rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)] A (binary) recurrence matrix, as returned by `recurrence_matrix` pad : bool If False, `lag` matrix is square, which is equivalent to assuming that the signal repeats itself indefinitely. If True, `lag` is padded with `n` zeros, which eliminates the assumption of repetition. axis : int The axis to keep as the `time` axis. The alternate axis will be converted to lag coordinates. Returns ------- lag : np.ndarray The recurrence matrix in (lag, time) (if `axis=1`) or (time, lag) (if `axis=0`) coordinates Raises ------ ParameterError : if `rec` is non-square See Also -------- recurrence_matrix lag_to_recurrence Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfccs = librosa.feature.mfcc(y=y, sr=sr) >>> recurrence = librosa.segment.recurrence_matrix(mfccs) >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True) >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag') >>> plt.title('Lag (zero-padded)') >>> plt.subplot(1, 2, 2) >>> librosa.display.specshow(lag_nopad, x_axis='time') >>> plt.title('Lag (no padding)') >>> plt.tight_layout() ''' axis = np.abs(axis) if rec.ndim != 2 or rec.shape[0] != rec.shape[1]: raise ParameterError('non-square recurrence matrix shape: ' '{}'.format(rec.shape)) sparse = scipy.sparse.issparse(rec) roll_ax = None if sparse: roll_ax = 1 - axis lag_format = rec.format if axis == 0: rec = rec.tocsc() elif axis in (-1, 1): rec = rec.tocsr() t = rec.shape[axis] if sparse: if pad: kron = np.asarray([[1, 0]]).swapaxes(axis, 0) lag = scipy.sparse.kron(kron.astype(rec.dtype), rec, format='lil') else: lag = scipy.sparse.lil_matrix(rec) else: if pad: padding = [(0, 0), (0, 0)] padding[(1-axis)] = (0, t) lag = np.pad(rec, padding, mode='constant') else: lag = rec.copy() idx_slice = [slice(None)] * lag.ndim for i in range(1, t): idx_slice[axis] = i lag[tuple(idx_slice)] = util.roll_sparse(lag[tuple(idx_slice)], -i, axis=roll_ax) if sparse: return lag.asformat(lag_format) return np.ascontiguousarray(lag.T).T
def recurrence_to_lag(rec, pad=True, axis=-1): '''Convert a recurrence matrix into a lag matrix. `lag[i, j] == rec[i+j, j]` Parameters ---------- rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)] A (binary) recurrence matrix, as returned by `recurrence_matrix` pad : bool If False, `lag` matrix is square, which is equivalent to assuming that the signal repeats itself indefinitely. If True, `lag` is padded with `n` zeros, which eliminates the assumption of repetition. axis : int The axis to keep as the `time` axis. The alternate axis will be converted to lag coordinates. Returns ------- lag : np.ndarray The recurrence matrix in (lag, time) (if `axis=1`) or (time, lag) (if `axis=0`) coordinates Raises ------ ParameterError : if `rec` is non-square See Also -------- recurrence_matrix lag_to_recurrence Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfccs = librosa.feature.mfcc(y=y, sr=sr) >>> recurrence = librosa.segment.recurrence_matrix(mfccs) >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True) >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1, 2, 1) >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag') >>> plt.title('Lag (zero-padded)') >>> plt.subplot(1, 2, 2) >>> librosa.display.specshow(lag_nopad, x_axis='time') >>> plt.title('Lag (no padding)') >>> plt.tight_layout() ''' axis = np.abs(axis) if rec.ndim != 2 or rec.shape[0] != rec.shape[1]: raise ParameterError('non-square recurrence matrix shape: ' '{}'.format(rec.shape)) sparse = scipy.sparse.issparse(rec) roll_ax = None if sparse: roll_ax = 1 - axis lag_format = rec.format if axis == 0: rec = rec.tocsc() elif axis in (-1, 1): rec = rec.tocsr() t = rec.shape[axis] if sparse: if pad: kron = np.asarray([[1, 0]]).swapaxes(axis, 0) lag = scipy.sparse.kron(kron.astype(rec.dtype), rec, format='lil') else: lag = scipy.sparse.lil_matrix(rec) else: if pad: padding = [(0, 0), (0, 0)] padding[(1-axis)] = (0, t) lag = np.pad(rec, padding, mode='constant') else: lag = rec.copy() idx_slice = [slice(None)] * lag.ndim for i in range(1, t): idx_slice[axis] = i lag[tuple(idx_slice)] = util.roll_sparse(lag[tuple(idx_slice)], -i, axis=roll_ax) if sparse: return lag.asformat(lag_format) return np.ascontiguousarray(lag.T).T
[ "Convert", "a", "recurrence", "matrix", "into", "a", "lag", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L290-L386
[ "def", "recurrence_to_lag", "(", "rec", ",", "pad", "=", "True", ",", "axis", "=", "-", "1", ")", ":", "axis", "=", "np", ".", "abs", "(", "axis", ")", "if", "rec", ".", "ndim", "!=", "2", "or", "rec", ".", "shape", "[", "0", "]", "!=", "rec", ".", "shape", "[", "1", "]", ":", "raise", "ParameterError", "(", "'non-square recurrence matrix shape: '", "'{}'", ".", "format", "(", "rec", ".", "shape", ")", ")", "sparse", "=", "scipy", ".", "sparse", ".", "issparse", "(", "rec", ")", "roll_ax", "=", "None", "if", "sparse", ":", "roll_ax", "=", "1", "-", "axis", "lag_format", "=", "rec", ".", "format", "if", "axis", "==", "0", ":", "rec", "=", "rec", ".", "tocsc", "(", ")", "elif", "axis", "in", "(", "-", "1", ",", "1", ")", ":", "rec", "=", "rec", ".", "tocsr", "(", ")", "t", "=", "rec", ".", "shape", "[", "axis", "]", "if", "sparse", ":", "if", "pad", ":", "kron", "=", "np", ".", "asarray", "(", "[", "[", "1", ",", "0", "]", "]", ")", ".", "swapaxes", "(", "axis", ",", "0", ")", "lag", "=", "scipy", ".", "sparse", ".", "kron", "(", "kron", ".", "astype", "(", "rec", ".", "dtype", ")", ",", "rec", ",", "format", "=", "'lil'", ")", "else", ":", "lag", "=", "scipy", ".", "sparse", ".", "lil_matrix", "(", "rec", ")", "else", ":", "if", "pad", ":", "padding", "=", "[", "(", "0", ",", "0", ")", ",", "(", "0", ",", "0", ")", "]", "padding", "[", "(", "1", "-", "axis", ")", "]", "=", "(", "0", ",", "t", ")", "lag", "=", "np", ".", "pad", "(", "rec", ",", "padding", ",", "mode", "=", "'constant'", ")", "else", ":", "lag", "=", "rec", ".", "copy", "(", ")", "idx_slice", "=", "[", "slice", "(", "None", ")", "]", "*", "lag", ".", "ndim", "for", "i", "in", "range", "(", "1", ",", "t", ")", ":", "idx_slice", "[", "axis", "]", "=", "i", "lag", "[", "tuple", "(", "idx_slice", ")", "]", "=", "util", ".", "roll_sparse", "(", "lag", "[", "tuple", "(", "idx_slice", ")", "]", ",", "-", "i", ",", "axis", "=", "roll_ax", ")", "if", "sparse", ":", "return", "lag", ".", "asformat", "(", "lag_format", ")", "return", "np", ".", "ascontiguousarray", "(", "lag", ".", "T", ")", ".", "T" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
lag_to_recurrence
Convert a lag matrix into a recurrence matrix. Parameters ---------- lag : np.ndarray or scipy.sparse.spmatrix A lag matrix, as produced by `recurrence_to_lag` axis : int The axis corresponding to the time dimension. The alternate axis will be interpreted in lag coordinates. Returns ------- rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)] A recurrence matrix in (time, time) coordinates For sparse matrices, format will match that of `lag`. Raises ------ ParameterError : if `lag` does not have the correct shape See Also -------- recurrence_to_lag Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfccs = librosa.feature.mfcc(y=y, sr=sr) >>> recurrence = librosa.segment.recurrence_matrix(mfccs) >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True) >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False) >>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad) >>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag') >>> plt.title('Lag (zero-padded)') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='time') >>> plt.title('Lag (no padding)') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(rec_pad, x_axis='time', y_axis='time') >>> plt.title('Recurrence (with padding)') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(rec_nopad, x_axis='time', y_axis='time') >>> plt.title('Recurrence (without padding)') >>> plt.tight_layout()
librosa/segment.py
def lag_to_recurrence(lag, axis=-1): '''Convert a lag matrix into a recurrence matrix. Parameters ---------- lag : np.ndarray or scipy.sparse.spmatrix A lag matrix, as produced by `recurrence_to_lag` axis : int The axis corresponding to the time dimension. The alternate axis will be interpreted in lag coordinates. Returns ------- rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)] A recurrence matrix in (time, time) coordinates For sparse matrices, format will match that of `lag`. Raises ------ ParameterError : if `lag` does not have the correct shape See Also -------- recurrence_to_lag Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfccs = librosa.feature.mfcc(y=y, sr=sr) >>> recurrence = librosa.segment.recurrence_matrix(mfccs) >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True) >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False) >>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad) >>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag') >>> plt.title('Lag (zero-padded)') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='time') >>> plt.title('Lag (no padding)') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(rec_pad, x_axis='time', y_axis='time') >>> plt.title('Recurrence (with padding)') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(rec_nopad, x_axis='time', y_axis='time') >>> plt.title('Recurrence (without padding)') >>> plt.tight_layout() ''' if axis not in [0, 1, -1]: raise ParameterError('Invalid target axis: {}'.format(axis)) axis = np.abs(axis) if lag.ndim != 2 or (lag.shape[0] != lag.shape[1] and lag.shape[1 - axis] != 2 * lag.shape[axis]): raise ParameterError('Invalid lag matrix shape: {}'.format(lag.shape)) # Since lag must be 2-dimensional, abs(axis) = axis t = lag.shape[axis] sparse = scipy.sparse.issparse(lag) if sparse: rec = scipy.sparse.lil_matrix(lag) roll_ax = 1 - axis else: rec = lag.copy() roll_ax = None idx_slice = [slice(None)] * lag.ndim for i in range(1, t): idx_slice[axis] = i rec[tuple(idx_slice)] = util.roll_sparse(lag[tuple(idx_slice)], i, axis=roll_ax) sub_slice = [slice(None)] * rec.ndim sub_slice[1 - axis] = slice(t) rec = rec[tuple(sub_slice)] if sparse: return rec.asformat(lag.format) return np.ascontiguousarray(rec.T).T
def lag_to_recurrence(lag, axis=-1): '''Convert a lag matrix into a recurrence matrix. Parameters ---------- lag : np.ndarray or scipy.sparse.spmatrix A lag matrix, as produced by `recurrence_to_lag` axis : int The axis corresponding to the time dimension. The alternate axis will be interpreted in lag coordinates. Returns ------- rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)] A recurrence matrix in (time, time) coordinates For sparse matrices, format will match that of `lag`. Raises ------ ParameterError : if `lag` does not have the correct shape See Also -------- recurrence_to_lag Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfccs = librosa.feature.mfcc(y=y, sr=sr) >>> recurrence = librosa.segment.recurrence_matrix(mfccs) >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True) >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False) >>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad) >>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad) >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag') >>> plt.title('Lag (zero-padded)') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='time') >>> plt.title('Lag (no padding)') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(rec_pad, x_axis='time', y_axis='time') >>> plt.title('Recurrence (with padding)') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(rec_nopad, x_axis='time', y_axis='time') >>> plt.title('Recurrence (without padding)') >>> plt.tight_layout() ''' if axis not in [0, 1, -1]: raise ParameterError('Invalid target axis: {}'.format(axis)) axis = np.abs(axis) if lag.ndim != 2 or (lag.shape[0] != lag.shape[1] and lag.shape[1 - axis] != 2 * lag.shape[axis]): raise ParameterError('Invalid lag matrix shape: {}'.format(lag.shape)) # Since lag must be 2-dimensional, abs(axis) = axis t = lag.shape[axis] sparse = scipy.sparse.issparse(lag) if sparse: rec = scipy.sparse.lil_matrix(lag) roll_ax = 1 - axis else: rec = lag.copy() roll_ax = None idx_slice = [slice(None)] * lag.ndim for i in range(1, t): idx_slice[axis] = i rec[tuple(idx_slice)] = util.roll_sparse(lag[tuple(idx_slice)], i, axis=roll_ax) sub_slice = [slice(None)] * rec.ndim sub_slice[1 - axis] = slice(t) rec = rec[tuple(sub_slice)] if sparse: return rec.asformat(lag.format) return np.ascontiguousarray(rec.T).T
[ "Convert", "a", "lag", "matrix", "into", "a", "recurrence", "matrix", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L389-L474
[ "def", "lag_to_recurrence", "(", "lag", ",", "axis", "=", "-", "1", ")", ":", "if", "axis", "not", "in", "[", "0", ",", "1", ",", "-", "1", "]", ":", "raise", "ParameterError", "(", "'Invalid target axis: {}'", ".", "format", "(", "axis", ")", ")", "axis", "=", "np", ".", "abs", "(", "axis", ")", "if", "lag", ".", "ndim", "!=", "2", "or", "(", "lag", ".", "shape", "[", "0", "]", "!=", "lag", ".", "shape", "[", "1", "]", "and", "lag", ".", "shape", "[", "1", "-", "axis", "]", "!=", "2", "*", "lag", ".", "shape", "[", "axis", "]", ")", ":", "raise", "ParameterError", "(", "'Invalid lag matrix shape: {}'", ".", "format", "(", "lag", ".", "shape", ")", ")", "# Since lag must be 2-dimensional, abs(axis) = axis", "t", "=", "lag", ".", "shape", "[", "axis", "]", "sparse", "=", "scipy", ".", "sparse", ".", "issparse", "(", "lag", ")", "if", "sparse", ":", "rec", "=", "scipy", ".", "sparse", ".", "lil_matrix", "(", "lag", ")", "roll_ax", "=", "1", "-", "axis", "else", ":", "rec", "=", "lag", ".", "copy", "(", ")", "roll_ax", "=", "None", "idx_slice", "=", "[", "slice", "(", "None", ")", "]", "*", "lag", ".", "ndim", "for", "i", "in", "range", "(", "1", ",", "t", ")", ":", "idx_slice", "[", "axis", "]", "=", "i", "rec", "[", "tuple", "(", "idx_slice", ")", "]", "=", "util", ".", "roll_sparse", "(", "lag", "[", "tuple", "(", "idx_slice", ")", "]", ",", "i", ",", "axis", "=", "roll_ax", ")", "sub_slice", "=", "[", "slice", "(", "None", ")", "]", "*", "rec", ".", "ndim", "sub_slice", "[", "1", "-", "axis", "]", "=", "slice", "(", "t", ")", "rec", "=", "rec", "[", "tuple", "(", "sub_slice", ")", "]", "if", "sparse", ":", "return", "rec", ".", "asformat", "(", "lag", ".", "format", ")", "return", "np", ".", "ascontiguousarray", "(", "rec", ".", "T", ")", ".", "T" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
timelag_filter
Filtering in the time-lag domain. This is primarily useful for adapting image filters to operate on `recurrence_to_lag` output. Using `timelag_filter` is equivalent to the following sequence of operations: >>> data_tl = librosa.segment.recurrence_to_lag(data) >>> data_filtered_tl = function(data_tl) >>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl) Parameters ---------- function : callable The filtering function to wrap, e.g., `scipy.ndimage.median_filter` pad : bool Whether to zero-pad the structure feature matrix index : int >= 0 If `function` accepts input data as a positional argument, it should be indexed by `index` Returns ------- wrapped_function : callable A new filter function which applies in time-lag space rather than time-time space. Examples -------- Apply a 5-bin median filter to the diagonal of a recurrence matrix >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> rec = librosa.segment.recurrence_matrix(chroma) >>> from scipy.ndimage import median_filter >>> diagonal_median = librosa.segment.timelag_filter(median_filter) >>> rec_filtered = diagonal_median(rec, size=(1, 3), mode='mirror') Or with affinity weights >>> rec_aff = librosa.segment.recurrence_matrix(chroma, mode='affinity') >>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 3), mode='mirror') >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8,8)) >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(rec, y_axis='time') >>> plt.title('Raw recurrence matrix') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(rec_filtered) >>> plt.title('Filtered recurrence matrix') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(rec_aff, x_axis='time', y_axis='time', ... cmap='magma_r') >>> plt.title('Raw affinity matrix') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(rec_aff_fil, x_axis='time', ... cmap='magma_r') >>> plt.title('Filtered affinity matrix') >>> plt.tight_layout()
librosa/segment.py
def timelag_filter(function, pad=True, index=0): '''Filtering in the time-lag domain. This is primarily useful for adapting image filters to operate on `recurrence_to_lag` output. Using `timelag_filter` is equivalent to the following sequence of operations: >>> data_tl = librosa.segment.recurrence_to_lag(data) >>> data_filtered_tl = function(data_tl) >>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl) Parameters ---------- function : callable The filtering function to wrap, e.g., `scipy.ndimage.median_filter` pad : bool Whether to zero-pad the structure feature matrix index : int >= 0 If `function` accepts input data as a positional argument, it should be indexed by `index` Returns ------- wrapped_function : callable A new filter function which applies in time-lag space rather than time-time space. Examples -------- Apply a 5-bin median filter to the diagonal of a recurrence matrix >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> rec = librosa.segment.recurrence_matrix(chroma) >>> from scipy.ndimage import median_filter >>> diagonal_median = librosa.segment.timelag_filter(median_filter) >>> rec_filtered = diagonal_median(rec, size=(1, 3), mode='mirror') Or with affinity weights >>> rec_aff = librosa.segment.recurrence_matrix(chroma, mode='affinity') >>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 3), mode='mirror') >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8,8)) >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(rec, y_axis='time') >>> plt.title('Raw recurrence matrix') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(rec_filtered) >>> plt.title('Filtered recurrence matrix') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(rec_aff, x_axis='time', y_axis='time', ... cmap='magma_r') >>> plt.title('Raw affinity matrix') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(rec_aff_fil, x_axis='time', ... cmap='magma_r') >>> plt.title('Filtered affinity matrix') >>> plt.tight_layout() ''' def __my_filter(wrapped_f, *args, **kwargs): '''Decorator to wrap the filter''' # Map the input data into time-lag space args = list(args) args[index] = recurrence_to_lag(args[index], pad=pad) # Apply the filtering function result = wrapped_f(*args, **kwargs) # Map back into time-time and return return lag_to_recurrence(result) return decorator(__my_filter, function)
def timelag_filter(function, pad=True, index=0): '''Filtering in the time-lag domain. This is primarily useful for adapting image filters to operate on `recurrence_to_lag` output. Using `timelag_filter` is equivalent to the following sequence of operations: >>> data_tl = librosa.segment.recurrence_to_lag(data) >>> data_filtered_tl = function(data_tl) >>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl) Parameters ---------- function : callable The filtering function to wrap, e.g., `scipy.ndimage.median_filter` pad : bool Whether to zero-pad the structure feature matrix index : int >= 0 If `function` accepts input data as a positional argument, it should be indexed by `index` Returns ------- wrapped_function : callable A new filter function which applies in time-lag space rather than time-time space. Examples -------- Apply a 5-bin median filter to the diagonal of a recurrence matrix >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> rec = librosa.segment.recurrence_matrix(chroma) >>> from scipy.ndimage import median_filter >>> diagonal_median = librosa.segment.timelag_filter(median_filter) >>> rec_filtered = diagonal_median(rec, size=(1, 3), mode='mirror') Or with affinity weights >>> rec_aff = librosa.segment.recurrence_matrix(chroma, mode='affinity') >>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 3), mode='mirror') >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8,8)) >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(rec, y_axis='time') >>> plt.title('Raw recurrence matrix') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(rec_filtered) >>> plt.title('Filtered recurrence matrix') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(rec_aff, x_axis='time', y_axis='time', ... cmap='magma_r') >>> plt.title('Raw affinity matrix') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(rec_aff_fil, x_axis='time', ... cmap='magma_r') >>> plt.title('Filtered affinity matrix') >>> plt.tight_layout() ''' def __my_filter(wrapped_f, *args, **kwargs): '''Decorator to wrap the filter''' # Map the input data into time-lag space args = list(args) args[index] = recurrence_to_lag(args[index], pad=pad) # Apply the filtering function result = wrapped_f(*args, **kwargs) # Map back into time-time and return return lag_to_recurrence(result) return decorator(__my_filter, function)
[ "Filtering", "in", "the", "time", "-", "lag", "domain", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L477-L559
[ "def", "timelag_filter", "(", "function", ",", "pad", "=", "True", ",", "index", "=", "0", ")", ":", "def", "__my_filter", "(", "wrapped_f", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "'''Decorator to wrap the filter'''", "# Map the input data into time-lag space", "args", "=", "list", "(", "args", ")", "args", "[", "index", "]", "=", "recurrence_to_lag", "(", "args", "[", "index", "]", ",", "pad", "=", "pad", ")", "# Apply the filtering function", "result", "=", "wrapped_f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "# Map back into time-time and return", "return", "lag_to_recurrence", "(", "result", ")", "return", "decorator", "(", "__my_filter", ",", "function", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
subsegment
Sub-divide a segmentation by feature clustering. Given a set of frame boundaries (`frames`), and a data matrix (`data`), each successive interval defined by `frames` is partitioned into `n_segments` by constrained agglomerative clustering. .. note:: If an interval spans fewer than `n_segments` frames, then each frame becomes a sub-segment. Parameters ---------- data : np.ndarray Data matrix to use in clustering frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative] Array of beat or segment boundaries, as provided by `librosa.beat.beat_track`, `librosa.onset.onset_detect`, or `agglomerative`. n_segments : int > 0 Maximum number of frames to sub-divide each interval. axis : int Axis along which to apply the segmentation. By default, the last index (-1) is taken. Returns ------- boundaries : np.ndarray [shape=(n_subboundaries,)] List of sub-divided segment boundaries See Also -------- agglomerative : Temporal segmentation librosa.onset.onset_detect : Onset detection librosa.beat.beat_track : Beat tracking Notes ----- This function caches at level 30. Examples -------- Load audio, detect beat frames, and subdivide in twos by CQT >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=8) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512)) >>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2) >>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512) >>> subseg array([ 0, 2, 4, 21, 23, 26, 43, 55, 63, 72, 83, 97, 102, 111, 122, 137, 142, 153, 162, 180, 182, 185, 202, 210, 221, 231, 241, 256, 261, 271, 281, 296, 301, 310, 320, 339, 341, 344, 361, 368, 382, 389, 401, 416, 420, 430, 436, 451, 456, 465, 476, 489, 496, 503, 515, 527, 535, 544, 553, 558, 571, 578, 590, 607, 609, 638]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(librosa.amplitude_to_db(cqt, ... ref=np.max), ... y_axis='cqt_hz', x_axis='time') >>> lims = plt.gca().get_ylim() >>> plt.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9, ... linewidth=2, label='Beats') >>> plt.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--', ... linewidth=1.5, alpha=0.5, label='Sub-beats') >>> plt.legend(frameon=True, shadow=True) >>> plt.title('CQT + Beat and sub-beat markers') >>> plt.tight_layout()
librosa/segment.py
def subsegment(data, frames, n_segments=4, axis=-1): '''Sub-divide a segmentation by feature clustering. Given a set of frame boundaries (`frames`), and a data matrix (`data`), each successive interval defined by `frames` is partitioned into `n_segments` by constrained agglomerative clustering. .. note:: If an interval spans fewer than `n_segments` frames, then each frame becomes a sub-segment. Parameters ---------- data : np.ndarray Data matrix to use in clustering frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative] Array of beat or segment boundaries, as provided by `librosa.beat.beat_track`, `librosa.onset.onset_detect`, or `agglomerative`. n_segments : int > 0 Maximum number of frames to sub-divide each interval. axis : int Axis along which to apply the segmentation. By default, the last index (-1) is taken. Returns ------- boundaries : np.ndarray [shape=(n_subboundaries,)] List of sub-divided segment boundaries See Also -------- agglomerative : Temporal segmentation librosa.onset.onset_detect : Onset detection librosa.beat.beat_track : Beat tracking Notes ----- This function caches at level 30. Examples -------- Load audio, detect beat frames, and subdivide in twos by CQT >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=8) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512)) >>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2) >>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512) >>> subseg array([ 0, 2, 4, 21, 23, 26, 43, 55, 63, 72, 83, 97, 102, 111, 122, 137, 142, 153, 162, 180, 182, 185, 202, 210, 221, 231, 241, 256, 261, 271, 281, 296, 301, 310, 320, 339, 341, 344, 361, 368, 382, 389, 401, 416, 420, 430, 436, 451, 456, 465, 476, 489, 496, 503, 515, 527, 535, 544, 553, 558, 571, 578, 590, 607, 609, 638]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(librosa.amplitude_to_db(cqt, ... ref=np.max), ... y_axis='cqt_hz', x_axis='time') >>> lims = plt.gca().get_ylim() >>> plt.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9, ... linewidth=2, label='Beats') >>> plt.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--', ... linewidth=1.5, alpha=0.5, label='Sub-beats') >>> plt.legend(frameon=True, shadow=True) >>> plt.title('CQT + Beat and sub-beat markers') >>> plt.tight_layout() ''' frames = util.fix_frames(frames, x_min=0, x_max=data.shape[axis], pad=True) if n_segments < 1: raise ParameterError('n_segments must be a positive integer') boundaries = [] idx_slices = [slice(None)] * data.ndim for seg_start, seg_end in zip(frames[:-1], frames[1:]): idx_slices[axis] = slice(seg_start, seg_end) boundaries.extend(seg_start + agglomerative(data[tuple(idx_slices)], min(seg_end - seg_start, n_segments), axis=axis)) return np.ascontiguousarray(boundaries)
def subsegment(data, frames, n_segments=4, axis=-1): '''Sub-divide a segmentation by feature clustering. Given a set of frame boundaries (`frames`), and a data matrix (`data`), each successive interval defined by `frames` is partitioned into `n_segments` by constrained agglomerative clustering. .. note:: If an interval spans fewer than `n_segments` frames, then each frame becomes a sub-segment. Parameters ---------- data : np.ndarray Data matrix to use in clustering frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative] Array of beat or segment boundaries, as provided by `librosa.beat.beat_track`, `librosa.onset.onset_detect`, or `agglomerative`. n_segments : int > 0 Maximum number of frames to sub-divide each interval. axis : int Axis along which to apply the segmentation. By default, the last index (-1) is taken. Returns ------- boundaries : np.ndarray [shape=(n_subboundaries,)] List of sub-divided segment boundaries See Also -------- agglomerative : Temporal segmentation librosa.onset.onset_detect : Onset detection librosa.beat.beat_track : Beat tracking Notes ----- This function caches at level 30. Examples -------- Load audio, detect beat frames, and subdivide in twos by CQT >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=8) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512)) >>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2) >>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512) >>> subseg array([ 0, 2, 4, 21, 23, 26, 43, 55, 63, 72, 83, 97, 102, 111, 122, 137, 142, 153, 162, 180, 182, 185, 202, 210, 221, 231, 241, 256, 261, 271, 281, 296, 301, 310, 320, 339, 341, 344, 361, 368, 382, 389, 401, 416, 420, 430, 436, 451, 456, 465, 476, 489, 496, 503, 515, 527, 535, 544, 553, 558, 571, 578, 590, 607, 609, 638]) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(librosa.amplitude_to_db(cqt, ... ref=np.max), ... y_axis='cqt_hz', x_axis='time') >>> lims = plt.gca().get_ylim() >>> plt.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9, ... linewidth=2, label='Beats') >>> plt.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--', ... linewidth=1.5, alpha=0.5, label='Sub-beats') >>> plt.legend(frameon=True, shadow=True) >>> plt.title('CQT + Beat and sub-beat markers') >>> plt.tight_layout() ''' frames = util.fix_frames(frames, x_min=0, x_max=data.shape[axis], pad=True) if n_segments < 1: raise ParameterError('n_segments must be a positive integer') boundaries = [] idx_slices = [slice(None)] * data.ndim for seg_start, seg_end in zip(frames[:-1], frames[1:]): idx_slices[axis] = slice(seg_start, seg_end) boundaries.extend(seg_start + agglomerative(data[tuple(idx_slices)], min(seg_end - seg_start, n_segments), axis=axis)) return np.ascontiguousarray(boundaries)
[ "Sub", "-", "divide", "a", "segmentation", "by", "feature", "clustering", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L563-L655
[ "def", "subsegment", "(", "data", ",", "frames", ",", "n_segments", "=", "4", ",", "axis", "=", "-", "1", ")", ":", "frames", "=", "util", ".", "fix_frames", "(", "frames", ",", "x_min", "=", "0", ",", "x_max", "=", "data", ".", "shape", "[", "axis", "]", ",", "pad", "=", "True", ")", "if", "n_segments", "<", "1", ":", "raise", "ParameterError", "(", "'n_segments must be a positive integer'", ")", "boundaries", "=", "[", "]", "idx_slices", "=", "[", "slice", "(", "None", ")", "]", "*", "data", ".", "ndim", "for", "seg_start", ",", "seg_end", "in", "zip", "(", "frames", "[", ":", "-", "1", "]", ",", "frames", "[", "1", ":", "]", ")", ":", "idx_slices", "[", "axis", "]", "=", "slice", "(", "seg_start", ",", "seg_end", ")", "boundaries", ".", "extend", "(", "seg_start", "+", "agglomerative", "(", "data", "[", "tuple", "(", "idx_slices", ")", "]", ",", "min", "(", "seg_end", "-", "seg_start", ",", "n_segments", ")", ",", "axis", "=", "axis", ")", ")", "return", "np", ".", "ascontiguousarray", "(", "boundaries", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
agglomerative
Bottom-up temporal segmentation. Use a temporally-constrained agglomerative clustering routine to partition `data` into `k` contiguous segments. Parameters ---------- data : np.ndarray data to cluster k : int > 0 [scalar] number of segments to produce clusterer : sklearn.cluster.AgglomerativeClustering, optional An optional AgglomerativeClustering object. If `None`, a constrained Ward object is instantiated. axis : int axis along which to cluster. By default, the last axis (-1) is chosen. Returns ------- boundaries : np.ndarray [shape=(k,)] left-boundaries (frame numbers) of detected segments. This will always include `0` as the first left-boundary. See Also -------- sklearn.cluster.AgglomerativeClustering Examples -------- Cluster by chroma similarity, break into 20 segments >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> bounds = librosa.segment.agglomerative(chroma, 20) >>> bound_times = librosa.frames_to_time(bounds, sr=sr) >>> bound_times array([ 0. , 1.672, 2.322, 2.624, 3.251, 3.506, 4.18 , 5.387, 6.014, 6.293, 6.943, 7.198, 7.848, 9.033, 9.706, 9.961, 10.635, 10.89 , 11.54 , 12.539]) Plot the segmentation over the chromagram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.vlines(bound_times, 0, chroma.shape[0], color='linen', linestyle='--', ... linewidth=2, alpha=0.9, label='Segment boundaries') >>> plt.axis('tight') >>> plt.legend(frameon=True, shadow=True) >>> plt.title('Power spectrogram') >>> plt.tight_layout()
librosa/segment.py
def agglomerative(data, k, clusterer=None, axis=-1): """Bottom-up temporal segmentation. Use a temporally-constrained agglomerative clustering routine to partition `data` into `k` contiguous segments. Parameters ---------- data : np.ndarray data to cluster k : int > 0 [scalar] number of segments to produce clusterer : sklearn.cluster.AgglomerativeClustering, optional An optional AgglomerativeClustering object. If `None`, a constrained Ward object is instantiated. axis : int axis along which to cluster. By default, the last axis (-1) is chosen. Returns ------- boundaries : np.ndarray [shape=(k,)] left-boundaries (frame numbers) of detected segments. This will always include `0` as the first left-boundary. See Also -------- sklearn.cluster.AgglomerativeClustering Examples -------- Cluster by chroma similarity, break into 20 segments >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> bounds = librosa.segment.agglomerative(chroma, 20) >>> bound_times = librosa.frames_to_time(bounds, sr=sr) >>> bound_times array([ 0. , 1.672, 2.322, 2.624, 3.251, 3.506, 4.18 , 5.387, 6.014, 6.293, 6.943, 7.198, 7.848, 9.033, 9.706, 9.961, 10.635, 10.89 , 11.54 , 12.539]) Plot the segmentation over the chromagram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.vlines(bound_times, 0, chroma.shape[0], color='linen', linestyle='--', ... linewidth=2, alpha=0.9, label='Segment boundaries') >>> plt.axis('tight') >>> plt.legend(frameon=True, shadow=True) >>> plt.title('Power spectrogram') >>> plt.tight_layout() """ # Make sure we have at least two dimensions data = np.atleast_2d(data) # Swap data index to position 0 data = np.swapaxes(data, axis, 0) # Flatten the features n = data.shape[0] data = data.reshape((n, -1)) if clusterer is None: # Connect the temporal connectivity graph grid = sklearn.feature_extraction.image.grid_to_graph(n_x=n, n_y=1, n_z=1) # Instantiate the clustering object clusterer = sklearn.cluster.AgglomerativeClustering(n_clusters=k, connectivity=grid, memory=cache.memory) # Fit the model clusterer.fit(data) # Find the change points from the labels boundaries = [0] boundaries.extend( list(1 + np.nonzero(np.diff(clusterer.labels_))[0].astype(int))) return np.asarray(boundaries)
