paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/second-order-differential-operators
|
Second-order differential operators, stochastic differential equations and Brownian motions on embedded manifolds
|
2406.02879
|
https://arxiv.org/abs/2406.02879v1
|
https://arxiv.org/pdf/2406.02879v1.pdf
|
https://github.com/dnguyend/jax-rb
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/exploring-the-efficacy-of-a-hybrid-approach
|
Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models
|
2404.17884
|
https://arxiv.org/abs/2404.17884v4
|
https://arxiv.org/pdf/2404.17884v4.pdf
|
https://github.com/rabadiah/generalization-capabilities-and-robustness-of-hybrid-machine-learning-models
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/translating-text-synopses-to-video
|
TeViS:Translating Text Synopses to Video Storyboards
|
2301.00135
|
https://arxiv.org/abs/2301.00135v4
|
https://arxiv.org/pdf/2301.00135v4.pdf
|
https://github.com/guxu313/TeViS
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sltrain-a-sparse-plus-low-rank-approach-for
|
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
|
2406.02214
|
https://arxiv.org/abs/2406.02214v2
|
https://arxiv.org/pdf/2406.02214v2.pdf
|
https://github.com/andyjm3/SLTrain
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/gptq-accurate-post-training-quantization-for
|
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers
|
2210.17323
|
https://arxiv.org/abs/2210.17323v2
|
https://arxiv.org/pdf/2210.17323v2.pdf
|
https://github.com/microsoft/bitblas
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-cache-accelerating-diffusion
|
Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching
|
2406.01733
|
https://arxiv.org/abs/2406.01733v2
|
https://arxiv.org/pdf/2406.01733v2.pdf
|
https://github.com/horseee/learning-to-cache
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/conformal-language-modeling
|
Conformal Language Modeling
|
2306.10193
|
https://arxiv.org/abs/2306.10193v2
|
https://arxiv.org/pdf/2306.10193v2.pdf
|
https://github.com/varal7/conformal-language-modeling
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mimic-minimally-modified-counterfactuals-in
|
Representation Surgery: Theory and Practice of Affine Steering
|
2402.09631
|
https://arxiv.org/abs/2402.09631v7
|
https://arxiv.org/pdf/2402.09631v7.pdf
|
https://github.com/shauli-ravfogel/affine-steering
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/kornia-an-open-source-differentiable-computer
|
Kornia: an Open Source Differentiable Computer Vision Library for PyTorch
|
1910.02190
|
https://arxiv.org/abs/1910.02190v2
|
https://arxiv.org/pdf/1910.02190v2.pdf
|
https://github.com/arraiyopensource/torchgeometry
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exploring-the-effectiveness-and-consistency
|
Exploring the Effectiveness and Consistency of Task Selection in Intermediate-Task Transfer Learning
|
2407.16245
|
https://arxiv.org/abs/2407.16245v1
|
https://arxiv.org/pdf/2407.16245v1.pdf
|
https://github.com/uds-lsv/intermediate-task-selection
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/apery-sets-and-the-ideal-class-monoid-of-a
|
Apéry sets and the ideal class monoid of a numerical semigroup
|
2302.09647
|
https://arxiv.org/abs/2302.09647v2
|
https://arxiv.org/pdf/2302.09647v2.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/texhoi-reconstructing-textures-of-3d-unknown
|
TexHOI: Reconstructing Textures of 3D Unknown Objects in Monocular Hand-Object Interaction Scenes
|
2501.03525
|
https://arxiv.org/abs/2501.03525v1
|
https://arxiv.org/pdf/2501.03525v1.pdf
|
https://github.com/alakhag/texhoi
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cute-measuring-llms-understanding-of-their
|
CUTE: Measuring LLMs' Understanding of Their Tokens
|
2409.15452
|
https://arxiv.org/abs/2409.15452v2
|
https://arxiv.org/pdf/2409.15452v2.pdf
