paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/counterfactual-vqa-a-cause-effect-look-at
|
Counterfactual VQA: A Cause-Effect Look at Language Bias
|
2006.04315
|
https://arxiv.org/abs/2006.04315v4
|
https://arxiv.org/pdf/2006.04315v4.pdf
|
https://github.com/yuleiniu/cfvqa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-invitation-to-quantum-channels
|
An Invitation to Quantum Channels
|
1902.00909
|
https://arxiv.org/abs/1902.00909v1
|
https://arxiv.org/pdf/1902.00909v1.pdf
|
https://github.com/ilsinay/CHPC-NITheP-Summer-School-2021
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/open-quantum-systems-an-introduction
|
Open Quantum Systems. An Introduction
|
1104.5242
|
https://arxiv.org/abs/1104.5242v2
|
https://arxiv.org/pdf/1104.5242v2.pdf
|
https://github.com/ilsinay/CHPC-NITheP-Summer-School-2021
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ibm-q-experience-as-a-versatile-experimental
|
IBM Q Experience as a versatile experimental testbed for simulating open quantum systems
|
1906.07099
|
https://arxiv.org/abs/1906.07099v1
|
https://arxiv.org/pdf/1906.07099v1.pdf
|
https://github.com/ilsinay/CHPC-NITheP-Summer-School-2021
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/reducing-domain-gap-via-style-agnostic
|
Reducing Domain Gap by Reducing Style Bias
|
1910.11645
|
https://arxiv.org/abs/1910.11645v4
|
https://arxiv.org/pdf/1910.11645v4.pdf
|
https://github.com/hyeonseobnam/sagnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/grad-tts-a-diffusion-probabilistic-model-for
|
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
|
2105.06337
|
https://arxiv.org/abs/2105.06337v2
|
https://arxiv.org/pdf/2105.06337v2.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/singan-learning-a-generative-model-from-a
|
SinGAN: Learning a Generative Model from a Single Natural Image
|
1905.01164
|
https://arxiv.org/abs/1905.01164v2
|
https://arxiv.org/pdf/1905.01164v2.pdf
|
https://github.com/ilyak93/SinGanF2
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/knowledge-preserving-incremental-social-event
|
Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs
|
2101.08747
|
https://arxiv.org/abs/2101.08747v2
|
https://arxiv.org/pdf/2101.08747v2.pdf
|
https://github.com/YuweiCao-UIC/KPGNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mushroom-segmentation-and-3d-pose-estimation
|
Mushroom Segmentation and 3D Pose Estimation from Point Clouds using Fully Convolutional Geometric Features and Implicit Pose Encoding
|
2404.12144
|
https://arxiv.org/abs/2404.12144v1
|
https://arxiv.org/pdf/2404.12144v1.pdf
|
https://github.com/georgeretsi/mushroom-pose
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-sunpy-project-an-interoperable-ecosystem
|
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
|
2304.09794
|
https://arxiv.org/abs/2304.09794v1
|
https://arxiv.org/pdf/2304.09794v1.pdf
|
https://github.com/sunpy/sunpy-frontiers-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/enabling-data-diversity-efficient-automatic
|
Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Training
|
2103.16493
|
https://arxiv.org/abs/2103.16493v1
|
https://arxiv.org/pdf/2103.16493v1.pdf
|
https://github.com/yhygao/Efficient_Data_Augmentation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/computational-approaches-to-efficient
|
Computational approaches to efficient generation of the stationary state for incoherent light excitation
|
2011.03084
|
https://arxiv.org/abs/2011.03084v2
|
https://arxiv.org/pdf/2011.03084v2.pdf
|
https://github.com/iloaiza/Incoherent_density
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/step-on-the-gas-a-better-approach-for
|
Step on the Gas? A Better Approach for Recommending the Ethereum Gas Price
|
2003.03479
|
https://arxiv.org/abs/2003.03479v2
|
https://arxiv.org/pdf/2003.03479v2.pdf
|
https://github.com/louisoutin/eip1559_analysis
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/methods-included-standardizing-computational
|
Methods Included: Standardizing Computational Reuse and Portability with the Common Workflow Language
|
2105.07028
|
https://arxiv.org/abs/2105.07028v2
|
https://arxiv.org/pdf/2105.07028v2.pdf
|
https://github.com/common-workflow-language/common-workflow-language
