paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/recommendations-for-item-set-completion-on
|
Recommendations for Item Set Completion: On the Semantics of Item Co-Occurrence With Data Sparsity, Input Size, and Input Modalities
|
2105.04376
|
https://arxiv.org/abs/2105.04376v1
|
https://arxiv.org/pdf/2105.04376v1.pdf
|
https://github.com/lgalke/aae-recommender
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/active-fire-detection-in-landsat-8-imagery-a
|
Active Fire Detection in Landsat-8 Imagery: a Large-Scale Dataset and a Deep-Learning Study
|
2101.03409
|
https://arxiv.org/abs/2101.03409v2
|
https://arxiv.org/pdf/2101.03409v2.pdf
|
https://github.com/pereira-gha/activefire
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/gift-learning-transformation-invariant-dense-1
|
GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs
|
1911.05932
|
https://arxiv.org/abs/1911.05932v1
|
https://arxiv.org/pdf/1911.05932v1.pdf
|
https://github.com/zju3dv/GIFT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/trtr-visual-tracking-with-transformer
|
TrTr: Visual Tracking with Transformer
|
2105.03817
|
https://arxiv.org/abs/2105.03817v1
|
https://arxiv.org/pdf/2105.03817v1.pdf
|
https://github.com/tongtybj/TrTr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/copula-based-normalizing-flows
|
Copula-Based Normalizing Flows
|
2107.07352
|
https://arxiv.org/abs/2107.07352v1
|
https://arxiv.org/pdf/2107.07352v1.pdf
|
https://github.com/MikeLasz/Copula-Based-Normalizing-Flows
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/maximum-likelihood-minimum-effort
|
Maximum Likelihood, Minimum Effort
|
1106.5458
|
https://arxiv.org/abs/1106.5458v2
|
https://arxiv.org/pdf/1106.5458v2.pdf
|
https://github.com/fbm2718/QREM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/quantum-overlapping-tomography
|
Quantum Overlapping Tomography
|
1908.02754
|
https://arxiv.org/abs/1908.02754v2
|
https://arxiv.org/pdf/1908.02754v2.pdf
|
https://github.com/fbm2718/QREM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/assortativity-in-cognition
|
Assortativity in cognition
|
2205.15114
|
https://arxiv.org/abs/2205.15114v1
|
https://arxiv.org/pdf/2205.15114v1.pdf
|
https://github.com/eugeniovicario/assortativity_in_cognition
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/training-time-friendly-network-for-real-time
|
Training-Time-Friendly Network for Real-Time Object Detection
|
1909.00700
|
https://arxiv.org/abs/1909.00700v3
|
https://arxiv.org/pdf/1909.00700v3.pdf
|
https://github.com/ximilar-com/xcenternet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/objects-as-points
|
Objects as Points
|
1904.07850
|
http://arxiv.org/abs/1904.07850v2
|
http://arxiv.org/pdf/1904.07850v2.pdf
|
https://github.com/ximilar-com/xcenternet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deformable-convolutional-networks
|
Deformable Convolutional Networks
|
1703.06211
|
http://arxiv.org/abs/1703.06211v3
|
http://arxiv.org/pdf/1703.06211v3.pdf
|
https://github.com/ximilar-com/xcenternet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/barbershop-gan-based-image-compositing-using
|
Barbershop: GAN-based Image Compositing using Segmentation Masks
|
2106.01505
|
https://arxiv.org/abs/2106.01505v2
|
https://arxiv.org/pdf/2106.01505v2.pdf
|
https://github.com/ZPdesu/Barbershop
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/knowledge-distillation-from-bert-transformer
|
Knowledge Distillation from BERT Transformer to Speech Transformer for Intent Classification
|
2108.02598
|
https://arxiv.org/abs/2108.02598v1
|
https://arxiv.org/pdf/2108.02598v1.pdf
|
https://github.com/Jiang-Yidi/TransformerDistillation-SLU
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/doremi-first-glance-at-a-universal-omr
|
DoReMi: First glance at a universal OMR dataset
|
2107.07786
|
https://arxiv.org/abs/2107.07786v1
|
https://arxiv.org/pdf/2107.07786v1.pdf
|
https://github.com/apacha/OMR-Datasets
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/flex-unifying-evaluation-for-few-shot-nlp
|
FLEX: Unifying Evaluation for Few-Shot NLP
|
2107.07170
|
https://arxiv.org/abs/2107.07170v2
|
https://arxiv.org/pdf/2107.07170v2.pdf
|
https://github.com/allenai/unifew
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/few-shot-forecasting-of-time-series-with
|
Few-Shot Forecasting of Time-Series with Heterogeneous Channels
|
2204.03456
|
https://arxiv.org/abs/2204.03456v2
|
https://arxiv.org/pdf/2204.03456v2.pdf
|