|
https://github.com/leukas/cute
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-learning-the-slow-modes-for-rare-events
|
Deep learning the slow modes for rare events sampling
|
2107.03943
|
https://arxiv.org/abs/2107.03943v2
|
https://arxiv.org/pdf/2107.03943v2.pdf
|
https://github.com/luigibonati/deep-learning-slow-modes-data
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/logicol-logically-informed-contrastive
|
LogiCoL: Logically-Informed Contrastive Learning for Set-based Dense Retrieval
|
2505.19588
|
https://arxiv.org/abs/2505.19588v1
|
https://arxiv.org/pdf/2505.19588v1.pdf
|
https://github.com/yanzhen4/logicol
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/palantir-towards-efficient-super-resolution
|
Palantir: Towards Efficient Super Resolution for Ultra-high-definition Live Streaming
|
2408.06152
|
https://arxiv.org/abs/2408.06152v2
|
https://arxiv.org/pdf/2408.06152v2.pdf
|
https://github.com/Palantir-SR/palantir
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/distributed-quantum-logic-algorithm
|
Distributed quantum logic algorithm
|
2411.11979
|
https://arxiv.org/abs/2411.11979v1
|
https://arxiv.org/pdf/2411.11979v1.pdf
|
https://github.com/barseniev/dql_algorithm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/llcaps-learning-to-illuminate-low-light
|
LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion
|
2307.02452
|
https://arxiv.org/abs/2307.02452v2
|
https://arxiv.org/pdf/2307.02452v2.pdf
|
https://github.com/longbai1006/llcaps
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-generic-approach-to-nonparametric-function
|
A generic approach to nonparametric function estimation with mixed data
|
1704.07457
|
http://arxiv.org/abs/1704.07457v3
|
http://arxiv.org/pdf/1704.07457v3.pdf
|
https://github.com/cran/cctools
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/vmamba-visual-state-space-model
|
VMamba: Visual State Space Model
|
2401.10166
|
https://arxiv.org/abs/2401.10166v4
|
https://arxiv.org/pdf/2401.10166v4.pdf
|
https://github.com/raytrun/mamba-clip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/raq-vae-rate-adaptive-vector-quantized
|
Rate-Adaptive Quantization: A Multi-Rate Codebook Adaptation for Vector Quantization-based Generative Models
|
2405.14222
|
https://arxiv.org/abs/2405.14222v2
|
https://arxiv.org/pdf/2405.14222v2.pdf
|
https://github.com/JiwanSeo/RAQ-VAE
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/roman-open-set-object-map-alignment-for
|
ROMAN: Open-Set Object Map Alignment for Robust View-Invariant Global Localization
|
2410.08262
|
https://arxiv.org/abs/2410.08262v2
|
https://arxiv.org/pdf/2410.08262v2.pdf
|
https://github.com/mit-acl/ROMAN
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/cpa-wac-constellation-partitioning-based
|
CPa-WAC: Constellation Partitioning-based Scalable Weighted Aggregation Composition for Knowledge Graph Embedding
| null |
https://www.ijcai.org/proceedings/2024/388
|
https://www.ijcai.org/proceedings/2024/0388.pdf
|
https://github.com/ganzagun/CPa-WAC
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/minimum-weighted-feedback-arc-sets-for
|
Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
|
2412.16181
|
https://arxiv.org/abs/2412.16181v2
|
https://arxiv.org/pdf/2412.16181v2.pdf
|
https://github.com/soroushvahidi/ranking_with_mwfas
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fast-generalizable-gaussian-splatting
|
MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo
|
2405.12218
|
https://arxiv.org/abs/2405.12218v3
|
https://arxiv.org/pdf/2405.12218v3.pdf
|
https://github.com/TQTQliu/MVSGaussian
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mmworld-towards-multi-discipline-multi
|
MMWorld: Towards Multi-discipline Multi-faceted World Model Evaluation in Videos
|
2406.08407
|
https://arxiv.org/abs/2406.08407v3
