paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/managing-o-ran-networks-xapp-development-from
|
Managing O-RAN Networks: xApp Development from Zero to Hero
|
2407.09619
|
https://arxiv.org/abs/2407.09619v3
|
https://arxiv.org/pdf/2407.09619v3.pdf
|
https://github.com/santos-j/xapp_development_zero_to_hero
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/isethdr-a-physics-based-synthetic-radiance
|
ISETHDR: A Physics-based Synthetic Radiance Dataset for High Dynamic Range Driving Scenes
|
2408.12048
|
https://arxiv.org/abs/2408.12048v1
|
https://arxiv.org/pdf/2408.12048v1.pdf
|
https://github.com/iset/isethdrsensor
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/3d-human-pose-estimation-with-2d-marginal
|
3D Human Pose Estimation with 2D Marginal Heatmaps
|
1806.01484
|
http://arxiv.org/abs/1806.01484v2
|
http://arxiv.org/pdf/1806.01484v2.pdf
|
https://github.com/anibali/margipose
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/model-conversion-via-differentially-private
|
Model Conversion via Differentially Private Data-Free Distillation
|
2304.12528
|
https://arxiv.org/abs/2304.12528v2
|
https://arxiv.org/pdf/2304.12528v2.pdf
|
https://github.com/MindCode-4/code-7/tree/main/model-conversion-via
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/bertscore-evaluating-text-generation-with
|
BERTScore: Evaluating Text Generation with BERT
|
1904.09675
|
https://arxiv.org/abs/1904.09675v3
|
https://arxiv.org/pdf/1904.09675v3.pdf
|
https://github.com/stair-lab/villm-eval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/summac-re-visiting-nli-based-models-for
|
SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization
|
2111.09525
|
https://arxiv.org/abs/2111.09525v1
|
https://arxiv.org/pdf/2111.09525v1.pdf
|
https://github.com/stair-lab/villm-eval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-networks-for-parameter-estimation-in-1
|
Neural Networks for Parameter Estimation in Geometrically Anisotropic Geostatistical Models
|
2408.10915
|
https://arxiv.org/abs/2408.10915v1
|
https://arxiv.org/pdf/2408.10915v1.pdf
|
https://github.com/AlejandroVillazonG/AnisotropyEstimatorsNN
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/tina-acceleration-of-non-nn-signal-processing
|
TINA: Acceleration of Non-NN Signal Processing Algorithms Using NN Accelerators
|
2408.16551
|
https://arxiv.org/abs/2408.16551v1
|
https://arxiv.org/pdf/2408.16551v1.pdf
|
https://github.com/christiaanboe/tina
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/scribble-based-fast-weak-supervision-and
|
Scribble-based fast weak-supervision and interactive corrections for segmenting whole slide images
|
2402.08333
|
https://arxiv.org/abs/2402.08333v1
|
https://arxiv.org/pdf/2402.08333v1.pdf
|
https://github.com/antoinehabis/wss-uic
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/geocalib-learning-single-image-calibration
|
GeoCalib: Learning Single-image Calibration with Geometric Optimization
|
2409.06704
|
https://arxiv.org/abs/2409.06704v2
|
https://arxiv.org/pdf/2409.06704v2.pdf
|
https://github.com/cvg/geocalib
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/collaborative-management-of-benchmark
|
Collaborative Management of Benchmark Instances and their Attributes
|
2009.02995
|
