paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/topical-topic-pages-automagically
|
TOPICAL: TOPIC Pages AutomagicaLly
|
2405.01796
|
https://arxiv.org/abs/2405.01796v1
|
https://arxiv.org/pdf/2405.01796v1.pdf
|
https://github.com/allenai/topical
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hard-thresholding-meets-evolution-strategies
|
Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning
|
2405.01615
|
https://arxiv.org/abs/2405.01615v1
|
https://arxiv.org/pdf/2405.01615v1.pdf
|
https://github.com/cangcn/nes-ht
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fast-wave-slow-wave-spectral-deferred
|
Fast-wave slow-wave spectral deferred correction methods applied to the compressible Euler equations
|
2505.15985
|
https://arxiv.org/abs/2505.15985v1
|
https://arxiv.org/pdf/2505.15985v1.pdf
|
https://github.com/firedrakeproject/gusto
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/balance-reward-and-safety-optimization-for
|
Balance Reward and Safety Optimization for Safe Reinforcement Learning: A Perspective of Gradient Manipulation
|
2405.01677
|
https://arxiv.org/abs/2405.01677v2
|
https://arxiv.org/pdf/2405.01677v2.pdf
|
https://github.com/pku-alignment/omnisafe
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/reconstructions-of-jupiter-s-magnetic-field
|
Reconstructions of Jupiter's magnetic field using physics informed neural networks
|
2403.07507
|
https://arxiv.org/abs/2403.07507v2
|
https://arxiv.org/pdf/2403.07507v2.pdf
|
https://github.com/LeyuanWu/JunoMag_PINN_VP3
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/language-model-based-paired-variational
|
Language Model-Based Paired Variational Autoencoders for Robotic Language Learning
|
2201.06317
|
https://arxiv.org/abs/2201.06317v2
|
https://arxiv.org/pdf/2201.06317v2.pdf
|
https://github.com/oo222bs/PVAE-BERT
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/recurrent-variational-network-a-deep-learning
|
Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction
|
2111.09639
|
https://arxiv.org/abs/2111.09639v2
|
https://arxiv.org/pdf/2111.09639v2.pdf
|
https://github.com/directgroup/direct
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/state-of-the-art-machine-learning-mri
|
Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
|
2012.06318
|
https://arxiv.org/abs/2012.06318v3
|
https://arxiv.org/pdf/2012.06318v3.pdf
|
https://github.com/directgroup/direct
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes-for-inferring
|
Auto-Encoding Variational Bayes for Inferring Topics and Visualization
|
2010.09233
|
https://arxiv.org/abs/2010.09233v2
|
https://arxiv.org/pdf/2010.09233v2.pdf
|
https://github.com/dangpnh2/plsv_vae
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/topology-dynamics-and-control-of-an-octopus
|
Topology, dynamics, and control of an octopus-analog muscular hydrostat
|
2304.08413
|
https://arxiv.org/abs/2304.08413v1
|
https://arxiv.org/pdf/2304.08413v1.pdf
|
https://github.com/GazzolaLab/PyElastica
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/paif-perception-aware-infrared-visible-image
|
PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant Semantic Segmentation
|
2308.03979
|
https://arxiv.org/abs/2308.03979v1
|
https://arxiv.org/pdf/2308.03979v1.pdf
|
https://github.com/LiuZhu-CV/BDLFusion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/identifying-linear-relational-concepts-in
|
Identifying Linear Relational Concepts in Large Language Models
|
2311.08968
|
https://arxiv.org/abs/2311.08968v2
|
https://arxiv.org/pdf/2311.08968v2.pdf
|
https://github.com/chanind/linear-relational
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/supervised-multiple-kernel-learning
|
Supervised Multiple Kernel Learning approaches for multi-omics data integration
|
2403.18355
|
https://arxiv.org/abs/2403.18355v2
|
https://arxiv.org/pdf/2403.18355v2.pdf
|
https://github.com/gabrieletaz/mkl_mo