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/saga-a-fast-incremental-gradient-method-with
|
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
|
1407.0202
|
http://arxiv.org/abs/1407.0202v3
|
http://arxiv.org/pdf/1407.0202v3.pdf
|
https://github.com/scikit-learn/scikit-learn/blob/95119c13a/sklearn/linear_model/_logistic.py
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/openapepose-a-database-of-annotated-ape
|
OpenApePose: a database of annotated ape photographs for pose estimation
|
2212.00741
|
https://arxiv.org/abs/2212.00741v2
|
https://arxiv.org/pdf/2212.00741v2.pdf
|
https://github.com/desai-nisarg/openapepose
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mesh-total-generalized-variation-for
|
Mesh Total Generalized Variation for Denoising
|
2101.02322
|
https://arxiv.org/abs/2101.02322v2
|
https://arxiv.org/pdf/2101.02322v2.pdf
|
https://github.com/LabZhengLiu/MeshTGV
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/integral-concurrent-learning-adaptive-control
|
Integral Concurrent Learning: Adaptive Control with Parameter Convergence without PE or State Derivatives
|
1512.03464
|
http://arxiv.org/abs/1512.03464v1
|
http://arxiv.org/pdf/1512.03464v1.pdf
|
https://github.com/EasonHuang-tw/ICL_matlab_simulation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/temporal-recurrent-networks-for-online-action
|
Temporal Recurrent Networks for Online Action Detection
|
1811.07391
|
http://arxiv.org/abs/1811.07391v2
|
http://arxiv.org/pdf/1811.07391v2.pdf
|
https://github.com/xumingze0308/TRN.pytorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/scaling-up-hbm-efficiency-of-top-k-spmv-for
|
Scaling up HBM Efficiency of Top-K SpMV for Approximate Embedding Similarity on FPGAs
|
2103.04808
|
https://arxiv.org/abs/2103.04808v1
|
https://arxiv.org/pdf/2103.04808v1.pdf
|
https://github.com/AlbertoParravicini/approximate-spmv-topk
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-scavenger-hunt-for-service-robots
|
A Scavenger Hunt for Service Robots
|
2103.05225
|
https://arxiv.org/abs/2103.05225v3
|
https://arxiv.org/pdf/2103.05225v3.pdf
|
https://github.com/utexas-bwi/scavenger_hunt_api
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-integrated-autoencoder-based-hybrid-cnn
|
An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound
| null |
https://www.sciencedirect.com/science/article/pii/S0010482521000901
|
https://www.sciencedirect.com/science/article/pii/S0010482521000901
|
https://github.com/ankangd/HybridCovidLUS
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/dirichlet-pruning-for-neural-network
|
Dirichlet Pruning for Neural Network Compression
|
2011.05985
|
https://arxiv.org/abs/2011.05985v3
|
https://arxiv.org/pdf/2011.05985v3.pdf
|
https://github.com/ParkLabML/Dirichlet_Pruning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-effectiveness-of-factorization-and
|
The effectiveness of factorization and similarity blending
|
2209.13011
|
https://arxiv.org/abs/2209.13011v1
|
https://arxiv.org/pdf/2209.13011v1.pdf
|
https://github.com/andreakiro/cil-lab
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/rank-flow-embedding-for-unsupervised-and-semi-1
|
Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold Learning
|
2304.12448
|
https://arxiv.org/abs/2304.12448v1
|
https://arxiv.org/pdf/2304.12448v1.pdf
|
https://github.com/UDLF/UDLF
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/190500641
|
RetinaFace: Single-stage Dense Face Localisation in the Wild
|
1905.00641
|
https://arxiv.org/abs/1905.00641v2
|
https://arxiv.org/pdf/1905.00641v2.pdf
|
https://github.com/Johnny952/retinaface_mod
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/searching-for-test-case-prioritization
|
Assessing Expert System-Assisted Literature Reviews With a Case Study
|
1909.07249
|
https://arxiv.org/abs/1909.07249v4
|
https://arxiv.org/pdf/1909.07249v4.pdf
|
https://github.com/fastread/SLR_on_TCP
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-amharic-news-text-classification-dataset
|
An Amharic News Text classification Dataset
|
2103.05639
|
https://arxiv.org/abs/2103.05639v1
|
https://arxiv.org/pdf/2103.05639v1.pdf
|