https://arxiv.org/abs/2009.02995v2
|
https://arxiv.org/pdf/2009.02995v2.pdf
|
https://github.com/Udopia/gbdc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-groove-with-inverse-sequence
|
Learning to Groove with Inverse Sequence Transformations
|
1905.06118
|
https://arxiv.org/abs/1905.06118v2
|
https://arxiv.org/pdf/1905.06118v2.pdf
|
https://github.com/polimi-ispl/larsnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-perceptual-quality-of-drum
|
Improving Perceptual Quality of Drum Transcription with the Expanded Groove MIDI Dataset
|
2004.00188
|
https://arxiv.org/abs/2004.00188v5
|
https://arxiv.org/pdf/2004.00188v5.pdf
|
https://github.com/polimi-ispl/larsnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/technical-insights-and-legal-considerations
|
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
|
2503.09649
|
https://arxiv.org/abs/2503.09649v2
|
https://arxiv.org/pdf/2503.09649v2.pdf
|
https://github.com/IDSIA/FL-Bioinformatics
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-next-active-object-based-egocentric
|
Enhancing Next Active Object-based Egocentric Action Anticipation with Guided Attention
|
2305.12953
|
https://arxiv.org/abs/2305.12953v2
|
https://arxiv.org/pdf/2305.12953v2.pdf
|
https://github.com/sanketsans/ganov2
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spagbol-spatial-graph-based-orientated
|
SpaGBOL: Spatial-Graph-Based Orientated Localisation
|
2409.15514
|
https://arxiv.org/abs/2409.15514v2
|
https://arxiv.org/pdf/2409.15514v2.pdf
|
https://github.com/tavisshore/SpaGBOL
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/when-the-poset-of-the-ideal-class-monoid-of-a
|
When the poset of the ideal class monoid of a numerical semigroup is a lattice
|
2412.07281
|
https://arxiv.org/abs/2412.07281v1
|
https://arxiv.org/pdf/2412.07281v1.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/omnilrs-a-photorealistic-simulator-for-lunar
|
OmniLRS: A Photorealistic Simulator for Lunar Robotics
|
2309.08997
|
https://arxiv.org/abs/2309.08997v1
|
https://arxiv.org/pdf/2309.08997v1.pdf
|
https://github.com/antoinerichard/lunarsim
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bip-ndr-nodoirefs-a-dataset-of-citations-from
|
BIP! NDR (NoDoiRefs): A Dataset of Citations From Papers Without DOIs in Computer Science Conferences and Workshops
|
2307.12794
|
https://arxiv.org/abs/2307.12794v1
|
https://arxiv.org/pdf/2307.12794v1.pdf
|
https://github.com/athenarc/bip-ndr-workflow
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hawkes-process-based-on-controlled
|
Hawkes Process Based on Controlled Differential Equations
|
2305.07031
|
https://arxiv.org/abs/2305.07031v2
|
https://arxiv.org/pdf/2305.07031v2.pdf
|
https://github.com/kookseungji/Hawkes-Process-Based-on-Controlled-Differential-Equations
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nushurescue-revitalization-of-the-endangered
|
NushuRescue: Revitalization of the Endangered Nushu Language with AI
|
2412.00218
|
https://arxiv.org/abs/2412.00218v4
|
https://arxiv.org/pdf/2412.00218v4.pdf
|
https://github.com/ivoryayang/NushuRescue
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-should-we-represent-history-in
|
How Should We Represent History in Interpretable Models of Clinical Policies?