|
https://arxiv.org/pdf/2406.08407v3.pdf
|
https://github.com/eric-ai-lab/mmworld
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/understanding-visual-concepts-across-models
|
Understanding Visual Concepts Across Models
|
2406.07506
|
https://arxiv.org/abs/2406.07506v1
|
https://arxiv.org/pdf/2406.07506v1.pdf
|
https://github.com/visual-words/visual-words
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/calibrating-doubly-robust-estimators-with
|
Calibrating doubly-robust estimators with unbalanced treatment assignment
|
2403.01585
|
https://arxiv.org/abs/2403.01585v2
|
https://arxiv.org/pdf/2403.01585v2.pdf
|
https://github.com/dballinari/Calibrating-doubly-robust-estimators-with-unbalanced-treatment-assignment
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pretraining-ecg-data-with-adversarial-masking
|
Pretraining ECG Data with Adversarial Masking Improves Model Generalizability for Data-Scarce Tasks
|
2211.07889
|
https://arxiv.org/abs/2211.07889v1
|
https://arxiv.org/pdf/2211.07889v1.pdf
|
https://github.com/jessica-bo/advmask_ecg
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/subject-driven-text-to-image-generation-via-1
|
Subject-driven Text-to-Image Generation via Preference-based Reinforcement Learning
|
2407.12164
|
https://arxiv.org/abs/2407.12164v3
|
https://arxiv.org/pdf/2407.12164v3.pdf
|
https://github.com/andrew-miao/RPO
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/chance-constrained-energy-storage-pricing-for
|
Chance-Constrained Energy Storage Pricing for Social Welfare Maximization
|
2407.07068
|
https://arxiv.org/abs/2407.07068v1
|
https://arxiv.org/pdf/2407.07068v1.pdf
|
https://github.com/thuqining/Storage_Pricing_for_Social_Welfare_Maximization
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/uncovering-latent-themes-of-messaging-on
|
Discovering Latent Themes in Social Media Messaging: A Machine-in-the-Loop Approach Integrating LLMs
|
2403.10707
|
https://arxiv.org/abs/2403.10707v2
|
https://arxiv.org/pdf/2403.10707v2.pdf
|
https://github.com/tunazislam/latent-themes-llms
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/data-efficient-molecular-generation-with
|
Data-Efficient Molecular Generation with Hierarchical Textual Inversion
|
2405.02845
|
https://arxiv.org/abs/2405.02845v3
|
https://arxiv.org/pdf/2405.02845v3.pdf
|
https://github.com/seojin-kim/hi-mol
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spectral-variance-in-a-stochastic
|
Spectral Variance in a Stochastic Gravitational-Wave Background From a Binary Population
|
2407.06270
|
https://arxiv.org/abs/2407.06270v3
|
https://arxiv.org/pdf/2407.06270v3.pdf
|
https://github.com/astrolamb/pop_synth
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/search-based-trace-diagnostic
|
Search-based Trace Diagnostic
|
2406.17268
|
https://arxiv.org/abs/2406.17268v1
|
https://arxiv.org/pdf/2406.17268v1.pdf
|
https://github.com/gastd/ga-hls
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/trocr-transformer-based-optical-character
|
TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models
|
2109.10282
|
https://arxiv.org/abs/2109.10282v5
|
https://arxiv.org/pdf/2109.10282v5.pdf
|
https://github.com/prathameshza/TrOCR_FineTuning
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/dahl-domain-specific-automated-hallucination
|
DAHL: Domain-specific Automated Hallucination Evaluation of Long-Form Text through a Benchmark Dataset in Biomedicine
|
2411.09255
|
https://arxiv.org/abs/2411.09255v1
|
https://arxiv.org/pdf/2411.09255v1.pdf
|
https://github.com/seemdog/DAHL
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/how-dnns-break-the-curse-of-dimensionality
|
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
|
2407.05664
|
https://arxiv.org/abs/2407.05664v1
|
https://arxiv.org/pdf/2407.05664v1.pdf
|
https://github.com/shc443/coveringnumber_gb