def agglomerative(data, k, clusterer=None, axis=-1): """Bottom-up temporal segmentation. Use a temporally-constrained agglomerative clustering routine to partition `data` into `k` contiguous segments. Parameters ---------- data : np.ndarray data to cluster k : int > 0 [scalar] number of segments to produce clusterer : sklearn.cluster.AgglomerativeClustering, optional An optional AgglomerativeClustering object. If `None`, a constrained Ward object is instantiated. axis : int axis along which to cluster. By default, the last axis (-1) is chosen. Returns ------- boundaries : np.ndarray [shape=(k,)] left-boundaries (frame numbers) of detected segments. This will always include `0` as the first left-boundary. See Also -------- sklearn.cluster.AgglomerativeClustering Examples -------- Cluster by chroma similarity, break into 20 segments >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> bounds = librosa.segment.agglomerative(chroma, 20) >>> bound_times = librosa.frames_to_time(bounds, sr=sr) >>> bound_times array([ 0. , 1.672, 2.322, 2.624, 3.251, 3.506, 4.18 , 5.387, 6.014, 6.293, 6.943, 7.198, 7.848, 9.033, 9.706, 9.961, 10.635, 10.89 , 11.54 , 12.539]) Plot the segmentation over the chromagram >>> import matplotlib.pyplot as plt >>> plt.figure() >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time') >>> plt.vlines(bound_times, 0, chroma.shape[0], color='linen', linestyle='--', ... linewidth=2, alpha=0.9, label='Segment boundaries') >>> plt.axis('tight') >>> plt.legend(frameon=True, shadow=True) >>> plt.title('Power spectrogram') >>> plt.tight_layout() """ # Make sure we have at least two dimensions data = np.atleast_2d(data) # Swap data index to position 0 data = np.swapaxes(data, axis, 0) # Flatten the features n = data.shape[0] data = data.reshape((n, -1)) if clusterer is None: # Connect the temporal connectivity graph grid = sklearn.feature_extraction.image.grid_to_graph(n_x=n, n_y=1, n_z=1) # Instantiate the clustering object clusterer = sklearn.cluster.AgglomerativeClustering(n_clusters=k, connectivity=grid, memory=cache.memory) # Fit the model clusterer.fit(data) # Find the change points from the labels boundaries = [0] boundaries.extend( list(1 + np.nonzero(np.diff(clusterer.labels_))[0].astype(int))) return np.asarray(boundaries)
[ "Bottom", "-", "up", "temporal", "segmentation", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L658-L745
[ "def", "agglomerative", "(", "data", ",", "k", ",", "clusterer", "=", "None", ",", "axis", "=", "-", "1", ")", ":", "# Make sure we have at least two dimensions", "data", "=", "np", ".", "atleast_2d", "(", "data", ")", "# Swap data index to position 0", "data", "=", "np", ".", "swapaxes", "(", "data", ",", "axis", ",", "0", ")", "# Flatten the features", "n", "=", "data", ".", "shape", "[", "0", "]", "data", "=", "data", ".", "reshape", "(", "(", "n", ",", "-", "1", ")", ")", "if", "clusterer", "is", "None", ":", "# Connect the temporal connectivity graph", "grid", "=", "sklearn", ".", "feature_extraction", ".", "image", ".", "grid_to_graph", "(", "n_x", "=", "n", ",", "n_y", "=", "1", ",", "n_z", "=", "1", ")", "# Instantiate the clustering object", "clusterer", "=", "sklearn", ".", "cluster", ".", "AgglomerativeClustering", "(", "n_clusters", "=", "k", ",", "connectivity", "=", "grid", ",", "memory", "=", "cache", ".", "memory", ")", "# Fit the model", "clusterer", ".", "fit", "(", "data", ")", "# Find the change points from the labels", "boundaries", "=", "[", "0", "]", "boundaries", ".", "extend", "(", "list", "(", "1", "+", "np", ".", "nonzero", "(", "np", ".", "diff", "(", "clusterer", ".", "labels_", ")", ")", "[", "0", "]", ".", "astype", "(", "int", ")", ")", ")", "return", "np", ".", "asarray", "(", "boundaries", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
path_enhance
Multi-angle path enhancement for self- and cross-similarity matrices. This function convolves multiple diagonal smoothing filters with a self-similarity (or recurrence) matrix R, and aggregates the result by an element-wise maximum. Technically, the output is a matrix R_smooth such that `R_smooth[i, j] = max_theta (R * filter_theta)[i, j]` where `*` denotes 2-dimensional convolution, and `filter_theta` is a smoothing filter at orientation theta. This is intended to provide coherent temporal smoothing of self-similarity matrices when there are changes in tempo. Smoothing filters are generated at evenly spaced orientations between min_ratio and max_ratio. This function is inspired by the multi-angle path enhancement of [1]_, but differs by modeling tempo differences in the space of similarity matrices rather than re-sampling the underlying features prior to generating the self-similarity matrix. .. [1] Müller, Meinard and Frank Kurth. "Enhancing similarity matrices for music audio analysis." 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Vol. 5. IEEE, 2006. .. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main diagonal by setting `self=True`. Otherwise, the diagonal will be suppressed, and this is likely to produce discontinuities which will pollute the smoothing filter response. Parameters ---------- R : np.ndarray The self- or cross-similarity matrix to be smoothed. Note: sparse inputs are not supported. n : int > 0 The length of the smoothing filter window : window specification The type of smoothing filter to use. See `filters.get_window` for more information on window specification formats. max_ratio : float > 0 The maximum tempo ratio to support min_ratio : float > 0 The minimum tempo ratio to support. If not provided, it will default to `1/max_ratio` n_filters : int >= 1 The number of different smoothing filters to use, evenly spaced between `min_ratio` and `max_ratio`. If `min_ratio = 1/max_ratio` (the default), using an odd number of filters will ensure that the main diagonal (ratio=1) is included. zero_mean : bool By default, the smoothing filters are non-negative and sum to one (i.e. are averaging filters). If `zero_mean=True`, then the smoothing filters are made to sum to zero by subtracting a constant value from the non-diagonal coordinates of the filter. This is primarily useful for suppressing blocks while enhancing diagonals. clip : bool If True, the smoothed similarity matrix will be thresholded at 0, and will not contain negative entries. kwargs : additional keyword arguments Additional arguments to pass to `scipy.ndimage.convolve` Returns ------- R_smooth : np.ndarray, shape=R.shape The smoothed self- or cross-similarity matrix See Also -------- filters.diagonal_filter recurrence_matrix Examples -------- Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=30) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity', self=True) >>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7) Plot the recurrence matrix before and after smoothing >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1,2,1) >>> librosa.display.specshow(rec, x_axis='time', y_axis='time') >>> plt.title('Unfiltered recurrence') >>> plt.subplot(1,2,2) >>> librosa.display.specshow(rec_smooth, x_axis='time', y_axis='time') >>> plt.title('Multi-angle enhanced recurrence') >>> plt.tight_layout()
librosa/segment.py
def path_enhance(R, n, window='hann', max_ratio=2.0, min_ratio=None, n_filters=7, zero_mean=False, clip=True, **kwargs): '''Multi-angle path enhancement for self- and cross-similarity matrices. This function convolves multiple diagonal smoothing filters with a self-similarity (or recurrence) matrix R, and aggregates the result by an element-wise maximum. Technically, the output is a matrix R_smooth such that `R_smooth[i, j] = max_theta (R * filter_theta)[i, j]` where `*` denotes 2-dimensional convolution, and `filter_theta` is a smoothing filter at orientation theta. This is intended to provide coherent temporal smoothing of self-similarity matrices when there are changes in tempo. Smoothing filters are generated at evenly spaced orientations between min_ratio and max_ratio. This function is inspired by the multi-angle path enhancement of [1]_, but differs by modeling tempo differences in the space of similarity matrices rather than re-sampling the underlying features prior to generating the self-similarity matrix. .. [1] Müller, Meinard and Frank Kurth. "Enhancing similarity matrices for music audio analysis." 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Vol. 5. IEEE, 2006. .. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main diagonal by setting `self=True`. Otherwise, the diagonal will be suppressed, and this is likely to produce discontinuities which will pollute the smoothing filter response. Parameters ---------- R : np.ndarray The self- or cross-similarity matrix to be smoothed. Note: sparse inputs are not supported. n : int > 0 The length of the smoothing filter window : window specification The type of smoothing filter to use. See `filters.get_window` for more information on window specification formats. max_ratio : float > 0 The maximum tempo ratio to support min_ratio : float > 0 The minimum tempo ratio to support. If not provided, it will default to `1/max_ratio` n_filters : int >= 1 The number of different smoothing filters to use, evenly spaced between `min_ratio` and `max_ratio`. If `min_ratio = 1/max_ratio` (the default), using an odd number of filters will ensure that the main diagonal (ratio=1) is included. zero_mean : bool By default, the smoothing filters are non-negative and sum to one (i.e. are averaging filters). If `zero_mean=True`, then the smoothing filters are made to sum to zero by subtracting a constant value from the non-diagonal coordinates of the filter. This is primarily useful for suppressing blocks while enhancing diagonals. clip : bool If True, the smoothed similarity matrix will be thresholded at 0, and will not contain negative entries. kwargs : additional keyword arguments Additional arguments to pass to `scipy.ndimage.convolve` Returns ------- R_smooth : np.ndarray, shape=R.shape The smoothed self- or cross-similarity matrix See Also -------- filters.diagonal_filter recurrence_matrix Examples -------- Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=30) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity', self=True) >>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7) Plot the recurrence matrix before and after smoothing >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1,2,1) >>> librosa.display.specshow(rec, x_axis='time', y_axis='time') >>> plt.title('Unfiltered recurrence') >>> plt.subplot(1,2,2) >>> librosa.display.specshow(rec_smooth, x_axis='time', y_axis='time') >>> plt.title('Multi-angle enhanced recurrence') >>> plt.tight_layout() ''' if min_ratio is None: min_ratio = 1./max_ratio elif min_ratio > max_ratio: raise ParameterError('min_ratio={} cannot exceed max_ratio={}'.format(min_ratio, max_ratio)) R_smooth = None for ratio in np.logspace(np.log2(min_ratio), np.log2(max_ratio), num=n_filters, base=2): kernel = diagonal_filter(window, n, slope=ratio, zero_mean=zero_mean) if R_smooth is None: R_smooth = scipy.ndimage.convolve(R, kernel, **kwargs) else: # Compute the point-wise maximum in-place np.maximum(R_smooth, scipy.ndimage.convolve(R, kernel, **kwargs), out=R_smooth) if clip: # Clip the output in-place np.clip(R_smooth, 0, None, out=R_smooth) return R_smooth
def path_enhance(R, n, window='hann', max_ratio=2.0, min_ratio=None, n_filters=7, zero_mean=False, clip=True, **kwargs): '''Multi-angle path enhancement for self- and cross-similarity matrices. This function convolves multiple diagonal smoothing filters with a self-similarity (or recurrence) matrix R, and aggregates the result by an element-wise maximum. Technically, the output is a matrix R_smooth such that `R_smooth[i, j] = max_theta (R * filter_theta)[i, j]` where `*` denotes 2-dimensional convolution, and `filter_theta` is a smoothing filter at orientation theta. This is intended to provide coherent temporal smoothing of self-similarity matrices when there are changes in tempo. Smoothing filters are generated at evenly spaced orientations between min_ratio and max_ratio. This function is inspired by the multi-angle path enhancement of [1]_, but differs by modeling tempo differences in the space of similarity matrices rather than re-sampling the underlying features prior to generating the self-similarity matrix. .. [1] Müller, Meinard and Frank Kurth. "Enhancing similarity matrices for music audio analysis." 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Vol. 5. IEEE, 2006. .. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main diagonal by setting `self=True`. Otherwise, the diagonal will be suppressed, and this is likely to produce discontinuities which will pollute the smoothing filter response. Parameters ---------- R : np.ndarray The self- or cross-similarity matrix to be smoothed. Note: sparse inputs are not supported. n : int > 0 The length of the smoothing filter window : window specification The type of smoothing filter to use. See `filters.get_window` for more information on window specification formats. max_ratio : float > 0 The maximum tempo ratio to support min_ratio : float > 0 The minimum tempo ratio to support. If not provided, it will default to `1/max_ratio` n_filters : int >= 1 The number of different smoothing filters to use, evenly spaced between `min_ratio` and `max_ratio`. If `min_ratio = 1/max_ratio` (the default), using an odd number of filters will ensure that the main diagonal (ratio=1) is included. zero_mean : bool By default, the smoothing filters are non-negative and sum to one (i.e. are averaging filters). If `zero_mean=True`, then the smoothing filters are made to sum to zero by subtracting a constant value from the non-diagonal coordinates of the filter. This is primarily useful for suppressing blocks while enhancing diagonals. clip : bool If True, the smoothed similarity matrix will be thresholded at 0, and will not contain negative entries. kwargs : additional keyword arguments Additional arguments to pass to `scipy.ndimage.convolve` Returns ------- R_smooth : np.ndarray, shape=R.shape The smoothed self- or cross-similarity matrix See Also -------- filters.diagonal_filter recurrence_matrix Examples -------- Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=30) >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr) >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity', self=True) >>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7) Plot the recurrence matrix before and after smoothing >>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 4)) >>> plt.subplot(1,2,1) >>> librosa.display.specshow(rec, x_axis='time', y_axis='time') >>> plt.title('Unfiltered recurrence') >>> plt.subplot(1,2,2) >>> librosa.display.specshow(rec_smooth, x_axis='time', y_axis='time') >>> plt.title('Multi-angle enhanced recurrence') >>> plt.tight_layout() ''' if min_ratio is None: min_ratio = 1./max_ratio elif min_ratio > max_ratio: raise ParameterError('min_ratio={} cannot exceed max_ratio={}'.format(min_ratio, max_ratio)) R_smooth = None for ratio in np.logspace(np.log2(min_ratio), np.log2(max_ratio), num=n_filters, base=2): kernel = diagonal_filter(window, n, slope=ratio, zero_mean=zero_mean) if R_smooth is None: R_smooth = scipy.ndimage.convolve(R, kernel, **kwargs) else: # Compute the point-wise maximum in-place np.maximum(R_smooth, scipy.ndimage.convolve(R, kernel, **kwargs), out=R_smooth) if clip: # Clip the output in-place np.clip(R_smooth, 0, None, out=R_smooth) return R_smooth
[ "Multi", "-", "angle", "path", "enhancement", "for", "self", "-", "and", "cross", "-", "similarity", "matrices", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/segment.py#L748-L877
[ "def", "path_enhance", "(", "R", ",", "n", ",", "window", "=", "'hann'", ",", "max_ratio", "=", "2.0", ",", "min_ratio", "=", "None", ",", "n_filters", "=", "7", ",", "zero_mean", "=", "False", ",", "clip", "=", "True", ",", "*", "*", "kwargs", ")", ":", "if", "min_ratio", "is", "None", ":", "min_ratio", "=", "1.", "/", "max_ratio", "elif", "min_ratio", ">", "max_ratio", ":", "raise", "ParameterError", "(", "'min_ratio={} cannot exceed max_ratio={}'", ".", "format", "(", "min_ratio", ",", "max_ratio", ")", ")", "R_smooth", "=", "None", "for", "ratio", "in", "np", ".", "logspace", "(", "np", ".", "log2", "(", "min_ratio", ")", ",", "np", ".", "log2", "(", "max_ratio", ")", ",", "num", "=", "n_filters", ",", "base", "=", "2", ")", ":", "kernel", "=", "diagonal_filter", "(", "window", ",", "n", ",", "slope", "=", "ratio", ",", "zero_mean", "=", "zero_mean", ")", "if", "R_smooth", "is", "None", ":", "R_smooth", "=", "scipy", ".", "ndimage", ".", "convolve", "(", "R", ",", "kernel", ",", "*", "*", "kwargs", ")", "else", ":", "# Compute the point-wise maximum in-place", "np", ".", "maximum", "(", "R_smooth", ",", "scipy", ".", "ndimage", ".", "convolve", "(", "R", ",", "kernel", ",", "*", "*", "kwargs", ")", ",", "out", "=", "R_smooth", ")", "if", "clip", ":", "# Clip the output in-place", "np", ".", "clip", "(", "R_smooth", ",", "0", ",", "None", ",", "out", "=", "R_smooth", ")", "return", "R_smooth" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
onset_detect
Onset detection function :parameters: - input_file : str Path to input audio file (wav, mp3, m4a, flac, etc.) - output_file : str Path to save onset timestamps as a CSV file
examples/onset_detector.py
def onset_detect(input_file, output_csv): '''Onset detection function :parameters: - input_file : str Path to input audio file (wav, mp3, m4a, flac, etc.) - output_file : str Path to save onset timestamps as a CSV file ''' # 1. load the wav file and resample to 22.050 KHz print('Loading ', input_file) y, sr = librosa.load(input_file, sr=22050) # Use a default hop size of 512 frames @ 22KHz ~= 23ms hop_length = 512 # 2. run onset detection print('Detecting onsets...') onsets = librosa.onset.onset_detect(y=y, sr=sr, hop_length=hop_length) print("Found {:d} onsets.".format(onsets.shape[0])) # 3. save output # 'beats' will contain the frame numbers of beat events. onset_times = librosa.frames_to_time(onsets, sr=sr, hop_length=hop_length) print('Saving output to ', output_csv) librosa.output.times_csv(output_csv, onset_times) print('done!')
def onset_detect(input_file, output_csv): '''Onset detection function :parameters: - input_file : str Path to input audio file (wav, mp3, m4a, flac, etc.) - output_file : str Path to save onset timestamps as a CSV file ''' # 1. load the wav file and resample to 22.050 KHz print('Loading ', input_file) y, sr = librosa.load(input_file, sr=22050) # Use a default hop size of 512 frames @ 22KHz ~= 23ms hop_length = 512 # 2. run onset detection print('Detecting onsets...') onsets = librosa.onset.onset_detect(y=y, sr=sr, hop_length=hop_length) print("Found {:d} onsets.".format(onsets.shape[0])) # 3. save output # 'beats' will contain the frame numbers of beat events. onset_times = librosa.frames_to_time(onsets, sr=sr, hop_length=hop_length) print('Saving output to ', output_csv) librosa.output.times_csv(output_csv, onset_times) print('done!')
[ "Onset", "detection", "function" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/examples/onset_detector.py#L16-L51
[ "def", "onset_detect", "(", "input_file", ",", "output_csv", ")", ":", "# 1. load the wav file and resample to 22.050 KHz", "print", "(", "'Loading '", ",", "input_file", ")", "y", ",", "sr", "=", "librosa", ".", "load", "(", "input_file", ",", "sr", "=", "22050", ")", "# Use a default hop size of 512 frames @ 22KHz ~= 23ms", "hop_length", "=", "512", "# 2. run onset detection", "print", "(", "'Detecting onsets...'", ")", "onsets", "=", "librosa", ".", "onset", ".", "onset_detect", "(", "y", "=", "y", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", "print", "(", "\"Found {:d} onsets.\"", ".", "format", "(", "onsets", ".", "shape", "[", "0", "]", ")", ")", "# 3. save output", "# 'beats' will contain the frame numbers of beat events.", "onset_times", "=", "librosa", ".", "frames_to_time", "(", "onsets", ",", "sr", "=", "sr", ",", "hop_length", "=", "hop_length", ")", "print", "(", "'Saving output to '", ",", "output_csv", ")", "librosa", ".", "output", ".", "times_csv", "(", "output_csv", ",", "onset_times", ")", "print", "(", "'done!'", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
frame
Slice a time series into overlapping frames. This implementation uses low-level stride manipulation to avoid redundant copies of the time series data. Parameters ---------- y : np.ndarray [shape=(n,)] Time series to frame. Must be one-dimensional and contiguous in memory. frame_length : int > 0 [scalar] Length of the frame in samples hop_length : int > 0 [scalar] Number of samples to hop between frames Returns ------- y_frames : np.ndarray [shape=(frame_length, N_FRAMES)] An array of frames sampled from `y`: `y_frames[i, j] == y[j * hop_length + i]` Raises ------ ParameterError If `y` is not contiguous in memory, not an `np.ndarray`, or not one-dimensional. See `np.ascontiguous()` for details. If `hop_length < 1`, frames cannot advance. If `len(y) < frame_length`. Examples -------- Extract 2048-sample frames from `y` with a hop of 64 samples per frame >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.util.frame(y, frame_length=2048, hop_length=64) array([[ -9.216e-06, 7.710e-06, ..., -2.117e-06, -4.362e-07], [ 2.518e-06, -6.294e-06, ..., -1.775e-05, -6.365e-06], ..., [ -7.429e-04, 5.173e-03, ..., 1.105e-05, -5.074e-06], [ 2.169e-03, 4.867e-03, ..., 3.666e-06, -5.571e-06]], dtype=float32)
librosa/util/utils.py
def frame(y, frame_length=2048, hop_length=512): '''Slice a time series into overlapping frames. This implementation uses low-level stride manipulation to avoid redundant copies of the time series data. Parameters ---------- y : np.ndarray [shape=(n,)] Time series to frame. Must be one-dimensional and contiguous in memory. frame_length : int > 0 [scalar] Length of the frame in samples hop_length : int > 0 [scalar] Number of samples to hop between frames Returns ------- y_frames : np.ndarray [shape=(frame_length, N_FRAMES)] An array of frames sampled from `y`: `y_frames[i, j] == y[j * hop_length + i]` Raises ------ ParameterError If `y` is not contiguous in memory, not an `np.ndarray`, or not one-dimensional. See `np.ascontiguous()` for details. If `hop_length < 1`, frames cannot advance. If `len(y) < frame_length`. Examples -------- Extract 2048-sample frames from `y` with a hop of 64 samples per frame >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.util.frame(y, frame_length=2048, hop_length=64) array([[ -9.216e-06, 7.710e-06, ..., -2.117e-06, -4.362e-07], [ 2.518e-06, -6.294e-06, ..., -1.775e-05, -6.365e-06], ..., [ -7.429e-04, 5.173e-03, ..., 1.105e-05, -5.074e-06], [ 2.169e-03, 4.867e-03, ..., 3.666e-06, -5.571e-06]], dtype=float32) ''' if not isinstance(y, np.ndarray): raise ParameterError('Input must be of type numpy.ndarray, ' 'given type(y)={}'.format(type(y))) if y.ndim != 1: raise ParameterError('Input must be one-dimensional, ' 'given y.ndim={}'.format(y.ndim)) if len(y) < frame_length: raise ParameterError('Buffer is too short (n={:d})' ' for frame_length={:d}'.format(len(y), frame_length)) if hop_length < 1: raise ParameterError('Invalid hop_length: {:d}'.format(hop_length)) if not y.flags['C_CONTIGUOUS']: raise ParameterError('Input buffer must be contiguous.') # Compute the number of frames that will fit. The end may get truncated. n_frames = 1 + int((len(y) - frame_length) / hop_length) # Vertical stride is one sample # Horizontal stride is `hop_length` samples y_frames = as_strided(y, shape=(frame_length, n_frames), strides=(y.itemsize, hop_length * y.itemsize)) return y_frames
def frame(y, frame_length=2048, hop_length=512): '''Slice a time series into overlapping frames. This implementation uses low-level stride manipulation to avoid redundant copies of the time series data. Parameters ---------- y : np.ndarray [shape=(n,)] Time series to frame. Must be one-dimensional and contiguous in memory. frame_length : int > 0 [scalar] Length of the frame in samples hop_length : int > 0 [scalar] Number of samples to hop between frames Returns ------- y_frames : np.ndarray [shape=(frame_length, N_FRAMES)] An array of frames sampled from `y`: `y_frames[i, j] == y[j * hop_length + i]` Raises ------ ParameterError If `y` is not contiguous in memory, not an `np.ndarray`, or not one-dimensional. See `np.ascontiguous()` for details. If `hop_length < 1`, frames cannot advance. If `len(y) < frame_length`. Examples -------- Extract 2048-sample frames from `y` with a hop of 64 samples per frame >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.util.frame(y, frame_length=2048, hop_length=64) array([[ -9.216e-06, 7.710e-06, ..., -2.117e-06, -4.362e-07], [ 2.518e-06, -6.294e-06, ..., -1.775e-05, -6.365e-06], ..., [ -7.429e-04, 5.173e-03, ..., 1.105e-05, -5.074e-06], [ 2.169e-03, 4.867e-03, ..., 3.666e-06, -5.571e-06]], dtype=float32) ''' if not isinstance(y, np.ndarray): raise ParameterError('Input must be of type numpy.ndarray, ' 'given type(y)={}'.format(type(y))) if y.ndim != 1: raise ParameterError('Input must be one-dimensional, ' 'given y.ndim={}'.format(y.ndim)) if len(y) < frame_length: raise ParameterError('Buffer is too short (n={:d})' ' for frame_length={:d}'.format(len(y), frame_length)) if hop_length < 1: raise ParameterError('Invalid hop_length: {:d}'.format(hop_length)) if not y.flags['C_CONTIGUOUS']: raise ParameterError('Input buffer must be contiguous.') # Compute the number of frames that will fit. The end may get truncated. n_frames = 1 + int((len(y) - frame_length) / hop_length) # Vertical stride is one sample # Horizontal stride is `hop_length` samples y_frames = as_strided(y, shape=(frame_length, n_frames), strides=(y.itemsize, hop_length * y.itemsize)) return y_frames
[ "Slice", "a", "time", "series", "into", "overlapping", "frames", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L34-L107
[ "def", "frame", "(", "y", ",", "frame_length", "=", "2048", ",", "hop_length", "=", "512", ")", ":", "if", "not", "isinstance", "(", "y", ",", "np", ".", "ndarray", ")", ":", "raise", "ParameterError", "(", "'Input must be of type numpy.ndarray, '", "'given type(y)={}'", ".", "format", "(", "type", "(", "y", ")", ")", ")", "if", "y", ".", "ndim", "!=", "1", ":", "raise", "ParameterError", "(", "'Input must be one-dimensional, '", "'given y.ndim={}'", ".", "format", "(", "y", ".", "ndim", ")", ")", "if", "len", "(", "y", ")", "<", "frame_length", ":", "raise", "ParameterError", "(", "'Buffer is too short (n={:d})'", "' for frame_length={:d}'", ".", "format", "(", "len", "(", "y", ")", ",", "frame_length", ")", ")", "if", "hop_length", "<", "1", ":", "raise", "ParameterError", "(", "'Invalid hop_length: {:d}'", ".", "format", "(", "hop_length", ")", ")", "if", "not", "y", ".", "flags", "[", "'C_CONTIGUOUS'", "]", ":", "raise", "ParameterError", "(", "'Input buffer must be contiguous.'", ")", "# Compute the number of frames that will fit. The end may get truncated.", "n_frames", "=", "1", "+", "int", "(", "(", "len", "(", "y", ")", "-", "frame_length", ")", "/", "hop_length", ")", "# Vertical stride is one sample", "# Horizontal stride is `hop_length` samples", "y_frames", "=", "as_strided", "(", "y", ",", "shape", "=", "(", "frame_length", ",", "n_frames", ")", ",", "strides", "=", "(", "y", ".", "itemsize", ",", "hop_length", "*", "y", ".", "itemsize", ")", ")", "return", "y_frames" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
valid_audio
Validate whether a variable contains valid, mono audio data. Parameters ---------- y : np.ndarray The input data to validate mono : bool Whether or not to force monophonic audio Returns ------- valid : bool True if all tests pass Raises ------ ParameterError If `y` fails to meet the following criteria: - `type(y)` is `np.ndarray` - `y.dtype` is floating-point - `mono == True` and `y.ndim` is not 1 - `mono == False` and `y.ndim` is not 1 or 2 - `np.isfinite(y).all()` is not True Notes ----- This function caches at level 20. Examples -------- >>> # Only allow monophonic signals >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.util.valid_audio(y) True >>> # If we want to allow stereo signals >>> y, sr = librosa.load(librosa.util.example_audio_file(), mono=False) >>> librosa.util.valid_audio(y, mono=False) True
librosa/util/utils.py
def valid_audio(y, mono=True): '''Validate whether a variable contains valid, mono audio data. Parameters ---------- y : np.ndarray The input data to validate mono : bool Whether or not to force monophonic audio Returns ------- valid : bool True if all tests pass Raises ------ ParameterError If `y` fails to meet the following criteria: - `type(y)` is `np.ndarray` - `y.dtype` is floating-point - `mono == True` and `y.ndim` is not 1 - `mono == False` and `y.ndim` is not 1 or 2 - `np.isfinite(y).all()` is not True Notes ----- This function caches at level 20. Examples -------- >>> # Only allow monophonic signals >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.util.valid_audio(y) True >>> # If we want to allow stereo signals >>> y, sr = librosa.load(librosa.util.example_audio_file(), mono=False) >>> librosa.util.valid_audio(y, mono=False) True ''' if not isinstance(y, np.ndarray): raise ParameterError('data must be of type numpy.ndarray') if not np.issubdtype(y.dtype, np.floating): raise ParameterError('data must be floating-point') if mono and y.ndim != 1: raise ParameterError('Invalid shape for monophonic audio: ' 'ndim={:d}, shape={}'.format(y.ndim, y.shape)) elif y.ndim > 2 or y.ndim == 0: raise ParameterError('Audio must have shape (samples,) or (channels, samples). ' 'Received shape={}'.format(y.shape)) if not np.isfinite(y).all(): raise ParameterError('Audio buffer is not finite everywhere') return True
def valid_audio(y, mono=True): '''Validate whether a variable contains valid, mono audio data. Parameters ---------- y : np.ndarray The input data to validate mono : bool Whether or not to force monophonic audio Returns ------- valid : bool True if all tests pass Raises ------ ParameterError If `y` fails to meet the following criteria: - `type(y)` is `np.ndarray` - `y.dtype` is floating-point - `mono == True` and `y.ndim` is not 1 - `mono == False` and `y.ndim` is not 1 or 2 - `np.isfinite(y).all()` is not True Notes ----- This function caches at level 20. Examples -------- >>> # Only allow monophonic signals >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.util.valid_audio(y) True >>> # If we want to allow stereo signals >>> y, sr = librosa.load(librosa.util.example_audio_file(), mono=False) >>> librosa.util.valid_audio(y, mono=False) True ''' if not isinstance(y, np.ndarray): raise ParameterError('data must be of type numpy.ndarray') if not np.issubdtype(y.dtype, np.floating): raise ParameterError('data must be floating-point') if mono and y.ndim != 1: raise ParameterError('Invalid shape for monophonic audio: ' 'ndim={:d}, shape={}'.format(y.ndim, y.shape)) elif y.ndim > 2 or y.ndim == 0: raise ParameterError('Audio must have shape (samples,) or (channels, samples). ' 'Received shape={}'.format(y.shape)) if not np.isfinite(y).all(): raise ParameterError('Audio buffer is not finite everywhere') return True
[ "Validate", "whether", "a", "variable", "contains", "valid", "mono", "audio", "data", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L111-L172
[ "def", "valid_audio", "(", "y", ",", "mono", "=", "True", ")", ":", "if", "not", "isinstance", "(", "y", ",", "np", ".", "ndarray", ")", ":", "raise", "ParameterError", "(", "'data must be of type numpy.ndarray'", ")", "if", "not", "np", ".", "issubdtype", "(", "y", ".", "dtype", ",", "np", ".", "floating", ")", ":", "raise", "ParameterError", "(", "'data must be floating-point'", ")", "if", "mono", "and", "y", ".", "ndim", "!=", "1", ":", "raise", "ParameterError", "(", "'Invalid shape for monophonic audio: '", "'ndim={:d}, shape={}'", ".", "format", "(", "y", ".", "ndim", ",", "y", ".", "shape", ")", ")", "elif", "y", ".", "ndim", ">", "2", "or", "y", ".", "ndim", "==", "0", ":", "raise", "ParameterError", "(", "'Audio must have shape (samples,) or (channels, samples). '", "'Received shape={}'", ".", "format", "(", "y", ".", "shape", ")", ")", "if", "not", "np", ".", "isfinite", "(", "y", ")", ".", "all", "(", ")", ":", "raise", "ParameterError", "(", "'Audio buffer is not finite everywhere'", ")", "return", "True" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
valid_int
Ensure that an input value is integer-typed. This is primarily useful for ensuring integrable-valued array indices. Parameters ---------- x : number A scalar value to be cast to int cast : function [optional] A function to modify `x` before casting. Default: `np.floor` Returns ------- x_int : int `x_int = int(cast(x))` Raises ------ ParameterError If `cast` is provided and is not callable.
