paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/numerical-modeling-of-specimen-geometry-for
|
Numerical modeling of specimen geometry for quantitative energy dispersive X-ray spectroscopy
|
1708.04565
|
http://arxiv.org/abs/1708.04565v1
|
http://arxiv.org/pdf/1708.04565v1.pdf
|
https://github.com/subangstrom/superAngle
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/semi-global-weighted-least-squares-in-image-1
|
Semi-Global Weighted Least Squares in Image Filtering
|
1705.01674
|
http://arxiv.org/abs/1705.01674v4
|
http://arxiv.org/pdf/1705.01674v4.pdf
|
https://github.com/wliusjtu/Semi-Global-Weighted-Least-Squares-in-Image-Filtering
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/FJSam/SelfCritical_ImageCaptioning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diagnosing-error-in-temporal-action-detectors
|
Diagnosing Error in Temporal Action Detectors
|
1807.10706
|
http://arxiv.org/abs/1807.10706v1
|
http://arxiv.org/pdf/1807.10706v1.pdf
|
https://github.com/HumamAlwassel/DETAD
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/hierarchical-interpolative-factorization-for-1
|
Hierarchical interpolative factorization for elliptic operators: differential equations
|
1307.2895
|
http://arxiv.org/abs/1307.2895v3
|
http://arxiv.org/pdf/1307.2895v3.pdf
|
https://github.com/klho/FLAM
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/will-this-paper-increase-your-h-index
|
Will This Paper Increase Your h-index? Scientific Impact Prediction
|
1412.4754
|
https://arxiv.org/abs/1412.4754v1
|
https://arxiv.org/pdf/1412.4754v1.pdf
|
https://github.com/nmhaddad/youtube-machine-learning-experiments
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/past-present-and-future-of-simultaneous
|
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age
|
1606.05830
|
http://arxiv.org/abs/1606.05830v4
|
http://arxiv.org/pdf/1606.05830v4.pdf
|
https://github.com/dannofield/Particle-Filter-Kidnapped-Vehicle
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ngraph-he-a-graph-compiler-for-deep-learning
|
nGraph-HE: A Graph Compiler for Deep Learning on Homomorphically Encrypted Data
|
1810.10121
|
http://arxiv.org/abs/1810.10121v1
|
http://arxiv.org/pdf/1810.10121v1.pdf
|
https://github.com/NervanaSystems/he-transformer
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/blockclique-scaling-blockchains-through
|
Blockclique: scaling blockchains through transaction sharding in a multithreaded block graph
|
1803.09029
|
http://arxiv.org/abs/1803.09029v4
|
http://arxiv.org/pdf/1803.09029v4.pdf
|
https://gitlab.com/blockclique/blockclique
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/a-supervised-neural-network-for-drag
|
A supervised neural network for drag prediction of arbitrary 2D shapes in low Reynolds number flows
|
1907.05090
|
https://arxiv.org/abs/1907.05090v4
|
https://arxiv.org/pdf/1907.05090v4.pdf
|
https://github.com/jviquerat/cnn_drag_prediction
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/optimisation-of-wastewater-treatment
|
Optimisation of Wastewater Treatment Strategies in Eco-Industrial Parks: Technology, Location and Transport
|
2005.09987
|
https://arxiv.org/abs/2005.09987v1
|
https://arxiv.org/pdf/2005.09987v1.pdf
|
https://github.com/ckjzsa/opt_wastewater_treatment_strategies
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improving-direct-physical-properties
|
Improving Direct Physical Properties Prediction of Heterogeneous Materials from Imaging Data via Convolutional Neural Network and a Morphology-Aware Generative Model
|
1712.03811
|
https://arxiv.org/abs/1712.03811v1
|
https://arxiv.org/pdf/1712.03811v1.pdf
|
https://github.com/DesignInformaticsLab/Morphology-Aware-Network
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/characterizing-and-detecting-hateful-users-on