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hpff-hierarchical-locally-supervised-learning
|
HPFF: Hierarchical Locally Supervised Learning with Patch Feature Fusion
|
2407.05638
|
https://arxiv.org/abs/2407.05638v2
|
https://arxiv.org/pdf/2407.05638v2.pdf
|
https://github.com/zeudfish/hpff
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/passage-retrieval-of-polish-texts-using-okapi
|
Passage Retrieval of Polish Texts Using OKAPI BM25 and an Ensemble of Cross Encoders
|
2410.04620
|
https://arxiv.org/abs/2410.04620v1
|
https://arxiv.org/pdf/2410.04620v1.pdf
|
https://github.com/kubapok/poleval22
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/eagleeye-attention-to-unveil-malicious-event
|
EagleEye: Attention to Unveil Malicious Event Sequences from Provenance Graphs
|
2408.09217
|
https://arxiv.org/abs/2408.09217v2
|
https://arxiv.org/pdf/2408.09217v2.pdf
|
https://github.com/gyselph/eagle-eye
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/art-automatic-red-teaming-for-text-to-image
|
ART: Automatic Red-teaming for Text-to-Image Models to Protect Benign Users
|
2405.19360
|
https://arxiv.org/abs/2405.19360v3
|
https://arxiv.org/pdf/2405.19360v3.pdf
|
https://github.com/guanlinlee/art
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/position-coupling-leveraging-task-structure
|
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure
|
2405.20671
|
https://arxiv.org/abs/2405.20671v2
|
https://arxiv.org/pdf/2405.20671v2.pdf
|
https://github.com/hanseuljo/position-coupling
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/how-not-to-stitch-representations-to-measure
|
How not to Stitch Representations to Measure Similarity: Task Loss Matching versus Direct Matching
|
2412.11299
|
https://arxiv.org/abs/2412.11299v1
|
https://arxiv.org/pdf/2412.11299v1.pdf
|
https://github.com/szegedai/stitching-ood
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-controllable-face-generation-with
|
Controllable Face Synthesis with Semantic Latent Diffusion Models
|
2403.12743
|
https://arxiv.org/abs/2403.12743v2
|
https://arxiv.org/pdf/2403.12743v2.pdf
|
https://github.com/ergastialex/sca-dm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-port-hamiltonian-differential
|
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
|
2412.11215
|
https://arxiv.org/abs/2412.11215v2
|
https://arxiv.org/pdf/2412.11215v2.pdf
|
https://github.com/nathan-t4/nphdae
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/listen-and-speak-fairly-a-study-on-semantic
|
Listen and Speak Fairly: A Study on Semantic Gender Bias in Speech Integrated Large Language Models
|
2407.06957
|
https://arxiv.org/abs/2407.06957v1
|
https://arxiv.org/pdf/2407.06957v1.pdf
|
https://github.com/dlion168/Listen-and-Speak-Fairly
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/autordf2gml-facilitating-rdf-integration-in
|
AutoRDF2GML: Facilitating RDF Integration in Graph Machine Learning
|
2407.18735
|
https://arxiv.org/abs/2407.18735v1
|
https://arxiv.org/pdf/2407.18735v1.pdf
|
https://github.com/davidlamprecht/autordf2gml
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/extended-agriculture-vision-an-extension-of-a
|
Extended Agriculture-Vision: An Extension of a Large Aerial Image Dataset for Agricultural Pattern Analysis
|
2303.02460
|
https://arxiv.org/abs/2303.02460v1
|
https://arxiv.org/pdf/2303.02460v1.pdf
|
https://github.com/jingwu6/extended-agriculture-vision-dataset
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-cleanse-identifying-and-mitigating
|
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
| null |
https://ieeexplore.ieee.org/document/8835365
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8835365
|
https://github.com/bolunwang/backdoor
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/scsa-exploring-the-synergistic-effects