https://github.com/radrumond/timehetnet
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/speeding-up-bigclam-implementation-on-snap
|
Speeding Up BigClam Implementation on SNAP
|
1712.01209
|
https://arxiv.org/abs/1712.01209v2
|
https://arxiv.org/pdf/1712.01209v2.pdf
|
https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/question-generation-for-adaptive-education
|
Question Generation for Adaptive Education
|
2106.04262
|
https://arxiv.org/abs/2106.04262v1
|
https://arxiv.org/pdf/2106.04262v1.pdf
|
https://github.com/meghabyte/acl2021-education
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/reconfigurable-intelligent-surfaces-a-signal
|
Reconfigurable Intelligent Surfaces: A Signal Processing Perspective With Wireless Applications
|
2102.00742
|
https://arxiv.org/abs/2102.00742v2
|
https://arxiv.org/pdf/2102.00742v2.pdf
|
https://github.com/emilbjornson/SP_Cup_2021
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficient-bitruss-decomposition-for-large
|
Efficient Bitruss Decomposition for Large-scale Bipartite Graphs
|
2001.06111
|
http://arxiv.org/abs/2001.06111v1
|
http://arxiv.org/pdf/2001.06111v1.pdf
|
https://github.com/kartiklakhotia/RECEIPT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/scan-flood-fillscaff-an-efficient-automatic
|
Scan-flood Fill(SCAFF): an Efficient Automatic Precise Region Filling Algorithm for Complicated Regions
|
1906.03366
|
https://arxiv.org/abs/1906.03366v1
|
https://arxiv.org/pdf/1906.03366v1.pdf
|
https://github.com/SherylHYX/Scan-flood-Fill
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/revisiting-contrastive-methods-for
|
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations
|
2106.05967
|
https://arxiv.org/abs/2106.05967v3
|
https://arxiv.org/pdf/2106.05967v3.pdf
|
https://github.com/wvangansbeke/Revisiting-Contrastive-SSL
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-manifold-patch-based-representations-1
|
Learning Manifold Patch-Based Representations of Man-Made Shapes
|
1906.12337
|
https://arxiv.org/abs/1906.12337v3
|
https://arxiv.org/pdf/1906.12337v3.pdf
|
https://github.com/dmsm/LearningPatches
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/modeling-and-control-of-morphing-covers-for
|
Modeling and Control of Morphing Covers for the Adaptive Morphology of Humanoid Robots
|
2207.01025
|
https://arxiv.org/abs/2207.01025v2
|
https://arxiv.org/pdf/2207.01025v2.pdf
|
https://github.com/ami-iit/mystica
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/yolact-real-time-instance-segmentation
|
YOLACT: Real-time Instance Segmentation
|
1904.02689
|
https://arxiv.org/abs/1904.02689v2
|
https://arxiv.org/pdf/1904.02689v2.pdf
|
https://github.com/Abhijeet8901/Instance-Segmentation-using-YOLACT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/computing-multiple-solutions-of-topology
|
Computing multiple solutions of topology optimization problems
|
2004.11797
|
https://arxiv.org/abs/2004.11797v2
|
https://arxiv.org/pdf/2004.11797v2.pdf
|
https://bitbucket.org/papadopoulos/deflatedbarrier
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-learning-models-for-multilingual-hate
|
Deep Learning Models for Multilingual Hate Speech Detection
|
2004.06465
|
https://arxiv.org/abs/2004.06465v3
|
https://arxiv.org/pdf/2004.06465v3.pdf
|
https://github.com/hate-alert/DE-LIMIT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/you-only-look-yourself-unsupervised-and
|
You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network
|
2006.16829
|
https://arxiv.org/abs/2006.16829v1
|
https://arxiv.org/pdf/2006.16829v1.pdf
|
https://github.com/XLearning-SCU/2021-IJCV-YOLY
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/hvsrweb-an-open-source-web-based-application
|
HVSRweb: An Open-Source, Web-Based Application for Horizontal-to-Vertical Spectral Ratio Processing
|
2106.06050
|
https://arxiv.org/abs/2106.06050v1
|
https://arxiv.org/pdf/2106.06050v1.pdf
|
https://github.com/jpvantassel/hvsrweb
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-inexact-augmented-lagrangian-method-for
|
An inexact augmented Lagrangian method for nonsmooth optimization on Riemannian manifold
|
1911.09900
|
http://arxiv.org/abs/1911.09900v2
|
http://arxiv.org/pdf/1911.09900v2.pdf
|
https://github.com/KKDeng/mialm_code_share
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/benchmarks-for-deep-off-policy-evaluation-1
|
Benchmarks for Deep Off-Policy Evaluation
|
2103.16596
|
https://arxiv.org/abs/2103.16596v1
|