|
2412.07895
|
https://arxiv.org/abs/2412.07895v1
|
https://arxiv.org/pdf/2412.07895v1.pdf
|
https://github.com/Healthy-AI/inpole
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/constructing-non-markovian-decision-process
|
Constructing Non-Markovian Decision Process via History Aggregator
|
2506.24026
|
https://arxiv.org/abs/2506.24026v1
|
https://arxiv.org/pdf/2506.24026v1.pdf
|
https://github.com/2664139264/sequential_rl
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/enhanced-graph-learning-schemes-driven-by
|
Enhanced graph-learning schemes driven by similar distributions of motifs
|
2207.04747
|
https://arxiv.org/abs/2207.04747v1
|
https://arxiv.org/pdf/2207.04747v1.pdf
|
https://github.com/reysam93/adaptive_agg_gcn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vrem-fl-mobility-aware-computation-scheduling
|
VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning
|
2311.18741
|
https://arxiv.org/abs/2311.18741v3
|
https://arxiv.org/pdf/2311.18741v3.pdf
|
https://github.com/lucaballotta/vrem-fl
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/prompting-language-informed-distribution-for
|
Prompting Language-Informed Distribution for Compositional Zero-Shot Learning
|
2305.14428
|
https://arxiv.org/abs/2305.14428v3
|
https://arxiv.org/pdf/2305.14428v3.pdf
|
https://github.com/cogito2012/plid
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/capturing-visualization-design-rationale
|
Capturing Visualization Design Rationale
|
2506.16571
|
https://arxiv.org/abs/2506.16571v1
|
https://arxiv.org/pdf/2506.16571v1.pdf
|
https://github.com/maevehutch/DesignQAR
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/llamapartialspoof-an-llm-driven-fake-speech
|
LlamaPartialSpoof: An LLM-Driven Fake Speech Dataset Simulating Disinformation Generation
|
2409.14743
|
https://arxiv.org/abs/2409.14743v2
|
https://arxiv.org/pdf/2409.14743v2.pdf
|
https://github.com/hieuthi/llamapartialspoof
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/colpali-efficient-document-retrieval-with
|
ColPali: Efficient Document Retrieval with Vision Language Models
|
2407.01449
|
https://arxiv.org/abs/2407.01449v6
|
https://arxiv.org/pdf/2407.01449v6.pdf
|
https://github.com/illuin-tech/colpali
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/empo-theory-driven-dataset-construction-for
|
EmPO: Emotion Grounding for Empathetic Response Generation through Preference Optimization
|
2406.19071
|
https://arxiv.org/abs/2406.19071v2
|
https://arxiv.org/pdf/2406.19071v2.pdf
|
https://github.com/justtherightsize/empo
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/fast-analysis-of-the-openai-o1-preview-model
|
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver?
|
2409.11232
|
https://arxiv.org/abs/2409.11232v2
|
https://arxiv.org/pdf/2409.11232v2.pdf
|
https://github.com/raffaelemarino/analysisopenaio1modelksat
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-the-limits-of-agency-in-agent-based-models
|
On the limits of agency in agent-based models
|
2409.10568
|
https://arxiv.org/abs/2409.10568v3
|
https://arxiv.org/pdf/2409.10568v3.pdf
|
https://github.com/agenttorch/agenttorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-comprehensive-evaluation-of-quantized
|
Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant
|
2409.11055
|
https://arxiv.org/abs/2409.11055v5
|
https://arxiv.org/pdf/2409.11055v5.pdf
|
https://gitlab.com/ones-ai/eval-quant-llms
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/non-stationary-time-series-forecasting-based
|
Non-Stationary Time Series Forecasting Based on Fourier Analysis and Cross Attention Mechanism
|
2505.06917
|
https://arxiv.org/abs/2505.06917v1
|
https://arxiv.org/pdf/2505.06917v1.pdf
|
https://github.com/YukiBear426/AEFIN
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/ontology-generation-using-large-language
|
Ontology Generation using Large Language Models
|
2503.05388
|
https://arxiv.org/abs/2503.05388v1
|
https://arxiv.org/pdf/2503.05388v1.pdf
|
https://github.com/dersuchendee/Onto-Generation
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/mvgamba-unify-3d-content-generation-as-state
|
MVGamba: Unify 3D Content Generation as State Space Sequence Modeling
|
2406.06367
|
https://arxiv.org/abs/2406.06367v3
|
https://arxiv.org/pdf/2406.06367v3.pdf
|
https://github.com/skyworkai/mvgamba
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/an-accelerated-algorithm-for-stochastic
|
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