librosa/util/utils.py
def valid_int(x, cast=None): '''Ensure that an input value is integer-typed. This is primarily useful for ensuring integrable-valued array indices. Parameters ---------- x : number A scalar value to be cast to int cast : function [optional] A function to modify `x` before casting. Default: `np.floor` Returns ------- x_int : int `x_int = int(cast(x))` Raises ------ ParameterError If `cast` is provided and is not callable. ''' if cast is None: cast = np.floor if not six.callable(cast): raise ParameterError('cast parameter must be callable') return int(cast(x))
def valid_int(x, cast=None): '''Ensure that an input value is integer-typed. This is primarily useful for ensuring integrable-valued array indices. Parameters ---------- x : number A scalar value to be cast to int cast : function [optional] A function to modify `x` before casting. Default: `np.floor` Returns ------- x_int : int `x_int = int(cast(x))` Raises ------ ParameterError If `cast` is provided and is not callable. ''' if cast is None: cast = np.floor if not six.callable(cast): raise ParameterError('cast parameter must be callable') return int(cast(x))
[ "Ensure", "that", "an", "input", "value", "is", "integer", "-", "typed", ".", "This", "is", "primarily", "useful", "for", "ensuring", "integrable", "-", "valued", "array", "indices", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L175-L206
[ "def", "valid_int", "(", "x", ",", "cast", "=", "None", ")", ":", "if", "cast", "is", "None", ":", "cast", "=", "np", ".", "floor", "if", "not", "six", ".", "callable", "(", "cast", ")", ":", "raise", "ParameterError", "(", "'cast parameter must be callable'", ")", "return", "int", "(", "cast", "(", "x", ")", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
valid_intervals
Ensure that an array is a valid representation of time intervals: - intervals.ndim == 2 - intervals.shape[1] == 2 - intervals[i, 0] <= intervals[i, 1] for all i Parameters ---------- intervals : np.ndarray [shape=(n, 2)] set of time intervals Returns ------- valid : bool True if `intervals` passes validation.
librosa/util/utils.py
def valid_intervals(intervals): '''Ensure that an array is a valid representation of time intervals: - intervals.ndim == 2 - intervals.shape[1] == 2 - intervals[i, 0] <= intervals[i, 1] for all i Parameters ---------- intervals : np.ndarray [shape=(n, 2)] set of time intervals Returns ------- valid : bool True if `intervals` passes validation. ''' if intervals.ndim != 2 or intervals.shape[-1] != 2: raise ParameterError('intervals must have shape (n, 2)') if np.any(intervals[:, 0] > intervals[:, 1]): raise ParameterError('intervals={} must have non-negative durations'.format(intervals)) return True
def valid_intervals(intervals): '''Ensure that an array is a valid representation of time intervals: - intervals.ndim == 2 - intervals.shape[1] == 2 - intervals[i, 0] <= intervals[i, 1] for all i Parameters ---------- intervals : np.ndarray [shape=(n, 2)] set of time intervals Returns ------- valid : bool True if `intervals` passes validation. ''' if intervals.ndim != 2 or intervals.shape[-1] != 2: raise ParameterError('intervals must have shape (n, 2)') if np.any(intervals[:, 0] > intervals[:, 1]): raise ParameterError('intervals={} must have non-negative durations'.format(intervals)) return True
[ "Ensure", "that", "an", "array", "is", "a", "valid", "representation", "of", "time", "intervals", ":" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L209-L233
[ "def", "valid_intervals", "(", "intervals", ")", ":", "if", "intervals", ".", "ndim", "!=", "2", "or", "intervals", ".", "shape", "[", "-", "1", "]", "!=", "2", ":", "raise", "ParameterError", "(", "'intervals must have shape (n, 2)'", ")", "if", "np", ".", "any", "(", "intervals", "[", ":", ",", "0", "]", ">", "intervals", "[", ":", ",", "1", "]", ")", ":", "raise", "ParameterError", "(", "'intervals={} must have non-negative durations'", ".", "format", "(", "intervals", ")", ")", "return", "True" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
pad_center
Wrapper for np.pad to automatically center an array prior to padding. This is analogous to `str.center()` Examples -------- >>> # Generate a vector >>> data = np.ones(5) >>> librosa.util.pad_center(data, 10, mode='constant') array([ 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.]) >>> # Pad a matrix along its first dimension >>> data = np.ones((3, 5)) >>> librosa.util.pad_center(data, 7, axis=0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> # Or its second dimension >>> librosa.util.pad_center(data, 7, axis=1) array([[ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.]]) Parameters ---------- data : np.ndarray Vector to be padded and centered size : int >= len(data) [scalar] Length to pad `data` axis : int Axis along which to pad and center the data kwargs : additional keyword arguments arguments passed to `np.pad()` Returns ------- data_padded : np.ndarray `data` centered and padded to length `size` along the specified axis Raises ------ ParameterError If `size < data.shape[axis]` See Also -------- numpy.pad
librosa/util/utils.py
def pad_center(data, size, axis=-1, **kwargs): '''Wrapper for np.pad to automatically center an array prior to padding. This is analogous to `str.center()` Examples -------- >>> # Generate a vector >>> data = np.ones(5) >>> librosa.util.pad_center(data, 10, mode='constant') array([ 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.]) >>> # Pad a matrix along its first dimension >>> data = np.ones((3, 5)) >>> librosa.util.pad_center(data, 7, axis=0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> # Or its second dimension >>> librosa.util.pad_center(data, 7, axis=1) array([[ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.]]) Parameters ---------- data : np.ndarray Vector to be padded and centered size : int >= len(data) [scalar] Length to pad `data` axis : int Axis along which to pad and center the data kwargs : additional keyword arguments arguments passed to `np.pad()` Returns ------- data_padded : np.ndarray `data` centered and padded to length `size` along the specified axis Raises ------ ParameterError If `size < data.shape[axis]` See Also -------- numpy.pad ''' kwargs.setdefault('mode', 'constant') n = data.shape[axis] lpad = int((size - n) // 2) lengths = [(0, 0)] * data.ndim lengths[axis] = (lpad, int(size - n - lpad)) if lpad < 0: raise ParameterError(('Target size ({:d}) must be ' 'at least input size ({:d})').format(size, n)) return np.pad(data, lengths, **kwargs)
def pad_center(data, size, axis=-1, **kwargs): '''Wrapper for np.pad to automatically center an array prior to padding. This is analogous to `str.center()` Examples -------- >>> # Generate a vector >>> data = np.ones(5) >>> librosa.util.pad_center(data, 10, mode='constant') array([ 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.]) >>> # Pad a matrix along its first dimension >>> data = np.ones((3, 5)) >>> librosa.util.pad_center(data, 7, axis=0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> # Or its second dimension >>> librosa.util.pad_center(data, 7, axis=1) array([[ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.]]) Parameters ---------- data : np.ndarray Vector to be padded and centered size : int >= len(data) [scalar] Length to pad `data` axis : int Axis along which to pad and center the data kwargs : additional keyword arguments arguments passed to `np.pad()` Returns ------- data_padded : np.ndarray `data` centered and padded to length `size` along the specified axis Raises ------ ParameterError If `size < data.shape[axis]` See Also -------- numpy.pad ''' kwargs.setdefault('mode', 'constant') n = data.shape[axis] lpad = int((size - n) // 2) lengths = [(0, 0)] * data.ndim lengths[axis] = (lpad, int(size - n - lpad)) if lpad < 0: raise ParameterError(('Target size ({:d}) must be ' 'at least input size ({:d})').format(size, n)) return np.pad(data, lengths, **kwargs)
[ "Wrapper", "for", "np", ".", "pad", "to", "automatically", "center", "an", "array", "prior", "to", "padding", ".", "This", "is", "analogous", "to", "str", ".", "center", "()" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L236-L306
[ "def", "pad_center", "(", "data", ",", "size", ",", "axis", "=", "-", "1", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "setdefault", "(", "'mode'", ",", "'constant'", ")", "n", "=", "data", ".", "shape", "[", "axis", "]", "lpad", "=", "int", "(", "(", "size", "-", "n", ")", "//", "2", ")", "lengths", "=", "[", "(", "0", ",", "0", ")", "]", "*", "data", ".", "ndim", "lengths", "[", "axis", "]", "=", "(", "lpad", ",", "int", "(", "size", "-", "n", "-", "lpad", ")", ")", "if", "lpad", "<", "0", ":", "raise", "ParameterError", "(", "(", "'Target size ({:d}) must be '", "'at least input size ({:d})'", ")", ".", "format", "(", "size", ",", "n", ")", ")", "return", "np", ".", "pad", "(", "data", ",", "lengths", ",", "*", "*", "kwargs", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
fix_length
Fix the length an array `data` to exactly `size`. If `data.shape[axis] < n`, pad according to the provided kwargs. By default, `data` is padded with trailing zeros. Examples -------- >>> y = np.arange(7) >>> # Default: pad with zeros >>> librosa.util.fix_length(y, 10) array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> # Trim to a desired length >>> librosa.util.fix_length(y, 5) array([0, 1, 2, 3, 4]) >>> # Use edge-padding instead of zeros >>> librosa.util.fix_length(y, 10, mode='edge') array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6]) Parameters ---------- data : np.ndarray array to be length-adjusted size : int >= 0 [scalar] desired length of the array axis : int, <= data.ndim axis along which to fix length kwargs : additional keyword arguments Parameters to `np.pad()` Returns ------- data_fixed : np.ndarray [shape=data.shape] `data` either trimmed or padded to length `size` along the specified axis. See Also -------- numpy.pad
librosa/util/utils.py
def fix_length(data, size, axis=-1, **kwargs): '''Fix the length an array `data` to exactly `size`. If `data.shape[axis] < n`, pad according to the provided kwargs. By default, `data` is padded with trailing zeros. Examples -------- >>> y = np.arange(7) >>> # Default: pad with zeros >>> librosa.util.fix_length(y, 10) array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> # Trim to a desired length >>> librosa.util.fix_length(y, 5) array([0, 1, 2, 3, 4]) >>> # Use edge-padding instead of zeros >>> librosa.util.fix_length(y, 10, mode='edge') array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6]) Parameters ---------- data : np.ndarray array to be length-adjusted size : int >= 0 [scalar] desired length of the array axis : int, <= data.ndim axis along which to fix length kwargs : additional keyword arguments Parameters to `np.pad()` Returns ------- data_fixed : np.ndarray [shape=data.shape] `data` either trimmed or padded to length `size` along the specified axis. See Also -------- numpy.pad ''' kwargs.setdefault('mode', 'constant') n = data.shape[axis] if n > size: slices = [slice(None)] * data.ndim slices[axis] = slice(0, size) return data[tuple(slices)] elif n < size: lengths = [(0, 0)] * data.ndim lengths[axis] = (0, size - n) return np.pad(data, lengths, **kwargs) return data
def fix_length(data, size, axis=-1, **kwargs): '''Fix the length an array `data` to exactly `size`. If `data.shape[axis] < n`, pad according to the provided kwargs. By default, `data` is padded with trailing zeros. Examples -------- >>> y = np.arange(7) >>> # Default: pad with zeros >>> librosa.util.fix_length(y, 10) array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> # Trim to a desired length >>> librosa.util.fix_length(y, 5) array([0, 1, 2, 3, 4]) >>> # Use edge-padding instead of zeros >>> librosa.util.fix_length(y, 10, mode='edge') array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6]) Parameters ---------- data : np.ndarray array to be length-adjusted size : int >= 0 [scalar] desired length of the array axis : int, <= data.ndim axis along which to fix length kwargs : additional keyword arguments Parameters to `np.pad()` Returns ------- data_fixed : np.ndarray [shape=data.shape] `data` either trimmed or padded to length `size` along the specified axis. See Also -------- numpy.pad ''' kwargs.setdefault('mode', 'constant') n = data.shape[axis] if n > size: slices = [slice(None)] * data.ndim slices[axis] = slice(0, size) return data[tuple(slices)] elif n < size: lengths = [(0, 0)] * data.ndim lengths[axis] = (0, size - n) return np.pad(data, lengths, **kwargs) return data
[ "Fix", "the", "length", "an", "array", "data", "to", "exactly", "size", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L309-L367
[ "def", "fix_length", "(", "data", ",", "size", ",", "axis", "=", "-", "1", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "setdefault", "(", "'mode'", ",", "'constant'", ")", "n", "=", "data", ".", "shape", "[", "axis", "]", "if", "n", ">", "size", ":", "slices", "=", "[", "slice", "(", "None", ")", "]", "*", "data", ".", "ndim", "slices", "[", "axis", "]", "=", "slice", "(", "0", ",", "size", ")", "return", "data", "[", "tuple", "(", "slices", ")", "]", "elif", "n", "<", "size", ":", "lengths", "=", "[", "(", "0", ",", "0", ")", "]", "*", "data", ".", "ndim", "lengths", "[", "axis", "]", "=", "(", "0", ",", "size", "-", "n", ")", "return", "np", ".", "pad", "(", "data", ",", "lengths", ",", "*", "*", "kwargs", ")", "return", "data" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
fix_frames
Fix a list of frames to lie within [x_min, x_max] Examples -------- >>> # Generate a list of frame indices >>> frames = np.arange(0, 1000.0, 50) >>> frames array([ 0., 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 950.]) >>> # Clip to span at most 250 >>> librosa.util.fix_frames(frames, x_max=250) array([ 0, 50, 100, 150, 200, 250]) >>> # Or pad to span up to 2500 >>> librosa.util.fix_frames(frames, x_max=2500) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 2500]) >>> librosa.util.fix_frames(frames, x_max=2500, pad=False) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950]) >>> # Or starting away from zero >>> frames = np.arange(200, 500, 33) >>> frames array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames, x_max=500) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497, 500]) Parameters ---------- frames : np.ndarray [shape=(n_frames,)] List of non-negative frame indices x_min : int >= 0 or None Minimum allowed frame index x_max : int >= 0 or None Maximum allowed frame index pad : boolean If `True`, then `frames` is expanded to span the full range `[x_min, x_max]` Returns ------- fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int] Fixed frame indices, flattened and sorted Raises ------ ParameterError If `frames` contains negative values
librosa/util/utils.py
def fix_frames(frames, x_min=0, x_max=None, pad=True): '''Fix a list of frames to lie within [x_min, x_max] Examples -------- >>> # Generate a list of frame indices >>> frames = np.arange(0, 1000.0, 50) >>> frames array([ 0., 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 950.]) >>> # Clip to span at most 250 >>> librosa.util.fix_frames(frames, x_max=250) array([ 0, 50, 100, 150, 200, 250]) >>> # Or pad to span up to 2500 >>> librosa.util.fix_frames(frames, x_max=2500) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 2500]) >>> librosa.util.fix_frames(frames, x_max=2500, pad=False) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950]) >>> # Or starting away from zero >>> frames = np.arange(200, 500, 33) >>> frames array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames, x_max=500) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497, 500]) Parameters ---------- frames : np.ndarray [shape=(n_frames,)] List of non-negative frame indices x_min : int >= 0 or None Minimum allowed frame index x_max : int >= 0 or None Maximum allowed frame index pad : boolean If `True`, then `frames` is expanded to span the full range `[x_min, x_max]` Returns ------- fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int] Fixed frame indices, flattened and sorted Raises ------ ParameterError If `frames` contains negative values ''' frames = np.asarray(frames) if np.any(frames < 0): raise ParameterError('Negative frame index detected') if pad and (x_min is not None or x_max is not None): frames = np.clip(frames, x_min, x_max) if pad: pad_data = [] if x_min is not None: pad_data.append(x_min) if x_max is not None: pad_data.append(x_max) frames = np.concatenate((pad_data, frames)) if x_min is not None: frames = frames[frames >= x_min] if x_max is not None: frames = frames[frames <= x_max] return np.unique(frames).astype(int)
def fix_frames(frames, x_min=0, x_max=None, pad=True): '''Fix a list of frames to lie within [x_min, x_max] Examples -------- >>> # Generate a list of frame indices >>> frames = np.arange(0, 1000.0, 50) >>> frames array([ 0., 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 950.]) >>> # Clip to span at most 250 >>> librosa.util.fix_frames(frames, x_max=250) array([ 0, 50, 100, 150, 200, 250]) >>> # Or pad to span up to 2500 >>> librosa.util.fix_frames(frames, x_max=2500) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 2500]) >>> librosa.util.fix_frames(frames, x_max=2500, pad=False) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950]) >>> # Or starting away from zero >>> frames = np.arange(200, 500, 33) >>> frames array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames, x_max=500) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497, 500]) Parameters ---------- frames : np.ndarray [shape=(n_frames,)] List of non-negative frame indices x_min : int >= 0 or None Minimum allowed frame index x_max : int >= 0 or None Maximum allowed frame index pad : boolean If `True`, then `frames` is expanded to span the full range `[x_min, x_max]` Returns ------- fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int] Fixed frame indices, flattened and sorted Raises ------ ParameterError If `frames` contains negative values ''' frames = np.asarray(frames) if np.any(frames < 0): raise ParameterError('Negative frame index detected') if pad and (x_min is not None or x_max is not None): frames = np.clip(frames, x_min, x_max) if pad: pad_data = [] if x_min is not None: pad_data.append(x_min) if x_max is not None: pad_data.append(x_max) frames = np.concatenate((pad_data, frames)) if x_min is not None: frames = frames[frames >= x_min] if x_max is not None: frames = frames[frames <= x_max] return np.unique(frames).astype(int)
[ "Fix", "a", "list", "of", "frames", "to", "lie", "within", "[", "x_min", "x_max", "]" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L370-L452
[ "def", "fix_frames", "(", "frames", ",", "x_min", "=", "0", ",", "x_max", "=", "None", ",", "pad", "=", "True", ")", ":", "frames", "=", "np", ".", "asarray", "(", "frames", ")", "if", "np", ".", "any", "(", "frames", "<", "0", ")", ":", "raise", "ParameterError", "(", "'Negative frame index detected'", ")", "if", "pad", "and", "(", "x_min", "is", "not", "None", "or", "x_max", "is", "not", "None", ")", ":", "frames", "=", "np", ".", "clip", "(", "frames", ",", "x_min", ",", "x_max", ")", "if", "pad", ":", "pad_data", "=", "[", "]", "if", "x_min", "is", "not", "None", ":", "pad_data", ".", "append", "(", "x_min", ")", "if", "x_max", "is", "not", "None", ":", "pad_data", ".", "append", "(", "x_max", ")", "frames", "=", "np", ".", "concatenate", "(", "(", "pad_data", ",", "frames", ")", ")", "if", "x_min", "is", "not", "None", ":", "frames", "=", "frames", "[", "frames", ">=", "x_min", "]", "if", "x_max", "is", "not", "None", ":", "frames", "=", "frames", "[", "frames", "<=", "x_max", "]", "return", "np", ".", "unique", "(", "frames", ")", ".", "astype", "(", "int", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
axis_sort
Sort an array along its rows or columns. Examples -------- Visualize NMF output for a spectrogram S >>> # Sort the columns of W by peak frequency bin >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> W, H = librosa.decompose.decompose(S, n_components=32) >>> W_sort = librosa.util.axis_sort(W) Or sort by the lowest frequency bin >>> W_sort = librosa.util.axis_sort(W, value=np.argmin) Or sort the rows instead of the columns >>> W_sort_rows = librosa.util.axis_sort(W, axis=0) Get the sorting index also, and use it to permute the rows of H >>> W_sort, idx = librosa.util.axis_sort(W, index=True) >>> H_sort = H[idx, :] >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max), ... y_axis='log') >>> plt.title('W') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(H, x_axis='time') >>> plt.title('H') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(W_sort, ... ref=np.max), ... y_axis='log') >>> plt.title('W sorted') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(H_sort, x_axis='time') >>> plt.title('H sorted') >>> plt.tight_layout() Parameters ---------- S : np.ndarray [shape=(d, n)] Array to be sorted axis : int [scalar] The axis along which to compute the sorting values - `axis=0` to sort rows by peak column index - `axis=1` to sort columns by peak row index index : boolean [scalar] If true, returns the index array as well as the permuted data. value : function function to return the index corresponding to the sort order. Default: `np.argmax`. Returns ------- S_sort : np.ndarray [shape=(d, n)] `S` with the columns or rows permuted in sorting order idx : np.ndarray (optional) [shape=(d,) or (n,)] If `index == True`, the sorting index used to permute `S`. Length of `idx` corresponds to the selected `axis`. Raises ------ ParameterError If `S` does not have exactly 2 dimensions (`S.ndim != 2`)
librosa/util/utils.py
def axis_sort(S, axis=-1, index=False, value=None): '''Sort an array along its rows or columns. Examples -------- Visualize NMF output for a spectrogram S >>> # Sort the columns of W by peak frequency bin >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> W, H = librosa.decompose.decompose(S, n_components=32) >>> W_sort = librosa.util.axis_sort(W) Or sort by the lowest frequency bin >>> W_sort = librosa.util.axis_sort(W, value=np.argmin) Or sort the rows instead of the columns >>> W_sort_rows = librosa.util.axis_sort(W, axis=0) Get the sorting index also, and use it to permute the rows of H >>> W_sort, idx = librosa.util.axis_sort(W, index=True) >>> H_sort = H[idx, :] >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max), ... y_axis='log') >>> plt.title('W') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(H, x_axis='time') >>> plt.title('H') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(W_sort, ... ref=np.max), ... y_axis='log') >>> plt.title('W sorted') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(H_sort, x_axis='time') >>> plt.title('H sorted') >>> plt.tight_layout() Parameters ---------- S : np.ndarray [shape=(d, n)] Array to be sorted axis : int [scalar] The axis along which to compute the sorting values - `axis=0` to sort rows by peak column index - `axis=1` to sort columns by peak row index index : boolean [scalar] If true, returns the index array as well as the permuted data. value : function function to return the index corresponding to the sort order. Default: `np.argmax`. Returns ------- S_sort : np.ndarray [shape=(d, n)] `S` with the columns or rows permuted in sorting order idx : np.ndarray (optional) [shape=(d,) or (n,)] If `index == True`, the sorting index used to permute `S`. Length of `idx` corresponds to the selected `axis`. Raises ------ ParameterError If `S` does not have exactly 2 dimensions (`S.ndim != 2`) ''' if value is None: value = np.argmax if S.ndim != 2: raise ParameterError('axis_sort is only defined for 2D arrays') bin_idx = value(S, axis=np.mod(1-axis, S.ndim)) idx = np.argsort(bin_idx) sort_slice = [slice(None)] * S.ndim sort_slice[axis] = idx if index: return S[tuple(sort_slice)], idx else: return S[tuple(sort_slice)]
def axis_sort(S, axis=-1, index=False, value=None): '''Sort an array along its rows or columns. Examples -------- Visualize NMF output for a spectrogram S >>> # Sort the columns of W by peak frequency bin >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> W, H = librosa.decompose.decompose(S, n_components=32) >>> W_sort = librosa.util.axis_sort(W) Or sort by the lowest frequency bin >>> W_sort = librosa.util.axis_sort(W, value=np.argmin) Or sort the rows instead of the columns >>> W_sort_rows = librosa.util.axis_sort(W, axis=0) Get the sorting index also, and use it to permute the rows of H >>> W_sort, idx = librosa.util.axis_sort(W, index=True) >>> H_sort = H[idx, :] >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 2, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max), ... y_axis='log') >>> plt.title('W') >>> plt.subplot(2, 2, 2) >>> librosa.display.specshow(H, x_axis='time') >>> plt.title('H') >>> plt.subplot(2, 2, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(W_sort, ... ref=np.max), ... y_axis='log') >>> plt.title('W sorted') >>> plt.subplot(2, 2, 4) >>> librosa.display.specshow(H_sort, x_axis='time') >>> plt.title('H sorted') >>> plt.tight_layout() Parameters ---------- S : np.ndarray [shape=(d, n)] Array to be sorted axis : int [scalar] The axis along which to compute the sorting values - `axis=0` to sort rows by peak column index - `axis=1` to sort columns by peak row index index : boolean [scalar] If true, returns the index array as well as the permuted data. value : function function to return the index corresponding to the sort order. Default: `np.argmax`. Returns ------- S_sort : np.ndarray [shape=(d, n)] `S` with the columns or rows permuted in sorting order idx : np.ndarray (optional) [shape=(d,) or (n,)] If `index == True`, the sorting index used to permute `S`. Length of `idx` corresponds to the selected `axis`. Raises ------ ParameterError If `S` does not have exactly 2 dimensions (`S.ndim != 2`) ''' if value is None: value = np.argmax if S.ndim != 2: raise ParameterError('axis_sort is only defined for 2D arrays') bin_idx = value(S, axis=np.mod(1-axis, S.ndim)) idx = np.argsort(bin_idx) sort_slice = [slice(None)] * S.ndim sort_slice[axis] = idx if index: return S[tuple(sort_slice)], idx else: return S[tuple(sort_slice)]
[ "Sort", "an", "array", "along", "its", "rows", "or", "columns", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L455-L549
[ "def", "axis_sort", "(", "S", ",", "axis", "=", "-", "1", ",", "index", "=", "False", ",", "value", "=", "None", ")", ":", "if", "value", "is", "None", ":", "value", "=", "np", ".", "argmax", "if", "S", ".", "ndim", "!=", "2", ":", "raise", "ParameterError", "(", "'axis_sort is only defined for 2D arrays'", ")", "bin_idx", "=", "value", "(", "S", ",", "axis", "=", "np", ".", "mod", "(", "1", "-", "axis", ",", "S", ".", "ndim", ")", ")", "idx", "=", "np", ".", "argsort", "(", "bin_idx", ")", "sort_slice", "=", "[", "slice", "(", "None", ")", "]", "*", "S", ".", "ndim", "sort_slice", "[", "axis", "]", "=", "idx", "if", "index", ":", "return", "S", "[", "tuple", "(", "sort_slice", ")", "]", ",", "idx", "else", ":", "return", "S", "[", "tuple", "(", "sort_slice", ")", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
normalize
Normalize an array along a chosen axis. Given a norm (described below) and a target axis, the input array is scaled so that `norm(S, axis=axis) == 1` For example, `axis=0` normalizes each column of a 2-d array by aggregating over the rows (0-axis). Similarly, `axis=1` normalizes each row of a 2-d array. This function also supports thresholding small-norm slices: any slice (i.e., row or column) with norm below a specified `threshold` can be left un-normalized, set to all-zeros, or filled with uniform non-zero values that normalize to 1. Note: the semantics of this function differ from `scipy.linalg.norm` in two ways: multi-dimensional arrays are supported, but matrix-norms are not. Parameters ---------- S : np.ndarray The matrix to normalize norm : {np.inf, -np.inf, 0, float > 0, None} - `np.inf` : maximum absolute value - `-np.inf` : mininum absolute value - `0` : number of non-zeros (the support) - float : corresponding l_p norm See `scipy.linalg.norm` for details. - None : no normalization is performed axis : int [scalar] Axis along which to compute the norm. threshold : number > 0 [optional] Only the columns (or rows) with norm at least `threshold` are normalized. By default, the threshold is determined from the numerical precision of `S.dtype`. fill : None or bool If None, then columns (or rows) with norm below `threshold` are left as is. If False, then columns (rows) with norm below `threshold` are set to 0. If True, then columns (rows) with norm below `threshold` are filled uniformly such that the corresponding norm is 1. .. note:: `fill=True` is incompatible with `norm=0` because no uniform vector exists with l0 "norm" equal to 1. Returns ------- S_norm : np.ndarray [shape=S.shape] Normalized array Raises ------ ParameterError If `norm` is not among the valid types defined above If `S` is not finite If `fill=True` and `norm=0` See Also -------- scipy.linalg.norm Notes ----- This function caches at level 40. Examples -------- >>> # Construct an example matrix >>> S = np.vander(np.arange(-2.0, 2.0)) >>> S array([[-8., 4., -2., 1.], [-1., 1., -1., 1.], [ 0., 0., 0., 1.], [ 1., 1., 1., 1.]]) >>> # Max (l-infinity)-normalize the columns >>> librosa.util.normalize(S) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # Max (l-infinity)-normalize the rows >>> librosa.util.normalize(S, axis=1) array([[-1. , 0.5 , -0.25 , 0.125], [-1. , 1. , -1. , 1. ], [ 0. , 0. , 0. , 1. ], [ 1. , 1. , 1. , 1. ]]) >>> # l1-normalize the columns >>> librosa.util.normalize(S, norm=1) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) >>> # l2-normalize the columns >>> librosa.util.normalize(S, norm=2) array([[-0.985, 0.943, -0.816, 0.5 ], [-0.123, 0.236, -0.408, 0.5 ], [ 0. , 0. , 0. , 0.5 ], [ 0.123, 0.236, 0.408, 0.5 ]]) >>> # Thresholding and filling >>> S[:, -1] = 1e-308 >>> S array([[ -8.000e+000, 4.000e+000, -2.000e+000, 1.000e-308], [ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.000e+000, 1.000e+000, 1.000e+000, 1.000e-308]]) >>> # By default, small-norm columns are left untouched >>> librosa.util.normalize(S) array([[ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ -1.250e-001, 2.500e-001, -5.000e-001, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.250e-001, 2.500e-001, 5.000e-001, 1.000e-308]]) >>> # Small-norm columns can be zeroed out >>> librosa.util.normalize(S, fill=False) array([[-1. , 1. , -1. , 0. ], [-0.125, 0.25 , -0.5 , 0. ], [ 0. , 0. , 0. , 0. ], [ 0.125, 0.25 , 0.5 , 0. ]]) >>> # Or set to constant with unit-norm >>> librosa.util.normalize(S, fill=True) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # With an l1 norm instead of max-norm >>> librosa.util.normalize(S, norm=1, fill=True) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]])
librosa/util/utils.py