|
Characterizing and Detecting Hateful Users on Twitter
|
1803.08977
|
https://arxiv.org/abs/1803.08977v1
|
https://arxiv.org/pdf/1803.08977v1.pdf
|
https://github.com/PhilippeCodes/Twitter-Pronoun-Retweet-Graph-Analysis
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pcpnet-learning-local-shape-properties-from
|
PCPNET: Learning Local Shape Properties from Raw Point Clouds
|
1710.04954
|
http://arxiv.org/abs/1710.04954v4
|
http://arxiv.org/pdf/1710.04954v4.pdf
|
https://github.com/ModelBunker/PointNet-TensorFlow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/combinatorial-superstatistics-for-soft-qcd
|
Combinatorial Superstatistics for Soft QCD
|
1910.06279
|
https://arxiv.org/abs/1910.06279v2
|
https://arxiv.org/pdf/1910.06279v2.pdf
|
https://github.com/mieskolainen/Diffractive-Combinatorics
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/effective-mass-of-quasiparticles-from
|
Effective mass of quasiparticles from thermodynamics
|
1704.04076
|
http://arxiv.org/abs/1704.04076v2
|
http://arxiv.org/pdf/1704.04076v2.pdf
|
https://github.com/fgeich/pyFTEGhf
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/federated-semi-supervised-learning-with-inter
|
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint Learning
|
2006.12097
|
https://arxiv.org/abs/2006.12097v3
|
https://arxiv.org/pdf/2006.12097v3.pdf
|
https://github.com/wyjeong/FedMatch
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/parallel-decompression-of-gzip-compressed
|
Parallel decompression of gzip-compressed files and random access to DNA sequences
|
1905.07224
|
http://arxiv.org/abs/1905.07224v1
|
http://arxiv.org/pdf/1905.07224v1.pdf
|
https://github.com/Piezoid/pugz
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/coreneuron-an-optimized-compute-engine-for
|
CoreNEURON : An Optimized Compute Engine for the NEURON Simulator
|
1901.10975
|
http://arxiv.org/abs/1901.10975v1
|
http://arxiv.org/pdf/1901.10975v1.pdf
|
https://github.com/bluebrain/CoreNeuron
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/engineering-resilient-collective-adaptive
|
Engineering Resilient Collective Adaptive Systems by Self-Stabilisation
|
1711.08297
|
http://arxiv.org/abs/1711.08297v1
|
http://arxiv.org/pdf/1711.08297v1.pdf
|
https://bitbucket.org/danysk/experiment-2017-tomacs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/emufog-extensible-and-scalable-emulation-of
|
EmuFog: Extensible and Scalable Emulation of Large-Scale Fog Computing Infrastructures
|
1709.07563
|
http://arxiv.org/abs/1709.07563v1
|
http://arxiv.org/pdf/1709.07563v1.pdf
|
https://github.com/emufog/emufog
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/energy-based-comparison-between-the-fourier
|
Energy-based comparison between the Fourier--Galerkin method and the finite element method
|
1709.08477
|
http://arxiv.org/abs/1709.08477v2
|
http://arxiv.org/pdf/1709.08477v2.pdf
|
https://github.com/vondrejc/FFTHomPy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tikz-network-manual
|
TikZ-network manual
|
1709.06005
|
https://arxiv.org/abs/1709.06005v2
|
https://arxiv.org/pdf/1709.06005v2.pdf
|
https://github.com/hackl/network2tikz
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/algebra-based-loop-synthesis
|
Algebra-based Loop Synthesis
|
2004.11787
|
http://arxiv.org/abs/2004.11787v2
|
http://arxiv.org/pdf/2004.11787v2.pdf
|
https://github.com/ahumenberger/Absynth.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/geobroker-leveraging-geo-contexts-for-iot
|
GeoBroker: Leveraging Geo-Contexts for IoT Data Distribution
|
2001.01603
|
http://arxiv.org/abs/2001.01603v3
|
http://arxiv.org/pdf/2001.01603v3.pdf
|
https://github.com/MoeweX/GeoBroker
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-geometric-based-preprocessing-for-weighted