https://arxiv.org/pdf/2103.16596v1.pdf
|
https://github.com/tedmoskovitz/TOP
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/structured-attention-for-unsupervised
|
Structured Attention for Unsupervised Dialogue Structure Induction
|
2009.08552
|
https://arxiv.org/abs/2009.08552v2
|
https://arxiv.org/pdf/2009.08552v2.pdf
|
https://github.com/Liang-Qiu/SVRNN-dialogues
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cascade-cost-volume-for-high-resolution-multi
|
Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching
|
1912.06378
|
https://arxiv.org/abs/1912.06378v3
|
https://arxiv.org/pdf/1912.06378v3.pdf
|
https://github.com/apchenstu/mvsnerf
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/structure-extraction-in-task-oriented
|
Structure Extraction in Task-Oriented Dialogues with Slot Clustering
|
2203.00073
|
https://arxiv.org/abs/2203.00073v3
|
https://arxiv.org/pdf/2203.00073v3.pdf
|
https://github.com/Liang-Qiu/SVRNN-dialogues
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/invariance-principle-meets-information
|
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
|
2106.06607
|
https://arxiv.org/abs/2106.06607v2
|
https://arxiv.org/pdf/2106.06607v2.pdf
|
https://github.com/ahujak/IB-IRM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/defending-against-backdoors-in-federated
|
Defending against Backdoors in Federated Learning with Robust Learning Rate
|
2007.03767
|
https://arxiv.org/abs/2007.03767v4
|
https://arxiv.org/pdf/2007.03767v4.pdf
|
https://github.com/TinfoilHat0/Defending-Against-Backdoors-with-Robust-Learning-Rate
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mimicking-production-behavior-with-generated
|
Mimicking Production Behavior with Generated Mocks
|
2208.01321
|
https://arxiv.org/abs/2208.01321v4
|
https://arxiv.org/pdf/2208.01321v4.pdf
|
https://github.com/castor-software/rick-experiments
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/structext-structured-text-understanding-with
|
StrucTexT: Structured Text Understanding with Multi-Modal Transformers
|
2108.02923
|
https://arxiv.org/abs/2108.02923v3
|
https://arxiv.org/pdf/2108.02923v3.pdf
|
https://github.com/PaddlePaddle/VIMER/tree/main/StrucTexT
| true
| false
| false
|
paddle
|
https://paperswithcode.com/paper/pair-diffusion-a-comprehensive-multimodal
|
PAIR Diffusion: A Comprehensive Multimodal Object-Level Image Editor
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Goel_PAIR_Diffusion_A_Comprehensive_Multimodal_Object-Level_Image_Editor_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Goel_PAIR_Diffusion_A_Comprehensive_Multimodal_Object-Level_Image_Editor_CVPR_2024_paper.pdf
|
https://github.com/picsart-ai-research/pair-diffusion
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/faster-ltn-a-neuro-symbolic-end-to-end-object
|
Faster-LTN: a neuro-symbolic, end-to-end object detection architecture
|
2107.01877
|
https://arxiv.org/abs/2107.01877v1
|
https://arxiv.org/pdf/2107.01877v1.pdf
|
https://gitlab.com/grains2/Faster-LTN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/optimizing-graphical-procedures-for
|
Optimizing Graphical Procedures for Multiplicity Control in a Confirmatory Clinical Trial via Deep Learning
|
1908.10262
|
https://arxiv.org/abs/1908.10262v2
|
https://arxiv.org/pdf/1908.10262v2.pdf
|
https://github.com/tian-yu-zhan/dnn_optimization
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-large-scale-study-on-research-code-quality
|
A large-scale study on research code quality and execution
|
2103.12793
|
https://arxiv.org/abs/2103.12793v1
|
https://arxiv.org/pdf/2103.12793v1.pdf
|
https://github.com/atrisovic/dataverse-r-study
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fine-grained-continual-learning
|
Rehearsal-Free Continual Learning over Small Non-I.I.D. Batches
|
1907.03799
|
https://arxiv.org/abs/1907.03799v3
|
https://arxiv.org/pdf/1907.03799v3.pdf
|
https://github.com/vlomonaco/core50
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/hdr-environment-map-estimation-for-real-time
|
HDR Environment Map Estimation for Real-Time Augmented Reality
|
2011.10687
|
https://arxiv.org/abs/2011.10687v5
|
https://arxiv.org/pdf/2011.10687v5.pdf
|
https://github.com/apple/ml-envmapnet
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/potential-gap-using-reactive-policies-to
|
Potential Gap: Using Reactive Policies to Guarantee Safe Navigation
|
2103.11491
|
https://arxiv.org/abs/2103.11491v1
|
https://arxiv.org/pdf/2103.11491v1.pdf
|