def normalize(S, norm=np.inf, axis=0, threshold=None, fill=None): '''Normalize an array along a chosen axis. Given a norm (described below) and a target axis, the input array is scaled so that `norm(S, axis=axis) == 1` For example, `axis=0` normalizes each column of a 2-d array by aggregating over the rows (0-axis). Similarly, `axis=1` normalizes each row of a 2-d array. This function also supports thresholding small-norm slices: any slice (i.e., row or column) with norm below a specified `threshold` can be left un-normalized, set to all-zeros, or filled with uniform non-zero values that normalize to 1. Note: the semantics of this function differ from `scipy.linalg.norm` in two ways: multi-dimensional arrays are supported, but matrix-norms are not. Parameters ---------- S : np.ndarray The matrix to normalize norm : {np.inf, -np.inf, 0, float > 0, None} - `np.inf` : maximum absolute value - `-np.inf` : mininum absolute value - `0` : number of non-zeros (the support) - float : corresponding l_p norm See `scipy.linalg.norm` for details. - None : no normalization is performed axis : int [scalar] Axis along which to compute the norm. threshold : number > 0 [optional] Only the columns (or rows) with norm at least `threshold` are normalized. By default, the threshold is determined from the numerical precision of `S.dtype`. fill : None or bool If None, then columns (or rows) with norm below `threshold` are left as is. If False, then columns (rows) with norm below `threshold` are set to 0. If True, then columns (rows) with norm below `threshold` are filled uniformly such that the corresponding norm is 1. .. note:: `fill=True` is incompatible with `norm=0` because no uniform vector exists with l0 "norm" equal to 1. Returns ------- S_norm : np.ndarray [shape=S.shape] Normalized array Raises ------ ParameterError If `norm` is not among the valid types defined above If `S` is not finite If `fill=True` and `norm=0` See Also -------- scipy.linalg.norm Notes ----- This function caches at level 40. Examples -------- >>> # Construct an example matrix >>> S = np.vander(np.arange(-2.0, 2.0)) >>> S array([[-8., 4., -2., 1.], [-1., 1., -1., 1.], [ 0., 0., 0., 1.], [ 1., 1., 1., 1.]]) >>> # Max (l-infinity)-normalize the columns >>> librosa.util.normalize(S) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # Max (l-infinity)-normalize the rows >>> librosa.util.normalize(S, axis=1) array([[-1. , 0.5 , -0.25 , 0.125], [-1. , 1. , -1. , 1. ], [ 0. , 0. , 0. , 1. ], [ 1. , 1. , 1. , 1. ]]) >>> # l1-normalize the columns >>> librosa.util.normalize(S, norm=1) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) >>> # l2-normalize the columns >>> librosa.util.normalize(S, norm=2) array([[-0.985, 0.943, -0.816, 0.5 ], [-0.123, 0.236, -0.408, 0.5 ], [ 0. , 0. , 0. , 0.5 ], [ 0.123, 0.236, 0.408, 0.5 ]]) >>> # Thresholding and filling >>> S[:, -1] = 1e-308 >>> S array([[ -8.000e+000, 4.000e+000, -2.000e+000, 1.000e-308], [ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.000e+000, 1.000e+000, 1.000e+000, 1.000e-308]]) >>> # By default, small-norm columns are left untouched >>> librosa.util.normalize(S) array([[ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ -1.250e-001, 2.500e-001, -5.000e-001, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.250e-001, 2.500e-001, 5.000e-001, 1.000e-308]]) >>> # Small-norm columns can be zeroed out >>> librosa.util.normalize(S, fill=False) array([[-1. , 1. , -1. , 0. ], [-0.125, 0.25 , -0.5 , 0. ], [ 0. , 0. , 0. , 0. ], [ 0.125, 0.25 , 0.5 , 0. ]]) >>> # Or set to constant with unit-norm >>> librosa.util.normalize(S, fill=True) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # With an l1 norm instead of max-norm >>> librosa.util.normalize(S, norm=1, fill=True) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) ''' # Avoid div-by-zero if threshold is None: threshold = tiny(S) elif threshold <= 0: raise ParameterError('threshold={} must be strictly ' 'positive'.format(threshold)) if fill not in [None, False, True]: raise ParameterError('fill={} must be None or boolean'.format(fill)) if not np.all(np.isfinite(S)): raise ParameterError('Input must be finite') # All norms only depend on magnitude, let's do that first mag = np.abs(S).astype(np.float) # For max/min norms, filling with 1 works fill_norm = 1 if norm == np.inf: length = np.max(mag, axis=axis, keepdims=True) elif norm == -np.inf: length = np.min(mag, axis=axis, keepdims=True) elif norm == 0: if fill is True: raise ParameterError('Cannot normalize with norm=0 and fill=True') length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype) elif np.issubdtype(type(norm), np.number) and norm > 0: length = np.sum(mag**norm, axis=axis, keepdims=True)**(1./norm) if axis is None: fill_norm = mag.size**(-1./norm) else: fill_norm = mag.shape[axis]**(-1./norm) elif norm is None: return S else: raise ParameterError('Unsupported norm: {}'.format(repr(norm))) # indices where norm is below the threshold small_idx = length < threshold Snorm = np.empty_like(S) if fill is None: # Leave small indices un-normalized length[small_idx] = 1.0 Snorm[:] = S / length elif fill: # If we have a non-zero fill value, we locate those entries by # doing a nan-divide. # If S was finite, then length is finite (except for small positions) length[small_idx] = np.nan Snorm[:] = S / length Snorm[np.isnan(Snorm)] = fill_norm else: # Set small values to zero by doing an inf-divide. # This is safe (by IEEE-754) as long as S is finite. length[small_idx] = np.inf Snorm[:] = S / length return Snorm
def normalize(S, norm=np.inf, axis=0, threshold=None, fill=None): '''Normalize an array along a chosen axis. Given a norm (described below) and a target axis, the input array is scaled so that `norm(S, axis=axis) == 1` For example, `axis=0` normalizes each column of a 2-d array by aggregating over the rows (0-axis). Similarly, `axis=1` normalizes each row of a 2-d array. This function also supports thresholding small-norm slices: any slice (i.e., row or column) with norm below a specified `threshold` can be left un-normalized, set to all-zeros, or filled with uniform non-zero values that normalize to 1. Note: the semantics of this function differ from `scipy.linalg.norm` in two ways: multi-dimensional arrays are supported, but matrix-norms are not. Parameters ---------- S : np.ndarray The matrix to normalize norm : {np.inf, -np.inf, 0, float > 0, None} - `np.inf` : maximum absolute value - `-np.inf` : mininum absolute value - `0` : number of non-zeros (the support) - float : corresponding l_p norm See `scipy.linalg.norm` for details. - None : no normalization is performed axis : int [scalar] Axis along which to compute the norm. threshold : number > 0 [optional] Only the columns (or rows) with norm at least `threshold` are normalized. By default, the threshold is determined from the numerical precision of `S.dtype`. fill : None or bool If None, then columns (or rows) with norm below `threshold` are left as is. If False, then columns (rows) with norm below `threshold` are set to 0. If True, then columns (rows) with norm below `threshold` are filled uniformly such that the corresponding norm is 1. .. note:: `fill=True` is incompatible with `norm=0` because no uniform vector exists with l0 "norm" equal to 1. Returns ------- S_norm : np.ndarray [shape=S.shape] Normalized array Raises ------ ParameterError If `norm` is not among the valid types defined above If `S` is not finite If `fill=True` and `norm=0` See Also -------- scipy.linalg.norm Notes ----- This function caches at level 40. Examples -------- >>> # Construct an example matrix >>> S = np.vander(np.arange(-2.0, 2.0)) >>> S array([[-8., 4., -2., 1.], [-1., 1., -1., 1.], [ 0., 0., 0., 1.], [ 1., 1., 1., 1.]]) >>> # Max (l-infinity)-normalize the columns >>> librosa.util.normalize(S) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # Max (l-infinity)-normalize the rows >>> librosa.util.normalize(S, axis=1) array([[-1. , 0.5 , -0.25 , 0.125], [-1. , 1. , -1. , 1. ], [ 0. , 0. , 0. , 1. ], [ 1. , 1. , 1. , 1. ]]) >>> # l1-normalize the columns >>> librosa.util.normalize(S, norm=1) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) >>> # l2-normalize the columns >>> librosa.util.normalize(S, norm=2) array([[-0.985, 0.943, -0.816, 0.5 ], [-0.123, 0.236, -0.408, 0.5 ], [ 0. , 0. , 0. , 0.5 ], [ 0.123, 0.236, 0.408, 0.5 ]]) >>> # Thresholding and filling >>> S[:, -1] = 1e-308 >>> S array([[ -8.000e+000, 4.000e+000, -2.000e+000, 1.000e-308], [ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.000e+000, 1.000e+000, 1.000e+000, 1.000e-308]]) >>> # By default, small-norm columns are left untouched >>> librosa.util.normalize(S) array([[ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ -1.250e-001, 2.500e-001, -5.000e-001, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.250e-001, 2.500e-001, 5.000e-001, 1.000e-308]]) >>> # Small-norm columns can be zeroed out >>> librosa.util.normalize(S, fill=False) array([[-1. , 1. , -1. , 0. ], [-0.125, 0.25 , -0.5 , 0. ], [ 0. , 0. , 0. , 0. ], [ 0.125, 0.25 , 0.5 , 0. ]]) >>> # Or set to constant with unit-norm >>> librosa.util.normalize(S, fill=True) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # With an l1 norm instead of max-norm >>> librosa.util.normalize(S, norm=1, fill=True) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) ''' # Avoid div-by-zero if threshold is None: threshold = tiny(S) elif threshold <= 0: raise ParameterError('threshold={} must be strictly ' 'positive'.format(threshold)) if fill not in [None, False, True]: raise ParameterError('fill={} must be None or boolean'.format(fill)) if not np.all(np.isfinite(S)): raise ParameterError('Input must be finite') # All norms only depend on magnitude, let's do that first mag = np.abs(S).astype(np.float) # For max/min norms, filling with 1 works fill_norm = 1 if norm == np.inf: length = np.max(mag, axis=axis, keepdims=True) elif norm == -np.inf: length = np.min(mag, axis=axis, keepdims=True) elif norm == 0: if fill is True: raise ParameterError('Cannot normalize with norm=0 and fill=True') length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype) elif np.issubdtype(type(norm), np.number) and norm > 0: length = np.sum(mag**norm, axis=axis, keepdims=True)**(1./norm) if axis is None: fill_norm = mag.size**(-1./norm) else: fill_norm = mag.shape[axis]**(-1./norm) elif norm is None: return S else: raise ParameterError('Unsupported norm: {}'.format(repr(norm))) # indices where norm is below the threshold small_idx = length < threshold Snorm = np.empty_like(S) if fill is None: # Leave small indices un-normalized length[small_idx] = 1.0 Snorm[:] = S / length elif fill: # If we have a non-zero fill value, we locate those entries by # doing a nan-divide. # If S was finite, then length is finite (except for small positions) length[small_idx] = np.nan Snorm[:] = S / length Snorm[np.isnan(Snorm)] = fill_norm else: # Set small values to zero by doing an inf-divide. # This is safe (by IEEE-754) as long as S is finite. length[small_idx] = np.inf Snorm[:] = S / length return Snorm
[ "Normalize", "an", "array", "along", "a", "chosen", "axis", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L553-L777
[ "def", "normalize", "(", "S", ",", "norm", "=", "np", ".", "inf", ",", "axis", "=", "0", ",", "threshold", "=", "None", ",", "fill", "=", "None", ")", ":", "# Avoid div-by-zero", "if", "threshold", "is", "None", ":", "threshold", "=", "tiny", "(", "S", ")", "elif", "threshold", "<=", "0", ":", "raise", "ParameterError", "(", "'threshold={} must be strictly '", "'positive'", ".", "format", "(", "threshold", ")", ")", "if", "fill", "not", "in", "[", "None", ",", "False", ",", "True", "]", ":", "raise", "ParameterError", "(", "'fill={} must be None or boolean'", ".", "format", "(", "fill", ")", ")", "if", "not", "np", ".", "all", "(", "np", ".", "isfinite", "(", "S", ")", ")", ":", "raise", "ParameterError", "(", "'Input must be finite'", ")", "# All norms only depend on magnitude, let's do that first", "mag", "=", "np", ".", "abs", "(", "S", ")", ".", "astype", "(", "np", ".", "float", ")", "# For max/min norms, filling with 1 works", "fill_norm", "=", "1", "if", "norm", "==", "np", ".", "inf", ":", "length", "=", "np", ".", "max", "(", "mag", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "elif", "norm", "==", "-", "np", ".", "inf", ":", "length", "=", "np", ".", "min", "(", "mag", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "elif", "norm", "==", "0", ":", "if", "fill", "is", "True", ":", "raise", "ParameterError", "(", "'Cannot normalize with norm=0 and fill=True'", ")", "length", "=", "np", ".", "sum", "(", "mag", ">", "0", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ",", "dtype", "=", "mag", ".", "dtype", ")", "elif", "np", ".", "issubdtype", "(", "type", "(", "norm", ")", ",", "np", ".", "number", ")", "and", "norm", ">", "0", ":", "length", "=", "np", ".", "sum", "(", "mag", "**", "norm", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "**", "(", "1.", "/", "norm", ")", "if", "axis", "is", "None", ":", "fill_norm", "=", "mag", ".", "size", "**", "(", "-", "1.", "/", "norm", ")", "else", ":", "fill_norm", "=", "mag", ".", "shape", "[", "axis", "]", "**", "(", "-", "1.", "/", "norm", ")", "elif", "norm", "is", "None", ":", "return", "S", "else", ":", "raise", "ParameterError", "(", "'Unsupported norm: {}'", ".", "format", "(", "repr", "(", "norm", ")", ")", ")", "# indices where norm is below the threshold", "small_idx", "=", "length", "<", "threshold", "Snorm", "=", "np", ".", "empty_like", "(", "S", ")", "if", "fill", "is", "None", ":", "# Leave small indices un-normalized", "length", "[", "small_idx", "]", "=", "1.0", "Snorm", "[", ":", "]", "=", "S", "/", "length", "elif", "fill", ":", "# If we have a non-zero fill value, we locate those entries by", "# doing a nan-divide.", "# If S was finite, then length is finite (except for small positions)", "length", "[", "small_idx", "]", "=", "np", ".", "nan", "Snorm", "[", ":", "]", "=", "S", "/", "length", "Snorm", "[", "np", ".", "isnan", "(", "Snorm", ")", "]", "=", "fill_norm", "else", ":", "# Set small values to zero by doing an inf-divide.", "# This is safe (by IEEE-754) as long as S is finite.", "length", "[", "small_idx", "]", "=", "np", ".", "inf", "Snorm", "[", ":", "]", "=", "S", "/", "length", "return", "Snorm" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
localmax
Find local maxima in an array `x`. An element `x[i]` is considered a local maximum if the following conditions are met: - `x[i] > x[i-1]` - `x[i] >= x[i+1]` Note that the first condition is strict, and that the first element `x[0]` will never be considered as a local maximum. Examples -------- >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) >>> librosa.util.localmax(x) array([False, False, False, True, False, True, False, True], dtype=bool) >>> # Two-dimensional example >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) >>> librosa.util.localmax(x, axis=0) array([[False, False, False], [ True, False, False], [False, True, True]], dtype=bool) >>> librosa.util.localmax(x, axis=1) array([[False, False, True], [False, False, True], [False, False, True]], dtype=bool) Parameters ---------- x : np.ndarray [shape=(d1,d2,...)] input vector or array axis : int axis along which to compute local maximality Returns ------- m : np.ndarray [shape=x.shape, dtype=bool] indicator array of local maximality along `axis`
librosa/util/utils.py
def localmax(x, axis=0): """Find local maxima in an array `x`. An element `x[i]` is considered a local maximum if the following conditions are met: - `x[i] > x[i-1]` - `x[i] >= x[i+1]` Note that the first condition is strict, and that the first element `x[0]` will never be considered as a local maximum. Examples -------- >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) >>> librosa.util.localmax(x) array([False, False, False, True, False, True, False, True], dtype=bool) >>> # Two-dimensional example >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) >>> librosa.util.localmax(x, axis=0) array([[False, False, False], [ True, False, False], [False, True, True]], dtype=bool) >>> librosa.util.localmax(x, axis=1) array([[False, False, True], [False, False, True], [False, False, True]], dtype=bool) Parameters ---------- x : np.ndarray [shape=(d1,d2,...)] input vector or array axis : int axis along which to compute local maximality Returns ------- m : np.ndarray [shape=x.shape, dtype=bool] indicator array of local maximality along `axis` """ paddings = [(0, 0)] * x.ndim paddings[axis] = (1, 1) x_pad = np.pad(x, paddings, mode='edge') inds1 = [slice(None)] * x.ndim inds1[axis] = slice(0, -2) inds2 = [slice(None)] * x.ndim inds2[axis] = slice(2, x_pad.shape[axis]) return (x > x_pad[tuple(inds1)]) & (x >= x_pad[tuple(inds2)])
def localmax(x, axis=0): """Find local maxima in an array `x`. An element `x[i]` is considered a local maximum if the following conditions are met: - `x[i] > x[i-1]` - `x[i] >= x[i+1]` Note that the first condition is strict, and that the first element `x[0]` will never be considered as a local maximum. Examples -------- >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) >>> librosa.util.localmax(x) array([False, False, False, True, False, True, False, True], dtype=bool) >>> # Two-dimensional example >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) >>> librosa.util.localmax(x, axis=0) array([[False, False, False], [ True, False, False], [False, True, True]], dtype=bool) >>> librosa.util.localmax(x, axis=1) array([[False, False, True], [False, False, True], [False, False, True]], dtype=bool) Parameters ---------- x : np.ndarray [shape=(d1,d2,...)] input vector or array axis : int axis along which to compute local maximality Returns ------- m : np.ndarray [shape=x.shape, dtype=bool] indicator array of local maximality along `axis` """ paddings = [(0, 0)] * x.ndim paddings[axis] = (1, 1) x_pad = np.pad(x, paddings, mode='edge') inds1 = [slice(None)] * x.ndim inds1[axis] = slice(0, -2) inds2 = [slice(None)] * x.ndim inds2[axis] = slice(2, x_pad.shape[axis]) return (x > x_pad[tuple(inds1)]) & (x >= x_pad[tuple(inds2)])
[ "Find", "local", "maxima", "in", "an", "array", "x", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L780-L835
[ "def", "localmax", "(", "x", ",", "axis", "=", "0", ")", ":", "paddings", "=", "[", "(", "0", ",", "0", ")", "]", "*", "x", ".", "ndim", "paddings", "[", "axis", "]", "=", "(", "1", ",", "1", ")", "x_pad", "=", "np", ".", "pad", "(", "x", ",", "paddings", ",", "mode", "=", "'edge'", ")", "inds1", "=", "[", "slice", "(", "None", ")", "]", "*", "x", ".", "ndim", "inds1", "[", "axis", "]", "=", "slice", "(", "0", ",", "-", "2", ")", "inds2", "=", "[", "slice", "(", "None", ")", "]", "*", "x", ".", "ndim", "inds2", "[", "axis", "]", "=", "slice", "(", "2", ",", "x_pad", ".", "shape", "[", "axis", "]", ")", "return", "(", "x", ">", "x_pad", "[", "tuple", "(", "inds1", ")", "]", ")", "&", "(", "x", ">=", "x_pad", "[", "tuple", "(", "inds2", ")", "]", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
peak_pick
Uses a flexible heuristic to pick peaks in a signal. A sample n is selected as an peak if the corresponding x[n] fulfills the following three conditions: 1. `x[n] == max(x[n - pre_max:n + post_max])` 2. `x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta` 3. `n - previous_n > wait` where `previous_n` is the last sample picked as a peak (greedily). This implementation is based on [1]_ and [2]_. .. [1] Boeck, Sebastian, Florian Krebs, and Markus Schedl. "Evaluating the Online Capabilities of Onset Detection Methods." ISMIR. 2012. .. [2] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py Parameters ---------- x : np.ndarray [shape=(n,)] input signal to peak picks from pre_max : int >= 0 [scalar] number of samples before `n` over which max is computed post_max : int >= 1 [scalar] number of samples after `n` over which max is computed pre_avg : int >= 0 [scalar] number of samples before `n` over which mean is computed post_avg : int >= 1 [scalar] number of samples after `n` over which mean is computed delta : float >= 0 [scalar] threshold offset for mean wait : int >= 0 [scalar] number of samples to wait after picking a peak Returns ------- peaks : np.ndarray [shape=(n_peaks,), dtype=int] indices of peaks in `x` Raises ------ ParameterError If any input lies outside its defined range Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... hop_length=512, ... aggregate=np.median) >>> peaks = librosa.util.peak_pick(onset_env, 3, 3, 3, 5, 0.5, 10) >>> peaks array([ 4, 23, 73, 102, 142, 162, 182, 211, 261, 301, 320, 331, 348, 368, 382, 396, 411, 431, 446, 461, 476, 491, 510, 525, 536, 555, 570, 590, 609, 625, 639]) >>> import matplotlib.pyplot as plt >>> times = librosa.frames_to_time(np.arange(len(onset_env)), ... sr=sr, hop_length=512) >>> plt.figure() >>> ax = plt.subplot(2, 1, 2) >>> D = librosa.stft(y) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.subplot(2, 1, 1, sharex=ax) >>> plt.plot(times, onset_env, alpha=0.8, label='Onset strength') >>> plt.vlines(times[peaks], 0, ... onset_env.max(), color='r', alpha=0.8, ... label='Selected peaks') >>> plt.legend(frameon=True, framealpha=0.8) >>> plt.axis('tight') >>> plt.tight_layout()
librosa/util/utils.py
def peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait): '''Uses a flexible heuristic to pick peaks in a signal. A sample n is selected as an peak if the corresponding x[n] fulfills the following three conditions: 1. `x[n] == max(x[n - pre_max:n + post_max])` 2. `x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta` 3. `n - previous_n > wait` where `previous_n` is the last sample picked as a peak (greedily). This implementation is based on [1]_ and [2]_. .. [1] Boeck, Sebastian, Florian Krebs, and Markus Schedl. "Evaluating the Online Capabilities of Onset Detection Methods." ISMIR. 2012. .. [2] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py Parameters ---------- x : np.ndarray [shape=(n,)] input signal to peak picks from pre_max : int >= 0 [scalar] number of samples before `n` over which max is computed post_max : int >= 1 [scalar] number of samples after `n` over which max is computed pre_avg : int >= 0 [scalar] number of samples before `n` over which mean is computed post_avg : int >= 1 [scalar] number of samples after `n` over which mean is computed delta : float >= 0 [scalar] threshold offset for mean wait : int >= 0 [scalar] number of samples to wait after picking a peak Returns ------- peaks : np.ndarray [shape=(n_peaks,), dtype=int] indices of peaks in `x` Raises ------ ParameterError If any input lies outside its defined range Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... hop_length=512, ... aggregate=np.median) >>> peaks = librosa.util.peak_pick(onset_env, 3, 3, 3, 5, 0.5, 10) >>> peaks array([ 4, 23, 73, 102, 142, 162, 182, 211, 261, 301, 320, 331, 348, 368, 382, 396, 411, 431, 446, 461, 476, 491, 510, 525, 536, 555, 570, 590, 609, 625, 639]) >>> import matplotlib.pyplot as plt >>> times = librosa.frames_to_time(np.arange(len(onset_env)), ... sr=sr, hop_length=512) >>> plt.figure() >>> ax = plt.subplot(2, 1, 2) >>> D = librosa.stft(y) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.subplot(2, 1, 1, sharex=ax) >>> plt.plot(times, onset_env, alpha=0.8, label='Onset strength') >>> plt.vlines(times[peaks], 0, ... onset_env.max(), color='r', alpha=0.8, ... label='Selected peaks') >>> plt.legend(frameon=True, framealpha=0.8) >>> plt.axis('tight') >>> plt.tight_layout() ''' if pre_max < 0: raise ParameterError('pre_max must be non-negative') if pre_avg < 0: raise ParameterError('pre_avg must be non-negative') if delta < 0: raise ParameterError('delta must be non-negative') if wait < 0: raise ParameterError('wait must be non-negative') if post_max <= 0: raise ParameterError('post_max must be positive') if post_avg <= 0: raise ParameterError('post_avg must be positive') if x.ndim != 1: raise ParameterError('input array must be one-dimensional') # Ensure valid index types pre_max = valid_int(pre_max, cast=np.ceil) post_max = valid_int(post_max, cast=np.ceil) pre_avg = valid_int(pre_avg, cast=np.ceil) post_avg = valid_int(post_avg, cast=np.ceil) wait = valid_int(wait, cast=np.ceil) # Get the maximum of the signal over a sliding window max_length = pre_max + post_max max_origin = np.ceil(0.5 * (pre_max - post_max)) # Using mode='constant' and cval=x.min() effectively truncates # the sliding window at the boundaries mov_max = scipy.ndimage.filters.maximum_filter1d(x, int(max_length), mode='constant', origin=int(max_origin), cval=x.min()) # Get the mean of the signal over a sliding window avg_length = pre_avg + post_avg avg_origin = np.ceil(0.5 * (pre_avg - post_avg)) # Here, there is no mode which results in the behavior we want, # so we'll correct below. mov_avg = scipy.ndimage.filters.uniform_filter1d(x, int(avg_length), mode='nearest', origin=int(avg_origin)) # Correct sliding average at the beginning n = 0 # Only need to correct in the range where the window needs to be truncated while n - pre_avg < 0 and n < x.shape[0]: # This just explicitly does mean(x[n - pre_avg:n + post_avg]) # with truncation start = n - pre_avg start = start if start > 0 else 0 mov_avg[n] = np.mean(x[start:n + post_avg]) n += 1 # Correct sliding average at the end n = x.shape[0] - post_avg # When post_avg > x.shape[0] (weird case), reset to 0 n = n if n > 0 else 0 while n < x.shape[0]: start = n - pre_avg start = start if start > 0 else 0 mov_avg[n] = np.mean(x[start:n + post_avg]) n += 1 # First mask out all entries not equal to the local max detections = x * (x == mov_max) # Then mask out all entries less than the thresholded average detections = detections * (detections >= (mov_avg + delta)) # Initialize peaks array, to be filled greedily peaks = [] # Remove onsets which are close together in time last_onset = -np.inf for i in np.nonzero(detections)[0]: # Only report an onset if the "wait" samples was reported if i > last_onset + wait: peaks.append(i) # Save last reported onset last_onset = i return np.array(peaks)
def peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait): '''Uses a flexible heuristic to pick peaks in a signal. A sample n is selected as an peak if the corresponding x[n] fulfills the following three conditions: 1. `x[n] == max(x[n - pre_max:n + post_max])` 2. `x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta` 3. `n - previous_n > wait` where `previous_n` is the last sample picked as a peak (greedily). This implementation is based on [1]_ and [2]_. .. [1] Boeck, Sebastian, Florian Krebs, and Markus Schedl. "Evaluating the Online Capabilities of Onset Detection Methods." ISMIR. 2012. .. [2] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py Parameters ---------- x : np.ndarray [shape=(n,)] input signal to peak picks from pre_max : int >= 0 [scalar] number of samples before `n` over which max is computed post_max : int >= 1 [scalar] number of samples after `n` over which max is computed pre_avg : int >= 0 [scalar] number of samples before `n` over which mean is computed post_avg : int >= 1 [scalar] number of samples after `n` over which mean is computed delta : float >= 0 [scalar] threshold offset for mean wait : int >= 0 [scalar] number of samples to wait after picking a peak Returns ------- peaks : np.ndarray [shape=(n_peaks,), dtype=int] indices of peaks in `x` Raises ------ ParameterError If any input lies outside its defined range Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... hop_length=512, ... aggregate=np.median) >>> peaks = librosa.util.peak_pick(onset_env, 3, 3, 3, 5, 0.5, 10) >>> peaks array([ 4, 23, 73, 102, 142, 162, 182, 211, 261, 301, 320, 331, 348, 368, 382, 396, 411, 431, 446, 461, 476, 491, 510, 525, 536, 555, 570, 590, 609, 625, 639]) >>> import matplotlib.pyplot as plt >>> times = librosa.frames_to_time(np.arange(len(onset_env)), ... sr=sr, hop_length=512) >>> plt.figure() >>> ax = plt.subplot(2, 1, 2) >>> D = librosa.stft(y) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time') >>> plt.subplot(2, 1, 1, sharex=ax) >>> plt.plot(times, onset_env, alpha=0.8, label='Onset strength') >>> plt.vlines(times[peaks], 0, ... onset_env.max(), color='r', alpha=0.8, ... label='Selected peaks') >>> plt.legend(frameon=True, framealpha=0.8) >>> plt.axis('tight') >>> plt.tight_layout() ''' if pre_max < 0: raise ParameterError('pre_max must be non-negative') if pre_avg < 0: raise ParameterError('pre_avg must be non-negative') if delta < 0: raise ParameterError('delta must be non-negative') if wait < 0: raise ParameterError('wait must be non-negative') if post_max <= 0: raise ParameterError('post_max must be positive') if post_avg <= 0: raise ParameterError('post_avg must be positive') if x.ndim != 1: raise ParameterError('input array must be one-dimensional') # Ensure valid index types pre_max = valid_int(pre_max, cast=np.ceil) post_max = valid_int(post_max, cast=np.ceil) pre_avg = valid_int(pre_avg, cast=np.ceil) post_avg = valid_int(post_avg, cast=np.ceil) wait = valid_int(wait, cast=np.ceil) # Get the maximum of the signal over a sliding window max_length = pre_max + post_max max_origin = np.ceil(0.5 * (pre_max - post_max)) # Using mode='constant' and cval=x.min() effectively truncates # the sliding window at the boundaries mov_max = scipy.ndimage.filters.maximum_filter1d(x, int(max_length), mode='constant', origin=int(max_origin), cval=x.min()) # Get the mean of the signal over a sliding window avg_length = pre_avg + post_avg avg_origin = np.ceil(0.5 * (pre_avg - post_avg)) # Here, there is no mode which results in the behavior we want, # so we'll correct below. mov_avg = scipy.ndimage.filters.uniform_filter1d(x, int(avg_length), mode='nearest', origin=int(avg_origin)) # Correct sliding average at the beginning n = 0 # Only need to correct in the range where the window needs to be truncated while n - pre_avg < 0 and n < x.shape[0]: # This just explicitly does mean(x[n - pre_avg:n + post_avg]) # with truncation start = n - pre_avg start = start if start > 0 else 0 mov_avg[n] = np.mean(x[start:n + post_avg]) n += 1 # Correct sliding average at the end n = x.shape[0] - post_avg # When post_avg > x.shape[0] (weird case), reset to 0 n = n if n > 0 else 0 while n < x.shape[0]: start = n - pre_avg start = start if start > 0 else 0 mov_avg[n] = np.mean(x[start:n + post_avg]) n += 1 # First mask out all entries not equal to the local max detections = x * (x == mov_max) # Then mask out all entries less than the thresholded average detections = detections * (detections >= (mov_avg + delta)) # Initialize peaks array, to be filled greedily peaks = [] # Remove onsets which are close together in time last_onset = -np.inf for i in np.nonzero(detections)[0]: # Only report an onset if the "wait" samples was reported if i > last_onset + wait: peaks.append(i) # Save last reported onset last_onset = i return np.array(peaks)
[ "Uses", "a", "flexible", "heuristic", "to", "pick", "peaks", "in", "a", "signal", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L838-L1005
[ "def", "peak_pick", "(", "x", ",", "pre_max", ",", "post_max", ",", "pre_avg", ",", "post_avg", ",", "delta", ",", "wait", ")", ":", "if", "pre_max", "<", "0", ":", "raise", "ParameterError", "(", "'pre_max must be non-negative'", ")", "if", "pre_avg", "<", "0", ":", "raise", "ParameterError", "(", "'pre_avg must be non-negative'", ")", "if", "delta", "<", "0", ":", "raise", "ParameterError", "(", "'delta must be non-negative'", ")", "if", "wait", "<", "0", ":", "raise", "ParameterError", "(", "'wait must be non-negative'", ")", "if", "post_max", "<=", "0", ":", "raise", "ParameterError", "(", "'post_max must be positive'", ")", "if", "post_avg", "<=", "0", ":", "raise", "ParameterError", "(", "'post_avg must be positive'", ")", "if", "x", ".", "ndim", "!=", "1", ":", "raise", "ParameterError", "(", "'input array must be one-dimensional'", ")", "# Ensure valid index types", "pre_max", "=", "valid_int", "(", "pre_max", ",", "cast", "=", "np", ".", "ceil", ")", "post_max", "=", "valid_int", "(", "post_max", ",", "cast", "=", "np", ".", "ceil", ")", "pre_avg", "=", "valid_int", "(", "pre_avg", ",", "cast", "=", "np", ".", "ceil", ")", "post_avg", "=", "valid_int", "(", "post_avg", ",", "cast", "=", "np", ".", "ceil", ")", "wait", "=", "valid_int", "(", "wait", ",", "cast", "=", "np", ".", "ceil", ")", "# Get the maximum of the signal over a sliding window", "max_length", "=", "pre_max", "+", "post_max", "max_origin", "=", "np", ".", "ceil", "(", "0.5", "*", "(", "pre_max", "-", "post_max", ")", ")", "# Using mode='constant' and cval=x.min() effectively truncates", "# the sliding window at the boundaries", "mov_max", "=", "scipy", ".", "ndimage", ".", "filters", ".", "maximum_filter1d", "(", "x", ",", "int", "(", "max_length", ")", ",", "mode", "=", "'constant'", ",", "origin", "=", "int", "(", "max_origin", ")", ",", "cval", "=", "x", ".", "min", "(", ")", ")", "# Get the mean of the signal over a sliding window", "avg_length", "=", "pre_avg", "+", "post_avg", "avg_origin", "=", "np", ".", "ceil", "(", "0.5", "*", "(", "pre_avg", "-", "post_avg", ")", ")", "# Here, there is no mode which results in the behavior we want,", "# so we'll correct below.", "mov_avg", "=", "scipy", ".", "ndimage", ".", "filters", ".", "uniform_filter1d", "(", "x", ",", "int", "(", "avg_length", ")", ",", "mode", "=", "'nearest'", ",", "origin", "=", "int", "(", "avg_origin", ")", ")", "# Correct sliding average at the beginning", "n", "=", "0", "# Only need to correct in the range where the window needs to be truncated", "while", "n", "-", "pre_avg", "<", "0", "and", "n", "<", "x", ".", "shape", "[", "0", "]", ":", "# This just explicitly does mean(x[n - pre_avg:n + post_avg])", "# with truncation", "start", "=", "n", "-", "pre_avg", "start", "=", "start", "if", "start", ">", "0", "else", "0", "mov_avg", "[", "n", "]", "=", "np", ".", "mean", "(", "x", "[", "start", ":", "n", "+", "post_avg", "]", ")", "n", "+=", "1", "# Correct sliding average at the end", "n", "=", "x", ".", "shape", "[", "0", "]", "-", "post_avg", "# When post_avg > x.shape[0] (weird case), reset to 0", "n", "=", "n", "if", "n", ">", "0", "else", "0", "while", "n", "<", "x", ".", "shape", "[", "0", "]", ":", "start", "=", "n", "-", "pre_avg", "start", "=", "start", "if", "start", ">", "0", "else", "0", "mov_avg", "[", "n", "]", "=", "np", ".", "mean", "(", "x", "[", "start", ":", "n", "+", "post_avg", "]", ")", "n", "+=", "1", "# First mask out all entries not equal to the local max", "detections", "=", "x", "*", "(", "x", "==", "mov_max", ")", "# Then mask out all entries less than the thresholded average", "detections", "=", "detections", "*", "(", "detections", ">=", "(", "mov_avg", "+", "delta", ")", ")", "# Initialize peaks array, to be filled greedily", "peaks", "=", "[", "]", "# Remove onsets which are close together in time", "last_onset", "=", "-", "np", ".", "inf", "for", "i", "in", "np", ".", "nonzero", "(", "detections", ")", "[", "0", "]", ":", "# Only report an onset if the \"wait\" samples was reported", "if", "i", ">", "last_onset", "+", "wait", ":", "peaks", ".", "append", "(", "i", ")", "# Save last reported onset", "last_onset", "=", "i", "return", "np", ".", "array", "(", "peaks", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