|
A geometric based preprocessing for weighted ray transforms with applications in SPECT
|
1911.05470
|
http://arxiv.org/abs/1911.05470v3
|
http://arxiv.org/pdf/1911.05470v3.pdf
|
https://github.com/fedor-goncharov/wrt-project
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-flexible-machine-learning-aware
|
A Flexible Machine Learning-Aware Architecture for Future WLANs
|
1910.03510
|
http://arxiv.org/abs/1910.03510v3
|
http://arxiv.org/pdf/1910.03510v3.pdf
|
https://github.com/fwilhelmi/machine_learning_aware_architecture_wlans
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/equations-in-three-singular-moduli-the-equal
|
Equations in three singular moduli: the equal exponent case
|
2105.12696
|
https://arxiv.org/abs/2105.12696v2
|
https://arxiv.org/pdf/2105.12696v2.pdf
|
https://github.com/guyfowler/three_singular_moduli
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bridging-semantic-gaps-between-natural
|
Bridging Semantic Gaps between Natural Languages and APIs with Word Embedding
|
1810.09723
|
http://arxiv.org/abs/1810.09723v1
|
http://arxiv.org/pdf/1810.09723v1.pdf
|
https://github.com/softw-lab/word2api
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/large-scale-cover-song-detection-in-digital
|
Large-Scale Cover Song Detection in Digital Music Libraries Using Metadata, Lyrics and Audio Features
|
1808.10351
|
http://arxiv.org/abs/1808.10351v1
|
http://arxiv.org/pdf/1808.10351v1.pdf
|
https://github.com/deezer/cover_song_detection
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/information-estimation-using-nonparametric
|
Information estimation using nonparametric copulas
|
1807.08018
|
http://arxiv.org/abs/1807.08018v2
|
http://arxiv.org/pdf/1807.08018v2.pdf
|
https://github.com/houman1359/NPC_Info
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/semi-analytic-galaxy-evolution-sage-model
|
Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results
|
1601.04709
|
http://arxiv.org/abs/1601.04709v3
|
http://arxiv.org/pdf/1601.04709v3.pdf
|
https://github.com/jacobseiler/rsage
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-accuracy-of-semi-numerical-reionization
|
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
|
1803.00088
|
http://arxiv.org/abs/1803.00088v1
|
http://arxiv.org/pdf/1803.00088v1.pdf
|
https://github.com/jacobseiler/rsage
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/disco-physics-based-unsupervised-discovery-of
|
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
|
1909.11822
|
https://arxiv.org/abs/1909.11822v1
|
https://arxiv.org/pdf/1909.11822v1.pdf
|
https://github.com/intel/daal
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/global-and-optimal-probes-for-the-top-quark
|
Global and optimal probes for the top-quark effective field theory at future lepton colliders
|
1807.02121
|
https://arxiv.org/abs/1807.02121v1
|
https://arxiv.org/pdf/1807.02121v1.pdf
|
https://github.com/gdurieux/optimal_observables_ee2tt2bwbw
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-abstract-machine-for-strong-call-by-value
|
An Abstract Machine for Strong Call by Value
|
2009.06984
|
http://arxiv.org/abs/2009.06984v1
|
http://arxiv.org/pdf/2009.06984v1.pdf
|
https://bitbucket.org/pl-uwr/scbv-machine
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/batching-and-matching-for-food-delivery-in
|
Batching and Matching for Food Delivery in Dynamic Road Networks
|
2008.12905
|
http://arxiv.org/abs/2008.12905v1
|
http://arxiv.org/pdf/2008.12905v1.pdf
|
https://github.com/idea-iitd/FoodMatch
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/strongly-coupled-heavy-and-light-quark
|
Strongly Coupled Heavy and Light Quark Thermal Motion from AdS/CFT
|
2008.09196
|
https://arxiv.org/abs/2008.09196v3