|
2409.19212
|
https://arxiv.org/abs/2409.19212v5
|
https://arxiv.org/pdf/2409.19212v5.pdf
|
https://github.com/mingruiliu-ml-lab/accelerated-bilevel-optimization-unbounded-smoothness
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/crafting-distribution-shifts-for-validation
|
Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization
|
2409.19774
|
https://arxiv.org/abs/2409.19774v1
|
https://arxiv.org/pdf/2409.19774v1.pdf
|
https://github.com/nikosefth/crafting-shifts
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deriving-representative-structure-from-music
|
Synthesizing Composite Hierarchical Structure from Symbolic Music Corpora
|
2502.15849
|
https://arxiv.org/abs/2502.15849v4
|
https://arxiv.org/pdf/2502.15849v4.pdf
|
https://github.com/ilanashapiro/constraints_project
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/forecasting-disease-progression-with-parallel
|
Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT
|
2409.20195
|
https://arxiv.org/abs/2409.20195v2
|
https://arxiv.org/pdf/2409.20195v2.pdf
|
https://github.com/arunava555/Forecast_parallel_hyperplanes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-survey-on-graph-neural-networks-for-1
|
A Survey on Graph Neural Networks for Remaining Useful Life Prediction: Methodologies, Evaluation and Future Trends
|
2409.19629
|
https://arxiv.org/abs/2409.19629v1
|
https://arxiv.org/pdf/2409.19629v1.pdf
|
https://github.com/Frank-Wang-oss/GNN_RUL_Benchmarking
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/retrieval-based-reconstruction-for-time
|
REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning
|
2311.00519
|
https://arxiv.org/abs/2311.00519v4
|
https://arxiv.org/pdf/2311.00519v4.pdf
|
https://github.com/maxxu05/rebar
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dmin-scalable-training-data-influence
|
DMin: Scalable Training Data Influence Estimation for Diffusion Models
|
2412.08637
|
https://arxiv.org/abs/2412.08637v1
|
https://arxiv.org/pdf/2412.08637v1.pdf
|
https://github.com/huawei-lin/DMin
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/conductor-exponents-for-families-of
|
Conductor exponents for families of hyperelliptic curves
|
2410.21134
|
https://arxiv.org/abs/2410.21134v1
|
https://arxiv.org/pdf/2410.21134v1.pdf
|
https://github.com/martin-azon/clusters_and_conductors
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/blip-bootstrapping-language-image-pre
|
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
2201.12086
|
https://arxiv.org/abs/2201.12086v2
|
https://arxiv.org/pdf/2201.12086v2.pdf
|
https://github.com/ninatu/howtocaption
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/restructuring-vector-quantization-with-the
|
Restructuring Vector Quantization with the Rotation Trick
|
2410.06424
|
https://arxiv.org/abs/2410.06424v1
|
https://arxiv.org/pdf/2410.06424v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/noether-s-razor-learning-conserved-quantities
|
Noether's razor: Learning Conserved Quantities
|
2410.08087
|
https://arxiv.org/abs/2410.08087v1
|
https://arxiv.org/pdf/2410.08087v1.pdf
|
https://github.com/tychovdo/noethers-razor
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/synthia-novel-concept-design-with-affordance
|
Synthia: Novel Concept Design with Affordance Composition
|
2502.17793
|
https://arxiv.org/abs/2502.17793v1
|
https://arxiv.org/pdf/2502.17793v1.pdf
|
https://github.com/hyeonjeongha/synthia
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/donut-document-understanding-transformer
|
OCR-free Document Understanding Transformer
|
2111.15664
|
https://arxiv.org/abs/2111.15664v5
|
https://arxiv.org/pdf/2111.15664v5.pdf
|
https://github.com/MindCode-4/code-3/tree/main/donut
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/hypothesis-free-discovery-from
|
Hypothesis-free discovery from epidemiological data by automatic detection and local inference for tree-based nonlinearities and interactions
|
2505.00571
|
https://arxiv.org/abs/2505.00571v1
|
https://arxiv.org/pdf/2505.00571v1.pdf
|
https://github.com/GiorgioSpadaccini/ruleSHAP
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/understanding-and-improving-transferability
|
Understanding and improving transferability in machine-learned activation energy predictors
|
2505.00604
|
https://arxiv.org/abs/2505.00604v1
|
https://arxiv.org/pdf/2505.00604v1.pdf
|
https://github.com/Kinetica-jl/Kinetica.jl
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/scalarisation-based-risk-concepts-for-robust