|
SCSA: Exploring the Synergistic Effects Between Spatial and Channel Attention
|
2407.05128
|
https://arxiv.org/abs/2407.05128v2
|
https://arxiv.org/pdf/2407.05128v2.pdf
|
https://github.com/HZAI-ZJNU/SCSA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-and-long-tailed-generalization-for
|
Efficient and Long-Tailed Generalization for Pre-trained Vision-Language Model
|
2406.12638
|
https://arxiv.org/abs/2406.12638v1
|
https://arxiv.org/pdf/2406.12638v1.pdf
|
https://github.com/shijxcs/candle
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/real-time-3d-object-detection-using
|
Real-Time 3D Object Detection Using InnovizOne LiDAR and Low-Power Hailo-8 AI Accelerator
|
2412.05594
|
https://arxiv.org/abs/2412.05594v1
|
https://arxiv.org/pdf/2412.05594v1.pdf
|
https://github.com/airotau/pointpillarshailoinnoviz
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/data-driven-prediction-of-colonization
|
Data-driven prediction of colonization outcomes for complex microbial communities
| null |
https://doi.org/10.1038/s41467-024-46766-y
|
https://doi.org/10.1038/s41467-024-46766-y
|
https://github.com/spxuw/COP
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-variational-bayes-approach-to-debiased
|
A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression
|
2406.12659
|
https://arxiv.org/abs/2406.12659v1
|
https://arxiv.org/pdf/2406.12659v1.pdf
|
https://github.com/lukemmtravis/Debiased-SVB
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adaptive-habitability-of-exoplanets-thriving
|
Adaptive Habitability of Exoplanets: Thriving Under Extreme Environmental Change
|
2407.02571
|
https://arxiv.org/abs/2407.02571v1
|
https://arxiv.org/pdf/2407.02571v1.pdf
|
https://github.com/itaywe1998/Astro-Ecology-Paper
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/longformer-the-long-document-transformer
|
Longformer: The Long-Document Transformer
|
2004.05150
|
https://arxiv.org/abs/2004.05150v2
|
https://arxiv.org/pdf/2004.05150v2.pdf
|
https://github.com/mim-solutions/roberta_for_longer_texts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-fake-news-detection-in-social-media
|
Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph
|
2406.09884
|
https://arxiv.org/abs/2406.09884v1
|
https://arxiv.org/pdf/2406.09884v1.pdf
|
https://github.com/zhaowanqing/FCN-LP
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vector-valued-variation-spaces-and-width
|
Variation Spaces for Multi-Output Neural Networks: Insights on Multi-Task Learning and Network Compression
|
2305.16534
|
https://arxiv.org/abs/2305.16534v3
|
https://arxiv.org/pdf/2305.16534v3.pdf
|
https://github.com/joeshenouda/vv-spaces-nn-width
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dinov2-learning-robust-visual-features
|
DINOv2: Learning Robust Visual Features without Supervision
|
2304.07193
|
https://arxiv.org/abs/2304.07193v2
|
https://arxiv.org/pdf/2304.07193v2.pdf
|
https://github.com/facebookresearch/highrescanopyheight
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/grathena-puncture-evolutions-on-vertex
|
GRAthena++: puncture evolutions on vertex-centered oct-tree AMR
|
2101.08289
|
https://arxiv.org/abs/2101.08289v1
|
https://arxiv.org/pdf/2101.08289v1.pdf
|
https://bitbucket.org/bernuzzi/twopuncturesc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-single-domain-spectral-method-for-black
|
A single-domain spectral method for black hole puncture data
|
gr-qc/0404056
|
https://arxiv.org/abs/gr-qc/0404056v2
|
https://arxiv.org/pdf/gr-qc/0404056v2.pdf
|
https://bitbucket.org/bernuzzi/twopuncturesc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/continual-learning-via-sequential-function
|
Continual Learning via Sequential Function-Space Variational Inference
|
2312.17210
|
https://arxiv.org/abs/2312.17210v1
|
https://arxiv.org/pdf/2312.17210v1.pdf
|