|
https://arxiv.org/pdf/2008.09196v3.pdf
|
https://github.com/AlexesMes/brownian-motion-of-quarks
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/stellar-streams-in-chameleon-gravity
|
Stellar Streams in Chameleon Gravity
|
2002.05738
|
http://arxiv.org/abs/2002.05738v1
|
http://arxiv.org/pdf/2002.05738v1.pdf
|
https://github.com/aneeshnaik/smoggy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cohomology-fractals
|
Cohomology fractals
|
2002.00239
|
http://arxiv.org/abs/2002.00239v2
|
http://arxiv.org/pdf/2002.00239v2.pdf
|
https://github.com/henryseg/cohomology_fractals
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/neural-embeddings-of-scholarly-periodicals
|
Neural Embeddings of Scholarly Periodicals Reveal Complex Disciplinary Organizations
|
2001.08199
|
https://arxiv.org/abs/2001.08199v2
|
https://arxiv.org/pdf/2001.08199v2.pdf
|
https://github.com/haoopeng/periodicals
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/looking-for-machos-in-the-spectra-of-fast
|
Looking for MACHOs in the Spectra of Fast Radio Bursts
|
1912.07620
|
http://arxiv.org/abs/1912.07620v1
|
http://arxiv.org/pdf/1912.07620v1.pdf
|
https://github.com/andrey-katz/FRB_lensing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rtj-a-java-framework-for-detecting-and
|
RTj: a Java framework for detecting and refactoring rotten green test cases
|
1912.07322
|
http://arxiv.org/abs/1912.07322v1
|
http://arxiv.org/pdf/1912.07322v1.pdf
|
https://github.com/UPHF/RTj
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gpcal-a-generalized-calibration-pipeline-for
|
GPCAL: a generalized calibration pipeline for instrumental polarization in VLBI data
|
2011.09713
|
http://arxiv.org/abs/2011.09713v1
|
http://arxiv.org/pdf/2011.09713v1.pdf
|
https://github.com/jhparkastro/gpcal
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bayesian-matrix-completion-for-hypothesis
|
Bayesian Matrix Completion for Hypothesis Testing
|
2009.08405
|
https://arxiv.org/abs/2009.08405v6
|
https://arxiv.org/pdf/2009.08405v6.pdf
|
https://github.com/jinbora0720/BMC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/elastica-a-compliant-mechanics-environment
|
Elastica: A compliant mechanics environment for soft robotic control
|
2009.08422
|
http://arxiv.org/abs/2009.08422v1
|
http://arxiv.org/pdf/2009.08422v1.pdf
|
https://github.com/GazzolaLab/PyElastica
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predicting-cell-phone-adoption-metrics-using
|
Predicting cell phone adoption metrics using satellite imagery
|
2006.07311
|
https://arxiv.org/abs/2006.07311v5
|
https://arxiv.org/pdf/2006.07311v5.pdf
|
https://github.com/edwardoughton/taddle
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dgm-a-deep-learning-algorithm-for-solving
|
DGM: A deep learning algorithm for solving partial differential equations
|
1708.07469
|
http://arxiv.org/abs/1708.07469v5
|
http://arxiv.org/pdf/1708.07469v5.pdf
|
https://github.com/atapritchard/DPDEs
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/qopt-an-experiment-oriented-qubit-simulation
|
qopt: An experiment-oriented Qubit Simulation and Quantum Optimal Control Package
|
2110.05873
|
https://arxiv.org/abs/2110.05873v1
|
https://arxiv.org/pdf/2110.05873v1.pdf
|
https://github.com/qutech/qopt-applications
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mdp-homomorphic-networks-group-symmetries-in
|
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
|
2006.16908
|
https://arxiv.org/abs/2006.16908v2
|
https://arxiv.org/pdf/2006.16908v2.pdf
|
https://github.com/ElisevanderPol/symmetrizer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-pose-invariant-3d-object
|
Learning Pose-invariant 3D Object Reconstruction from Single-view Images
|
2004.01347
|
https://arxiv.org/abs/2004.01347v2