https://github.com/IsraelAbebe/An-Amharic-News-Text-classification-Dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/information-theory-measures-via
|
Information Theory Measures via Multidimensional Gaussianization
|
2010.03807
|
https://arxiv.org/abs/2010.03807v2
|
https://arxiv.org/pdf/2010.03807v2.pdf
|
https://github.com/IPL-UV/rbig
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/listing-k-cliques-in-sparse-real-world-graphs
|
Listing k-cliques in Sparse Real-World Graphs
| null |
https://dl.acm.org/doi/10.1145/3178876.3186125
|
https://papers-gamma.link/static/memory/pdfs/32-main.pdf
|
https://github.com/maxdan94/kClist
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/the-wasserstein-fourier-distance-for
|
The Wasserstein-Fourier Distance for Stationary Time Series
|
1912.05509
|
https://arxiv.org/abs/1912.05509v2
|
https://arxiv.org/pdf/1912.05509v2.pdf
|
https://github.com/GAMES-UChile/Wasserstein-Fourier
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-text
|
Very Deep Convolutional Networks for Text Classification
|
1606.01781
|
http://arxiv.org/abs/1606.01781v2
|
http://arxiv.org/pdf/1606.01781v2.pdf
|
https://github.com/dongjun-Lee/text-classification-models-tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/character-level-convolutional-networks-for
|
Character-level Convolutional Networks for Text Classification
|
1509.01626
|
http://arxiv.org/abs/1509.01626v3
|
http://arxiv.org/pdf/1509.01626v3.pdf
|
https://github.com/dongjun-Lee/text-classification-models-tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/dongjun-Lee/text-classification-models-tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/chexpert-a-large-chest-radiograph-dataset
|
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
|
1901.07031
|
http://arxiv.org/abs/1901.07031v1
|
http://arxiv.org/pdf/1901.07031v1.pdf
|
https://github.com/stanfordmlgroup/chexpert-labeler
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bhaav-a-text-corpus-for-emotion-analysis-from
|
BHAAV- A Text Corpus for Emotion Analysis from Hindi Stories
|
1910.04073
|
https://arxiv.org/abs/1910.04073v1
|
https://arxiv.org/pdf/1910.04073v1.pdf
|
https://github.com/midas-research/gupshup
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deepfacelab-a-simple-flexible-and-extensible
|
DeepFaceLab: Integrated, flexible and extensible face-swapping framework
|
2005.05535
|
https://arxiv.org/abs/2005.05535v5
|
https://arxiv.org/pdf/2005.05535v5.pdf
|
https://github.com/JanFschr/DeepFaceLabTest
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/online-segmentation-of-lidar-sequences
|
Online Segmentation of LiDAR Sequences: Dataset and Algorithm
|
2206.08194
|
https://arxiv.org/abs/2206.08194v2
|
https://arxiv.org/pdf/2206.08194v2.pdf
|
https://github.com/romainloiseau/Helix4D
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/anigan-style-guided-generative-adversarial
|
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
|
2102.12593
|
https://arxiv.org/abs/2102.12593v2
|
https://arxiv.org/pdf/2102.12593v2.pdf
|
https://github.com/summerice9/AniGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/foolbox-a-python-toolbox-to-benchmark-the
|
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
|
1707.04131
|
http://arxiv.org/abs/1707.04131v3
|
http://arxiv.org/pdf/1707.04131v3.pdf
|
https://github.com/pralab/secml
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/smart-semantic-malware-attribute-relevance
|
Automatic Malware Description via Attribute Tagging and Similarity Embedding
|
1905.06262
|
https://arxiv.org/abs/1905.06262v3
|
https://arxiv.org/pdf/1905.06262v3.pdf
|
https://github.com/sophos-ai/SOREL-20M
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gmair-unsupervised-object-detection-based-on
|
GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture
|
2106.01722
|
https://arxiv.org/abs/2106.01722v1
|
https://arxiv.org/pdf/2106.01722v1.pdf
|
https://github.com/shaohua0116/MultiDigitMNIST
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/regularizing-deep-multi-task-networks-using-1
|
Regularizing Deep Multi-Task Networks using Orthogonal Gradients
|
1912.06844
|
https://arxiv.org/abs/1912.06844v1
|
https://arxiv.org/pdf/1912.06844v1.pdf
|
https://github.com/shaohua0116/MultiDigitMNIST