sparsify_rows
Return a row-sparse matrix approximating the input `x`. Parameters ---------- x : np.ndarray [ndim <= 2] The input matrix to sparsify. quantile : float in [0, 1.0) Percentage of magnitude to discard in each row of `x` Returns ------- x_sparse : `scipy.sparse.csr_matrix` [shape=x.shape] Row-sparsified approximation of `x` If `x.ndim == 1`, then `x` is interpreted as a row vector, and `x_sparse.shape == (1, len(x))`. Raises ------ ParameterError If `x.ndim > 2` If `quantile` lies outside `[0, 1.0)` Notes ----- This function caches at level 40. Examples -------- >>> # Construct a Hann window to sparsify >>> x = scipy.signal.hann(32) >>> x array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0.041, 0.01 , 0. ]) >>> # Discard the bottom percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 26 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0. , 0. , 0. ]]) >>> # Discard up to the bottom 10th percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. , 0. , 0. , 0. , 0. ]])
librosa/util/utils.py
def sparsify_rows(x, quantile=0.01): ''' Return a row-sparse matrix approximating the input `x`. Parameters ---------- x : np.ndarray [ndim <= 2] The input matrix to sparsify. quantile : float in [0, 1.0) Percentage of magnitude to discard in each row of `x` Returns ------- x_sparse : `scipy.sparse.csr_matrix` [shape=x.shape] Row-sparsified approximation of `x` If `x.ndim == 1`, then `x` is interpreted as a row vector, and `x_sparse.shape == (1, len(x))`. Raises ------ ParameterError If `x.ndim > 2` If `quantile` lies outside `[0, 1.0)` Notes ----- This function caches at level 40. Examples -------- >>> # Construct a Hann window to sparsify >>> x = scipy.signal.hann(32) >>> x array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0.041, 0.01 , 0. ]) >>> # Discard the bottom percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 26 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0. , 0. , 0. ]]) >>> # Discard up to the bottom 10th percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. , 0. , 0. , 0. , 0. ]]) ''' if x.ndim == 1: x = x.reshape((1, -1)) elif x.ndim > 2: raise ParameterError('Input must have 2 or fewer dimensions. ' 'Provided x.shape={}.'.format(x.shape)) if not 0.0 <= quantile < 1: raise ParameterError('Invalid quantile {:.2f}'.format(quantile)) x_sparse = scipy.sparse.lil_matrix(x.shape, dtype=x.dtype) mags = np.abs(x) norms = np.sum(mags, axis=1, keepdims=True) mag_sort = np.sort(mags, axis=1) cumulative_mag = np.cumsum(mag_sort / norms, axis=1) threshold_idx = np.argmin(cumulative_mag < quantile, axis=1) for i, j in enumerate(threshold_idx): idx = np.where(mags[i] >= mag_sort[i, j]) x_sparse[i, idx] = x[i, idx] return x_sparse.tocsr()
def sparsify_rows(x, quantile=0.01): ''' Return a row-sparse matrix approximating the input `x`. Parameters ---------- x : np.ndarray [ndim <= 2] The input matrix to sparsify. quantile : float in [0, 1.0) Percentage of magnitude to discard in each row of `x` Returns ------- x_sparse : `scipy.sparse.csr_matrix` [shape=x.shape] Row-sparsified approximation of `x` If `x.ndim == 1`, then `x` is interpreted as a row vector, and `x_sparse.shape == (1, len(x))`. Raises ------ ParameterError If `x.ndim > 2` If `quantile` lies outside `[0, 1.0)` Notes ----- This function caches at level 40. Examples -------- >>> # Construct a Hann window to sparsify >>> x = scipy.signal.hann(32) >>> x array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0.041, 0.01 , 0. ]) >>> # Discard the bottom percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 26 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0. , 0. , 0. ]]) >>> # Discard up to the bottom 10th percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. , 0. , 0. , 0. , 0. ]]) ''' if x.ndim == 1: x = x.reshape((1, -1)) elif x.ndim > 2: raise ParameterError('Input must have 2 or fewer dimensions. ' 'Provided x.shape={}.'.format(x.shape)) if not 0.0 <= quantile < 1: raise ParameterError('Invalid quantile {:.2f}'.format(quantile)) x_sparse = scipy.sparse.lil_matrix(x.shape, dtype=x.dtype) mags = np.abs(x) norms = np.sum(mags, axis=1, keepdims=True) mag_sort = np.sort(mags, axis=1) cumulative_mag = np.cumsum(mag_sort / norms, axis=1) threshold_idx = np.argmin(cumulative_mag < quantile, axis=1) for i, j in enumerate(threshold_idx): idx = np.where(mags[i] >= mag_sort[i, j]) x_sparse[i, idx] = x[i, idx] return x_sparse.tocsr()
[ "Return", "a", "row", "-", "sparse", "matrix", "approximating", "the", "input", "x", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1009-L1098
[ "def", "sparsify_rows", "(", "x", ",", "quantile", "=", "0.01", ")", ":", "if", "x", ".", "ndim", "==", "1", ":", "x", "=", "x", ".", "reshape", "(", "(", "1", ",", "-", "1", ")", ")", "elif", "x", ".", "ndim", ">", "2", ":", "raise", "ParameterError", "(", "'Input must have 2 or fewer dimensions. '", "'Provided x.shape={}.'", ".", "format", "(", "x", ".", "shape", ")", ")", "if", "not", "0.0", "<=", "quantile", "<", "1", ":", "raise", "ParameterError", "(", "'Invalid quantile {:.2f}'", ".", "format", "(", "quantile", ")", ")", "x_sparse", "=", "scipy", ".", "sparse", ".", "lil_matrix", "(", "x", ".", "shape", ",", "dtype", "=", "x", ".", "dtype", ")", "mags", "=", "np", ".", "abs", "(", "x", ")", "norms", "=", "np", ".", "sum", "(", "mags", ",", "axis", "=", "1", ",", "keepdims", "=", "True", ")", "mag_sort", "=", "np", ".", "sort", "(", "mags", ",", "axis", "=", "1", ")", "cumulative_mag", "=", "np", ".", "cumsum", "(", "mag_sort", "/", "norms", ",", "axis", "=", "1", ")", "threshold_idx", "=", "np", ".", "argmin", "(", "cumulative_mag", "<", "quantile", ",", "axis", "=", "1", ")", "for", "i", ",", "j", "in", "enumerate", "(", "threshold_idx", ")", ":", "idx", "=", "np", ".", "where", "(", "mags", "[", "i", "]", ">=", "mag_sort", "[", "i", ",", "j", "]", ")", "x_sparse", "[", "i", ",", "idx", "]", "=", "x", "[", "i", ",", "idx", "]", "return", "x_sparse", ".", "tocsr", "(", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
roll_sparse
Sparse matrix roll This operation is equivalent to ``numpy.roll``, but operates on sparse matrices. Parameters ---------- x : scipy.sparse.spmatrix or np.ndarray The sparse matrix input shift : int The number of positions to roll the specified axis axis : (0, 1, -1) The axis along which to roll. Returns ------- x_rolled : same type as `x` The rolled matrix, with the same format as `x` See Also -------- numpy.roll Examples -------- >>> # Generate a random sparse binary matrix >>> X = scipy.sparse.lil_matrix(np.random.randint(0, 2, size=(5,5))) >>> X_roll = roll_sparse(X, 2, axis=0) # Roll by 2 on the first axis >>> X_dense_r = roll_sparse(X.toarray(), 2, axis=0) # Equivalent dense roll >>> np.allclose(X_roll, X_dense_r.toarray()) True
librosa/util/utils.py
def roll_sparse(x, shift, axis=0): '''Sparse matrix roll This operation is equivalent to ``numpy.roll``, but operates on sparse matrices. Parameters ---------- x : scipy.sparse.spmatrix or np.ndarray The sparse matrix input shift : int The number of positions to roll the specified axis axis : (0, 1, -1) The axis along which to roll. Returns ------- x_rolled : same type as `x` The rolled matrix, with the same format as `x` See Also -------- numpy.roll Examples -------- >>> # Generate a random sparse binary matrix >>> X = scipy.sparse.lil_matrix(np.random.randint(0, 2, size=(5,5))) >>> X_roll = roll_sparse(X, 2, axis=0) # Roll by 2 on the first axis >>> X_dense_r = roll_sparse(X.toarray(), 2, axis=0) # Equivalent dense roll >>> np.allclose(X_roll, X_dense_r.toarray()) True ''' if not scipy.sparse.isspmatrix(x): return np.roll(x, shift, axis=axis) # shift-mod-length lets us have shift > x.shape[axis] if axis not in [0, 1, -1]: raise ParameterError('axis must be one of (0, 1, -1)') shift = np.mod(shift, x.shape[axis]) if shift == 0: return x.copy() fmt = x.format if axis == 0: x = x.tocsc() elif axis in (-1, 1): x = x.tocsr() # lil matrix to start x_r = scipy.sparse.lil_matrix(x.shape, dtype=x.dtype) idx_in = [slice(None)] * x.ndim idx_out = [slice(None)] * x_r.ndim idx_in[axis] = slice(0, -shift) idx_out[axis] = slice(shift, None) x_r[tuple(idx_out)] = x[tuple(idx_in)] idx_out[axis] = slice(0, shift) idx_in[axis] = slice(-shift, None) x_r[tuple(idx_out)] = x[tuple(idx_in)] return x_r.asformat(fmt)
def roll_sparse(x, shift, axis=0): '''Sparse matrix roll This operation is equivalent to ``numpy.roll``, but operates on sparse matrices. Parameters ---------- x : scipy.sparse.spmatrix or np.ndarray The sparse matrix input shift : int The number of positions to roll the specified axis axis : (0, 1, -1) The axis along which to roll. Returns ------- x_rolled : same type as `x` The rolled matrix, with the same format as `x` See Also -------- numpy.roll Examples -------- >>> # Generate a random sparse binary matrix >>> X = scipy.sparse.lil_matrix(np.random.randint(0, 2, size=(5,5))) >>> X_roll = roll_sparse(X, 2, axis=0) # Roll by 2 on the first axis >>> X_dense_r = roll_sparse(X.toarray(), 2, axis=0) # Equivalent dense roll >>> np.allclose(X_roll, X_dense_r.toarray()) True ''' if not scipy.sparse.isspmatrix(x): return np.roll(x, shift, axis=axis) # shift-mod-length lets us have shift > x.shape[axis] if axis not in [0, 1, -1]: raise ParameterError('axis must be one of (0, 1, -1)') shift = np.mod(shift, x.shape[axis]) if shift == 0: return x.copy() fmt = x.format if axis == 0: x = x.tocsc() elif axis in (-1, 1): x = x.tocsr() # lil matrix to start x_r = scipy.sparse.lil_matrix(x.shape, dtype=x.dtype) idx_in = [slice(None)] * x.ndim idx_out = [slice(None)] * x_r.ndim idx_in[axis] = slice(0, -shift) idx_out[axis] = slice(shift, None) x_r[tuple(idx_out)] = x[tuple(idx_in)] idx_out[axis] = slice(0, shift) idx_in[axis] = slice(-shift, None) x_r[tuple(idx_out)] = x[tuple(idx_in)] return x_r.asformat(fmt)
[ "Sparse", "matrix", "roll" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1101-L1167
[ "def", "roll_sparse", "(", "x", ",", "shift", ",", "axis", "=", "0", ")", ":", "if", "not", "scipy", ".", "sparse", ".", "isspmatrix", "(", "x", ")", ":", "return", "np", ".", "roll", "(", "x", ",", "shift", ",", "axis", "=", "axis", ")", "# shift-mod-length lets us have shift > x.shape[axis]", "if", "axis", "not", "in", "[", "0", ",", "1", ",", "-", "1", "]", ":", "raise", "ParameterError", "(", "'axis must be one of (0, 1, -1)'", ")", "shift", "=", "np", ".", "mod", "(", "shift", ",", "x", ".", "shape", "[", "axis", "]", ")", "if", "shift", "==", "0", ":", "return", "x", ".", "copy", "(", ")", "fmt", "=", "x", ".", "format", "if", "axis", "==", "0", ":", "x", "=", "x", ".", "tocsc", "(", ")", "elif", "axis", "in", "(", "-", "1", ",", "1", ")", ":", "x", "=", "x", ".", "tocsr", "(", ")", "# lil matrix to start", "x_r", "=", "scipy", ".", "sparse", ".", "lil_matrix", "(", "x", ".", "shape", ",", "dtype", "=", "x", ".", "dtype", ")", "idx_in", "=", "[", "slice", "(", "None", ")", "]", "*", "x", ".", "ndim", "idx_out", "=", "[", "slice", "(", "None", ")", "]", "*", "x_r", ".", "ndim", "idx_in", "[", "axis", "]", "=", "slice", "(", "0", ",", "-", "shift", ")", "idx_out", "[", "axis", "]", "=", "slice", "(", "shift", ",", "None", ")", "x_r", "[", "tuple", "(", "idx_out", ")", "]", "=", "x", "[", "tuple", "(", "idx_in", ")", "]", "idx_out", "[", "axis", "]", "=", "slice", "(", "0", ",", "shift", ")", "idx_in", "[", "axis", "]", "=", "slice", "(", "-", "shift", ",", "None", ")", "x_r", "[", "tuple", "(", "idx_out", ")", "]", "=", "x", "[", "tuple", "(", "idx_in", ")", "]", "return", "x_r", ".", "asformat", "(", "fmt", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
buf_to_float
Convert an integer buffer to floating point values. This is primarily useful when loading integer-valued wav data into numpy arrays. See Also -------- buf_to_float Parameters ---------- x : np.ndarray [dtype=int] The integer-valued data buffer n_bytes : int [1, 2, 4] The number of bytes per sample in `x` dtype : numeric type The target output type (default: 32-bit float) Returns ------- x_float : np.ndarray [dtype=float] The input data buffer cast to floating point
librosa/util/utils.py
def buf_to_float(x, n_bytes=2, dtype=np.float32): """Convert an integer buffer to floating point values. This is primarily useful when loading integer-valued wav data into numpy arrays. See Also -------- buf_to_float Parameters ---------- x : np.ndarray [dtype=int] The integer-valued data buffer n_bytes : int [1, 2, 4] The number of bytes per sample in `x` dtype : numeric type The target output type (default: 32-bit float) Returns ------- x_float : np.ndarray [dtype=float] The input data buffer cast to floating point """ # Invert the scale of the data scale = 1./float(1 << ((8 * n_bytes) - 1)) # Construct the format string fmt = '<i{:d}'.format(n_bytes) # Rescale and format the data buffer return scale * np.frombuffer(x, fmt).astype(dtype)
def buf_to_float(x, n_bytes=2, dtype=np.float32): """Convert an integer buffer to floating point values. This is primarily useful when loading integer-valued wav data into numpy arrays. See Also -------- buf_to_float Parameters ---------- x : np.ndarray [dtype=int] The integer-valued data buffer n_bytes : int [1, 2, 4] The number of bytes per sample in `x` dtype : numeric type The target output type (default: 32-bit float) Returns ------- x_float : np.ndarray [dtype=float] The input data buffer cast to floating point """ # Invert the scale of the data scale = 1./float(1 << ((8 * n_bytes) - 1)) # Construct the format string fmt = '<i{:d}'.format(n_bytes) # Rescale and format the data buffer return scale * np.frombuffer(x, fmt).astype(dtype)
[ "Convert", "an", "integer", "buffer", "to", "floating", "point", "values", ".", "This", "is", "primarily", "useful", "when", "loading", "integer", "-", "valued", "wav", "data", "into", "numpy", "arrays", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1170-L1203
[ "def", "buf_to_float", "(", "x", ",", "n_bytes", "=", "2", ",", "dtype", "=", "np", ".", "float32", ")", ":", "# Invert the scale of the data", "scale", "=", "1.", "/", "float", "(", "1", "<<", "(", "(", "8", "*", "n_bytes", ")", "-", "1", ")", ")", "# Construct the format string", "fmt", "=", "'<i{:d}'", ".", "format", "(", "n_bytes", ")", "# Rescale and format the data buffer", "return", "scale", "*", "np", ".", "frombuffer", "(", "x", ",", "fmt", ")", ".", "astype", "(", "dtype", ")" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
index_to_slice
Generate a slice array from an index array. Parameters ---------- idx : list-like Array of index boundaries idx_min : None or int idx_max : None or int Minimum and maximum allowed indices step : None or int Step size for each slice. If `None`, then the default step of 1 is used. pad : boolean If `True`, pad `idx` to span the range `idx_min:idx_max`. Returns ------- slices : list of slice ``slices[i] = slice(idx[i], idx[i+1], step)`` Additional slice objects may be added at the beginning or end, depending on whether ``pad==True`` and the supplied values for `idx_min` and `idx_max`. See Also -------- fix_frames Examples -------- >>> # Generate slices from spaced indices >>> librosa.util.index_to_slice(np.arange(20, 100, 15)) [slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None)] >>> # Pad to span the range (0, 100) >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100) [slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)] >>> # Use a step of 5 for each slice >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100, step=5) [slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5), slice(80, 95, 5), slice(95, 100, 5)]
librosa/util/utils.py
def index_to_slice(idx, idx_min=None, idx_max=None, step=None, pad=True): '''Generate a slice array from an index array. Parameters ---------- idx : list-like Array of index boundaries idx_min : None or int idx_max : None or int Minimum and maximum allowed indices step : None or int Step size for each slice. If `None`, then the default step of 1 is used. pad : boolean If `True`, pad `idx` to span the range `idx_min:idx_max`. Returns ------- slices : list of slice ``slices[i] = slice(idx[i], idx[i+1], step)`` Additional slice objects may be added at the beginning or end, depending on whether ``pad==True`` and the supplied values for `idx_min` and `idx_max`. See Also -------- fix_frames Examples -------- >>> # Generate slices from spaced indices >>> librosa.util.index_to_slice(np.arange(20, 100, 15)) [slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None)] >>> # Pad to span the range (0, 100) >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100) [slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)] >>> # Use a step of 5 for each slice >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100, step=5) [slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5), slice(80, 95, 5), slice(95, 100, 5)] ''' # First, normalize the index set idx_fixed = fix_frames(idx, idx_min, idx_max, pad=pad) # Now convert the indices to slices return [slice(start, end, step) for (start, end) in zip(idx_fixed, idx_fixed[1:])]
def index_to_slice(idx, idx_min=None, idx_max=None, step=None, pad=True): '''Generate a slice array from an index array. Parameters ---------- idx : list-like Array of index boundaries idx_min : None or int idx_max : None or int Minimum and maximum allowed indices step : None or int Step size for each slice. If `None`, then the default step of 1 is used. pad : boolean If `True`, pad `idx` to span the range `idx_min:idx_max`. Returns ------- slices : list of slice ``slices[i] = slice(idx[i], idx[i+1], step)`` Additional slice objects may be added at the beginning or end, depending on whether ``pad==True`` and the supplied values for `idx_min` and `idx_max`. See Also -------- fix_frames Examples -------- >>> # Generate slices from spaced indices >>> librosa.util.index_to_slice(np.arange(20, 100, 15)) [slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None)] >>> # Pad to span the range (0, 100) >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100) [slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)] >>> # Use a step of 5 for each slice >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100, step=5) [slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5), slice(80, 95, 5), slice(95, 100, 5)] ''' # First, normalize the index set idx_fixed = fix_frames(idx, idx_min, idx_max, pad=pad) # Now convert the indices to slices return [slice(start, end, step) for (start, end) in zip(idx_fixed, idx_fixed[1:])]
[ "Generate", "a", "slice", "array", "from", "an", "index", "array", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1206-L1259
[ "def", "index_to_slice", "(", "idx", ",", "idx_min", "=", "None", ",", "idx_max", "=", "None", ",", "step", "=", "None", ",", "pad", "=", "True", ")", ":", "# First, normalize the index set", "idx_fixed", "=", "fix_frames", "(", "idx", ",", "idx_min", ",", "idx_max", ",", "pad", "=", "pad", ")", "# Now convert the indices to slices", "return", "[", "slice", "(", "start", ",", "end", ",", "step", ")", "for", "(", "start", ",", "end", ")", "in", "zip", "(", "idx_fixed", ",", "idx_fixed", "[", "1", ":", "]", ")", "]" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
sync
Synchronous aggregation of a multi-dimensional array between boundaries .. note:: In order to ensure total coverage, boundary points may be added to `idx`. If synchronizing a feature matrix against beat tracker output, ensure that frame index numbers are properly aligned and use the same hop length. Parameters ---------- data : np.ndarray multi-dimensional array of features idx : iterable of ints or slices Either an ordered array of boundary indices, or an iterable collection of slice objects. aggregate : function aggregation function (default: `np.mean`) pad : boolean If `True`, `idx` is padded to span the full range `[0, data.shape[axis]]` axis : int The axis along which to aggregate data Returns ------- data_sync : ndarray `data_sync` will have the same dimension as `data`, except that the `axis` coordinate will be reduced according to `idx`. For example, a 2-dimensional `data` with `axis=-1` should satisfy `data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1)` Raises ------ ParameterError If the index set is not of consistent type (all slices or all integers) Notes ----- This function caches at level 40. Examples -------- Beat-synchronous CQT spectra >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> C = np.abs(librosa.cqt(y=y, sr=sr)) >>> beats = librosa.util.fix_frames(beats, x_max=C.shape[1]) By default, use mean aggregation >>> C_avg = librosa.util.sync(C, beats) Use median-aggregation instead of mean >>> C_med = librosa.util.sync(C, beats, ... aggregate=np.median) Or sub-beat synchronization >>> sub_beats = librosa.segment.subsegment(C, beats) >>> sub_beats = librosa.util.fix_frames(sub_beats, x_max=C.shape[1]) >>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median) Plot the results >>> import matplotlib.pyplot as plt >>> beat_t = librosa.frames_to_time(beats, sr=sr) >>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr) >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... x_axis='time') >>> plt.title('CQT power, shape={}'.format(C.shape)) >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(C_med, ... ref=np.max), ... x_coords=beat_t, x_axis='time') >>> plt.title('Beat synchronous CQT power, ' ... 'shape={}'.format(C_med.shape)) >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub, ... ref=np.max), ... x_coords=subbeat_t, x_axis='time') >>> plt.title('Sub-beat synchronous CQT power, ' ... 'shape={}'.format(C_med_sub.shape)) >>> plt.tight_layout()
librosa/util/utils.py
def sync(data, idx, aggregate=None, pad=True, axis=-1): """Synchronous aggregation of a multi-dimensional array between boundaries .. note:: In order to ensure total coverage, boundary points may be added to `idx`. If synchronizing a feature matrix against beat tracker output, ensure that frame index numbers are properly aligned and use the same hop length. Parameters ---------- data : np.ndarray multi-dimensional array of features idx : iterable of ints or slices Either an ordered array of boundary indices, or an iterable collection of slice objects. aggregate : function aggregation function (default: `np.mean`) pad : boolean If `True`, `idx` is padded to span the full range `[0, data.shape[axis]]` axis : int The axis along which to aggregate data Returns ------- data_sync : ndarray `data_sync` will have the same dimension as `data`, except that the `axis` coordinate will be reduced according to `idx`. For example, a 2-dimensional `data` with `axis=-1` should satisfy `data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1)` Raises ------ ParameterError If the index set is not of consistent type (all slices or all integers) Notes ----- This function caches at level 40. Examples -------- Beat-synchronous CQT spectra >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> C = np.abs(librosa.cqt(y=y, sr=sr)) >>> beats = librosa.util.fix_frames(beats, x_max=C.shape[1]) By default, use mean aggregation >>> C_avg = librosa.util.sync(C, beats) Use median-aggregation instead of mean >>> C_med = librosa.util.sync(C, beats, ... aggregate=np.median) Or sub-beat synchronization >>> sub_beats = librosa.segment.subsegment(C, beats) >>> sub_beats = librosa.util.fix_frames(sub_beats, x_max=C.shape[1]) >>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median) Plot the results >>> import matplotlib.pyplot as plt >>> beat_t = librosa.frames_to_time(beats, sr=sr) >>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr) >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... x_axis='time') >>> plt.title('CQT power, shape={}'.format(C.shape)) >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(C_med, ... ref=np.max), ... x_coords=beat_t, x_axis='time') >>> plt.title('Beat synchronous CQT power, ' ... 'shape={}'.format(C_med.shape)) >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub, ... ref=np.max), ... x_coords=subbeat_t, x_axis='time') >>> plt.title('Sub-beat synchronous CQT power, ' ... 'shape={}'.format(C_med_sub.shape)) >>> plt.tight_layout() """ if aggregate is None: aggregate = np.mean shape = list(data.shape) if np.all([isinstance(_, slice) for _ in idx]): slices = idx elif np.all([np.issubdtype(type(_), np.integer) for _ in idx]): slices = index_to_slice(np.asarray(idx), 0, shape[axis], pad=pad) else: raise ParameterError('Invalid index set: {}'.format(idx)) agg_shape = list(shape) agg_shape[axis] = len(slices) data_agg = np.empty(agg_shape, order='F' if np.isfortran(data) else 'C', dtype=data.dtype) idx_in = [slice(None)] * data.ndim idx_agg = [slice(None)] * data_agg.ndim for (i, segment) in enumerate(slices): idx_in[axis] = segment idx_agg[axis] = i data_agg[tuple(idx_agg)] = aggregate(data[tuple(idx_in)], axis=axis) return data_agg
def sync(data, idx, aggregate=None, pad=True, axis=-1): """Synchronous aggregation of a multi-dimensional array between boundaries .. note:: In order to ensure total coverage, boundary points may be added to `idx`. If synchronizing a feature matrix against beat tracker output, ensure that frame index numbers are properly aligned and use the same hop length. Parameters ---------- data : np.ndarray multi-dimensional array of features idx : iterable of ints or slices Either an ordered array of boundary indices, or an iterable collection of slice objects. aggregate : function aggregation function (default: `np.mean`) pad : boolean If `True`, `idx` is padded to span the full range `[0, data.shape[axis]]` axis : int The axis along which to aggregate data Returns ------- data_sync : ndarray `data_sync` will have the same dimension as `data`, except that the `axis` coordinate will be reduced according to `idx`. For example, a 2-dimensional `data` with `axis=-1` should satisfy `data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1)` Raises ------ ParameterError If the index set is not of consistent type (all slices or all integers) Notes ----- This function caches at level 40. Examples -------- Beat-synchronous CQT spectra >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> C = np.abs(librosa.cqt(y=y, sr=sr)) >>> beats = librosa.util.fix_frames(beats, x_max=C.shape[1]) By default, use mean aggregation >>> C_avg = librosa.util.sync(C, beats) Use median-aggregation instead of mean >>> C_med = librosa.util.sync(C, beats, ... aggregate=np.median) Or sub-beat synchronization >>> sub_beats = librosa.segment.subsegment(C, beats) >>> sub_beats = librosa.util.fix_frames(sub_beats, x_max=C.shape[1]) >>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median) Plot the results >>> import matplotlib.pyplot as plt >>> beat_t = librosa.frames_to_time(beats, sr=sr) >>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr) >>> plt.figure() >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... x_axis='time') >>> plt.title('CQT power, shape={}'.format(C.shape)) >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(librosa.amplitude_to_db(C_med, ... ref=np.max), ... x_coords=beat_t, x_axis='time') >>> plt.title('Beat synchronous CQT power, ' ... 'shape={}'.format(C_med.shape)) >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub, ... ref=np.max), ... x_coords=subbeat_t, x_axis='time') >>> plt.title('Sub-beat synchronous CQT power, ' ... 'shape={}'.format(C_med_sub.shape)) >>> plt.tight_layout() """ if aggregate is None: aggregate = np.mean shape = list(data.shape) if np.all([isinstance(_, slice) for _ in idx]): slices = idx elif np.all([np.issubdtype(type(_), np.integer) for _ in idx]): slices = index_to_slice(np.asarray(idx), 0, shape[axis], pad=pad) else: raise ParameterError('Invalid index set: {}'.format(idx)) agg_shape = list(shape) agg_shape[axis] = len(slices) data_agg = np.empty(agg_shape, order='F' if np.isfortran(data) else 'C', dtype=data.dtype) idx_in = [slice(None)] * data.ndim idx_agg = [slice(None)] * data_agg.ndim for (i, segment) in enumerate(slices): idx_in[axis] = segment idx_agg[axis] = i data_agg[tuple(idx_agg)] = aggregate(data[tuple(idx_in)], axis=axis) return data_agg
[ "Synchronous", "aggregation", "of", "a", "multi", "-", "dimensional", "array", "between", "boundaries" ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1263-L1388
[ "def", "sync", "(", "data", ",", "idx", ",", "aggregate", "=", "None", ",", "pad", "=", "True", ",", "axis", "=", "-", "1", ")", ":", "if", "aggregate", "is", "None", ":", "aggregate", "=", "np", ".", "mean", "shape", "=", "list", "(", "data", ".", "shape", ")", "if", "np", ".", "all", "(", "[", "isinstance", "(", "_", ",", "slice", ")", "for", "_", "in", "idx", "]", ")", ":", "slices", "=", "idx", "elif", "np", ".", "all", "(", "[", "np", ".", "issubdtype", "(", "type", "(", "_", ")", ",", "np", ".", "integer", ")", "for", "_", "in", "idx", "]", ")", ":", "slices", "=", "index_to_slice", "(", "np", ".", "asarray", "(", "idx", ")", ",", "0", ",", "shape", "[", "axis", "]", ",", "pad", "=", "pad", ")", "else", ":", "raise", "ParameterError", "(", "'Invalid index set: {}'", ".", "format", "(", "idx", ")", ")", "agg_shape", "=", "list", "(", "shape", ")", "agg_shape", "[", "axis", "]", "=", "len", "(", "slices", ")", "data_agg", "=", "np", ".", "empty", "(", "agg_shape", ",", "order", "=", "'F'", "if", "np", ".", "isfortran", "(", "data", ")", "else", "'C'", ",", "dtype", "=", "data", ".", "dtype", ")", "idx_in", "=", "[", "slice", "(", "None", ")", "]", "*", "data", ".", "ndim", "idx_agg", "=", "[", "slice", "(", "None", ")", "]", "*", "data_agg", ".", "ndim", "for", "(", "i", ",", "segment", ")", "in", "enumerate", "(", "slices", ")", ":", "idx_in", "[", "axis", "]", "=", "segment", "idx_agg", "[", "axis", "]", "=", "i", "data_agg", "[", "tuple", "(", "idx_agg", ")", "]", "=", "aggregate", "(", "data", "[", "tuple", "(", "idx_in", ")", "]", ",", "axis", "=", "axis", ")", "return", "data_agg" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
softmask
Robustly compute a softmask operation. `M = X**power / (X**power + X_ref**power)` Parameters ---------- X : np.ndarray The (non-negative) input array corresponding to the positive mask elements X_ref : np.ndarray The (non-negative) array of reference or background elements. Must have the same shape as `X`. power : number > 0 or np.inf If finite, returns the soft mask computed in a numerically stable way If infinite, returns a hard (binary) mask equivalent to `X > X_ref`. Note: for hard masks, ties are always broken in favor of `X_ref` (`mask=0`). split_zeros : bool If `True`, entries where `X` and X`_ref` are both small (close to 0) will receive mask values of 0.5. Otherwise, the mask is set to 0 for these entries. Returns ------- mask : np.ndarray, shape=`X.shape` The output mask array Raises ------ ParameterError If `X` and `X_ref` have different shapes. If `X` or `X_ref` are negative anywhere If `power <= 0` Examples -------- >>> X = 2 * np.ones((3, 3)) >>> X_ref = np.vander(np.arange(3.0)) >>> X array([[ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> X_ref array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]]) >>> librosa.util.softmask(X, X_ref, power=1) array([[ 1. , 1. , 0.667], [ 0.667, 0.667, 0.667], [ 0.333, 0.5 , 0.667]]) >>> librosa.util.softmask(X_ref, X, power=1) array([[ 0. , 0. , 0.333], [ 0.333, 0.333, 0.333], [ 0.667, 0.5 , 0.333]]) >>> librosa.util.softmask(X, X_ref, power=2) array([[ 1. , 1. , 0.8], [ 0.8, 0.8, 0.8], [ 0.2, 0.5, 0.8]]) >>> librosa.util.softmask(X, X_ref, power=4) array([[ 1. , 1. , 0.941], [ 0.941, 0.941, 0.941], [ 0.059, 0.5 , 0.941]]) >>> librosa.util.softmask(X, X_ref, power=100) array([[ 1.000e+00, 1.000e+00, 1.000e+00], [ 1.000e+00, 1.000e+00, 1.000e+00], [ 7.889e-31, 5.000e-01, 1.000e+00]]) >>> librosa.util.softmask(X, X_ref, power=np.inf) array([[ True, True, True], [ True, True, True], [False, False, True]], dtype=bool)