|
Scalarisation-based risk concepts for robust multi-objective optimisation
|
2405.10221
|
https://arxiv.org/abs/2405.10221v4
|
https://arxiv.org/pdf/2405.10221v4.pdf
|
https://github.com/benmltu/scalarize
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/predicting-ionic-conductivity-in-solids-from
|
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
|
2411.06804
|
https://arxiv.org/abs/2411.06804v2
|
https://arxiv.org/pdf/2411.06804v2.pdf
|
https://github.com/SiLiKhon/pes_fingerprint
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-test-generators-for-cyber-physical
|
Learning test generators for cyber-physical systems
|
2410.03202
|
https://arxiv.org/abs/2410.03202v1
|
https://arxiv.org/pdf/2410.03202v1.pdf
|
https://github.com/dgumenyuk/tool-competition-av
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/persuasiveness-of-generated-free-text
|
Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking
|
2406.13905
|
https://arxiv.org/abs/2406.13905v1
|
https://arxiv.org/pdf/2406.13905v1.pdf
|
https://github.com/EngSalem/Free-text-rationale-persuasion
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/modeling-social-media-recommendation-impacts
|
Modeling Social Media Recommendation Impacts Using Academic Networks: A Graph Neural Network Approach
|
2410.04552
|
https://arxiv.org/abs/2410.04552v1
|
https://arxiv.org/pdf/2410.04552v1.pdf
|
https://github.com/dimneurolab/academic_network_project
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/test-time-adaptation-for-keypoint-based
|
Test-Time Adaptation for Keypoint-Based Spacecraft Pose Estimation Based on Predicted-View Synthesis
|
2410.04298
|
https://arxiv.org/abs/2410.04298v1
|
https://arxiv.org/pdf/2410.04298v1.pdf
|
https://github.com/jotabravo/spacecraft-tta
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/ddr-exploiting-deep-degradation-response-as
|
DDR: Exploiting Deep Degradation Response as Flexible Image Descriptor
|
2406.08377
|
https://arxiv.org/abs/2406.08377v3
|
https://arxiv.org/pdf/2406.08377v3.pdf
|
https://github.com/eezkni/ddr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/2408-02824
|
Wave-RVFL: A Randomized Neural Network Based on Wave Loss Function
|
2408.02824
|
https://arxiv.org/abs/2408.02824v2
|
https://arxiv.org/pdf/2408.02824v2.pdf
|
https://github.com/mtanveer1/wave-rvfl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/implicitly-aligning-humans-and-autonomous
|
Implicitly Aligning Humans and Autonomous Agents through Shared Task Abstractions
|
2505.04579
|
https://arxiv.org/abs/2505.04579v1
|
https://arxiv.org/pdf/2505.04579v1.pdf
|
https://github.com/HIRO-group/HA2
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/unveiling-the-mechanisms-of-dai-a-logic-based
|
Unveiling the Mechanisms of DAI: A Logic-Based Approach to Stablecoin Analysis
|
2412.15814
|
https://arxiv.org/abs/2412.15814v3
|
https://arxiv.org/pdf/2412.15814v3.pdf
|
https://zenodo.org/record/15094256
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/online-isolation-forest
|
Online Isolation Forest
|
2505.09593
|
https://arxiv.org/abs/2505.09593v1
|
https://arxiv.org/pdf/2505.09593v1.pdf
|
https://github.com/ineveloppilif/online-isolation-forest
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nerva-a-truly-sparse-implementation-of-neural
|
Nerva: a Truly Sparse Implementation of Neural Networks
|
2407.17437
|
https://arxiv.org/abs/2407.17437v1
|
https://arxiv.org/pdf/2407.17437v1.pdf
|
https://github.com/wiegerw/nerva
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/optnet-differentiable-optimization-as-a-layer
|
OptNet: Differentiable Optimization as a Layer in Neural Networks
|
1703.00443
|
https://arxiv.org/abs/1703.00443v5
|
https://arxiv.org/pdf/1703.00443v5.pdf
|
https://github.com/kevin-tracy/qpax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/a-new-federated-learning-framework-against
|
A New Federated Learning Framework Against Gradient Inversion Attacks
|
2412.07187
|
https://arxiv.org/abs/2412.07187v1
|
https://arxiv.org/pdf/2412.07187v1.pdf
|
https://github.com/pengxin-guo/hyperfl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bimedix2-bio-medical-expert-lmm-for-diverse
|
BiMediX2: Bio-Medical EXpert LMM for Diverse Medical Modalities
|
2412.07769
|
https://arxiv.org/abs/2412.07769v1
|
https://arxiv.org/pdf/2412.07769v1.pdf
|
https://github.com/mbzuai-oryx/bimedix2
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/were-rnns-all-we-needed
|
Were RNNs All We Needed?