|
https://arxiv.org/pdf/2004.01347v2.pdf
|
https://github.com/bomb2peng/learn3D
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/aide-annotation-efficient-deep-learning-for
|
Annotation-efficient deep learning for automatic medical image segmentation
|
2012.04885
|
https://arxiv.org/abs/2012.04885v3
|
https://arxiv.org/pdf/2012.04885v3.pdf
|
https://github.com/lich0031/AIDE
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/simple-is-not-easy-a-simple-strong-baseline
|
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps
|
2012.05153
|
https://arxiv.org/abs/2012.05153v1
|
https://arxiv.org/pdf/2012.05153v1.pdf
|
https://github.com/ZephyrZhuQi/ssbaseline
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/perspectives-and-solutions-towards
|
Perspectives and solutions towards intelligent ambient assisted living systems
|
2102.13173
|
https://arxiv.org/abs/2102.13173v2
|
https://arxiv.org/pdf/2102.13173v2.pdf
|
https://github.com/hongsun502/AALDemo
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/active-sampling-a-machine-learning-assisted
|
Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples
|
2212.10024
|
https://arxiv.org/abs/2212.10024v3
|
https://arxiv.org/pdf/2212.10024v3.pdf
|
https://github.com/imbhe/activesampling
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-neural-rendering-framework-for-free
|
A Neural Rendering Framework for Free-Viewpoint Relighting
|
1911.11530
|
https://arxiv.org/abs/1911.11530v2
|
https://arxiv.org/pdf/1911.11530v2.pdf
|
https://github.com/apchenstu/mvsnerf
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-galah-survey-a-catalogue-of-carbon
|
The GALAH survey: a catalogue of carbon-enhanced stars and CEMP candidates
|
1807.07977
|
http://arxiv.org/abs/1807.07977v2
|
http://arxiv.org/pdf/1807.07977v2.pdf
|
https://github.com/kcotar/GALAH-survey-Carbon-enhanced-stars
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/clustering-ensemble-meets-low-rank-tensor
|
Clustering Ensemble Meets Low-rank Tensor Approximation
|
2012.08916
|
https://arxiv.org/abs/2012.08916v1
|
https://arxiv.org/pdf/2012.08916v1.pdf
|
https://github.com/jyh-learning/TensorClusteringEnsemble
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/electra-pre-training-text-encoders-as-1
|
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
|
2003.10555
|
https://arxiv.org/abs/2003.10555v1
|
https://arxiv.org/pdf/2003.10555v1.pdf
|
https://github.com/MalteHB/-l-ctra
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/rexnet-diminishing-representational
|
Rethinking Channel Dimensions for Efficient Model Design
|
2007.00992
|
https://arxiv.org/abs/2007.00992v3
|
https://arxiv.org/pdf/2007.00992v3.pdf
|
https://github.com/ysbsb/ReXNet-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pannuke-dataset-extension-insights-and
|
PanNuke Dataset Extension, Insights and Baselines
|
2003.10778
|
https://arxiv.org/abs/2003.10778v7
|
https://arxiv.org/pdf/2003.10778v7.pdf
|
https://github.com/vqdang/hover_net
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/earthnet2021-a-novel-large-scale-dataset-and
|
EarthNet2021: A novel large-scale dataset and challenge for forecasting localized climate impacts
|
2012.06246
|
https://arxiv.org/abs/2012.06246v1
|
https://arxiv.org/pdf/2012.06246v1.pdf
|
https://github.com/earthnet2021/earthnet-model-intercomparison-suite
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/opera-harmonizing-task-oriented-dialogs-and
|
OPERA: Harmonizing Task-Oriented Dialogs and Information Seeking Experience
|
2206.12449
|
https://arxiv.org/abs/2206.12449v1
|
https://arxiv.org/pdf/2206.12449v1.pdf
|
https://github.com/Miaoranmmm/OPERA
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/two-pass-discourse-segmentation-with-pairing
|