librosa/util/utils.py
def softmask(X, X_ref, power=1, split_zeros=False): '''Robustly compute a softmask operation. `M = X**power / (X**power + X_ref**power)` Parameters ---------- X : np.ndarray The (non-negative) input array corresponding to the positive mask elements X_ref : np.ndarray The (non-negative) array of reference or background elements. Must have the same shape as `X`. power : number > 0 or np.inf If finite, returns the soft mask computed in a numerically stable way If infinite, returns a hard (binary) mask equivalent to `X > X_ref`. Note: for hard masks, ties are always broken in favor of `X_ref` (`mask=0`). split_zeros : bool If `True`, entries where `X` and X`_ref` are both small (close to 0) will receive mask values of 0.5. Otherwise, the mask is set to 0 for these entries. Returns ------- mask : np.ndarray, shape=`X.shape` The output mask array Raises ------ ParameterError If `X` and `X_ref` have different shapes. If `X` or `X_ref` are negative anywhere If `power <= 0` Examples -------- >>> X = 2 * np.ones((3, 3)) >>> X_ref = np.vander(np.arange(3.0)) >>> X array([[ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> X_ref array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]]) >>> librosa.util.softmask(X, X_ref, power=1) array([[ 1. , 1. , 0.667], [ 0.667, 0.667, 0.667], [ 0.333, 0.5 , 0.667]]) >>> librosa.util.softmask(X_ref, X, power=1) array([[ 0. , 0. , 0.333], [ 0.333, 0.333, 0.333], [ 0.667, 0.5 , 0.333]]) >>> librosa.util.softmask(X, X_ref, power=2) array([[ 1. , 1. , 0.8], [ 0.8, 0.8, 0.8], [ 0.2, 0.5, 0.8]]) >>> librosa.util.softmask(X, X_ref, power=4) array([[ 1. , 1. , 0.941], [ 0.941, 0.941, 0.941], [ 0.059, 0.5 , 0.941]]) >>> librosa.util.softmask(X, X_ref, power=100) array([[ 1.000e+00, 1.000e+00, 1.000e+00], [ 1.000e+00, 1.000e+00, 1.000e+00], [ 7.889e-31, 5.000e-01, 1.000e+00]]) >>> librosa.util.softmask(X, X_ref, power=np.inf) array([[ True, True, True], [ True, True, True], [False, False, True]], dtype=bool) ''' if X.shape != X_ref.shape: raise ParameterError('Shape mismatch: {}!={}'.format(X.shape, X_ref.shape)) if np.any(X < 0) or np.any(X_ref < 0): raise ParameterError('X and X_ref must be non-negative') if power <= 0: raise ParameterError('power must be strictly positive') # We're working with ints, cast to float. dtype = X.dtype if not np.issubdtype(dtype, np.floating): dtype = np.float32 # Re-scale the input arrays relative to the larger value Z = np.maximum(X, X_ref).astype(dtype) bad_idx = (Z < np.finfo(dtype).tiny) Z[bad_idx] = 1 # For finite power, compute the softmask if np.isfinite(power): mask = (X / Z)**power ref_mask = (X_ref / Z)**power good_idx = ~bad_idx mask[good_idx] /= mask[good_idx] + ref_mask[good_idx] # Wherever energy is below energy in both inputs, split the mask if split_zeros: mask[bad_idx] = 0.5 else: mask[bad_idx] = 0.0 else: # Otherwise, compute the hard mask mask = X > X_ref return mask
def softmask(X, X_ref, power=1, split_zeros=False): '''Robustly compute a softmask operation. `M = X**power / (X**power + X_ref**power)` Parameters ---------- X : np.ndarray The (non-negative) input array corresponding to the positive mask elements X_ref : np.ndarray The (non-negative) array of reference or background elements. Must have the same shape as `X`. power : number > 0 or np.inf If finite, returns the soft mask computed in a numerically stable way If infinite, returns a hard (binary) mask equivalent to `X > X_ref`. Note: for hard masks, ties are always broken in favor of `X_ref` (`mask=0`). split_zeros : bool If `True`, entries where `X` and X`_ref` are both small (close to 0) will receive mask values of 0.5. Otherwise, the mask is set to 0 for these entries. Returns ------- mask : np.ndarray, shape=`X.shape` The output mask array Raises ------ ParameterError If `X` and `X_ref` have different shapes. If `X` or `X_ref` are negative anywhere If `power <= 0` Examples -------- >>> X = 2 * np.ones((3, 3)) >>> X_ref = np.vander(np.arange(3.0)) >>> X array([[ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> X_ref array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]]) >>> librosa.util.softmask(X, X_ref, power=1) array([[ 1. , 1. , 0.667], [ 0.667, 0.667, 0.667], [ 0.333, 0.5 , 0.667]]) >>> librosa.util.softmask(X_ref, X, power=1) array([[ 0. , 0. , 0.333], [ 0.333, 0.333, 0.333], [ 0.667, 0.5 , 0.333]]) >>> librosa.util.softmask(X, X_ref, power=2) array([[ 1. , 1. , 0.8], [ 0.8, 0.8, 0.8], [ 0.2, 0.5, 0.8]]) >>> librosa.util.softmask(X, X_ref, power=4) array([[ 1. , 1. , 0.941], [ 0.941, 0.941, 0.941], [ 0.059, 0.5 , 0.941]]) >>> librosa.util.softmask(X, X_ref, power=100) array([[ 1.000e+00, 1.000e+00, 1.000e+00], [ 1.000e+00, 1.000e+00, 1.000e+00], [ 7.889e-31, 5.000e-01, 1.000e+00]]) >>> librosa.util.softmask(X, X_ref, power=np.inf) array([[ True, True, True], [ True, True, True], [False, False, True]], dtype=bool) ''' if X.shape != X_ref.shape: raise ParameterError('Shape mismatch: {}!={}'.format(X.shape, X_ref.shape)) if np.any(X < 0) or np.any(X_ref < 0): raise ParameterError('X and X_ref must be non-negative') if power <= 0: raise ParameterError('power must be strictly positive') # We're working with ints, cast to float. dtype = X.dtype if not np.issubdtype(dtype, np.floating): dtype = np.float32 # Re-scale the input arrays relative to the larger value Z = np.maximum(X, X_ref).astype(dtype) bad_idx = (Z < np.finfo(dtype).tiny) Z[bad_idx] = 1 # For finite power, compute the softmask if np.isfinite(power): mask = (X / Z)**power ref_mask = (X_ref / Z)**power good_idx = ~bad_idx mask[good_idx] /= mask[good_idx] + ref_mask[good_idx] # Wherever energy is below energy in both inputs, split the mask if split_zeros: mask[bad_idx] = 0.5 else: mask[bad_idx] = 0.0 else: # Otherwise, compute the hard mask mask = X > X_ref return mask
[ "Robustly", "compute", "a", "softmask", "operation", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1391-L1507
[ "def", "softmask", "(", "X", ",", "X_ref", ",", "power", "=", "1", ",", "split_zeros", "=", "False", ")", ":", "if", "X", ".", "shape", "!=", "X_ref", ".", "shape", ":", "raise", "ParameterError", "(", "'Shape mismatch: {}!={}'", ".", "format", "(", "X", ".", "shape", ",", "X_ref", ".", "shape", ")", ")", "if", "np", ".", "any", "(", "X", "<", "0", ")", "or", "np", ".", "any", "(", "X_ref", "<", "0", ")", ":", "raise", "ParameterError", "(", "'X and X_ref must be non-negative'", ")", "if", "power", "<=", "0", ":", "raise", "ParameterError", "(", "'power must be strictly positive'", ")", "# We're working with ints, cast to float.", "dtype", "=", "X", ".", "dtype", "if", "not", "np", ".", "issubdtype", "(", "dtype", ",", "np", ".", "floating", ")", ":", "dtype", "=", "np", ".", "float32", "# Re-scale the input arrays relative to the larger value", "Z", "=", "np", ".", "maximum", "(", "X", ",", "X_ref", ")", ".", "astype", "(", "dtype", ")", "bad_idx", "=", "(", "Z", "<", "np", ".", "finfo", "(", "dtype", ")", ".", "tiny", ")", "Z", "[", "bad_idx", "]", "=", "1", "# For finite power, compute the softmask", "if", "np", ".", "isfinite", "(", "power", ")", ":", "mask", "=", "(", "X", "/", "Z", ")", "**", "power", "ref_mask", "=", "(", "X_ref", "/", "Z", ")", "**", "power", "good_idx", "=", "~", "bad_idx", "mask", "[", "good_idx", "]", "/=", "mask", "[", "good_idx", "]", "+", "ref_mask", "[", "good_idx", "]", "# Wherever energy is below energy in both inputs, split the mask", "if", "split_zeros", ":", "mask", "[", "bad_idx", "]", "=", "0.5", "else", ":", "mask", "[", "bad_idx", "]", "=", "0.0", "else", ":", "# Otherwise, compute the hard mask", "mask", "=", "X", ">", "X_ref", "return", "mask" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
tiny
Compute the tiny-value corresponding to an input's data type. This is the smallest "usable" number representable in `x`'s data type (e.g., float32). This is primarily useful for determining a threshold for numerical underflow in division or multiplication operations. Parameters ---------- x : number or np.ndarray The array to compute the tiny-value for. All that matters here is `x.dtype`. Returns ------- tiny_value : float The smallest positive usable number for the type of `x`. If `x` is integer-typed, then the tiny value for `np.float32` is returned instead. See Also -------- numpy.finfo Examples -------- For a standard double-precision floating point number: >>> librosa.util.tiny(1.0) 2.2250738585072014e-308 Or explicitly as double-precision >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64)) 2.2250738585072014e-308 Or complex numbers >>> librosa.util.tiny(1j) 2.2250738585072014e-308 Single-precision floating point: >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32)) 1.1754944e-38 Integer >>> librosa.util.tiny(5) 1.1754944e-38
librosa/util/utils.py
def tiny(x): '''Compute the tiny-value corresponding to an input's data type. This is the smallest "usable" number representable in `x`'s data type (e.g., float32). This is primarily useful for determining a threshold for numerical underflow in division or multiplication operations. Parameters ---------- x : number or np.ndarray The array to compute the tiny-value for. All that matters here is `x.dtype`. Returns ------- tiny_value : float The smallest positive usable number for the type of `x`. If `x` is integer-typed, then the tiny value for `np.float32` is returned instead. See Also -------- numpy.finfo Examples -------- For a standard double-precision floating point number: >>> librosa.util.tiny(1.0) 2.2250738585072014e-308 Or explicitly as double-precision >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64)) 2.2250738585072014e-308 Or complex numbers >>> librosa.util.tiny(1j) 2.2250738585072014e-308 Single-precision floating point: >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32)) 1.1754944e-38 Integer >>> librosa.util.tiny(5) 1.1754944e-38 ''' # Make sure we have an array view x = np.asarray(x) # Only floating types generate a tiny if np.issubdtype(x.dtype, np.floating) or np.issubdtype(x.dtype, np.complexfloating): dtype = x.dtype else: dtype = np.float32 return np.finfo(dtype).tiny
def tiny(x): '''Compute the tiny-value corresponding to an input's data type. This is the smallest "usable" number representable in `x`'s data type (e.g., float32). This is primarily useful for determining a threshold for numerical underflow in division or multiplication operations. Parameters ---------- x : number or np.ndarray The array to compute the tiny-value for. All that matters here is `x.dtype`. Returns ------- tiny_value : float The smallest positive usable number for the type of `x`. If `x` is integer-typed, then the tiny value for `np.float32` is returned instead. See Also -------- numpy.finfo Examples -------- For a standard double-precision floating point number: >>> librosa.util.tiny(1.0) 2.2250738585072014e-308 Or explicitly as double-precision >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64)) 2.2250738585072014e-308 Or complex numbers >>> librosa.util.tiny(1j) 2.2250738585072014e-308 Single-precision floating point: >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32)) 1.1754944e-38 Integer >>> librosa.util.tiny(5) 1.1754944e-38 ''' # Make sure we have an array view x = np.asarray(x) # Only floating types generate a tiny if np.issubdtype(x.dtype, np.floating) or np.issubdtype(x.dtype, np.complexfloating): dtype = x.dtype else: dtype = np.float32 return np.finfo(dtype).tiny
[ "Compute", "the", "tiny", "-", "value", "corresponding", "to", "an", "input", "s", "data", "type", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1510-L1574
[ "def", "tiny", "(", "x", ")", ":", "# Make sure we have an array view", "x", "=", "np", ".", "asarray", "(", "x", ")", "# Only floating types generate a tiny", "if", "np", ".", "issubdtype", "(", "x", ".", "dtype", ",", "np", ".", "floating", ")", "or", "np", ".", "issubdtype", "(", "x", ".", "dtype", ",", "np", ".", "complexfloating", ")", ":", "dtype", "=", "x", ".", "dtype", "else", ":", "dtype", "=", "np", ".", "float32", "return", "np", ".", "finfo", "(", "dtype", ")", ".", "tiny" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
fill_off_diagonal
Sets all cells of a matrix to a given ``value`` if they lie outside a constraint region. In this case, the constraint region is the Sakoe-Chiba band which runs with a fixed ``radius`` along the main diagonal. When ``x.shape[0] != x.shape[1]``, the radius will be expanded so that ``x[-1, -1] = 1`` always. ``x`` will be modified in place. Parameters ---------- x : np.ndarray [shape=(N, M)] Input matrix, will be modified in place. radius : float The band radius (1/2 of the width) will be ``int(radius*min(x.shape))``. value : int ``x[n, m] = value`` when ``(n, m)`` lies outside the band. Examples -------- >>> x = np.ones((8, 8)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) >>> x = np.ones((8, 12)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]])
librosa/util/utils.py
def fill_off_diagonal(x, radius, value=0): """Sets all cells of a matrix to a given ``value`` if they lie outside a constraint region. In this case, the constraint region is the Sakoe-Chiba band which runs with a fixed ``radius`` along the main diagonal. When ``x.shape[0] != x.shape[1]``, the radius will be expanded so that ``x[-1, -1] = 1`` always. ``x`` will be modified in place. Parameters ---------- x : np.ndarray [shape=(N, M)] Input matrix, will be modified in place. radius : float The band radius (1/2 of the width) will be ``int(radius*min(x.shape))``. value : int ``x[n, m] = value`` when ``(n, m)`` lies outside the band. Examples -------- >>> x = np.ones((8, 8)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) >>> x = np.ones((8, 12)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) """ nx, ny = x.shape # Calculate the radius in indices, rather than proportion radius = np.round(radius * np.min(x.shape)) nx, ny = x.shape offset = np.abs((x.shape[0] - x.shape[1])) if nx < ny: idx_u = np.triu_indices_from(x, k=radius + offset) idx_l = np.tril_indices_from(x, k=-radius) else: idx_u = np.triu_indices_from(x, k=radius) idx_l = np.tril_indices_from(x, k=-radius - offset) # modify input matrix x[idx_u] = value x[idx_l] = value
def fill_off_diagonal(x, radius, value=0): """Sets all cells of a matrix to a given ``value`` if they lie outside a constraint region. In this case, the constraint region is the Sakoe-Chiba band which runs with a fixed ``radius`` along the main diagonal. When ``x.shape[0] != x.shape[1]``, the radius will be expanded so that ``x[-1, -1] = 1`` always. ``x`` will be modified in place. Parameters ---------- x : np.ndarray [shape=(N, M)] Input matrix, will be modified in place. radius : float The band radius (1/2 of the width) will be ``int(radius*min(x.shape))``. value : int ``x[n, m] = value`` when ``(n, m)`` lies outside the band. Examples -------- >>> x = np.ones((8, 8)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) >>> x = np.ones((8, 12)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) """ nx, ny = x.shape # Calculate the radius in indices, rather than proportion radius = np.round(radius * np.min(x.shape)) nx, ny = x.shape offset = np.abs((x.shape[0] - x.shape[1])) if nx < ny: idx_u = np.triu_indices_from(x, k=radius + offset) idx_l = np.tril_indices_from(x, k=-radius) else: idx_u = np.triu_indices_from(x, k=radius) idx_l = np.tril_indices_from(x, k=-radius - offset) # modify input matrix x[idx_u] = value x[idx_l] = value
[ "Sets", "all", "cells", "of", "a", "matrix", "to", "a", "given", "value", "if", "they", "lie", "outside", "a", "constraint", "region", ".", "In", "this", "case", "the", "constraint", "region", "is", "the", "Sakoe", "-", "Chiba", "band", "which", "runs", "with", "a", "fixed", "radius", "along", "the", "main", "diagonal", ".", "When", "x", ".", "shape", "[", "0", "]", "!", "=", "x", ".", "shape", "[", "1", "]", "the", "radius", "will", "be", "expanded", "so", "that", "x", "[", "-", "1", "-", "1", "]", "=", "1", "always", "." ]
librosa/librosa
python
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/utils.py#L1577-L1640
[ "def", "fill_off_diagonal", "(", "x", ",", "radius", ",", "value", "=", "0", ")", ":", "nx", ",", "ny", "=", "x", ".", "shape", "# Calculate the radius in indices, rather than proportion", "radius", "=", "np", ".", "round", "(", "radius", "*", "np", ".", "min", "(", "x", ".", "shape", ")", ")", "nx", ",", "ny", "=", "x", ".", "shape", "offset", "=", "np", ".", "abs", "(", "(", "x", ".", "shape", "[", "0", "]", "-", "x", ".", "shape", "[", "1", "]", ")", ")", "if", "nx", "<", "ny", ":", "idx_u", "=", "np", ".", "triu_indices_from", "(", "x", ",", "k", "=", "radius", "+", "offset", ")", "idx_l", "=", "np", ".", "tril_indices_from", "(", "x", ",", "k", "=", "-", "radius", ")", "else", ":", "idx_u", "=", "np", ".", "triu_indices_from", "(", "x", ",", "k", "=", "radius", ")", "idx_l", "=", "np", ".", "tril_indices_from", "(", "x", ",", "k", "=", "-", "radius", "-", "offset", ")", "# modify input matrix", "x", "[", "idx_u", "]", "=", "value", "x", "[", "idx_l", "]", "=", "value" ]
180e8e6eb8f958fa6b20b8cba389f7945d508247
test
frames2video
Read the frame images from a directory and join them as a video Args: frame_dir (str): The directory containing video frames. video_file (str): Output filename. fps (float): FPS of the output video. fourcc (str): Fourcc of the output video, this should be compatible with the output file type. filename_tmpl (str): Filename template with the index as the variable. start (int): Starting frame index. end (int): Ending frame index. show_progress (bool): Whether to show a progress bar.
mmcv/video/io.py
def frames2video(frame_dir, video_file, fps=30, fourcc='XVID', filename_tmpl='{:06d}.jpg', start=0, end=0, show_progress=True): """Read the frame images from a directory and join them as a video Args: frame_dir (str): The directory containing video frames. video_file (str): Output filename. fps (float): FPS of the output video. fourcc (str): Fourcc of the output video, this should be compatible with the output file type. filename_tmpl (str): Filename template with the index as the variable. start (int): Starting frame index. end (int): Ending frame index. show_progress (bool): Whether to show a progress bar. """ if end == 0: ext = filename_tmpl.split('.')[-1] end = len([name for name in scandir(frame_dir, ext)]) first_file = osp.join(frame_dir, filename_tmpl.format(start)) check_file_exist(first_file, 'The start frame not found: ' + first_file) img = cv2.imread(first_file) height, width = img.shape[:2] resolution = (width, height) vwriter = cv2.VideoWriter(video_file, VideoWriter_fourcc(*fourcc), fps, resolution) def write_frame(file_idx): filename = osp.join(frame_dir, filename_tmpl.format(file_idx)) img = cv2.imread(filename) vwriter.write(img) if show_progress: track_progress(write_frame, range(start, end)) else: for i in range(start, end): filename = osp.join(frame_dir, filename_tmpl.format(i)) img = cv2.imread(filename) vwriter.write(img) vwriter.release()
def frames2video(frame_dir, video_file, fps=30, fourcc='XVID', filename_tmpl='{:06d}.jpg', start=0, end=0, show_progress=True): """Read the frame images from a directory and join them as a video Args: frame_dir (str): The directory containing video frames. video_file (str): Output filename. fps (float): FPS of the output video. fourcc (str): Fourcc of the output video, this should be compatible with the output file type. filename_tmpl (str): Filename template with the index as the variable. start (int): Starting frame index. end (int): Ending frame index. show_progress (bool): Whether to show a progress bar. """ if end == 0: ext = filename_tmpl.split('.')[-1] end = len([name for name in scandir(frame_dir, ext)]) first_file = osp.join(frame_dir, filename_tmpl.format(start)) check_file_exist(first_file, 'The start frame not found: ' + first_file) img = cv2.imread(first_file) height, width = img.shape[:2] resolution = (width, height) vwriter = cv2.VideoWriter(video_file, VideoWriter_fourcc(*fourcc), fps, resolution) def write_frame(file_idx): filename = osp.join(frame_dir, filename_tmpl.format(file_idx)) img = cv2.imread(filename) vwriter.write(img) if show_progress: track_progress(write_frame, range(start, end)) else: for i in range(start, end): filename = osp.join(frame_dir, filename_tmpl.format(i)) img = cv2.imread(filename) vwriter.write(img) vwriter.release()
[ "Read", "the", "frame", "images", "from", "a", "directory", "and", "join", "them", "as", "a", "video" ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/video/io.py#L288-L332
[ "def", "frames2video", "(", "frame_dir", ",", "video_file", ",", "fps", "=", "30", ",", "fourcc", "=", "'XVID'", ",", "filename_tmpl", "=", "'{:06d}.jpg'", ",", "start", "=", "0", ",", "end", "=", "0", ",", "show_progress", "=", "True", ")", ":", "if", "end", "==", "0", ":", "ext", "=", "filename_tmpl", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", "end", "=", "len", "(", "[", "name", "for", "name", "in", "scandir", "(", "frame_dir", ",", "ext", ")", "]", ")", "first_file", "=", "osp", ".", "join", "(", "frame_dir", ",", "filename_tmpl", ".", "format", "(", "start", ")", ")", "check_file_exist", "(", "first_file", ",", "'The start frame not found: '", "+", "first_file", ")", "img", "=", "cv2", ".", "imread", "(", "first_file", ")", "height", ",", "width", "=", "img", ".", "shape", "[", ":", "2", "]", "resolution", "=", "(", "width", ",", "height", ")", "vwriter", "=", "cv2", ".", "VideoWriter", "(", "video_file", ",", "VideoWriter_fourcc", "(", "*", "fourcc", ")", ",", "fps", ",", "resolution", ")", "def", "write_frame", "(", "file_idx", ")", ":", "filename", "=", "osp", ".", "join", "(", "frame_dir", ",", "filename_tmpl", ".", "format", "(", "file_idx", ")", ")", "img", "=", "cv2", ".", "imread", "(", "filename", ")", "vwriter", ".", "write", "(", "img", ")", "if", "show_progress", ":", "track_progress", "(", "write_frame", ",", "range", "(", "start", ",", "end", ")", ")", "else", ":", "for", "i", "in", "range", "(", "start", ",", "end", ")", ":", "filename", "=", "osp", ".", "join", "(", "frame_dir", ",", "filename_tmpl", ".", "format", "(", "i", ")", ")", "img", "=", "cv2", ".", "imread", "(", "filename", ")", "vwriter", ".", "write", "(", "img", ")", "vwriter", ".", "release", "(", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
VideoReader.read
Read the next frame. If the next frame have been decoded before and in the cache, then return it directly, otherwise decode, cache and return it. Returns: ndarray or None: Return the frame if successful, otherwise None.
mmcv/video/io.py
def read(self): """Read the next frame. If the next frame have been decoded before and in the cache, then return it directly, otherwise decode, cache and return it. Returns: ndarray or None: Return the frame if successful, otherwise None. """ # pos = self._position if self._cache: img = self._cache.get(self._position) if img is not None: ret = True else: if self._position != self._get_real_position(): self._set_real_position(self._position) ret, img = self._vcap.read() if ret: self._cache.put(self._position, img) else: ret, img = self._vcap.read() if ret: self._position += 1 return img
def read(self): """Read the next frame. If the next frame have been decoded before and in the cache, then return it directly, otherwise decode, cache and return it. Returns: ndarray or None: Return the frame if successful, otherwise None. """ # pos = self._position if self._cache: img = self._cache.get(self._position) if img is not None: ret = True else: if self._position != self._get_real_position(): self._set_real_position(self._position) ret, img = self._vcap.read() if ret: self._cache.put(self._position, img) else: ret, img = self._vcap.read() if ret: self._position += 1 return img
[ "Read", "the", "next", "frame", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/video/io.py#L142-L166
[ "def", "read", "(", "self", ")", ":", "# pos = self._position", "if", "self", ".", "_cache", ":", "img", "=", "self", ".", "_cache", ".", "get", "(", "self", ".", "_position", ")", "if", "img", "is", "not", "None", ":", "ret", "=", "True", "else", ":", "if", "self", ".", "_position", "!=", "self", ".", "_get_real_position", "(", ")", ":", "self", ".", "_set_real_position", "(", "self", ".", "_position", ")", "ret", ",", "img", "=", "self", ".", "_vcap", ".", "read", "(", ")", "if", "ret", ":", "self", ".", "_cache", ".", "put", "(", "self", ".", "_position", ",", "img", ")", "else", ":", "ret", ",", "img", "=", "self", ".", "_vcap", ".", "read", "(", ")", "if", "ret", ":", "self", ".", "_position", "+=", "1", "return", "img" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
VideoReader.get_frame
Get frame by index. Args: frame_id (int): Index of the expected frame, 0-based. Returns: ndarray or None: Return the frame if successful, otherwise None.
mmcv/video/io.py
def get_frame(self, frame_id): """Get frame by index. Args: frame_id (int): Index of the expected frame, 0-based. Returns: ndarray or None: Return the frame if successful, otherwise None. """ if frame_id < 0 or frame_id >= self._frame_cnt: raise IndexError( '"frame_id" must be between 0 and {}'.format(self._frame_cnt - 1)) if frame_id == self._position: return self.read() if self._cache: img = self._cache.get(frame_id) if img is not None: self._position = frame_id + 1 return img self._set_real_position(frame_id) ret, img = self._vcap.read() if ret: if self._cache: self._cache.put(self._position, img) self._position += 1 return img
def get_frame(self, frame_id): """Get frame by index. Args: frame_id (int): Index of the expected frame, 0-based. Returns: ndarray or None: Return the frame if successful, otherwise None. """ if frame_id < 0 or frame_id >= self._frame_cnt: raise IndexError( '"frame_id" must be between 0 and {}'.format(self._frame_cnt - 1)) if frame_id == self._position: return self.read() if self._cache: img = self._cache.get(frame_id) if img is not None: self._position = frame_id + 1 return img self._set_real_position(frame_id) ret, img = self._vcap.read() if ret: if self._cache: self._cache.put(self._position, img) self._position += 1 return img
[ "Get", "frame", "by", "index", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/video/io.py#L168-L194
[ "def", "get_frame", "(", "self", ",", "frame_id", ")", ":", "if", "frame_id", "<", "0", "or", "frame_id", ">=", "self", ".", "_frame_cnt", ":", "raise", "IndexError", "(", "'\"frame_id\" must be between 0 and {}'", ".", "format", "(", "self", ".", "_frame_cnt", "-", "1", ")", ")", "if", "frame_id", "==", "self", ".", "_position", ":", "return", "self", ".", "read", "(", ")", "if", "self", ".", "_cache", ":", "img", "=", "self", ".", "_cache", ".", "get", "(", "frame_id", ")", "if", "img", "is", "not", "None", ":", "self", ".", "_position", "=", "frame_id", "+", "1", "return", "img", "self", ".", "_set_real_position", "(", "frame_id", ")", "ret", ",", "img", "=", "self", ".", "_vcap", ".", "read", "(", ")", "if", "ret", ":", "if", "self", ".", "_cache", ":", "self", ".", "_cache", ".", "put", "(", "self", ".", "_position", ",", "img", ")", "self", ".", "_position", "+=", "1", "return", "img" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
VideoReader.cvt2frames
Convert a video to frame images Args: frame_dir (str): Output directory to store all the frame images. file_start (int): Filenames will start from the specified number. filename_tmpl (str): Filename template with the index as the placeholder. start (int): The starting frame index. max_num (int): Maximum number of frames to be written. show_progress (bool): Whether to show a progress bar.
mmcv/video/io.py
def cvt2frames(self, frame_dir, file_start=0, filename_tmpl='{:06d}.jpg', start=0, max_num=0, show_progress=True): """Convert a video to frame images Args: frame_dir (str): Output directory to store all the frame images. file_start (int): Filenames will start from the specified number. filename_tmpl (str): Filename template with the index as the placeholder. start (int): The starting frame index. max_num (int): Maximum number of frames to be written. show_progress (bool): Whether to show a progress bar. """ mkdir_or_exist(frame_dir) if max_num == 0: task_num = self.frame_cnt - start else: task_num = min(self.frame_cnt - start, max_num) if task_num <= 0: raise ValueError('start must be less than total frame number') if start > 0: self._set_real_position(start) def write_frame(file_idx): img = self.read() filename = osp.join(frame_dir, filename_tmpl.format(file_idx)) cv2.imwrite(filename, img) if show_progress: track_progress(write_frame, range(file_start, file_start + task_num)) else: for i in range(task_num): img = self.read() if img is None: break filename = osp.join(frame_dir, filename_tmpl.format(i + file_start)) cv2.imwrite(filename, img)
def cvt2frames(self, frame_dir, file_start=0, filename_tmpl='{:06d}.jpg', start=0, max_num=0, show_progress=True): """Convert a video to frame images Args: frame_dir (str): Output directory to store all the frame images. file_start (int): Filenames will start from the specified number. filename_tmpl (str): Filename template with the index as the placeholder. start (int): The starting frame index. max_num (int): Maximum number of frames to be written. show_progress (bool): Whether to show a progress bar. """ mkdir_or_exist(frame_dir) if max_num == 0: task_num = self.frame_cnt - start else: task_num = min(self.frame_cnt - start, max_num) if task_num <= 0: raise ValueError('start must be less than total frame number') if start > 0: self._set_real_position(start) def write_frame(file_idx): img = self.read() filename = osp.join(frame_dir, filename_tmpl.format(file_idx)) cv2.imwrite(filename, img) if show_progress: track_progress(write_frame, range(file_start, file_start + task_num)) else: for i in range(task_num): img = self.read() if img is None: break filename = osp.join(frame_dir, filename_tmpl.format(i + file_start)) cv2.imwrite(filename, img)
[ "Convert", "a", "video", "to", "frame", "images" ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/video/io.py#L207-L250
[ "def", "cvt2frames", "(", "self", ",", "frame_dir", ",", "file_start", "=", "0", ",", "filename_tmpl", "=", "'{:06d}.jpg'", ",", "start", "=", "0", ",", "max_num", "=", "0", ",", "show_progress", "=", "True", ")", ":", "mkdir_or_exist", "(", "frame_dir", ")", "if", "max_num", "==", "0", ":", "task_num", "=", "self", ".", "frame_cnt", "-", "start", "else", ":", "task_num", "=", "min", "(", "self", ".", "frame_cnt", "-", "start", ",", "max_num", ")", "if", "task_num", "<=", "0", ":", "raise", "ValueError", "(", "'start must be less than total frame number'", ")", "if", "start", ">", "0", ":", "self", ".", "_set_real_position", "(", "start", ")", "def", "write_frame", "(", "file_idx", ")", ":", "img", "=", "self", ".", "read", "(", ")", "filename", "=", "osp", ".", "join", "(", "frame_dir", ",", "filename_tmpl", ".", "format", "(", "file_idx", ")", ")", "cv2", ".", "imwrite", "(", "filename", ",", "img", ")", "if", "show_progress", ":", "track_progress", "(", "write_frame", ",", "range", "(", "file_start", ",", "file_start", "+", "task_num", ")", ")", "else", ":", "for", "i", "in", "range", "(", "task_num", ")", ":", "img", "=", "self", ".", "read", "(", ")", "if", "img", "is", "None", ":", "break", "filename", "=", "osp", ".", "join", "(", "frame_dir", ",", "filename_tmpl", ".", "format", "(", "i", "+", "file_start", ")", ")", "cv2", ".", "imwrite", "(", "filename", ",", "img", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
track_progress
Track the progress of tasks execution with a progress bar. Tasks are done with a simple for-loop. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). bar_width (int): Width of progress bar. Returns: list: The task results.