|
2410.01201
|
https://arxiv.org/abs/2410.01201v3
|
https://arxiv.org/pdf/2410.01201v3.pdf
|
https://github.com/YecanLee/min-LSTM-torch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/stochastic-bilevel-optimization-with-lower
|
Contextual Bilevel Reinforcement Learning for Incentive Alignment
|
2406.01575
|
https://arxiv.org/abs/2406.01575v2
|
https://arxiv.org/pdf/2406.01575v2.pdf
|
https://github.com/lasgroup/hpgd
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/integrated-machine-learning-and-survival
|
Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification
|
2411.10754
|
https://arxiv.org/abs/2411.10754v1
|
https://arxiv.org/pdf/2411.10754v1.pdf
|
https://github.com/vironix-health/CKD-ZD-project
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lion-xa-unsupervised-domain-adaptation-via
|
LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training
|
2410.15833
|
https://arxiv.org/abs/2410.15833v1
|
https://arxiv.org/pdf/2410.15833v1.pdf
|
https://github.com/jensle97/lion-xa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hammer-robust-function-calling-for-on-device
|
Hammer: Robust Function-Calling for On-Device Language Models via Function Masking
|
2410.04587
|
https://arxiv.org/abs/2410.04587v2
|
https://arxiv.org/pdf/2410.04587v2.pdf
|
https://github.com/MadeAgents/Hammer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/semsegbench-detecbench-benchmarking
|
SemSegBench & DetecBench: Benchmarking Reliability and Generalization Beyond Classification
|
2505.18015
|
https://arxiv.org/abs/2505.18015v1
|
https://arxiv.org/pdf/2505.18015v1.pdf
|
https://github.com/shashankskagnihotri/benchmarking_reliability_generalization
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/wetica-a-directed-search-weighted-ensemble
|
WeTICA: A directed search weighted ensemble based enhanced sampling method to estimate rare event kinetics in a reduced dimensional space
|
2501.08926
|
https://arxiv.org/abs/2501.08926v1
|
https://arxiv.org/pdf/2501.08926v1.pdf
|
https://github.com/teamsuman/wetica
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/maxim-multi-axis-mlp-for-image-processing
|
MAXIM: Multi-Axis MLP for Image Processing
|
2201.02973
|
https://arxiv.org/abs/2201.02973v2
|
https://arxiv.org/pdf/2201.02973v2.pdf
|
https://github.com/sayakpaul/maxim-tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/misinfo-reaction-frames-reasoning-about
|
Misinfo Reaction Frames: Reasoning about Readers’ Reactions to News Headlines
| null |
https://aclanthology.org/2022.acl-long.222
|
https://aclanthology.org/2022.acl-long.222.pdf
|
https://github.com/MindCode-4/code-12/tree/main/misinfo-reaction-frames
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/positive-augmented-contrastive-learning-for
|
Positive-Augmented Contrastive Learning for Vision-and-Language Evaluation and Training
|
2410.07336
|
https://arxiv.org/abs/2410.07336v1
|
https://arxiv.org/pdf/2410.07336v1.pdf
|
https://github.com/aimagelab/pacscore
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/inceventgs-pose-free-gaussian-splatting-from
|
IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
|
2410.08107
|
https://arxiv.org/abs/2410.08107v2
|
https://arxiv.org/pdf/2410.08107v2.pdf
|
https://github.com/wu-cvgl/inceventgs
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/one-shot-world-models-using-a-transformer
|
One-shot World Models Using a Transformer Trained on a Synthetic Prior
|
2409.14084
|
https://arxiv.org/abs/2409.14084v2
|
https://arxiv.org/pdf/2409.14084v2.pdf
|
https://github.com/automl/oswm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-speaker-representations-using
|
Improving Speaker Representations Using Contrastive Losses on Multi-scale Features
|
2410.05037
|
https://arxiv.org/abs/2410.05037v1
|
https://arxiv.org/pdf/2410.05037v1.pdf
|
https://github.com/satvik-dixit/mfcon