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/metasdf-meta-learning-signed-distance
|
MetaSDF: Meta-learning Signed Distance Functions
|
2006.09662
|
https://arxiv.org/abs/2006.09662v1
|
https://arxiv.org/pdf/2006.09662v1.pdf
|
https://github.com/shaohua0116/MultiDigitMNIST
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/interactive-visualization-and-representation
|
Interactive Visualization and Representation Analysis Applied to Glacier Segmentation
|
2112.08184
|
https://arxiv.org/abs/2112.08184v2
|
https://arxiv.org/pdf/2112.08184v2.pdf
|
https://github.com/krisrs1128/geo_mlvis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/to-react-or-not-to-react-end-to-end-visual
|
To React or not to React: End-to-End Visual Pose Forecasting for Personalized Avatar during Dyadic Conversations
|
1910.02181
|
https://arxiv.org/abs/1910.02181v1
|
https://arxiv.org/pdf/1910.02181v1.pdf
|
https://github.com/chahuja/mix-stage
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cord-a-consolidated-receipt-dataset-for-post
|
CORD: A Consolidated Receipt Dataset for Post-OCR Parsing
| null |
https://openreview.net/forum?id=SJl3z659UH
|
https://openreview.net/pdf?id=SJl3z659UH
|
https://github.com/clovaai/cord
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/post-ocr-parsing-building-simple-and-robust
|
Post-OCR parsing: building simple and robust parser via BIO tagging
| null |
https://openreview.net/forum?id=SJgjf695UB
|
https://openreview.net/pdf?id=SJgjf695UB
|
https://github.com/clovaai/cord
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/textit-swap-and-predict-predicting-the
|
$\textit{Swap and Predict}$ -- Predicting the Semantic Changes in Words across Corpora by Context Swapping
|
2310.10397
|
https://arxiv.org/abs/2310.10397v1
|
https://arxiv.org/pdf/2310.10397v1.pdf
|
https://github.com/a1da4/svp-swap
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/designing-and-training-of-a-dual-cnn-for
|
Designing and Training of A Dual CNN for Image Denoising
|
2007.03951
|
https://arxiv.org/abs/2007.03951v1
|
https://arxiv.org/pdf/2007.03951v1.pdf
|
https://github.com/hellloxiaotian/DudeNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gappredict-a-language-model-for-resolving
|
GapPredict: A Language Model for Resolving Gaps in Draft Genome Assemblies
|
2105.10552
|
https://arxiv.org/abs/2105.10552v2
|
https://arxiv.org/pdf/2105.10552v2.pdf
|
https://github.com/bcgsc/GapPredict
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/exploiting-diverse-characteristics-and
|
Exploiting Diverse Characteristics and Adversarial Ambivalence for Domain Adaptive Segmentation
|
2012.05608
|
https://arxiv.org/abs/2012.05608v2
|
https://arxiv.org/pdf/2012.05608v2.pdf
|
https://github.com/BwCai/DCAA-UDA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/empirical-study-of-multi-task-hourglass-model
|
Empirical Study of Multi-Task Hourglass Model for Semantic Segmentation Task
|
2105.13531
|
https://arxiv.org/abs/2105.13531v1
|
https://arxiv.org/pdf/2105.13531v1.pdf
|
https://gitlab.com/mipl/mtl-ss
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/rase-a-variable-screening-framework-via
|
RaSE: A Variable Screening Framework via Random Subspace Ensembles
|
2102.03892
|
https://arxiv.org/abs/2102.03892v3
|
https://arxiv.org/pdf/2102.03892v3.pdf
|
https://github.com/ytstat/RaSE-screening-codes
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/topology-and-geometry-of-the-third-party
|
Topology and Geometry of the Third-Party Domains Ecosystem: Measurement and Applications
|
2112.04381
|
https://arxiv.org/abs/2112.04381v2
|
https://arxiv.org/pdf/2112.04381v2.pdf
|
https://github.com/cosior/tpds_ecosystem
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/riesz-quincunx-unet-variational-auto-encoder
|
Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image Denoising
|
2208.12810
|
https://arxiv.org/abs/2208.12810v1
|
https://arxiv.org/pdf/2208.12810v1.pdf
|
https://github.com/trile83/rqunetvae
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-compact-metrics-for-mt
|
Learning Compact Metrics for MT
|
2110.06341
|
https://arxiv.org/abs/2110.06341v1
|
https://arxiv.org/pdf/2110.06341v1.pdf
|
https://github.com/google-research/bleurt