https://github.com/ivaROS/PotentialGap
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/wkb-based-scheme-with-adaptive-step-size
|
WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime
|
2102.03107
|
https://arxiv.org/abs/2102.03107v2
|
https://arxiv.org/pdf/2102.03107v2.pdf
|
https://github.com/JannisKoerner/adaptive-WKB-marching-method
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/frustum-pointnets-for-3d-object-detection
|
Frustum PointNets for 3D Object Detection from RGB-D Data
|
1711.08488
|
http://arxiv.org/abs/1711.08488v2
|
http://arxiv.org/pdf/1711.08488v2.pdf
|
https://github.com/charlesq34/frustum-pointnets
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/trajformer-trajectory-prediction-with-local
|
Trajformer: Trajectory Prediction with Local Self-Attentive Contexts for Autonomous Driving
|
2011.14910
|
https://arxiv.org/abs/2011.14910v1
|
https://arxiv.org/pdf/2011.14910v1.pdf
|
https://github.com/Manojbhat09/Trajformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/transition-based-bubble-parsing-improvements
|
Transition-based Bubble Parsing: Improvements on Coordination Structure Prediction
|
2107.06905
|
https://arxiv.org/abs/2107.06905v1
|
https://arxiv.org/pdf/2107.06905v1.pdf
|
https://github.com/tzshi/bubble-parser-acl21
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/terapipe-token-level-pipeline-parallelism-for
|
TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models
|
2102.07988
|
https://arxiv.org/abs/2102.07988v2
|
https://arxiv.org/pdf/2102.07988v2.pdf
|
https://github.com/zhuohan123/terapipe
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/global-context-enhanced-social-recommendation
|
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks
|
2110.04039
|
https://arxiv.org/abs/2110.04039v1
|
https://arxiv.org/pdf/2110.04039v1.pdf
|
https://github.com/xhcdream/sr-hgnn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/recommendations-for-datasets-for-source-code
|
Recommendations for Datasets for Source Code Summarization
|
1904.02660
|
http://arxiv.org/abs/1904.02660v1
|
http://arxiv.org/pdf/1904.02660v1.pdf
|
https://github.com/sjj0403/Datasets-for-code-summarization-evaluation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/star-sparse-transformer-based-action
|
STAR: Sparse Transformer-based Action Recognition
|
2107.07089
|
https://arxiv.org/abs/2107.07089v1
|
https://arxiv.org/pdf/2107.07089v1.pdf
|
https://github.com/imj2185/STAR
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/word-recognition-with-deep-conditional-random
|
Word Recognition with Deep Conditional Random Fields
|
1612.01072
|
http://arxiv.org/abs/1612.01072v1
|
http://arxiv.org/pdf/1612.01072v1.pdf
|
https://github.com/ganggit/deepCRFs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-end-to-end-semi-supervised-learning
|
Towards End-to-end Semi-supervised Learning for One-stage Object Detection
|
2302.11299
|
https://arxiv.org/abs/2302.11299v1
|
https://arxiv.org/pdf/2302.11299v1.pdf
|
https://github.com/luogen1996/oneteacher
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/addressing-function-approximation-error-in
|
Addressing Function Approximation Error in Actor-Critic Methods
|
1802.09477
|
http://arxiv.org/abs/1802.09477v3
|
http://arxiv.org/pdf/1802.09477v3.pdf
|
https://github.com/pkasala/ContinuesControl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-kondo-physics-using
|
Machine learning of Kondo physics using variational autoencoders and symbolic regression
|
2107.08013
|
https://arxiv.org/abs/2107.08013v2
|
https://arxiv.org/pdf/2107.08013v2.pdf
|
https://github.com/ColeMiles/SpectralVAE
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/ms-mda-multisource-marginal-distribution
|
MS-MDA: Multisource Marginal Distribution Adaptation for Cross-subject and Cross-session EEG Emotion Recognition
|
2107.07740
|
https://arxiv.org/abs/2107.07740v1
|
https://arxiv.org/pdf/2107.07740v1.pdf
|
https://github.com/VoiceBeer/MS-MDA
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/approaches-to-constrained-quantum-approximate
|
Approaches to Constrained Quantum Approximate Optimization
|
2010.06660
|
https://arxiv.org/abs/2010.06660v3
|
https://arxiv.org/pdf/2010.06660v3.pdf
|
https://github.com/Quantum-Software-Tools/dqva-and-circuit-cutting
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/latentkeypointgan-controlling-gans-via-latent
|
LatentKeypointGAN: Controlling Images via Latent Keypoints
|
2103.15812
|