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/llms-and-memorization-on-quality-and
|
LLMs and Memorization: On Quality and Specificity of Copyright Compliance
|
2405.18492
|
https://arxiv.org/abs/2405.18492v3
|
https://arxiv.org/pdf/2405.18492v3.pdf
|
https://github.com/felixbmuller/llms-memorization-copyright
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/zero-reference-deep-curve-estimation-for-low
|
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
|
2001.06826
|
https://arxiv.org/abs/2001.06826v2
|
https://arxiv.org/pdf/2001.06826v2.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/6/Zero-DCE%2B%2B
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/contrast-similarity-aware-dual-pathway-mamba
|
Contrast Similarity-Aware Dual-Pathway Mamba for Multivariate Time Series Node Classification
|
2411.12222
|
https://arxiv.org/abs/2411.12222v1
|
https://arxiv.org/pdf/2411.12222v1.pdf
|
https://github.com/dumingsen/DPMamba
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-to-optimize-for-mixed-integer-non
|
Learning to Optimize for Mixed-Integer Non-linear Programming with Feasibility Guarantees
|
2410.11061
|
https://arxiv.org/abs/2410.11061v9
|
https://arxiv.org/pdf/2410.11061v9.pdf
|
https://github.com/pnnl/l2o-pminlp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/step-level-reward-for-free-in-rl-based-t2i
|
Step-level Reward for Free in RL-based T2I Diffusion Model Fine-tuning
|
2505.19196
|
https://arxiv.org/abs/2505.19196v1
|
https://arxiv.org/pdf/2505.19196v1.pdf
|
https://github.com/lil-shake/coca
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cerebrum-aios-sdk-a-platform-for-agent
|
Cerebrum (AIOS SDK): A Platform for Agent Development, Deployment, Distribution, and Discovery
|
2503.11444
|
https://arxiv.org/abs/2503.11444v1
|
https://arxiv.org/pdf/2503.11444v1.pdf
|
https://github.com/agiresearch/aios
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/instant-gaussian-stream-fast-and
|
Instant Gaussian Stream: Fast and Generalizable Streaming of Dynamic Scene Reconstruction via Gaussian Splatting
|
2503.16979
|
https://arxiv.org/abs/2503.16979v1
|
https://arxiv.org/pdf/2503.16979v1.pdf
|
https://github.com/yjb6/IGS
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/modelling-and-verifying-neuronal-archetypes
|
Modelling and Verifying Neuronal Archetypes in Coq
|
2505.05362
|
https://arxiv.org/abs/2505.05362v1
|
https://arxiv.org/pdf/2505.05362v1.pdf
|
https://github.com/afelty/NeuronalArchetypesAppendix
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/quic-exfil-exploiting-quic-s-server-preferred
|
QUIC-Exfil: Exploiting QUIC's Server Preferred Address Feature to Perform Data Exfiltration Attacks
|
2505.05292
|
https://arxiv.org/abs/2505.05292v1
|
https://arxiv.org/pdf/2505.05292v1.pdf
|
https://github.com/thomasgruebl/quic-exfil
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/from-n-grams-to-pre-trained-multilingual
|
From N-grams to Pre-trained Multilingual Models For Language Identification
|
2410.08728
|
https://arxiv.org/abs/2410.08728v1
|
https://arxiv.org/pdf/2410.08728v1.pdf
|
https://github.com/dsfsi/za-lid
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/integrating-supertag-features-into-neural
|
Integrating Supertag Features into Neural Discontinuous Constituent Parsing
|
2410.08766
|
https://arxiv.org/abs/2410.08766v1
|
https://arxiv.org/pdf/2410.08766v1.pdf
|
https://github.com/filemon11/discoparset-supertag
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/beyond-gfvc-a-progressive-face-video
|
Beyond GFVC: A Progressive Face Video Compression Framework with Adaptive Visual Tokens
|
2410.08485
|
https://arxiv.org/abs/2410.08485v1
|
https://arxiv.org/pdf/2410.08485v1.pdf
|
https://github.com/berlin0610/pfvc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/do-generative-video-models-learn-physical
|
Do generative video models understand physical principles?