mmcv/utils/progressbar.py
def track_progress(func, tasks, bar_width=50, **kwargs): """Track the progress of tasks execution with a progress bar. Tasks are done with a simple for-loop. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). bar_width (int): Width of progress bar. Returns: list: The task results. """ if isinstance(tasks, tuple): assert len(tasks) == 2 assert isinstance(tasks[0], collections_abc.Iterable) assert isinstance(tasks[1], int) task_num = tasks[1] tasks = tasks[0] elif isinstance(tasks, collections_abc.Iterable): task_num = len(tasks) else: raise TypeError( '"tasks" must be an iterable object or a (iterator, int) tuple') prog_bar = ProgressBar(task_num, bar_width) results = [] for task in tasks: results.append(func(task, **kwargs)) prog_bar.update() sys.stdout.write('\n') return results
def track_progress(func, tasks, bar_width=50, **kwargs): """Track the progress of tasks execution with a progress bar. Tasks are done with a simple for-loop. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). bar_width (int): Width of progress bar. Returns: list: The task results. """ if isinstance(tasks, tuple): assert len(tasks) == 2 assert isinstance(tasks[0], collections_abc.Iterable) assert isinstance(tasks[1], int) task_num = tasks[1] tasks = tasks[0] elif isinstance(tasks, collections_abc.Iterable): task_num = len(tasks) else: raise TypeError( '"tasks" must be an iterable object or a (iterator, int) tuple') prog_bar = ProgressBar(task_num, bar_width) results = [] for task in tasks: results.append(func(task, **kwargs)) prog_bar.update() sys.stdout.write('\n') return results
[ "Track", "the", "progress", "of", "tasks", "execution", "with", "a", "progress", "bar", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/utils/progressbar.py#L63-L94
[ "def", "track_progress", "(", "func", ",", "tasks", ",", "bar_width", "=", "50", ",", "*", "*", "kwargs", ")", ":", "if", "isinstance", "(", "tasks", ",", "tuple", ")", ":", "assert", "len", "(", "tasks", ")", "==", "2", "assert", "isinstance", "(", "tasks", "[", "0", "]", ",", "collections_abc", ".", "Iterable", ")", "assert", "isinstance", "(", "tasks", "[", "1", "]", ",", "int", ")", "task_num", "=", "tasks", "[", "1", "]", "tasks", "=", "tasks", "[", "0", "]", "elif", "isinstance", "(", "tasks", ",", "collections_abc", ".", "Iterable", ")", ":", "task_num", "=", "len", "(", "tasks", ")", "else", ":", "raise", "TypeError", "(", "'\"tasks\" must be an iterable object or a (iterator, int) tuple'", ")", "prog_bar", "=", "ProgressBar", "(", "task_num", ",", "bar_width", ")", "results", "=", "[", "]", "for", "task", "in", "tasks", ":", "results", ".", "append", "(", "func", "(", "task", ",", "*", "*", "kwargs", ")", ")", "prog_bar", ".", "update", "(", ")", "sys", ".", "stdout", ".", "write", "(", "'\\n'", ")", "return", "results" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
track_parallel_progress
Track the progress of parallel task execution with a progress bar. The built-in :mod:`multiprocessing` module is used for process pools and tasks are done with :func:`Pool.map` or :func:`Pool.imap_unordered`. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). nproc (int): Process (worker) number. initializer (None or callable): Refer to :class:`multiprocessing.Pool` for details. initargs (None or tuple): Refer to :class:`multiprocessing.Pool` for details. chunksize (int): Refer to :class:`multiprocessing.Pool` for details. bar_width (int): Width of progress bar. skip_first (bool): Whether to skip the first sample for each worker when estimating fps, since the initialization step may takes longer. keep_order (bool): If True, :func:`Pool.imap` is used, otherwise :func:`Pool.imap_unordered` is used. Returns: list: The task results.
mmcv/utils/progressbar.py
def track_parallel_progress(func, tasks, nproc, initializer=None, initargs=None, bar_width=50, chunksize=1, skip_first=False, keep_order=True): """Track the progress of parallel task execution with a progress bar. The built-in :mod:`multiprocessing` module is used for process pools and tasks are done with :func:`Pool.map` or :func:`Pool.imap_unordered`. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). nproc (int): Process (worker) number. initializer (None or callable): Refer to :class:`multiprocessing.Pool` for details. initargs (None or tuple): Refer to :class:`multiprocessing.Pool` for details. chunksize (int): Refer to :class:`multiprocessing.Pool` for details. bar_width (int): Width of progress bar. skip_first (bool): Whether to skip the first sample for each worker when estimating fps, since the initialization step may takes longer. keep_order (bool): If True, :func:`Pool.imap` is used, otherwise :func:`Pool.imap_unordered` is used. Returns: list: The task results. """ if isinstance(tasks, tuple): assert len(tasks) == 2 assert isinstance(tasks[0], collections_abc.Iterable) assert isinstance(tasks[1], int) task_num = tasks[1] tasks = tasks[0] elif isinstance(tasks, collections_abc.Iterable): task_num = len(tasks) else: raise TypeError( '"tasks" must be an iterable object or a (iterator, int) tuple') pool = init_pool(nproc, initializer, initargs) start = not skip_first task_num -= nproc * chunksize * int(skip_first) prog_bar = ProgressBar(task_num, bar_width, start) results = [] if keep_order: gen = pool.imap(func, tasks, chunksize) else: gen = pool.imap_unordered(func, tasks, chunksize) for result in gen: results.append(result) if skip_first: if len(results) < nproc * chunksize: continue elif len(results) == nproc * chunksize: prog_bar.start() continue prog_bar.update() sys.stdout.write('\n') pool.close() pool.join() return results
def track_parallel_progress(func, tasks, nproc, initializer=None, initargs=None, bar_width=50, chunksize=1, skip_first=False, keep_order=True): """Track the progress of parallel task execution with a progress bar. The built-in :mod:`multiprocessing` module is used for process pools and tasks are done with :func:`Pool.map` or :func:`Pool.imap_unordered`. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). nproc (int): Process (worker) number. initializer (None or callable): Refer to :class:`multiprocessing.Pool` for details. initargs (None or tuple): Refer to :class:`multiprocessing.Pool` for details. chunksize (int): Refer to :class:`multiprocessing.Pool` for details. bar_width (int): Width of progress bar. skip_first (bool): Whether to skip the first sample for each worker when estimating fps, since the initialization step may takes longer. keep_order (bool): If True, :func:`Pool.imap` is used, otherwise :func:`Pool.imap_unordered` is used. Returns: list: The task results. """ if isinstance(tasks, tuple): assert len(tasks) == 2 assert isinstance(tasks[0], collections_abc.Iterable) assert isinstance(tasks[1], int) task_num = tasks[1] tasks = tasks[0] elif isinstance(tasks, collections_abc.Iterable): task_num = len(tasks) else: raise TypeError( '"tasks" must be an iterable object or a (iterator, int) tuple') pool = init_pool(nproc, initializer, initargs) start = not skip_first task_num -= nproc * chunksize * int(skip_first) prog_bar = ProgressBar(task_num, bar_width, start) results = [] if keep_order: gen = pool.imap(func, tasks, chunksize) else: gen = pool.imap_unordered(func, tasks, chunksize) for result in gen: results.append(result) if skip_first: if len(results) < nproc * chunksize: continue elif len(results) == nproc * chunksize: prog_bar.start() continue prog_bar.update() sys.stdout.write('\n') pool.close() pool.join() return results
[ "Track", "the", "progress", "of", "parallel", "task", "execution", "with", "a", "progress", "bar", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/utils/progressbar.py#L108-L174
[ "def", "track_parallel_progress", "(", "func", ",", "tasks", ",", "nproc", ",", "initializer", "=", "None", ",", "initargs", "=", "None", ",", "bar_width", "=", "50", ",", "chunksize", "=", "1", ",", "skip_first", "=", "False", ",", "keep_order", "=", "True", ")", ":", "if", "isinstance", "(", "tasks", ",", "tuple", ")", ":", "assert", "len", "(", "tasks", ")", "==", "2", "assert", "isinstance", "(", "tasks", "[", "0", "]", ",", "collections_abc", ".", "Iterable", ")", "assert", "isinstance", "(", "tasks", "[", "1", "]", ",", "int", ")", "task_num", "=", "tasks", "[", "1", "]", "tasks", "=", "tasks", "[", "0", "]", "elif", "isinstance", "(", "tasks", ",", "collections_abc", ".", "Iterable", ")", ":", "task_num", "=", "len", "(", "tasks", ")", "else", ":", "raise", "TypeError", "(", "'\"tasks\" must be an iterable object or a (iterator, int) tuple'", ")", "pool", "=", "init_pool", "(", "nproc", ",", "initializer", ",", "initargs", ")", "start", "=", "not", "skip_first", "task_num", "-=", "nproc", "*", "chunksize", "*", "int", "(", "skip_first", ")", "prog_bar", "=", "ProgressBar", "(", "task_num", ",", "bar_width", ",", "start", ")", "results", "=", "[", "]", "if", "keep_order", ":", "gen", "=", "pool", ".", "imap", "(", "func", ",", "tasks", ",", "chunksize", ")", "else", ":", "gen", "=", "pool", ".", "imap_unordered", "(", "func", ",", "tasks", ",", "chunksize", ")", "for", "result", "in", "gen", ":", "results", ".", "append", "(", "result", ")", "if", "skip_first", ":", "if", "len", "(", "results", ")", "<", "nproc", "*", "chunksize", ":", "continue", "elif", "len", "(", "results", ")", "==", "nproc", "*", "chunksize", ":", "prog_bar", ".", "start", "(", ")", "continue", "prog_bar", ".", "update", "(", ")", "sys", ".", "stdout", ".", "write", "(", "'\\n'", ")", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "return", "results" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
imflip
Flip an image horizontally or vertically. Args: img (ndarray): Image to be flipped. direction (str): The flip direction, either "horizontal" or "vertical". Returns: ndarray: The flipped image.
mmcv/image/transforms/geometry.py
def imflip(img, direction='horizontal'): """Flip an image horizontally or vertically. Args: img (ndarray): Image to be flipped. direction (str): The flip direction, either "horizontal" or "vertical". Returns: ndarray: The flipped image. """ assert direction in ['horizontal', 'vertical'] if direction == 'horizontal': return np.flip(img, axis=1) else: return np.flip(img, axis=0)
def imflip(img, direction='horizontal'): """Flip an image horizontally or vertically. Args: img (ndarray): Image to be flipped. direction (str): The flip direction, either "horizontal" or "vertical". Returns: ndarray: The flipped image. """ assert direction in ['horizontal', 'vertical'] if direction == 'horizontal': return np.flip(img, axis=1) else: return np.flip(img, axis=0)
[ "Flip", "an", "image", "horizontally", "or", "vertically", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L7-L21
[ "def", "imflip", "(", "img", ",", "direction", "=", "'horizontal'", ")", ":", "assert", "direction", "in", "[", "'horizontal'", ",", "'vertical'", "]", "if", "direction", "==", "'horizontal'", ":", "return", "np", ".", "flip", "(", "img", ",", "axis", "=", "1", ")", "else", ":", "return", "np", ".", "flip", "(", "img", ",", "axis", "=", "0", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
imrotate
Rotate an image. Args: img (ndarray): Image to be rotated. angle (float): Rotation angle in degrees, positive values mean clockwise rotation. center (tuple): Center of the rotation in the source image, by default it is the center of the image. scale (float): Isotropic scale factor. border_value (int): Border value. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Returns: ndarray: The rotated image.
mmcv/image/transforms/geometry.py
def imrotate(img, angle, center=None, scale=1.0, border_value=0, auto_bound=False): """Rotate an image. Args: img (ndarray): Image to be rotated. angle (float): Rotation angle in degrees, positive values mean clockwise rotation. center (tuple): Center of the rotation in the source image, by default it is the center of the image. scale (float): Isotropic scale factor. border_value (int): Border value. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Returns: ndarray: The rotated image. """ if center is not None and auto_bound: raise ValueError('`auto_bound` conflicts with `center`') h, w = img.shape[:2] if center is None: center = ((w - 1) * 0.5, (h - 1) * 0.5) assert isinstance(center, tuple) matrix = cv2.getRotationMatrix2D(center, -angle, scale) if auto_bound: cos = np.abs(matrix[0, 0]) sin = np.abs(matrix[0, 1]) new_w = h * sin + w * cos new_h = h * cos + w * sin matrix[0, 2] += (new_w - w) * 0.5 matrix[1, 2] += (new_h - h) * 0.5 w = int(np.round(new_w)) h = int(np.round(new_h)) rotated = cv2.warpAffine(img, matrix, (w, h), borderValue=border_value) return rotated
def imrotate(img, angle, center=None, scale=1.0, border_value=0, auto_bound=False): """Rotate an image. Args: img (ndarray): Image to be rotated. angle (float): Rotation angle in degrees, positive values mean clockwise rotation. center (tuple): Center of the rotation in the source image, by default it is the center of the image. scale (float): Isotropic scale factor. border_value (int): Border value. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Returns: ndarray: The rotated image. """ if center is not None and auto_bound: raise ValueError('`auto_bound` conflicts with `center`') h, w = img.shape[:2] if center is None: center = ((w - 1) * 0.5, (h - 1) * 0.5) assert isinstance(center, tuple) matrix = cv2.getRotationMatrix2D(center, -angle, scale) if auto_bound: cos = np.abs(matrix[0, 0]) sin = np.abs(matrix[0, 1]) new_w = h * sin + w * cos new_h = h * cos + w * sin matrix[0, 2] += (new_w - w) * 0.5 matrix[1, 2] += (new_h - h) * 0.5 w = int(np.round(new_w)) h = int(np.round(new_h)) rotated = cv2.warpAffine(img, matrix, (w, h), borderValue=border_value) return rotated
[ "Rotate", "an", "image", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L24-L64
[ "def", "imrotate", "(", "img", ",", "angle", ",", "center", "=", "None", ",", "scale", "=", "1.0", ",", "border_value", "=", "0", ",", "auto_bound", "=", "False", ")", ":", "if", "center", "is", "not", "None", "and", "auto_bound", ":", "raise", "ValueError", "(", "'`auto_bound` conflicts with `center`'", ")", "h", ",", "w", "=", "img", ".", "shape", "[", ":", "2", "]", "if", "center", "is", "None", ":", "center", "=", "(", "(", "w", "-", "1", ")", "*", "0.5", ",", "(", "h", "-", "1", ")", "*", "0.5", ")", "assert", "isinstance", "(", "center", ",", "tuple", ")", "matrix", "=", "cv2", ".", "getRotationMatrix2D", "(", "center", ",", "-", "angle", ",", "scale", ")", "if", "auto_bound", ":", "cos", "=", "np", ".", "abs", "(", "matrix", "[", "0", ",", "0", "]", ")", "sin", "=", "np", ".", "abs", "(", "matrix", "[", "0", ",", "1", "]", ")", "new_w", "=", "h", "*", "sin", "+", "w", "*", "cos", "new_h", "=", "h", "*", "cos", "+", "w", "*", "sin", "matrix", "[", "0", ",", "2", "]", "+=", "(", "new_w", "-", "w", ")", "*", "0.5", "matrix", "[", "1", ",", "2", "]", "+=", "(", "new_h", "-", "h", ")", "*", "0.5", "w", "=", "int", "(", "np", ".", "round", "(", "new_w", ")", ")", "h", "=", "int", "(", "np", ".", "round", "(", "new_h", ")", ")", "rotated", "=", "cv2", ".", "warpAffine", "(", "img", ",", "matrix", ",", "(", "w", ",", "h", ")", ",", "borderValue", "=", "border_value", ")", "return", "rotated" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
bbox_clip
Clip bboxes to fit the image shape. Args: bboxes (ndarray): Shape (..., 4*k) img_shape (tuple): (height, width) of the image. Returns: ndarray: Clipped bboxes.
mmcv/image/transforms/geometry.py
def bbox_clip(bboxes, img_shape): """Clip bboxes to fit the image shape. Args: bboxes (ndarray): Shape (..., 4*k) img_shape (tuple): (height, width) of the image. Returns: ndarray: Clipped bboxes. """ assert bboxes.shape[-1] % 4 == 0 clipped_bboxes = np.empty_like(bboxes, dtype=bboxes.dtype) clipped_bboxes[..., 0::2] = np.maximum( np.minimum(bboxes[..., 0::2], img_shape[1] - 1), 0) clipped_bboxes[..., 1::2] = np.maximum( np.minimum(bboxes[..., 1::2], img_shape[0] - 1), 0) return clipped_bboxes
def bbox_clip(bboxes, img_shape): """Clip bboxes to fit the image shape. Args: bboxes (ndarray): Shape (..., 4*k) img_shape (tuple): (height, width) of the image. Returns: ndarray: Clipped bboxes. """ assert bboxes.shape[-1] % 4 == 0 clipped_bboxes = np.empty_like(bboxes, dtype=bboxes.dtype) clipped_bboxes[..., 0::2] = np.maximum( np.minimum(bboxes[..., 0::2], img_shape[1] - 1), 0) clipped_bboxes[..., 1::2] = np.maximum( np.minimum(bboxes[..., 1::2], img_shape[0] - 1), 0) return clipped_bboxes
[ "Clip", "bboxes", "to", "fit", "the", "image", "shape", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L67-L83
[ "def", "bbox_clip", "(", "bboxes", ",", "img_shape", ")", ":", "assert", "bboxes", ".", "shape", "[", "-", "1", "]", "%", "4", "==", "0", "clipped_bboxes", "=", "np", ".", "empty_like", "(", "bboxes", ",", "dtype", "=", "bboxes", ".", "dtype", ")", "clipped_bboxes", "[", "...", ",", "0", ":", ":", "2", "]", "=", "np", ".", "maximum", "(", "np", ".", "minimum", "(", "bboxes", "[", "...", ",", "0", ":", ":", "2", "]", ",", "img_shape", "[", "1", "]", "-", "1", ")", ",", "0", ")", "clipped_bboxes", "[", "...", ",", "1", ":", ":", "2", "]", "=", "np", ".", "maximum", "(", "np", ".", "minimum", "(", "bboxes", "[", "...", ",", "1", ":", ":", "2", "]", ",", "img_shape", "[", "0", "]", "-", "1", ")", ",", "0", ")", "return", "clipped_bboxes" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
bbox_scaling
Scaling bboxes w.r.t the box center. Args: bboxes (ndarray): Shape(..., 4). scale (float): Scaling factor. clip_shape (tuple, optional): If specified, bboxes that exceed the boundary will be clipped according to the given shape (h, w). Returns: ndarray: Scaled bboxes.
mmcv/image/transforms/geometry.py
def bbox_scaling(bboxes, scale, clip_shape=None): """Scaling bboxes w.r.t the box center. Args: bboxes (ndarray): Shape(..., 4). scale (float): Scaling factor. clip_shape (tuple, optional): If specified, bboxes that exceed the boundary will be clipped according to the given shape (h, w). Returns: ndarray: Scaled bboxes. """ if float(scale) == 1.0: scaled_bboxes = bboxes.copy() else: w = bboxes[..., 2] - bboxes[..., 0] + 1 h = bboxes[..., 3] - bboxes[..., 1] + 1 dw = (w * (scale - 1)) * 0.5 dh = (h * (scale - 1)) * 0.5 scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1) if clip_shape is not None: return bbox_clip(scaled_bboxes, clip_shape) else: return scaled_bboxes
def bbox_scaling(bboxes, scale, clip_shape=None): """Scaling bboxes w.r.t the box center. Args: bboxes (ndarray): Shape(..., 4). scale (float): Scaling factor. clip_shape (tuple, optional): If specified, bboxes that exceed the boundary will be clipped according to the given shape (h, w). Returns: ndarray: Scaled bboxes. """ if float(scale) == 1.0: scaled_bboxes = bboxes.copy() else: w = bboxes[..., 2] - bboxes[..., 0] + 1 h = bboxes[..., 3] - bboxes[..., 1] + 1 dw = (w * (scale - 1)) * 0.5 dh = (h * (scale - 1)) * 0.5 scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1) if clip_shape is not None: return bbox_clip(scaled_bboxes, clip_shape) else: return scaled_bboxes
[ "Scaling", "bboxes", "w", ".", "r", ".", "t", "the", "box", "center", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L86-L109
[ "def", "bbox_scaling", "(", "bboxes", ",", "scale", ",", "clip_shape", "=", "None", ")", ":", "if", "float", "(", "scale", ")", "==", "1.0", ":", "scaled_bboxes", "=", "bboxes", ".", "copy", "(", ")", "else", ":", "w", "=", "bboxes", "[", "...", ",", "2", "]", "-", "bboxes", "[", "...", ",", "0", "]", "+", "1", "h", "=", "bboxes", "[", "...", ",", "3", "]", "-", "bboxes", "[", "...", ",", "1", "]", "+", "1", "dw", "=", "(", "w", "*", "(", "scale", "-", "1", ")", ")", "*", "0.5", "dh", "=", "(", "h", "*", "(", "scale", "-", "1", ")", ")", "*", "0.5", "scaled_bboxes", "=", "bboxes", "+", "np", ".", "stack", "(", "(", "-", "dw", ",", "-", "dh", ",", "dw", ",", "dh", ")", ",", "axis", "=", "-", "1", ")", "if", "clip_shape", "is", "not", "None", ":", "return", "bbox_clip", "(", "scaled_bboxes", ",", "clip_shape", ")", "else", ":", "return", "scaled_bboxes" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
imcrop
Crop image patches. 3 steps: scale the bboxes -> clip bboxes -> crop and pad. Args: img (ndarray): Image to be cropped. bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes. scale (float, optional): Scale ratio of bboxes, the default value 1.0 means no padding. pad_fill (number or list): Value to be filled for padding, None for no padding. Returns: list or ndarray: The cropped image patches.
mmcv/image/transforms/geometry.py
def imcrop(img, bboxes, scale=1.0, pad_fill=None): """Crop image patches. 3 steps: scale the bboxes -> clip bboxes -> crop and pad. Args: img (ndarray): Image to be cropped. bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes. scale (float, optional): Scale ratio of bboxes, the default value 1.0 means no padding. pad_fill (number or list): Value to be filled for padding, None for no padding. Returns: list or ndarray: The cropped image patches. """ chn = 1 if img.ndim == 2 else img.shape[2] if pad_fill is not None: if isinstance(pad_fill, (int, float)): pad_fill = [pad_fill for _ in range(chn)] assert len(pad_fill) == chn _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32) clipped_bbox = bbox_clip(scaled_bboxes, img.shape) patches = [] for i in range(clipped_bbox.shape[0]): x1, y1, x2, y2 = tuple(clipped_bbox[i, :]) if pad_fill is None: patch = img[y1:y2 + 1, x1:x2 + 1, ...] else: _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :]) if chn == 2: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1) else: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn) patch = np.array( pad_fill, dtype=img.dtype) * np.ones( patch_shape, dtype=img.dtype) x_start = 0 if _x1 >= 0 else -_x1 y_start = 0 if _y1 >= 0 else -_y1 w = x2 - x1 + 1 h = y2 - y1 + 1 patch[y_start:y_start + h, x_start:x_start + w, ...] = img[y1:y1 + h, x1:x1 + w, ...] patches.append(patch) if bboxes.ndim == 1: return patches[0] else: return patches
def imcrop(img, bboxes, scale=1.0, pad_fill=None): """Crop image patches. 3 steps: scale the bboxes -> clip bboxes -> crop and pad. Args: img (ndarray): Image to be cropped. bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes. scale (float, optional): Scale ratio of bboxes, the default value 1.0 means no padding. pad_fill (number or list): Value to be filled for padding, None for no padding. Returns: list or ndarray: The cropped image patches. """ chn = 1 if img.ndim == 2 else img.shape[2] if pad_fill is not None: if isinstance(pad_fill, (int, float)): pad_fill = [pad_fill for _ in range(chn)] assert len(pad_fill) == chn _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32) clipped_bbox = bbox_clip(scaled_bboxes, img.shape) patches = [] for i in range(clipped_bbox.shape[0]): x1, y1, x2, y2 = tuple(clipped_bbox[i, :]) if pad_fill is None: patch = img[y1:y2 + 1, x1:x2 + 1, ...] else: _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :]) if chn == 2: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1) else: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn) patch = np.array( pad_fill, dtype=img.dtype) * np.ones( patch_shape, dtype=img.dtype) x_start = 0 if _x1 >= 0 else -_x1 y_start = 0 if _y1 >= 0 else -_y1 w = x2 - x1 + 1 h = y2 - y1 + 1 patch[y_start:y_start + h, x_start:x_start + w, ...] = img[y1:y1 + h, x1:x1 + w, ...] patches.append(patch) if bboxes.ndim == 1: return patches[0] else: return patches
[ "Crop", "image", "patches", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L112-L163
[ "def", "imcrop", "(", "img", ",", "bboxes", ",", "scale", "=", "1.0", ",", "pad_fill", "=", "None", ")", ":", "chn", "=", "1", "if", "img", ".", "ndim", "==", "2", "else", "img", ".", "shape", "[", "2", "]", "if", "pad_fill", "is", "not", "None", ":", "if", "isinstance", "(", "pad_fill", ",", "(", "int", ",", "float", ")", ")", ":", "pad_fill", "=", "[", "pad_fill", "for", "_", "in", "range", "(", "chn", ")", "]", "assert", "len", "(", "pad_fill", ")", "==", "chn", "_bboxes", "=", "bboxes", "[", "None", ",", "...", "]", "if", "bboxes", ".", "ndim", "==", "1", "else", "bboxes", "scaled_bboxes", "=", "bbox_scaling", "(", "_bboxes", ",", "scale", ")", ".", "astype", "(", "np", ".", "int32", ")", "clipped_bbox", "=", "bbox_clip", "(", "scaled_bboxes", ",", "img", ".", "shape", ")", "patches", "=", "[", "]", "for", "i", "in", "range", "(", "clipped_bbox", ".", "shape", "[", "0", "]", ")", ":", "x1", ",", "y1", ",", "x2", ",", "y2", "=", "tuple", "(", "clipped_bbox", "[", "i", ",", ":", "]", ")", "if", "pad_fill", "is", "None", ":", "patch", "=", "img", "[", "y1", ":", "y2", "+", "1", ",", "x1", ":", "x2", "+", "1", ",", "...", "]", "else", ":", "_x1", ",", "_y1", ",", "_x2", ",", "_y2", "=", "tuple", "(", "scaled_bboxes", "[", "i", ",", ":", "]", ")", "if", "chn", "==", "2", ":", "patch_shape", "=", "(", "_y2", "-", "_y1", "+", "1", ",", "_x2", "-", "_x1", "+", "1", ")", "else", ":", "patch_shape", "=", "(", "_y2", "-", "_y1", "+", "1", ",", "_x2", "-", "_x1", "+", "1", ",", "chn", ")", "patch", "=", "np", ".", "array", "(", "pad_fill", ",", "dtype", "=", "img", ".", "dtype", ")", "*", "np", ".", "ones", "(", "patch_shape", ",", "dtype", "=", "img", ".", "dtype", ")", "x_start", "=", "0", "if", "_x1", ">=", "0", "else", "-", "_x1", "y_start", "=", "0", "if", "_y1", ">=", "0", "else", "-", "_y1", "w", "=", "x2", "-", "x1", "+", "1", "h", "=", "y2", "-", "y1", "+", "1", "patch", "[", "y_start", ":", "y_start", "+", "h", ",", "x_start", ":", "x_start", "+", "w", ",", "...", "]", "=", "img", "[", "y1", ":", "y1", "+", "h", ",", "x1", ":", "x1", "+", "w", ",", "...", "]", "patches", ".", "append", "(", "patch", ")", "if", "bboxes", ".", "ndim", "==", "1", ":", "return", "patches", "[", "0", "]", "else", ":", "return", "patches" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
impad
Pad an image to a certain shape. Args: img (ndarray): Image to be padded. shape (tuple): Expected padding shape. pad_val (number or sequence): Values to be filled in padding areas. Returns: ndarray: The padded image.
mmcv/image/transforms/geometry.py
def impad(img, shape, pad_val=0): """Pad an image to a certain shape. Args: img (ndarray): Image to be padded. shape (tuple): Expected padding shape. pad_val (number or sequence): Values to be filled in padding areas. Returns: ndarray: The padded image. """ if not isinstance(pad_val, (int, float)): assert len(pad_val) == img.shape[-1] if len(shape) < len(img.shape): shape = shape + (img.shape[-1], ) assert len(shape) == len(img.shape) for i in range(len(shape) - 1): assert shape[i] >= img.shape[i] pad = np.empty(shape, dtype=img.dtype) pad[...] = pad_val pad[:img.shape[0], :img.shape[1], ...] = img return pad
def impad(img, shape, pad_val=0): """Pad an image to a certain shape. Args: img (ndarray): Image to be padded. shape (tuple): Expected padding shape. pad_val (number or sequence): Values to be filled in padding areas. Returns: ndarray: The padded image. """ if not isinstance(pad_val, (int, float)): assert len(pad_val) == img.shape[-1] if len(shape) < len(img.shape): shape = shape + (img.shape[-1], ) assert len(shape) == len(img.shape) for i in range(len(shape) - 1): assert shape[i] >= img.shape[i] pad = np.empty(shape, dtype=img.dtype) pad[...] = pad_val pad[:img.shape[0], :img.shape[1], ...] = img return pad
[ "Pad", "an", "image", "to", "a", "certain", "shape", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L166-L187
[ "def", "impad", "(", "img", ",", "shape", ",", "pad_val", "=", "0", ")", ":", "if", "not", "isinstance", "(", "pad_val", ",", "(", "int", ",", "float", ")", ")", ":", "assert", "len", "(", "pad_val", ")", "==", "img", ".", "shape", "[", "-", "1", "]", "if", "len", "(", "shape", ")", "<", "len", "(", "img", ".", "shape", ")", ":", "shape", "=", "shape", "+", "(", "img", ".", "shape", "[", "-", "1", "]", ",", ")", "assert", "len", "(", "shape", ")", "==", "len", "(", "img", ".", "shape", ")", "for", "i", "in", "range", "(", "len", "(", "shape", ")", "-", "1", ")", ":", "assert", "shape", "[", "i", "]", ">=", "img", ".", "shape", "[", "i", "]", "pad", "=", "np", ".", "empty", "(", "shape", ",", "dtype", "=", "img", ".", "dtype", ")", "pad", "[", "...", "]", "=", "pad_val", "pad", "[", ":", "img", ".", "shape", "[", "0", "]", ",", ":", "img", ".", "shape", "[", "1", "]", ",", "...", "]", "=", "img", "return", "pad" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
impad_to_multiple
Pad an image to ensure each edge to be multiple to some number. Args: img (ndarray): Image to be padded. divisor (int): Padded image edges will be multiple to divisor. pad_val (number or sequence): Same as :func:`impad`. Returns: ndarray: The padded image.
mmcv/image/transforms/geometry.py
def impad_to_multiple(img, divisor, pad_val=0): """Pad an image to ensure each edge to be multiple to some number. Args: img (ndarray): Image to be padded. divisor (int): Padded image edges will be multiple to divisor. pad_val (number or sequence): Same as :func:`impad`. Returns: ndarray: The padded image. """ pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor return impad(img, (pad_h, pad_w), pad_val)
def impad_to_multiple(img, divisor, pad_val=0): """Pad an image to ensure each edge to be multiple to some number. Args: img (ndarray): Image to be padded. divisor (int): Padded image edges will be multiple to divisor. pad_val (number or sequence): Same as :func:`impad`. Returns: ndarray: The padded image. """ pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor return impad(img, (pad_h, pad_w), pad_val)
[ "Pad", "an", "image", "to", "ensure", "each", "edge", "to", "be", "multiple", "to", "some", "number", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/geometry.py#L190-L203
[ "def", "impad_to_multiple", "(", "img", ",", "divisor", ",", "pad_val", "=", "0", ")", ":", "pad_h", "=", "int", "(", "np", ".", "ceil", "(", "img", ".", "shape", "[", "0", "]", "/", "divisor", ")", ")", "*", "divisor", "pad_w", "=", "int", "(", "np", ".", "ceil", "(", "img", ".", "shape", "[", "1", "]", "/", "divisor", ")", ")", "*", "divisor", "return", "impad", "(", "img", ",", "(", "pad_h", ",", "pad_w", ")", ",", "pad_val", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
_scale_size
Rescale a size by a ratio. Args: size (tuple): w, h. scale (float): Scaling factor. Returns: tuple[int]: scaled size.