https://arxiv.org/abs/2103.15812v5
|
https://arxiv.org/pdf/2103.15812v5.pdf
|
https://github.com/DELTA37/LatentKeypointGAN
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/r-drop-regularized-dropout-for-neural
|
R-Drop: Regularized Dropout for Neural Networks
|
2106.14448
|
https://arxiv.org/abs/2106.14448v2
|
https://arxiv.org/pdf/2106.14448v2.pdf
|
https://github.com/zbp-xxxp/R-Drop-Paddle
| false
| false
| false
|
paddle
|
https://paperswithcode.com/paper/generalized-variational-inference-in-function
|
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
|
2205.06342
|
https://arxiv.org/abs/2205.06342v2
|
https://arxiv.org/pdf/2205.06342v2.pdf
|
https://github.com/MrHuff/GWI
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/autoscore-survival-developing-interpretable
|
AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data
|
2106.06957
|
https://arxiv.org/abs/2106.06957v1
|
https://arxiv.org/pdf/2106.06957v1.pdf
|
https://github.com/nliulab/AutoScore-Survival
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/atspy-automated-time-series-forecasting-in
|
AtsPy: Automated Time Series Forecasting in Python
| null |
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580631
|
https://poseidon01.ssrn.com/delivery.php?ID=707091125114113026107095123106012077118020024084061089000004119106020064002075106096026057102032006102108123122117114083097012038034045078021105097124103065089098001069030017007065001016083087005002028016069112115112083121104114122001107118013017105025&EXT=pdf&INDEX=TRUE
|
https://github.com/firmai/atspy
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/explanations-based-on-the-missing-towards
|
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
|
1802.07623
|
http://arxiv.org/abs/1802.07623v2
|
http://arxiv.org/pdf/1802.07623v2.pdf
|
https://github.com/IBM/Contrastive-Explanation-Method
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/scalability-in-perception-for-autonomous
|
Scalability in Perception for Autonomous Driving: Waymo Open Dataset
|
1912.04838
|
https://arxiv.org/abs/1912.04838v7
|
https://arxiv.org/pdf/1912.04838v7.pdf
|
https://github.com/p-mc-grath/DMMFODS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/p-mc-grath/DMMFODS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/densely-connected-convolutional-networks
|
Densely Connected Convolutional Networks
|
1608.06993
|
http://arxiv.org/abs/1608.06993v5
|
http://arxiv.org/pdf/1608.06993v5.pdf
|
https://github.com/p-mc-grath/DMMFODS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lale-consistent-automated-machine-learning
|
Lale: Consistent Automated Machine Learning
|
2007.01977
|
https://arxiv.org/abs/2007.01977v1
|
https://arxiv.org/pdf/2007.01977v1.pdf
|
https://github.com/IBM/Lale.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/iranis-a-large-scale-dataset-of-farsi-license
|
Iranis: A Large-scale Dataset of Farsi License Plate Characters
|
2101.00295
|
https://arxiv.org/abs/2101.00295v1
|
https://arxiv.org/pdf/2101.00295v1.pdf
|
https://github.com/alitourani/Iranis-dataset
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/modeling-natural-language-emergence-with
|
Modeling natural language emergence with integral transform theory and reinforcement learning
|
1812.01431
|
http://arxiv.org/abs/1812.01431v1
|
http://arxiv.org/pdf/1812.01431v1.pdf
|
https://github.com/Quiltomics/NLERL
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/accurate-liability-estimation-improves-power
|
Accurate Liability Estimation Improves Power in Ascertained Case Control Studies
|
1409.2448
|
http://arxiv.org/abs/1409.2448v3
|
http://arxiv.org/pdf/1409.2448v3.pdf
|
https://github.com/omerwe/LEAP
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bag-tag-em-a-new-dutch-stemmer
|
Bag \& Tag'em - A New Dutch Stemmer
| null |
https://aclanthology.org/2020.lrec-1.477
|
https://aclanthology.org/2020.lrec-1.477.pdf
|
https://github.com/Anne-Jonker/Bag-Tag-em
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/guided-search-for-desired-functional
|
Guided search for desired functional responses via Bayesian optimization of generative model: hysteresis loop shape engineering in ferroelectrics
|
2004.12512
|
https://arxiv.org/abs/2004.12512v1
|
https://arxiv.org/pdf/2004.12512v1.pdf
|
https://github.com/ramav87/Ferrosim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/to-vr-or-not-to-vr-is-virtual-reality
|
To VR or not to VR: Is virtual reality suitable to understand software development metrics?