https://github.com/timrudner/S-FSVI
| true
| false
| false
|
jax
|
https://paperswithcode.com/paper/2408-02205
|
Swiss Cheese Model for AI Safety: A Taxonomy and Reference Architecture for Multi-Layered Guardrails of Foundation Model Based Agents
|
2408.02205
|
https://arxiv.org/abs/2408.02205v4
|
https://arxiv.org/pdf/2408.02205v4.pdf
|
https://github.com/dishacse/Publication-Resources/tree/main/2025%20ICSA
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/structure-your-data-towards-semantic-graph
|
Structure Your Data: Towards Semantic Graph Counterfactuals
|
2403.06514
|
https://arxiv.org/abs/2403.06514v2
|
https://arxiv.org/pdf/2403.06514v2.pdf
|
https://github.com/aggeliki-dimitriou/sgce
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/smart-scene-motion-aware-human-action
|
SMART: Scene-motion-aware human action recognition framework for mental disorder group
|
2406.04649
|
https://arxiv.org/abs/2406.04649v1
|
https://arxiv.org/pdf/2406.04649v1.pdf
|
https://github.com/inowlzy/smart
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mambamos-lidar-based-3d-moving-object
|
MambaMOS: LiDAR-based 3D Moving Object Segmentation with Motion-aware State Space Model
|
2404.12794
|
https://arxiv.org/abs/2404.12794v2
|
https://arxiv.org/pdf/2404.12794v2.pdf
|
https://github.com/terminal-k/mambamos
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-interpretable-collective-variables
|
Learning Interpretable Collective Variables for Spreading Processes on Networks
|
2307.03491
|
https://arxiv.org/abs/2307.03491v3
|
https://arxiv.org/pdf/2307.03491v3.pdf
|
https://github.com/lueckem/spreading-processes-cvs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-conic-transformation-approach-for-solving
|
A Conic Transformation Approach for Solving the Perspective-Three-Point Problem
|
2504.01620
|
https://arxiv.org/abs/2504.01620v1
|
https://arxiv.org/pdf/2504.01620v1.pdf
|
https://github.com/hayden-86/p3p-solver
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/fastclip-a-suite-of-optimization-techniques
|
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
|
2407.01445
|
https://arxiv.org/abs/2407.01445v3
|
https://arxiv.org/pdf/2407.01445v3.pdf
|
https://github.com/optimization-ai/fast_clip
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reverse-map-projections-as-equivariant
|
Reverse Map Projections as Equivariant Quantum Embeddings
|
2407.19906
|
https://arxiv.org/abs/2407.19906v2
|
https://arxiv.org/pdf/2407.19906v2.pdf
|
https://github.com/kezmcd1903/equivariant_qnns
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/autostory-generating-diverse-storytelling
|
AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort
|
2311.11243
|
https://arxiv.org/abs/2311.11243v1
|
https://arxiv.org/pdf/2311.11243v1.pdf
|
https://github.com/aim-uofa/AutoStory
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/hierarchical-temporal-convolution-network
|
Hierarchical Temporal Convolution Network:Towards Privacy-Centric Activity Recognition
| null |
https://www.researchgate.net/publication/387230107_Hierarchical_Temporal_Convolution_Network_Towards_Privacy-Centric_Activity_Recognition
|
https://www.researchgate.net/publication/387230107_Hierarchical_Temporal_Convolution_Network_Towards_Privacy-Centric_Activity_Recognition
|
https://github.com/Gbouna/HT-ConvNet
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/weakest-precondition-reasoning-for-expected
|
Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs
|
1601.01001
|
http://arxiv.org/abs/1601.01001v2
|
http://arxiv.org/pdf/1601.01001v2.pdf
|
https://github.com/maxhaslbeck/verERT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/generating-geographically-and-economically
|
Generating geographically and economically realistic large-scale synthetic contact networks: A general method using publicly available data