mmcv/image/transforms/resize.py
def _scale_size(size, scale): """Rescale a size by a ratio. Args: size (tuple): w, h. scale (float): Scaling factor. Returns: tuple[int]: scaled size. """ w, h = size return int(w * float(scale) + 0.5), int(h * float(scale) + 0.5)
def _scale_size(size, scale): """Rescale a size by a ratio. Args: size (tuple): w, h. scale (float): Scaling factor. Returns: tuple[int]: scaled size. """ w, h = size return int(w * float(scale) + 0.5), int(h * float(scale) + 0.5)
[ "Rescale", "a", "size", "by", "a", "ratio", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/resize.py#L6-L17
[ "def", "_scale_size", "(", "size", ",", "scale", ")", ":", "w", ",", "h", "=", "size", "return", "int", "(", "w", "*", "float", "(", "scale", ")", "+", "0.5", ")", ",", "int", "(", "h", "*", "float", "(", "scale", ")", "+", "0.5", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
imresize
Resize image to a given size. Args: img (ndarray): The input image. size (tuple): Target (w, h). return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Interpolation method, accepted values are "nearest", "bilinear", "bicubic", "area", "lanczos". Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`.
mmcv/image/transforms/resize.py
def imresize(img, size, return_scale=False, interpolation='bilinear'): """Resize image to a given size. Args: img (ndarray): The input image. size (tuple): Target (w, h). return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Interpolation method, accepted values are "nearest", "bilinear", "bicubic", "area", "lanczos". Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`. """ h, w = img.shape[:2] resized_img = cv2.resize( img, size, interpolation=interp_codes[interpolation]) if not return_scale: return resized_img else: w_scale = size[0] / w h_scale = size[1] / h return resized_img, w_scale, h_scale
def imresize(img, size, return_scale=False, interpolation='bilinear'): """Resize image to a given size. Args: img (ndarray): The input image. size (tuple): Target (w, h). return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Interpolation method, accepted values are "nearest", "bilinear", "bicubic", "area", "lanczos". Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`. """ h, w = img.shape[:2] resized_img = cv2.resize( img, size, interpolation=interp_codes[interpolation]) if not return_scale: return resized_img else: w_scale = size[0] / w h_scale = size[1] / h return resized_img, w_scale, h_scale
[ "Resize", "image", "to", "a", "given", "size", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/resize.py#L29-L51
[ "def", "imresize", "(", "img", ",", "size", ",", "return_scale", "=", "False", ",", "interpolation", "=", "'bilinear'", ")", ":", "h", ",", "w", "=", "img", ".", "shape", "[", ":", "2", "]", "resized_img", "=", "cv2", ".", "resize", "(", "img", ",", "size", ",", "interpolation", "=", "interp_codes", "[", "interpolation", "]", ")", "if", "not", "return_scale", ":", "return", "resized_img", "else", ":", "w_scale", "=", "size", "[", "0", "]", "/", "w", "h_scale", "=", "size", "[", "1", "]", "/", "h", "return", "resized_img", ",", "w_scale", ",", "h_scale" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
imresize_like
Resize image to the same size of a given image. Args: img (ndarray): The input image. dst_img (ndarray): The target image. return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Same as :func:`resize`. Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`.
mmcv/image/transforms/resize.py
def imresize_like(img, dst_img, return_scale=False, interpolation='bilinear'): """Resize image to the same size of a given image. Args: img (ndarray): The input image. dst_img (ndarray): The target image. return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Same as :func:`resize`. Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`. """ h, w = dst_img.shape[:2] return imresize(img, (w, h), return_scale, interpolation)
def imresize_like(img, dst_img, return_scale=False, interpolation='bilinear'): """Resize image to the same size of a given image. Args: img (ndarray): The input image. dst_img (ndarray): The target image. return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Same as :func:`resize`. Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`. """ h, w = dst_img.shape[:2] return imresize(img, (w, h), return_scale, interpolation)
[ "Resize", "image", "to", "the", "same", "size", "of", "a", "given", "image", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/resize.py#L54-L68
[ "def", "imresize_like", "(", "img", ",", "dst_img", ",", "return_scale", "=", "False", ",", "interpolation", "=", "'bilinear'", ")", ":", "h", ",", "w", "=", "dst_img", ".", "shape", "[", ":", "2", "]", "return", "imresize", "(", "img", ",", "(", "w", ",", "h", ")", ",", "return_scale", ",", "interpolation", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
imrescale
Resize image while keeping the aspect ratio. Args: img (ndarray): The input image. scale (float or tuple[int]): The scaling factor or maximum size. If it is a float number, then the image will be rescaled by this factor, else if it is a tuple of 2 integers, then the image will be rescaled as large as possible within the scale. return_scale (bool): Whether to return the scaling factor besides the rescaled image. interpolation (str): Same as :func:`resize`. Returns: ndarray: The rescaled image.
mmcv/image/transforms/resize.py
def imrescale(img, scale, return_scale=False, interpolation='bilinear'): """Resize image while keeping the aspect ratio. Args: img (ndarray): The input image. scale (float or tuple[int]): The scaling factor or maximum size. If it is a float number, then the image will be rescaled by this factor, else if it is a tuple of 2 integers, then the image will be rescaled as large as possible within the scale. return_scale (bool): Whether to return the scaling factor besides the rescaled image. interpolation (str): Same as :func:`resize`. Returns: ndarray: The rescaled image. """ h, w = img.shape[:2] if isinstance(scale, (float, int)): if scale <= 0: raise ValueError( 'Invalid scale {}, must be positive.'.format(scale)) scale_factor = scale elif isinstance(scale, tuple): max_long_edge = max(scale) max_short_edge = min(scale) scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w)) else: raise TypeError( 'Scale must be a number or tuple of int, but got {}'.format( type(scale))) new_size = _scale_size((w, h), scale_factor) rescaled_img = imresize(img, new_size, interpolation=interpolation) if return_scale: return rescaled_img, scale_factor else: return rescaled_img
def imrescale(img, scale, return_scale=False, interpolation='bilinear'): """Resize image while keeping the aspect ratio. Args: img (ndarray): The input image. scale (float or tuple[int]): The scaling factor or maximum size. If it is a float number, then the image will be rescaled by this factor, else if it is a tuple of 2 integers, then the image will be rescaled as large as possible within the scale. return_scale (bool): Whether to return the scaling factor besides the rescaled image. interpolation (str): Same as :func:`resize`. Returns: ndarray: The rescaled image. """ h, w = img.shape[:2] if isinstance(scale, (float, int)): if scale <= 0: raise ValueError( 'Invalid scale {}, must be positive.'.format(scale)) scale_factor = scale elif isinstance(scale, tuple): max_long_edge = max(scale) max_short_edge = min(scale) scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w)) else: raise TypeError( 'Scale must be a number or tuple of int, but got {}'.format( type(scale))) new_size = _scale_size((w, h), scale_factor) rescaled_img = imresize(img, new_size, interpolation=interpolation) if return_scale: return rescaled_img, scale_factor else: return rescaled_img
[ "Resize", "image", "while", "keeping", "the", "aspect", "ratio", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/image/transforms/resize.py#L71-L107
[ "def", "imrescale", "(", "img", ",", "scale", ",", "return_scale", "=", "False", ",", "interpolation", "=", "'bilinear'", ")", ":", "h", ",", "w", "=", "img", ".", "shape", "[", ":", "2", "]", "if", "isinstance", "(", "scale", ",", "(", "float", ",", "int", ")", ")", ":", "if", "scale", "<=", "0", ":", "raise", "ValueError", "(", "'Invalid scale {}, must be positive.'", ".", "format", "(", "scale", ")", ")", "scale_factor", "=", "scale", "elif", "isinstance", "(", "scale", ",", "tuple", ")", ":", "max_long_edge", "=", "max", "(", "scale", ")", "max_short_edge", "=", "min", "(", "scale", ")", "scale_factor", "=", "min", "(", "max_long_edge", "/", "max", "(", "h", ",", "w", ")", ",", "max_short_edge", "/", "min", "(", "h", ",", "w", ")", ")", "else", ":", "raise", "TypeError", "(", "'Scale must be a number or tuple of int, but got {}'", ".", "format", "(", "type", "(", "scale", ")", ")", ")", "new_size", "=", "_scale_size", "(", "(", "w", ",", "h", ")", ",", "scale_factor", ")", "rescaled_img", "=", "imresize", "(", "img", ",", "new_size", ",", "interpolation", "=", "interpolation", ")", "if", "return_scale", ":", "return", "rescaled_img", ",", "scale_factor", "else", ":", "return", "rescaled_img" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
load
Load data from json/yaml/pickle files. This method provides a unified api for loading data from serialized files. Args: file (str or file-like object): Filename or a file-like object. file_format (str, optional): If not specified, the file format will be inferred from the file extension, otherwise use the specified one. Currently supported formats include "json", "yaml/yml" and "pickle/pkl". Returns: The content from the file.
mmcv/fileio/io.py
def load(file, file_format=None, **kwargs): """Load data from json/yaml/pickle files. This method provides a unified api for loading data from serialized files. Args: file (str or file-like object): Filename or a file-like object. file_format (str, optional): If not specified, the file format will be inferred from the file extension, otherwise use the specified one. Currently supported formats include "json", "yaml/yml" and "pickle/pkl". Returns: The content from the file. """ if file_format is None and is_str(file): file_format = file.split('.')[-1] if file_format not in file_handlers: raise TypeError('Unsupported format: {}'.format(file_format)) handler = file_handlers[file_format] if is_str(file): obj = handler.load_from_path(file, **kwargs) elif hasattr(file, 'read'): obj = handler.load_from_fileobj(file, **kwargs) else: raise TypeError('"file" must be a filepath str or a file-object') return obj
def load(file, file_format=None, **kwargs): """Load data from json/yaml/pickle files. This method provides a unified api for loading data from serialized files. Args: file (str or file-like object): Filename or a file-like object. file_format (str, optional): If not specified, the file format will be inferred from the file extension, otherwise use the specified one. Currently supported formats include "json", "yaml/yml" and "pickle/pkl". Returns: The content from the file. """ if file_format is None and is_str(file): file_format = file.split('.')[-1] if file_format not in file_handlers: raise TypeError('Unsupported format: {}'.format(file_format)) handler = file_handlers[file_format] if is_str(file): obj = handler.load_from_path(file, **kwargs) elif hasattr(file, 'read'): obj = handler.load_from_fileobj(file, **kwargs) else: raise TypeError('"file" must be a filepath str or a file-object') return obj
[ "Load", "data", "from", "json", "/", "yaml", "/", "pickle", "files", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/fileio/io.py#L13-L40
[ "def", "load", "(", "file", ",", "file_format", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "file_format", "is", "None", "and", "is_str", "(", "file", ")", ":", "file_format", "=", "file", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", "if", "file_format", "not", "in", "file_handlers", ":", "raise", "TypeError", "(", "'Unsupported format: {}'", ".", "format", "(", "file_format", ")", ")", "handler", "=", "file_handlers", "[", "file_format", "]", "if", "is_str", "(", "file", ")", ":", "obj", "=", "handler", ".", "load_from_path", "(", "file", ",", "*", "*", "kwargs", ")", "elif", "hasattr", "(", "file", ",", "'read'", ")", ":", "obj", "=", "handler", ".", "load_from_fileobj", "(", "file", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "TypeError", "(", "'\"file\" must be a filepath str or a file-object'", ")", "return", "obj" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
dump
Dump data to json/yaml/pickle strings or files. This method provides a unified api for dumping data as strings or to files, and also supports custom arguments for each file format. Args: obj (any): The python object to be dumped. file (str or file-like object, optional): If not specified, then the object is dump to a str, otherwise to a file specified by the filename or file-like object. file_format (str, optional): Same as :func:`load`. Returns: bool: True for success, False otherwise.
mmcv/fileio/io.py
def dump(obj, file=None, file_format=None, **kwargs): """Dump data to json/yaml/pickle strings or files. This method provides a unified api for dumping data as strings or to files, and also supports custom arguments for each file format. Args: obj (any): The python object to be dumped. file (str or file-like object, optional): If not specified, then the object is dump to a str, otherwise to a file specified by the filename or file-like object. file_format (str, optional): Same as :func:`load`. Returns: bool: True for success, False otherwise. """ if file_format is None: if is_str(file): file_format = file.split('.')[-1] elif file is None: raise ValueError( 'file_format must be specified since file is None') if file_format not in file_handlers: raise TypeError('Unsupported format: {}'.format(file_format)) handler = file_handlers[file_format] if file is None: return handler.dump_to_str(obj, **kwargs) elif is_str(file): handler.dump_to_path(obj, file, **kwargs) elif hasattr(file, 'write'): handler.dump_to_fileobj(obj, file, **kwargs) else: raise TypeError('"file" must be a filename str or a file-object')
def dump(obj, file=None, file_format=None, **kwargs): """Dump data to json/yaml/pickle strings or files. This method provides a unified api for dumping data as strings or to files, and also supports custom arguments for each file format. Args: obj (any): The python object to be dumped. file (str or file-like object, optional): If not specified, then the object is dump to a str, otherwise to a file specified by the filename or file-like object. file_format (str, optional): Same as :func:`load`. Returns: bool: True for success, False otherwise. """ if file_format is None: if is_str(file): file_format = file.split('.')[-1] elif file is None: raise ValueError( 'file_format must be specified since file is None') if file_format not in file_handlers: raise TypeError('Unsupported format: {}'.format(file_format)) handler = file_handlers[file_format] if file is None: return handler.dump_to_str(obj, **kwargs) elif is_str(file): handler.dump_to_path(obj, file, **kwargs) elif hasattr(file, 'write'): handler.dump_to_fileobj(obj, file, **kwargs) else: raise TypeError('"file" must be a filename str or a file-object')
[ "Dump", "data", "to", "json", "/", "yaml", "/", "pickle", "strings", "or", "files", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/fileio/io.py#L43-L76
[ "def", "dump", "(", "obj", ",", "file", "=", "None", ",", "file_format", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "file_format", "is", "None", ":", "if", "is_str", "(", "file", ")", ":", "file_format", "=", "file", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", "elif", "file", "is", "None", ":", "raise", "ValueError", "(", "'file_format must be specified since file is None'", ")", "if", "file_format", "not", "in", "file_handlers", ":", "raise", "TypeError", "(", "'Unsupported format: {}'", ".", "format", "(", "file_format", ")", ")", "handler", "=", "file_handlers", "[", "file_format", "]", "if", "file", "is", "None", ":", "return", "handler", ".", "dump_to_str", "(", "obj", ",", "*", "*", "kwargs", ")", "elif", "is_str", "(", "file", ")", ":", "handler", ".", "dump_to_path", "(", "obj", ",", "file", ",", "*", "*", "kwargs", ")", "elif", "hasattr", "(", "file", ",", "'write'", ")", ":", "handler", ".", "dump_to_fileobj", "(", "obj", ",", "file", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "TypeError", "(", "'\"file\" must be a filename str or a file-object'", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
_register_handler
Register a handler for some file extensions. Args: handler (:obj:`BaseFileHandler`): Handler to be registered. file_formats (str or list[str]): File formats to be handled by this handler.
mmcv/fileio/io.py
def _register_handler(handler, file_formats): """Register a handler for some file extensions. Args: handler (:obj:`BaseFileHandler`): Handler to be registered. file_formats (str or list[str]): File formats to be handled by this handler. """ if not isinstance(handler, BaseFileHandler): raise TypeError( 'handler must be a child of BaseFileHandler, not {}'.format( type(handler))) if isinstance(file_formats, str): file_formats = [file_formats] if not is_list_of(file_formats, str): raise TypeError('file_formats must be a str or a list of str') for ext in file_formats: file_handlers[ext] = handler
def _register_handler(handler, file_formats): """Register a handler for some file extensions. Args: handler (:obj:`BaseFileHandler`): Handler to be registered. file_formats (str or list[str]): File formats to be handled by this handler. """ if not isinstance(handler, BaseFileHandler): raise TypeError( 'handler must be a child of BaseFileHandler, not {}'.format( type(handler))) if isinstance(file_formats, str): file_formats = [file_formats] if not is_list_of(file_formats, str): raise TypeError('file_formats must be a str or a list of str') for ext in file_formats: file_handlers[ext] = handler
[ "Register", "a", "handler", "for", "some", "file", "extensions", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/fileio/io.py#L79-L96
[ "def", "_register_handler", "(", "handler", ",", "file_formats", ")", ":", "if", "not", "isinstance", "(", "handler", ",", "BaseFileHandler", ")", ":", "raise", "TypeError", "(", "'handler must be a child of BaseFileHandler, not {}'", ".", "format", "(", "type", "(", "handler", ")", ")", ")", "if", "isinstance", "(", "file_formats", ",", "str", ")", ":", "file_formats", "=", "[", "file_formats", "]", "if", "not", "is_list_of", "(", "file_formats", ",", "str", ")", ":", "raise", "TypeError", "(", "'file_formats must be a str or a list of str'", ")", "for", "ext", "in", "file_formats", ":", "file_handlers", "[", "ext", "]", "=", "handler" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
get_priority
Get priority value. Args: priority (int or str or :obj:`Priority`): Priority. Returns: int: The priority value.
mmcv/runner/priority.py
def get_priority(priority): """Get priority value. Args: priority (int or str or :obj:`Priority`): Priority. Returns: int: The priority value. """ if isinstance(priority, int): if priority < 0 or priority > 100: raise ValueError('priority must be between 0 and 100') return priority elif isinstance(priority, Priority): return priority.value elif isinstance(priority, str): return Priority[priority.upper()].value else: raise TypeError('priority must be an integer or Priority enum value')
def get_priority(priority): """Get priority value. Args: priority (int or str or :obj:`Priority`): Priority. Returns: int: The priority value. """ if isinstance(priority, int): if priority < 0 or priority > 100: raise ValueError('priority must be between 0 and 100') return priority elif isinstance(priority, Priority): return priority.value elif isinstance(priority, str): return Priority[priority.upper()].value else: raise TypeError('priority must be an integer or Priority enum value')
[ "Get", "priority", "value", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/runner/priority.py#L35-L53
[ "def", "get_priority", "(", "priority", ")", ":", "if", "isinstance", "(", "priority", ",", "int", ")", ":", "if", "priority", "<", "0", "or", "priority", ">", "100", ":", "raise", "ValueError", "(", "'priority must be between 0 and 100'", ")", "return", "priority", "elif", "isinstance", "(", "priority", ",", "Priority", ")", ":", "return", "priority", ".", "value", "elif", "isinstance", "(", "priority", ",", "str", ")", ":", "return", "Priority", "[", "priority", ".", "upper", "(", ")", "]", ".", "value", "else", ":", "raise", "TypeError", "(", "'priority must be an integer or Priority enum value'", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
quantize
Quantize an array of (-inf, inf) to [0, levels-1]. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the quantized array. Returns: tuple: Quantized array.
mmcv/arraymisc/quantization.py
def quantize(arr, min_val, max_val, levels, dtype=np.int64): """Quantize an array of (-inf, inf) to [0, levels-1]. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the quantized array. Returns: tuple: Quantized array. """ if not (isinstance(levels, int) and levels > 1): raise ValueError( 'levels must be a positive integer, but got {}'.format(levels)) if min_val >= max_val: raise ValueError( 'min_val ({}) must be smaller than max_val ({})'.format( min_val, max_val)) arr = np.clip(arr, min_val, max_val) - min_val quantized_arr = np.minimum( np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1) return quantized_arr
def quantize(arr, min_val, max_val, levels, dtype=np.int64): """Quantize an array of (-inf, inf) to [0, levels-1]. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the quantized array. Returns: tuple: Quantized array. """ if not (isinstance(levels, int) and levels > 1): raise ValueError( 'levels must be a positive integer, but got {}'.format(levels)) if min_val >= max_val: raise ValueError( 'min_val ({}) must be smaller than max_val ({})'.format( min_val, max_val)) arr = np.clip(arr, min_val, max_val) - min_val quantized_arr = np.minimum( np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1) return quantized_arr
[ "Quantize", "an", "array", "of", "(", "-", "inf", "inf", ")", "to", "[", "0", "levels", "-", "1", "]", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/arraymisc/quantization.py#L4-L29
[ "def", "quantize", "(", "arr", ",", "min_val", ",", "max_val", ",", "levels", ",", "dtype", "=", "np", ".", "int64", ")", ":", "if", "not", "(", "isinstance", "(", "levels", ",", "int", ")", "and", "levels", ">", "1", ")", ":", "raise", "ValueError", "(", "'levels must be a positive integer, but got {}'", ".", "format", "(", "levels", ")", ")", "if", "min_val", ">=", "max_val", ":", "raise", "ValueError", "(", "'min_val ({}) must be smaller than max_val ({})'", ".", "format", "(", "min_val", ",", "max_val", ")", ")", "arr", "=", "np", ".", "clip", "(", "arr", ",", "min_val", ",", "max_val", ")", "-", "min_val", "quantized_arr", "=", "np", ".", "minimum", "(", "np", ".", "floor", "(", "levels", "*", "arr", "/", "(", "max_val", "-", "min_val", ")", ")", ".", "astype", "(", "dtype", ")", ",", "levels", "-", "1", ")", "return", "quantized_arr" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
dequantize
Dequantize an array. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the dequantized array. Returns: tuple: Dequantized array.
mmcv/arraymisc/quantization.py
def dequantize(arr, min_val, max_val, levels, dtype=np.float64): """Dequantize an array. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the dequantized array. Returns: tuple: Dequantized array. """ if not (isinstance(levels, int) and levels > 1): raise ValueError( 'levels must be a positive integer, but got {}'.format(levels)) if min_val >= max_val: raise ValueError( 'min_val ({}) must be smaller than max_val ({})'.format( min_val, max_val)) dequantized_arr = (arr + 0.5).astype(dtype) * ( max_val - min_val) / levels + min_val return dequantized_arr
def dequantize(arr, min_val, max_val, levels, dtype=np.float64): """Dequantize an array. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the dequantized array. Returns: tuple: Dequantized array. """ if not (isinstance(levels, int) and levels > 1): raise ValueError( 'levels must be a positive integer, but got {}'.format(levels)) if min_val >= max_val: raise ValueError( 'min_val ({}) must be smaller than max_val ({})'.format( min_val, max_val)) dequantized_arr = (arr + 0.5).astype(dtype) * ( max_val - min_val) / levels + min_val return dequantized_arr
[ "Dequantize", "an", "array", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/arraymisc/quantization.py#L32-L56
[ "def", "dequantize", "(", "arr", ",", "min_val", ",", "max_val", ",", "levels", ",", "dtype", "=", "np", ".", "float64", ")", ":", "if", "not", "(", "isinstance", "(", "levels", ",", "int", ")", "and", "levels", ">", "1", ")", ":", "raise", "ValueError", "(", "'levels must be a positive integer, but got {}'", ".", "format", "(", "levels", ")", ")", "if", "min_val", ">=", "max_val", ":", "raise", "ValueError", "(", "'min_val ({}) must be smaller than max_val ({})'", ".", "format", "(", "min_val", ",", "max_val", ")", ")", "dequantized_arr", "=", "(", "arr", "+", "0.5", ")", ".", "astype", "(", "dtype", ")", "*", "(", "max_val", "-", "min_val", ")", "/", "levels", "+", "min_val", "return", "dequantized_arr" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
Config.auto_argparser
Generate argparser from config file automatically (experimental)
mmcv/utils/config.py
def auto_argparser(description=None): """Generate argparser from config file automatically (experimental) """ partial_parser = ArgumentParser(description=description) partial_parser.add_argument('config', help='config file path') cfg_file = partial_parser.parse_known_args()[0].config cfg = Config.from_file(cfg_file) parser = ArgumentParser(description=description) parser.add_argument('config', help='config file path') add_args(parser, cfg) return parser, cfg
def auto_argparser(description=None): """Generate argparser from config file automatically (experimental) """ partial_parser = ArgumentParser(description=description) partial_parser.add_argument('config', help='config file path') cfg_file = partial_parser.parse_known_args()[0].config cfg = Config.from_file(cfg_file) parser = ArgumentParser(description=description) parser.add_argument('config', help='config file path') add_args(parser, cfg) return parser, cfg
[ "Generate", "argparser", "from", "config", "file", "automatically", "(", "experimental", ")" ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/utils/config.py#L100-L110
[ "def", "auto_argparser", "(", "description", "=", "None", ")", ":", "partial_parser", "=", "ArgumentParser", "(", "description", "=", "description", ")", "partial_parser", ".", "add_argument", "(", "'config'", ",", "help", "=", "'config file path'", ")", "cfg_file", "=", "partial_parser", ".", "parse_known_args", "(", ")", "[", "0", "]", ".", "config", "cfg", "=", "Config", ".", "from_file", "(", "cfg_file", ")", "parser", "=", "ArgumentParser", "(", "description", "=", "description", ")", "parser", ".", "add_argument", "(", "'config'", ",", "help", "=", "'config file path'", ")", "add_args", "(", "parser", ",", "cfg", ")", "return", "parser", ",", "cfg" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f
test
collate
Puts each data field into a tensor/DataContainer with outer dimension batch size. Extend default_collate to add support for :type:`~mmcv.parallel.DataContainer`. There are 3 cases. 1. cpu_only = True, e.g., meta data 2. cpu_only = False, stack = True, e.g., images tensors 3. cpu_only = False, stack = False, e.g., gt bboxes
mmcv/parallel/collate.py
def collate(batch, samples_per_gpu=1): """Puts each data field into a tensor/DataContainer with outer dimension batch size. Extend default_collate to add support for :type:`~mmcv.parallel.DataContainer`. There are 3 cases. 1. cpu_only = True, e.g., meta data 2. cpu_only = False, stack = True, e.g., images tensors 3. cpu_only = False, stack = False, e.g., gt bboxes """ if not isinstance(batch, collections.Sequence): raise TypeError("{} is not supported.".format(batch.dtype)) if isinstance(batch[0], DataContainer): assert len(batch) % samples_per_gpu == 0 stacked = [] if batch[0].cpu_only: for i in range(0, len(batch), samples_per_gpu): stacked.append( [sample.data for sample in batch[i:i + samples_per_gpu]]) return DataContainer( stacked, batch[0].stack, batch[0].padding_value, cpu_only=True) elif batch[0].stack: for i in range(0, len(batch), samples_per_gpu): assert isinstance(batch[i].data, torch.Tensor) # TODO: handle tensors other than 3d assert batch[i].dim() == 3 c, h, w = batch[i].size() for sample in batch[i:i + samples_per_gpu]: assert c == sample.size(0) h = max(h, sample.size(1)) w = max(w, sample.size(2)) padded_samples = [ F.pad( sample.data, (0, w - sample.size(2), 0, h - sample.size(1)), value=sample.padding_value) for sample in batch[i:i + samples_per_gpu] ] stacked.append(default_collate(padded_samples)) else: for i in range(0, len(batch), samples_per_gpu): stacked.append( [sample.data for sample in batch[i:i + samples_per_gpu]]) return DataContainer(stacked, batch[0].stack, batch[0].padding_value) elif isinstance(batch[0], collections.Sequence): transposed = zip(*batch) return [collate(samples, samples_per_gpu) for samples in transposed] elif isinstance(batch[0], collections.Mapping): return { key: collate([d[key] for d in batch], samples_per_gpu) for key in batch[0] } else: return default_collate(batch)
def collate(batch, samples_per_gpu=1): """Puts each data field into a tensor/DataContainer with outer dimension batch size. Extend default_collate to add support for :type:`~mmcv.parallel.DataContainer`. There are 3 cases. 1. cpu_only = True, e.g., meta data 2. cpu_only = False, stack = True, e.g., images tensors 3. cpu_only = False, stack = False, e.g., gt bboxes """ if not isinstance(batch, collections.Sequence): raise TypeError("{} is not supported.".format(batch.dtype)) if isinstance(batch[0], DataContainer): assert len(batch) % samples_per_gpu == 0 stacked = [] if batch[0].cpu_only: for i in range(0, len(batch), samples_per_gpu): stacked.append( [sample.data for sample in batch[i:i + samples_per_gpu]]) return DataContainer( stacked, batch[0].stack, batch[0].padding_value, cpu_only=True) elif batch[0].stack: for i in range(0, len(batch), samples_per_gpu): assert isinstance(batch[i].data, torch.Tensor) # TODO: handle tensors other than 3d assert batch[i].dim() == 3 c, h, w = batch[i].size() for sample in batch[i:i + samples_per_gpu]: assert c == sample.size(0) h = max(h, sample.size(1)) w = max(w, sample.size(2)) padded_samples = [ F.pad( sample.data, (0, w - sample.size(2), 0, h - sample.size(1)), value=sample.padding_value) for sample in batch[i:i + samples_per_gpu] ] stacked.append(default_collate(padded_samples)) else: for i in range(0, len(batch), samples_per_gpu): stacked.append( [sample.data for sample in batch[i:i + samples_per_gpu]]) return DataContainer(stacked, batch[0].stack, batch[0].padding_value) elif isinstance(batch[0], collections.Sequence): transposed = zip(*batch) return [collate(samples, samples_per_gpu) for samples in transposed] elif isinstance(batch[0], collections.Mapping): return { key: collate([d[key] for d in batch], samples_per_gpu) for key in batch[0] } else: return default_collate(batch)
[ "Puts", "each", "data", "field", "into", "a", "tensor", "/", "DataContainer", "with", "outer", "dimension", "batch", "size", "." ]
open-mmlab/mmcv
python
https://github.com/open-mmlab/mmcv/blob/0d77f61450aab4dde8b8585a577cc496acb95d7f/mmcv/parallel/collate.py#L10-L66
[ "def", "collate", "(", "batch", ",", "samples_per_gpu", "=", "1", ")", ":", "if", "not", "isinstance", "(", "batch", ",", "collections", ".", "Sequence", ")", ":", "raise", "TypeError", "(", "\"{} is not supported.\"", ".", "format", "(", "batch", ".", "dtype", ")", ")", "if", "isinstance", "(", "batch", "[", "0", "]", ",", "DataContainer", ")", ":", "assert", "len", "(", "batch", ")", "%", "samples_per_gpu", "==", "0", "stacked", "=", "[", "]", "if", "batch", "[", "0", "]", ".", "cpu_only", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "batch", ")", ",", "samples_per_gpu", ")", ":", "stacked", ".", "append", "(", "[", "sample", ".", "data", "for", "sample", "in", "batch", "[", "i", ":", "i", "+", "samples_per_gpu", "]", "]", ")", "return", "DataContainer", "(", "stacked", ",", "batch", "[", "0", "]", ".", "stack", ",", "batch", "[", "0", "]", ".", "padding_value", ",", "cpu_only", "=", "True", ")", "elif", "batch", "[", "0", "]", ".", "stack", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "batch", ")", ",", "samples_per_gpu", ")", ":", "assert", "isinstance", "(", "batch", "[", "i", "]", ".", "data", ",", "torch", ".", "Tensor", ")", "# TODO: handle tensors other than 3d", "assert", "batch", "[", "i", "]", ".", "dim", "(", ")", "==", "3", "c", ",", "h", ",", "w", "=", "batch", "[", "i", "]", ".", "size", "(", ")", "for", "sample", "in", "batch", "[", "i", ":", "i", "+", "samples_per_gpu", "]", ":", "assert", "c", "==", "sample", ".", "size", "(", "0", ")", "h", "=", "max", "(", "h", ",", "sample", ".", "size", "(", "1", ")", ")", "w", "=", "max", "(", "w", ",", "sample", ".", "size", "(", "2", ")", ")", "padded_samples", "=", "[", "F", ".", "pad", "(", "sample", ".", "data", ",", "(", "0", ",", "w", "-", "sample", ".", "size", "(", "2", ")", ",", "0", ",", "h", "-", "sample", ".", "size", "(", "1", ")", ")", ",", "value", "=", "sample", ".", "padding_value", ")", "for", "sample", "in", "batch", "[", "i", ":", "i", "+", "samples_per_gpu", "]", "]", "stacked", ".", "append", "(", "default_collate", "(", "padded_samples", ")", ")", "else", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "batch", ")", ",", "samples_per_gpu", ")", ":", "stacked", ".", "append", "(", "[", "sample", ".", "data", "for", "sample", "in", "batch", "[", "i", ":", "i", "+", "samples_per_gpu", "]", "]", ")", "return", "DataContainer", "(", "stacked", ",", "batch", "[", "0", "]", ".", "stack", ",", "batch", "[", "0", "]", ".", "padding_value", ")", "elif", "isinstance", "(", "batch", "[", "0", "]", ",", "collections", ".", "Sequence", ")", ":", "transposed", "=", "zip", "(", "*", "batch", ")", "return", "[", "collate", "(", "samples", ",", "samples_per_gpu", ")", "for", "samples", "in", "transposed", "]", "elif", "isinstance", "(", "batch", "[", "0", "]", ",", "collections", ".", "Mapping", ")", ":", "return", "{", "key", ":", "collate", "(", "[", "d", "[", "key", "]", "for", "d", "in", "batch", "]", ",", "samples_per_gpu", ")", "for", "key", "in", "batch", "[", "0", "]", "}", "else", ":", "return", "default_collate", "(", "batch", ")" ]
0d77f61450aab4dde8b8585a577cc496acb95d7f