Two-pass Discourse Segmentation with Pairing and Global Features
|
1407.8215
|
http://arxiv.org/abs/1407.8215v1
|
http://arxiv.org/pdf/1407.8215v1.pdf
|
https://github.com/Akanni96/feng-hirst-rst-parser
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/flow-architecture-and-benchmarking-for
|
Flow: A Modular Learning Framework for Mixed Autonomy Traffic
|
1710.05465
|
https://arxiv.org/abs/1710.05465v4
|
https://arxiv.org/pdf/1710.05465v4.pdf
|
https://github.com/pengyuan-zhou/Multi-agent-RL-traffic-light-control
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ef-net-a-novel-enhancement-and-fusion-network
|
EF-Net: A novel enhancement and fusion network for RGB-D saliency detection
| null |
https://www.sciencedirect.com/science/article/abs/pii/S0031320320305434
|
https://www.sciencedirect.com/science/article/abs/pii/S0031320320305434
|
https://github.com/PPOLYpubki/EF-Net
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/distilling-knowledge-from-reader-to-retriever-1
|
Distilling Knowledge from Reader to Retriever for Question Answering
|
2012.04584
|
https://arxiv.org/abs/2012.04584v2
|
https://arxiv.org/pdf/2012.04584v2.pdf
|
https://github.com/lucidrains/marge-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/categorization-of-two-loop-feynman-diagrams
|
Categorization of two-loop Feynman diagrams in the $\mathcal O(α^2)$ correction to $e^+e^- \rightarrow ZH$
|
2012.12513
|
https://arxiv.org/abs/2012.12513v2
|
https://arxiv.org/pdf/2012.12513v2.pdf
|
https://github.com/zhaoli-IHEP/eeHZ_nnloEW_diagrams
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dynamic-object-removal-and-spatio-temporal
|
Dynamic Object Removal and Spatio-Temporal RGB-D Inpainting via Geometry-Aware Adversarial Learning
|
2008.05058
|
https://arxiv.org/abs/2008.05058v4
|
https://arxiv.org/pdf/2008.05058v4.pdf
|
https://github.com/robot-learning-freiburg/DynaFill
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automated-customized-bug-benchmark-generation
|
Automated Customized Bug-Benchmark Generation
|
1901.02819
|
https://arxiv.org/abs/1901.02819v2
|
https://arxiv.org/pdf/1901.02819v2.pdf
|
https://github.com/grammatech/sel
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/software-mutational-robustness
|
Software Mutational Robustness
|
1204.4224
|
https://arxiv.org/abs/1204.4224v3
|
https://arxiv.org/pdf/1204.4224v3.pdf
|
https://github.com/grammatech/sel
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fairness-without-demographics-through
|
Fairness without Demographics through Adversarially Reweighted Learning
|
2006.13114
|
https://arxiv.org/abs/2006.13114v3
|
https://arxiv.org/pdf/2006.13114v3.pdf
|
https://github.com/lucweytingh/ARL-UvA
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/variance-change-point-detection-with-credible
|
Bayesian variance change point detection with credible sets
|
2211.14097
|
https://arxiv.org/abs/2211.14097v3
|
https://arxiv.org/pdf/2211.14097v3.pdf
|
https://github.com/lorenzocapp/prisca
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/exploring-adversarial-robustness-of-deep
|
Exploring Adversarial Robustness of Deep Metric Learning
|
2102.07265
|
https://arxiv.org/abs/2102.07265v1
|
https://arxiv.org/pdf/2102.07265v1.pdf
|
https://github.com/anonymous-koala-supporter/adversarial-deep-metric-learning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tag-assisted-neural-machine-translation-of
|
Tag Assisted Neural Machine Translation of Film Subtitles
| null |
https://aclanthology.org/2021.iwslt-1.30
|
https://aclanthology.org/2021.iwslt-1.30.pdf
|
https://github.com/compwiztobe/tagged-seq2seq
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/keyphrase-generation-for-scientific-document-1
|
Keyphrase Generation for Scientific Document Retrieval