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/summvis-interactive-visual-analysis-of-models
|
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
|
2104.07605
|
https://arxiv.org/abs/2104.07605v2
|
https://arxiv.org/pdf/2104.07605v2.pdf
|
https://github.com/uribo/buckyR
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/agentpoison-red-teaming-llm-agents-via
|
AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases
|
2407.12784
|
https://arxiv.org/abs/2407.12784v1
|
https://arxiv.org/pdf/2407.12784v1.pdf
|
https://github.com/BillChan226/AgentPoison
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/agask-an-agent-to-help-answer-farmer-s
|
AgAsk: An Agent to Help Answer Farmer's Questions From Scientific Documents
|
2212.10762
|
https://arxiv.org/abs/2212.10762v1
|
https://arxiv.org/pdf/2212.10762v1.pdf
|
https://github.com/ielab/agvaluate
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multiscale-model-of-clogging-in-microfluidic
|
Multiscale Model of Clogging in Microfluidic Devices with Grid-Like Geometries
|
2108.01570
|
https://arxiv.org/abs/2108.01570v2
|
https://arxiv.org/pdf/2108.01570v2.pdf
|
https://github.com/gsiraji/Microfluidics-Paper-Fig-Code
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/iart-intent-aware-response-ranking-with
|
IART: Intent-aware Response Ranking with Transformers in Information-seeking Conversation Systems
|
2002.00571
|
https://arxiv.org/abs/2002.00571v1
|
https://arxiv.org/pdf/2002.00571v1.pdf
|
https://github.com/yangliuy/Intent-Aware-Ranking-Transformers
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/show-and-tell-a-neural-image-caption
|
Show and Tell: A Neural Image Caption Generator
|
1411.4555
|
http://arxiv.org/abs/1411.4555v2
|
http://arxiv.org/pdf/1411.4555v2.pdf
|
https://github.com/Data-drone/cvnd_image_captioning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-style-based-generator-architecture-for
|
A Style-Based Generator Architecture for Generative Adversarial Networks
|
1812.04948
|
http://arxiv.org/abs/1812.04948v3
|
http://arxiv.org/pdf/1812.04948v3.pdf
|
https://github.com/keras-team/keras-io/blob/master/examples/generative/stylegan.py
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/detection-of-statistically-significant
|
Detection of statistically significant differences between process variants through declarative rules
|
2104.07926
|
https://arxiv.org/abs/2104.07926v2
|
https://arxiv.org/pdf/2104.07926v2.pdf
|
https://github.com/Oneiroe/DeclarativeRulesVariantAnalysis-static
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-to-reconstruct-3d-manhattan
|
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
|
1905.07482
|
https://arxiv.org/abs/1905.07482v2
|
https://arxiv.org/pdf/1905.07482v2.pdf
|
https://github.com/zhou13/shapeunity
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/analysis-and-extensions-of-adversarial
|
Analysis and Extensions of Adversarial Training for Video Classification
|
2206.07953
|
https://arxiv.org/abs/2206.07953v1
|
https://arxiv.org/pdf/2206.07953v1.pdf
|
https://github.com/kaleab-k/VideoAT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/user-oriented-fairness-in-recommendation
|
User-oriented Fairness in Recommendation
|
2104.10671
|
https://arxiv.org/abs/2104.10671v1
|
https://arxiv.org/pdf/2104.10671v1.pdf
|
https://github.com/rutgerswiselab/user-fairness
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dataset-inference-ownership-resolution-in-1
|
Dataset Inference: Ownership Resolution in Machine Learning
|
2104.10706
|
https://arxiv.org/abs/2104.10706v1
|
https://arxiv.org/pdf/2104.10706v1.pdf
|
https://github.com/cleverhans-lab/dataset-inference
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-learning-gap-between-neuroscience-and
|
A learning gap between neuroscience and reinforcement learning
|
2104.10995
|
https://arxiv.org/abs/2104.10995v3
|
https://arxiv.org/pdf/2104.10995v3.pdf
|
https://github.com/thesmartrobot/ambigym
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/operator-as-a-service-stateful-serverless
|
Operator as a Service: Stateful Serverless Complex Event Processing
|
2012.04982
|
https://arxiv.org/abs/2012.04982v3
|
https://arxiv.org/pdf/2012.04982v3.pdf
|
https://github.com/luthramanisha/CEPless