|
2501.09038
|
https://arxiv.org/abs/2501.09038v3
|
https://arxiv.org/pdf/2501.09038v3.pdf
|
https://github.com/google-deepmind/physics-IQ-benchmark
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/extreme-sparsity-gives-rise-to-functional
|
Dynamics of specialization in neural modules under resource constraints
|
2106.02626
|
https://arxiv.org/abs/2106.02626v6
|
https://arxiv.org/pdf/2106.02626v6.pdf
|
https://github.com/GabrielBena/specialization-dynamics
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-framework-for-adapting-human-robot
|
A Framework for Adapting Human-Robot Interaction to Diverse User Groups
|
2410.11377
|
https://arxiv.org/abs/2410.11377v2
|
https://arxiv.org/pdf/2410.11377v2.pdf
|
https://github.com/tpekarekrosin/uhh_ub_ageawarehri
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/aide-ai-driven-exploration-in-the-space-of
|
AIDE: AI-Driven Exploration in the Space of Code
|
2502.13138
|
https://arxiv.org/abs/2502.13138v1
|
https://arxiv.org/pdf/2502.13138v1.pdf
|
https://github.com/wecoai/aideml
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/re-bench-evaluating-frontier-ai-r-d
|
RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts
|
2411.15114
|
https://arxiv.org/abs/2411.15114v1
|
https://arxiv.org/pdf/2411.15114v1.pdf
|
https://github.com/wecoai/aideml
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/amago-scalable-in-context-reinforcement
|
AMAGO: Scalable In-Context Reinforcement Learning for Adaptive Agents
|
2310.09971
|
https://arxiv.org/abs/2310.09971v4
|
https://arxiv.org/pdf/2310.09971v4.pdf
|
https://github.com/ut-austin-rpl/amago
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/conditional-latent-diffusion-based-speech
|
Conditional Latent Diffusion-Based Speech Enhancement Via Dual Context Learning
|
2501.10052
|
https://arxiv.org/abs/2501.10052v1
|
https://arxiv.org/pdf/2501.10052v1.pdf
|
https://github.com/modelscope/ClearerVoice-Studio
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/ditto-tts-efficient-and-scalable-zero-shot
|
DiTTo-TTS: Diffusion Transformers for Scalable Text-to-Speech without Domain-Specific Factors
|
2406.11427
|
https://arxiv.org/abs/2406.11427v2
|
https://arxiv.org/pdf/2406.11427v2.pdf
|
https://github.com/keonlee9420/evaluate-zero-shot-tts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/shapley-guided-utility-learning-for-effective
|
Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation
|
2503.18195
|
https://arxiv.org/abs/2503.18195v1
|
https://arxiv.org/pdf/2503.18195v1.pdf
|
https://github.com/frankhlchi/infer_data_valuation
| true
| false
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.