|
2106.14726
|
https://arxiv.org/abs/2106.14726v1
|
https://arxiv.org/pdf/2106.14726v1.pdf
|
https://github.com/boudinfl/ir-using-kg
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/directed-searches-for-gravitational-waves
|
Directed searches for gravitational waves from ultralight bosons
|
1810.03812
|
https://arxiv.org/abs/1810.03812v3
|
https://arxiv.org/pdf/1810.03812v3.pdf
|
https://github.com/maxisi/gwaxion
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/190503375
|
Embarrassingly Shallow Autoencoders for Sparse Data
|
1905.03375
|
https://arxiv.org/abs/1905.03375v1
|
https://arxiv.org/pdf/1905.03375v1.pdf
|
https://github.com/franckjay/TorchEASE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pytorrent-a-python-library-corpus-for-large
|
PyTorrent: A Python Library Corpus for Large-scale Language Models
|
2110.01710
|
https://arxiv.org/abs/2110.01710v1
|
https://arxiv.org/pdf/2110.01710v1.pdf
|
https://github.com/fla-sil/PyTorrent
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/gravitational-wave-searches-for-ultralight
|
Gravitational wave searches for ultralight bosons with LIGO and LISA
|
1706.06311
|
https://arxiv.org/abs/1706.06311v2
|
https://arxiv.org/pdf/1706.06311v2.pdf
|
https://github.com/maxisi/gwaxion
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/theoretically-principled-trade-off-between
|
Theoretically Principled Trade-off between Robustness and Accuracy
|
1901.08573
|
https://arxiv.org/abs/1901.08573v3
|
https://arxiv.org/pdf/1901.08573v3.pdf
|
https://github.com/arobey1/advbench
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/point2mesh-a-self-prior-for-deformable-meshes
|
Point2Mesh: A Self-Prior for Deformable Meshes
|
2005.11084
|
https://arxiv.org/abs/2005.11084v1
|
https://arxiv.org/pdf/2005.11084v1.pdf
|
https://github.com/dcharatan/point2mesh-reimplementation
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/hyperspherical-variational-auto-encoders
|
Hyperspherical Variational Auto-Encoders
|
1804.00891
|
https://arxiv.org/abs/1804.00891v3
|
https://arxiv.org/pdf/1804.00891v3.pdf
|
https://github.com/nicola-decao/s-vae-tf
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/probabilistic-safety-constraints-for-learned
|
Probabilistic Safety Constraints for Learned High Relative Degree System Dynamics
|
1912.10116
|
https://arxiv.org/abs/1912.10116v3
|
https://arxiv.org/pdf/1912.10116v3.pdf
|
https://github.com/wecacuee/Bayesian_CBF
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/accuracy-vs-complexity-for-mmwave-ray-tracing
|
Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective
|
2007.07125
|
https://arxiv.org/abs/2007.07125v1
|
https://arxiv.org/pdf/2007.07125v1.pdf
|
https://github.com/signetlabdei/qd-realization
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/control-barriers-in-bayesian-learning-of
|
Control Barriers in Bayesian Learning of System Dynamics
|
2012.14964
|
https://arxiv.org/abs/2012.14964v2
|
https://arxiv.org/pdf/2012.14964v2.pdf
|
https://github.com/wecacuee/Bayesian_CBF
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dsxplore-optimizing-convolutional-neural
|
DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions
|
2101.00745
|
https://arxiv.org/abs/2101.00745v1
|
https://arxiv.org/pdf/2101.00745v1.pdf
|
https://github.com/YukeWang96/DSXplore
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/case-studies-in-network-community-detection
|
Case studies in network community detection
|
1705.02305
|
https://arxiv.org/abs/1705.02305v1
|
https://arxiv.org/pdf/1705.02305v1.pdf
|
https://github.com/taylordr/supracentrality
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/underwater-image-enhancement-based-on-deep
|
Underwater Image Enhancement based on Deep Learning and Image Formation Model