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/maneuver-based-anchor-trajectory-hypotheses
|
Maneuver-based Anchor Trajectory Hypotheses at Roundabouts
|
2104.11180
|
https://arxiv.org/abs/2104.11180v1
|
https://arxiv.org/pdf/2104.11180v1.pdf
|
https://github.com/m-hasan-n/roundabout
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distributed-zero-order-algorithms-for
|
Distributed Zero-Order Algorithms for Nonconvex Multi-Agent Optimization
|
1908.11444
|
http://arxiv.org/abs/1908.11444v3
|
http://arxiv.org/pdf/1908.11444v3.pdf
|
https://github.com/Libensemble/libensemble
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/physics-constrained-learning-for-pde-systems
|
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
|
2406.11809
|
https://arxiv.org/abs/2406.11809v1
|
https://arxiv.org/pdf/2406.11809v1.pdf
|
https://github.com/Tankevin998/GP_dPHS
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/black-holes-as-particle-detectors-evolution
|
Black holes as particle detectors: evolution of superradiant instabilities
|
1411.0686
|
https://arxiv.org/abs/1411.0686v1
|
https://arxiv.org/pdf/1411.0686v1.pdf
|
https://github.com/maxisi/gwaxion
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/contrastive-learning-of-medical-visual
|
Contrastive Learning of Medical Visual Representations from Paired Images and Text
|
2010.00747
|
https://arxiv.org/abs/2010.00747v2
|
https://arxiv.org/pdf/2010.00747v2.pdf
|
https://github.com/MicPie/clasp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/scaling-up-visual-and-vision-language
|
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
|
2102.05918
|
https://arxiv.org/abs/2102.05918v2
|
https://arxiv.org/pdf/2102.05918v2.pdf
|
https://github.com/MicPie/clasp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/federated-robustness-propagation-sharing
|
Federated Robustness Propagation: Sharing Robustness in Heterogeneous Federated Learning
|
2106.10196
|
https://arxiv.org/abs/2106.10196v2
|
https://arxiv.org/pdf/2106.10196v2.pdf
|
https://github.com/illidanlab/FedRBN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-scalable-verification-of-rl-driven
|
Towards Scalable Verification of Deep Reinforcement Learning
|
2105.11931
|
https://arxiv.org/abs/2105.11931v2
|
https://arxiv.org/pdf/2105.11931v2.pdf
|
https://zenodo.org/record/4769612
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/on-the-analysis-of-mud-files-interactions
|
On the Analysis of MUD-Files' Interactions, Conflicts, and Configuration Requirements Before Deployment
|
2107.06372
|
https://arxiv.org/abs/2107.06372v1
|
https://arxiv.org/pdf/2107.06372v1.pdf
|
https://github.com/iot-onboarding/mud-visualizer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/debnsuma/Intro-Transformer-BERT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-fast-and-compact-hybrid-cnn-for
|
A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification
| null |
https://ieeexplore.ieee.org/document/9870277
|
https://www.researchgate.net/profile/Muhammad-Hassaan-Farooq-Butt/publication/363331483_A_Fast_and_Compact_Hybrid_CNN_for_Hyperspectral_Imaging-based_Bloodstain_Classification/links/631c44f5873eca0c007799f9/A-Fast-and-Compact-Hybrid-CNN-for-Hyperspectral-Imaging-based-Bloodstain-Classification.pdf
|
https://github.com/MHassaanButt/FCHCNN-for-HSIC
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/robust-inference-for-mediated-effects-in
|
Robust Inference for Mediated Effects in Partially Linear Models
|
2007.00725
|
https://arxiv.org/abs/2007.00725v3
|
https://arxiv.org/pdf/2007.00725v3.pdf
|
https://github.com/ohines/plmed
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/log-based-anomaly-detection-without-log
|
Log-based Anomaly Detection Without Log Parsing
|
2108.01955
|
https://arxiv.org/abs/2108.01955v3
|
https://arxiv.org/pdf/2108.01955v3.pdf
|
https://github.com/vanhoanglepsa/NeuralLog
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/an-end-to-end-deep-learning-approach-for-2
|
An end-to-end deep learning approach for extracting stochastic dynamical systems with $α$-stable Lévy noise
|
2201.13114
|
https://arxiv.org/abs/2201.13114v4
|
https://arxiv.org/pdf/2201.13114v4.pdf
|
https://github.com/fangransto/learn-alpha-stable-levy