|
2406.14698
|
https://arxiv.org/abs/2406.14698v1
|
https://arxiv.org/pdf/2406.14698v1.pdf
|
https://github.com/cddep-dc/greasypop-co
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/chat-ai-a-seamless-slurm-native-solution-for
|
Chat AI: A Seamless Slurm-Native Solution for HPC-Based Services
|
2407.00110
|
https://arxiv.org/abs/2407.00110v2
|
https://arxiv.org/pdf/2407.00110v2.pdf
|
https://github.com/gwdg/chat-ai
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dense-neural-network-based-arrhythmia
|
Dense Neural Network Based Arrhythmia Classification on Low-cost and Low-compute Micro-controller
|
2504.03531
|
https://arxiv.org/abs/2504.03531v1
|
https://arxiv.org/pdf/2504.03531v1.pdf
|
https://github.com/mohammedz666/denseecgmicro
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/batchtopk-sparse-autoencoders
|
BatchTopK Sparse Autoencoders
|
2412.06410
|
https://arxiv.org/abs/2412.06410v1
|
https://arxiv.org/pdf/2412.06410v1.pdf
|
https://github.com/bartbussmann/batchtopk
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dual-stream-feature-augmentation-for-domain
|
Dual-stream Feature Augmentation for Domain Generalization
|
2409.04699
|
https://arxiv.org/abs/2409.04699v1
|
https://arxiv.org/pdf/2409.04699v1.pdf
|
https://github.com/alusi123/dfa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spinhex-a-low-crosstalk-spin-qubit
|
SpinHex: A low-crosstalk, spin-qubit architecture based on multi-electron couplers
|
2504.03149
|
https://arxiv.org/abs/2504.03149v1
|
https://arxiv.org/pdf/2504.03149v1.pdf
|
https://github.com/pschnabl/spin-qubit-mec-surface-code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fast-gradient-free-optimization-of
|
Fast gradient-free optimization of excitations in variational quantum eigensolvers
|
2409.05939
|
https://arxiv.org/abs/2409.05939v2
|
https://arxiv.org/pdf/2409.05939v2.pdf
|
https://github.com/dlr-wf/ExcitationSolve
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/federated-transformer-multi-party-vertical
|
Federated Transformer: Multi-Party Vertical Federated Learning on Practical Fuzzily Linked Data
|
2410.17986
|
https://arxiv.org/abs/2410.17986v1
|
https://arxiv.org/pdf/2410.17986v1.pdf
|
https://github.com/xtra-computing/fet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/genudc-high-quality-3d-mesh-generation-with
|
GenUDC: High Quality 3D Mesh Generation with Unsigned Dual Contouring Representation
|
2410.17802
|
https://arxiv.org/abs/2410.17802v1
|
https://arxiv.org/pdf/2410.17802v1.pdf
|
https://github.com/trepangcat/genudc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cascrnet-an-atrous-spatial-pyramid-pooling
|
CASCRNet: An Atrous Spatial Pyramid Pooling and Shared Channel Residual based Network for Capsule Endoscopy
|
2410.17863
|
https://arxiv.org/abs/2410.17863v2
|
https://arxiv.org/pdf/2410.17863v2.pdf
|
https://github.com/Manvith-Prabhu/Capsule-Vision-2024
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/off-policy-maximum-entropy-rl-with-future
|
Off-Policy Maximum Entropy RL with Future State and Action Visitation Measures
|
2412.06655
|
https://arxiv.org/abs/2412.06655v1
|
https://arxiv.org/pdf/2412.06655v1.pdf
|
https://github.com/adrienBolland/future-visitation-exploration
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lamda-a-longitudinal-android-malware
|
LAMDA: A Longitudinal Android Malware Benchmark for Concept Drift Analysis
|
2505.18551
|
https://arxiv.org/abs/2505.18551v1
|
https://arxiv.org/pdf/2505.18551v1.pdf
|
https://github.com/iqsec-lab/lamda
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/allenoise-large-scale-text-classification
|
AlleNoise: large-scale text classification benchmark dataset with real-world label noise
|
2407.10992
|
https://arxiv.org/abs/2407.10992v2
|
https://arxiv.org/pdf/2407.10992v2.pdf
|
https://github.com/allegro/allenoise