|
2101.00991
|
https://arxiv.org/abs/2101.00991v2
|
https://arxiv.org/pdf/2101.00991v2.pdf
|
https://github.com/xueleichen/PyTorch-Underwater-Image-Enhancement
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/particle-swarm-based-hyper-parameter
|
Particle Swarm Based Hyper-Parameter Optimization for Machine Learned Interatomic Potentials
|
2101.00049
|
https://arxiv.org/abs/2101.00049v1
|
https://arxiv.org/pdf/2101.00049v1.pdf
|
https://github.com/suresh0807/PPSO
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bayesian-image-reconstruction-using-deep
|
Bayesian Image Reconstruction using Deep Generative Models
|
2012.04567
|
https://arxiv.org/abs/2012.04567v5
|
https://arxiv.org/pdf/2012.04567v5.pdf
|
https://github.com/razvanmarinescu/brgm
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/preconditioned-training-of-normalizing-flows
|
Preconditioned training of normalizing flows for variational inference in inverse problems
|
2101.03709
|
https://arxiv.org/abs/2101.03709v1
|
https://arxiv.org/pdf/2101.03709v1.pdf
|
https://github.com/slimgroup/Software.siahkoohi2021AABIpto
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rezero-is-all-you-need-fast-convergence-at
|
ReZero is All You Need: Fast Convergence at Large Depth
|
2003.04887
|
https://arxiv.org/abs/2003.04887v2
|
https://arxiv.org/pdf/2003.04887v2.pdf
|
https://github.com/EugenHotaj/pytorch-generative/blob/master/pytorch_generative/nn/utils.py
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/few-shot-dialogue-state-tracking-using-meta
|
Few Shot Dialogue State Tracking using Meta-learning
|
2101.06779
|
https://arxiv.org/abs/2101.06779v3
|
https://arxiv.org/pdf/2101.06779v3.pdf
|
https://github.com/saketdingliwal/Few-Shot-DST
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-smt-based-approach-for-verifying-binarized
|
An SMT-Based Approach for Verifying Binarized Neural Networks
|
2011.02948
|
https://arxiv.org/abs/2011.02948v2
|
https://arxiv.org/pdf/2011.02948v2.pdf
|
https://github.com/guyam2/BNN_Verification_Artifact
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/exploring-the-structure-of-a-real-time
|
Exploring the structure of a real-time, arbitrary neural artistic stylization network
|
1705.06830
|
http://arxiv.org/abs/1705.06830v2
|
http://arxiv.org/pdf/1705.06830v2.pdf
|
https://github.com/jiean001/models_m/tree/main/ArbitraryStyleTransfer
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/investigation-of-a-data-split-strategy
|
Investigation of a Data Split Strategy Involving the Time Axis in Adverse Event Prediction Using Machine Learning
|
2204.08682
|
https://arxiv.org/abs/2204.08682v2
|
https://arxiv.org/pdf/2204.08682v2.pdf
|
https://github.com/mizuno-group/ae_prediction
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sequence-generation-using-deep-recurrent
|
Sequence Generation using Deep Recurrent Networks and Embeddings: A study case in music
|
2012.01231
|
https://arxiv.org/abs/2012.01231v1
|
https://arxiv.org/pdf/2012.01231v1.pdf
|
https://github.com/sebasgverde/mono-midi-transposition-dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-framework-to-compare-music-generative
|
A framework to compare music generative models using automatic evaluation metrics extended to rhythm
|
2101.07669
|
https://arxiv.org/abs/2101.07669v1
|
https://arxiv.org/pdf/2101.07669v1.pdf
|
https://github.com/sebasgverde/mono-midi-transposition-dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/190503302
|
PerceptNet: Learning Perceptual Similarity of Haptic Textures in Presence of Unorderable Triplets
|
1905.03302
|
https://arxiv.org/abs/1905.03302v2
|
https://arxiv.org/pdf/1905.03302v2.pdf
|
https://github.com/kpriyadarshini/perceptNet
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.