|
2109.13768
|
https://arxiv.org/abs/2109.13768v1
|
https://arxiv.org/pdf/2109.13768v1.pdf
|
https://gitlab.com/babiaxr/aframe-babia-components
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/image-based-correction-of-continuous-and
|
Image-Based Correction of Continuous and Discontinuous Non-Planar Axial Distortion in Serial Section Microscopy
|
1511.01161
|
http://arxiv.org/abs/1511.01161v2
|
http://arxiv.org/pdf/1511.01161v2.pdf
|
https://github.com/saalfeldlab/em-thickness-estimation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/spatial-temporal-transformer-for-dynamic
|
Spatial-Temporal Transformer for Dynamic Scene Graph Generation
|
2107.12309
|
https://arxiv.org/abs/2107.12309v2
|
https://arxiv.org/pdf/2107.12309v2.pdf
|
https://github.com/yrcong/sttran
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
|
YOLOX: Exceeding YOLO Series in 2021
|
2107.08430
|
https://arxiv.org/abs/2107.08430v2
|
https://arxiv.org/pdf/2107.08430v2.pdf
|
https://github.com/StephenStorm/YOLOX
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/probing-for-labeled-dependency-trees
|
Probing for Labeled Dependency Trees
|
2203.12971
|
https://arxiv.org/abs/2203.12971v1
|
https://arxiv.org/pdf/2203.12971v1.pdf
|
https://github.com/personads/depprobe
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/dropgnn-random-dropouts-increase-the
|
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
|
2111.06283
|
https://arxiv.org/abs/2111.06283v1
|
https://arxiv.org/pdf/2111.06283v1.pdf
|
https://github.com/karolismart/dropgnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-annotation-and-evaluation-of-error
|
Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
| null |
https://aclanthology.org/P17-1074
|
https://aclanthology.org/P17-1074.pdf
|
https://github.com/chrisjbryant/errant
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/epidemic-thresholds-of-infectious-diseases-on
|
Epidemic Thresholds of Infectious Diseases on Tie-Decay Networks
|
2009.12932
|
https://arxiv.org/abs/2009.12932v2
|
https://arxiv.org/pdf/2009.12932v2.pdf
|
https://github.com/qinyichen/tie-decay-epidemic-threshold
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/opinionated-practices-for-teaching
|
Opinionated practices for teaching reproducibility: motivation, guided instruction and practice
|
2109.13656
|
https://arxiv.org/abs/2109.13656v2
|
https://arxiv.org/pdf/2109.13656v2.pdf
|
https://github.com/UBC-MDS/opinionated-practices-for-teaching-reproducibility
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/parallel-peeling-of-bipartite-networks-for
|
Parallel Peeling of Bipartite Networks for Hierarchical Dense Subgraph Discovery
|
2110.12511
|
https://arxiv.org/abs/2110.12511v1
|
https://arxiv.org/pdf/2110.12511v1.pdf
|
https://github.com/kartiklakhotia/RECEIPT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pseudo-relevance-feedback-for-multiple
|
Pseudo-Relevance Feedback for Multiple Representation Dense Retrieval
|
2106.11251
|
https://arxiv.org/abs/2106.11251v2
|
https://arxiv.org/pdf/2106.11251v2.pdf
|
https://github.com/cmacdonald/pyterrier_colbert
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/implicit-svd-for-graph-representation
|
Implicit SVD for Graph Representation Learning
|
2111.06312
|
https://arxiv.org/abs/2111.06312v1
|
https://arxiv.org/pdf/2111.06312v1.pdf
|
https://github.com/samihaija/isvd
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-consolidated-open-knowledge-representation
|
A Consolidated Open Knowledge Representation for Multiple Texts
| null |
https://aclanthology.org/W17-0902
|
https://aclanthology.org/W17-0902.pdf
|
https://github.com/vered1986/OKR