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/intermittent-connectivity-for-exploration-in
|
Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems
|
1911.08626
|
http://arxiv.org/abs/1911.08626v1
|
http://arxiv.org/pdf/1911.08626v1.pdf
|
https://github.com/FilipKlaesson/cops
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/AquibPy/Cycle-GAN
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/novelty-detection-and-analysis-of-traffic
|
Novelty Detection and Analysis of Traffic Scenario Infrastructures in the Latent Space of a Vision Transformer-Based Triplet Autoencoder
|
2105.01924
|
https://arxiv.org/abs/2105.01924v2
|
https://arxiv.org/pdf/2105.01924v2.pdf
|
https://github.com/JWTHI/ViTAL-SCENE
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mlp-mixer-an-all-mlp-architecture-for-vision
|
MLP-Mixer: An all-MLP Architecture for Vision
|
2105.01601
|
https://arxiv.org/abs/2105.01601v4
|
https://arxiv.org/pdf/2105.01601v4.pdf
|
https://github.com/qwopqwop200/MLP-Mixer-tf2
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/andi-the-anomalous-diffusion-challenge
|
AnDi: The Anomalous Diffusion Challenge
|
2003.12036
|
http://arxiv.org/abs/2003.12036v1
|
http://arxiv.org/pdf/2003.12036v1.pdf
|
https://github.com/AnDiChallenge/ANDI_datasets
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/simulation-and-estimation-of-a-point-process
|
Simulation and estimation of a point-process market-model with a matching engine
|
2105.02211
|
https://arxiv.org/abs/2105.02211v2
|
https://arxiv.org/pdf/2105.02211v2.pdf
|
https://github.com/IvanJericevich/IJPCTG-HawkesCoinTossX
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/prototypical-logic-tensor-networks-proto-ltn
|
PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning
|
2207.00433
|
https://arxiv.org/abs/2207.00433v1
|
https://arxiv.org/pdf/2207.00433v1.pdf
|
https://github.com/francescomanigrass/proto-ltn
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/deepscores-a-dataset-for-segmentation
|
DeepScores -- A Dataset for Segmentation, Detection and Classification of Tiny Objects
|
1804.00525
|
http://arxiv.org/abs/1804.00525v2
|
http://arxiv.org/pdf/1804.00525v2.pdf
|
https://github.com/apacha/OMR-Datasets
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/thinhhoang95/helipad-yolo
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/motif-based-spectral-clustering-of-weighted
|
Motif-Based Spectral Clustering of Weighted Directed Networks
|
2004.01293
|
https://arxiv.org/abs/2004.01293v2
|
https://arxiv.org/pdf/2004.01293v2.pdf
|
https://github.com/wgunderwood/motif-based-clustering
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stargan-v2-diverse-image-synthesis-for
|
StarGAN v2: Diverse Image Synthesis for Multiple Domains
|
1912.01865
|
https://arxiv.org/abs/1912.01865v2
|
https://arxiv.org/pdf/1912.01865v2.pdf
|
https://github.com/UdonDa/StarGAN-v2-pytorch-nonofficial
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/digital-gimbal-end-to-end-deep-image
|
Digital Gimbal: End-to-end Deep Image Stabilization with Learnable Exposure Times
|
2012.04515
|
https://arxiv.org/abs/2012.04515v4
|
https://arxiv.org/pdf/2012.04515v4.pdf
|
https://github.com/omer11a/digital-gimbal
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-source-specific-sound-level
|
Weakly Supervised Source-Specific Sound Level Estimation in Noisy Soundscapes
|
2105.02911
|
https://arxiv.org/abs/2105.02911v2
|
https://arxiv.org/pdf/2105.02911v2.pdf
|
https://github.com/sonyc-project/weakly-supervised-sssle
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-latent-subspaces-in-variational
|
Learning Latent Subspaces in Variational Autoencoders
|
1812.06190
|
http://arxiv.org/abs/1812.06190v1
|
http://arxiv.org/pdf/1812.06190v1.pdf
|
https://github.com/lipikaramaswamy/am207_final_project/blob/master/notebooks/csvae_swiss_roll.ipynb
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/estimates-of-the-social-cost-of-carbon-have
|
Estimates of the social cost of carbon have increased over time
|
2105.03656
|
https://arxiv.org/abs/2105.03656v3
|
https://arxiv.org/pdf/2105.03656v3.pdf
|
https://github.com/rtol/KernelDecomposition
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.