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/jess-designing-embodied-ai-for-interactive
|
Jess+: designing embodied AI for interactive music-making
|
2412.06469
|
https://arxiv.org/abs/2412.06469v1
|
https://arxiv.org/pdf/2412.06469v1.pdf
|
https://github.com/DigiScore/jess_plus
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/d2styler-advancing-arbitrary-style-transfer
|
D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods
|
2408.03558
|
https://arxiv.org/abs/2408.03558v1
|
https://arxiv.org/pdf/2408.03558v1.pdf
|
https://github.com/onkarsus13/d2styler
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/lauragpt-listen-attend-understand-and
|
LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
|
2310.04673
|
https://arxiv.org/abs/2310.04673v4
|
https://arxiv.org/pdf/2310.04673v4.pdf
|
https://github.com/modelscope/FunCodec
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-intervention-efficacy-via-concept
|
Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
|
2405.01531
|
https://arxiv.org/abs/2405.01531v2
|
https://arxiv.org/pdf/2405.01531v2.pdf
|
https://github.com/explainableml/concept_realignment
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/wm-net-robust-deep-3d-watermarking-with
|
Rethinking Mesh Watermark: Towards Highly Robust and Adaptable Deep 3D Mesh Watermarking
|
2307.11628
|
https://arxiv.org/abs/2307.11628v2
|
https://arxiv.org/pdf/2307.11628v2.pdf
|
https://github.com/Xyronix99/Deep3DMark
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficacy-of-modern-neuro-evolutionary
|
Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
|
1912.05239
|
https://arxiv.org/abs/1912.05239v2
|
https://arxiv.org/pdf/1912.05239v2.pdf
|
https://github.com/PaoloP84/EfficacyModernES
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fine-tuning-large-language-models-for-entity
|
Fine-tuning Large Language Models for Entity Matching
|
2409.08185
|
https://arxiv.org/abs/2409.08185v2
|
https://arxiv.org/pdf/2409.08185v2.pdf
|
https://github.com/wbsg-uni-mannheim/tailormatch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/grid-a-next-generation-data-parallel-c-qcd
|
Grid: A next generation data parallel C++ QCD library
|
1512.03487
|
http://arxiv.org/abs/1512.03487v1
|
http://arxiv.org/pdf/1512.03487v1.pdf
|
https://github.com/edbennett/grid_epcc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/demonstration-of-an-ai-driven-workflow-for
|
Demonstration of an AI-driven workflow for autonomous high-resolution scanning microscopy
|
2301.05286
|
https://arxiv.org/abs/2301.05286v1
|
https://arxiv.org/pdf/2301.05286v1.pdf
|
https://github.com/yatagarasu50469/slads
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/empirical-evaluation-of-normalizing-flows-in
|
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
|
2412.17136
|
https://arxiv.org/abs/2412.17136v1
|
https://arxiv.org/pdf/2412.17136v1.pdf
|
https://github.com/davidnabergoj/nfmc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-agent-motion-planning-from-signal
|
Multi-agent Motion Planning from Signal Temporal Logic Specifications
|
2201.05247
|
https://arxiv.org/abs/2201.05247v1
|
https://arxiv.org/pdf/2201.05247v1.pdf
|
https://github.com/Tass0sm/stl_planner
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-novel-metric-for-assessing-climatological
|
A novel metric for assessing climatological surface habitability
|
2407.05838
|
https://arxiv.org/abs/2407.05838v2
|
https://arxiv.org/pdf/2407.05838v2.pdf
|
https://github.com/hannahwoodward/2024-hab-metrics
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/global-benchmark-database
|
Global Benchmark Database
|
2405.10045
|
https://arxiv.org/abs/2405.10045v2
|
https://arxiv.org/pdf/2405.10045v2.pdf
|
https://github.com/Udopia/gbdc
| true
| false
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.