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/massformer-tandem-mass-spectrum-prediction
|
MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using Graph Transformers
|
2111.04824
|
https://arxiv.org/abs/2111.04824v3
|
https://arxiv.org/pdf/2111.04824v3.pdf
|
https://github.com/samgoldman97/ms-pred
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automatically-polyconvex-strain-energy
|
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations
|
2110.03774
|
https://arxiv.org/abs/2110.03774v2
|
https://arxiv.org/pdf/2110.03774v2.pdf
|
https://github.com/tajtac/node
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/scalable-visual-transformers-with
|
Scalable Vision Transformers with Hierarchical Pooling
|
2103.10619
|
https://arxiv.org/abs/2103.10619v2
|
https://arxiv.org/pdf/2103.10619v2.pdf
|
https://github.com/MonashAI/HVT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/window-level-is-a-strong-denoising-surrogate
|
Window-Level is a Strong Denoising Surrogate
|
2105.07153
|
https://arxiv.org/abs/2105.07153v1
|
https://arxiv.org/pdf/2105.07153v1.pdf
|
https://github.com/zubaerimran/SSWL-IDN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/galactic-diffuse-gamma-rays-meet-the-pev
|
Galactic diffuse gamma rays meet the PeV frontier
|
2203.15759
|
https://arxiv.org/abs/2203.15759v3
|
https://arxiv.org/pdf/2203.15759v3.pdf
|
https://github.com/tospines/gamma-variable_high-resolution
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nifty-web-apps-build-a-web-app-for-any-text
|
Nifty Web Apps: Build a Web App for Any Text-Based Programming Assignment
|
2010.04671
|
https://arxiv.org/abs/2010.04671v1
|
https://arxiv.org/pdf/2010.04671v1.pdf
|
https://github.com/kevinlin1/nifty-web-apps
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/not-just-a-black-box-learning-important
|
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
|
1605.01713
|
http://arxiv.org/abs/1605.01713v3
|
http://arxiv.org/pdf/1605.01713v3.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vit-cx-causal-explanation-of-vision
|
ViT-CX: Causal Explanation of Vision Transformers
|
2211.03064
|
https://arxiv.org/abs/2211.03064v3
|
https://arxiv.org/pdf/2211.03064v3.pdf
|
https://github.com/vaynexie/CausalX-ViT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mura-large-dataset-for-abnormality-detection
|
MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs
|
1712.06957
|
http://arxiv.org/abs/1712.06957v4
|
http://arxiv.org/pdf/1712.06957v4.pdf
|
https://github.com/anirudh2019/MURA-xception-inceptionV2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/agglomerative-fast-super-paramagnetic
|
Agglomerative Likelihood Clustering
|
1908.00951
|
https://arxiv.org/abs/1908.00951v4
|
https://arxiv.org/pdf/1908.00951v4.pdf
|
https://github.com/tehraio/timeseries_gen
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/graph2mda-a-multi-modal-variational-graph
|
Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations
|
2108.06338
|
https://arxiv.org/abs/2108.06338v1
|
https://arxiv.org/pdf/2108.06338v1.pdf
|
https://github.com/moen-hyb/Graph2MDA
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/syntactic-parse-fusion
|
Syntactic Parse Fusion
| null |
https://aclanthology.org/D15-1160
|
https://aclanthology.org/D15-1160.pdf
|
https://github.com/BLLIP/bllip-parser
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improved-techniques-for-model-inversion-1
|
Knowledge-Enriched Distributional Model Inversion Attacks
|
2010.04092
|
https://arxiv.org/abs/2010.04092v4
|
https://arxiv.org/pdf/2010.04092v4.pdf
|
https://github.com/scccc21/knowledge-enriched-dmi
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.