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-real-time-rescheduling-algorithm-for-multi
|
A Real-Time Rescheduling Algorithm for Multi-robot Plan Execution
|
2403.18145
|
https://arxiv.org/abs/2403.18145v1
|
https://arxiv.org/pdf/2403.18145v1.pdf
|
https://github.com/YinggggFeng/Switchable-Edge-Search
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/lstm-a-search-space-odyssey
|
LSTM: A Search Space Odyssey
|
1503.04069
|
http://arxiv.org/abs/1503.04069v2
|
http://arxiv.org/pdf/1503.04069v2.pdf
|
https://github.com/yangyucheng000/papercode-2/tree/main/lstm-gaf
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-computational-approach-to-the-kiefer-weiss
|
A computational approach to the Kiefer-Weiss problem for sampling from a Bernoulli population
|
2110.04802
|
https://arxiv.org/abs/2110.04802v1
|
https://arxiv.org/pdf/2110.04802v1.pdf
|
https://github.com/tosinabase/Kiefer-Weiss
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/geocov19-a-dataset-of-hundreds-of-millions-of
|
GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19 Tweets with Location Information
|
2005.11177
|
https://arxiv.org/abs/2005.11177v1
|
https://arxiv.org/pdf/2005.11177v1.pdf
|
https://github.com/vaceslav/cuda
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/qserve-w4a8kv4-quantization-and-system-co
|
QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving
|
2405.04532
|
https://arxiv.org/abs/2405.04532v3
|
https://arxiv.org/pdf/2405.04532v3.pdf
|
https://github.com/mit-han-lab/omniserve
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/are-llms-good-zero-shot-fallacy-classifiers
|
Are LLMs Good Zero-Shot Fallacy Classifiers?
|
2410.15050
|
https://arxiv.org/abs/2410.15050v1
|
https://arxiv.org/pdf/2410.15050v1.pdf
|
https://github.com/panfjcharlotte98/fallacy_detection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-quantified-boolean-bayesian-network
|
The Quantified Boolean Bayesian Network: Theory and Experiments with a Logical Graphical Model
|
2402.06557
|
https://arxiv.org/abs/2402.06557v1
|
https://arxiv.org/pdf/2402.06557v1.pdf
|
https://github.com/gregorycoppola/bayes-star
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/u-slads-unsupervised-learning-approach-for
|
U-SLADS: Unsupervised Learning Approach for Dynamic Dendrite Sampling
|
1807.02233
|
http://arxiv.org/abs/1807.02233v1
|
http://arxiv.org/pdf/1807.02233v1.pdf
|
https://github.com/yatagarasu50469/slads
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-learning-approach-for-dynamic-sampling
|
Deep Learning Approach for Dynamic Sampling for Multichannel Mass Spectrometry Imaging
|
2210.13415
|
https://arxiv.org/abs/2210.13415v1
|
https://arxiv.org/pdf/2210.13415v1.pdf
|
https://github.com/yatagarasu50469/slads
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/safe-unlearning-a-surprisingly-effective-and
|
From Theft to Bomb-Making: The Ripple Effect of Unlearning in Defending Against Jailbreak Attacks
|
2407.02855
|
https://arxiv.org/abs/2407.02855v3
|
https://arxiv.org/pdf/2407.02855v3.pdf
|
https://github.com/thu-coai/safeunlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-blockchained-federated-learning-with
|
Robust Blockchained Federated Learning with Model Validation and Proof-of-Stake Inspired Consensus
|
2101.03300
|
https://arxiv.org/abs/2101.03300v1
|
https://arxiv.org/pdf/2101.03300v1.pdf
|
https://github.com/flexible-fl/flex-block
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/thoughtsculpt-reasoning-with-intermediate
|
THOUGHTSCULPT: Reasoning with Intermediate Revision and Search
|
2404.05966
|
https://arxiv.org/abs/2404.05966v1
|
https://arxiv.org/pdf/2404.05966v1.pdf
|
https://github.com/cyzus/thoughtsculpt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-pile-an-800gb-dataset-of-diverse-text-for
|
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
|
2101.00027
|
https://arxiv.org/abs/2101.00027v1
|
https://arxiv.org/pdf/2101.00027v1.pdf
|
https://github.com/glassroom/heinsen_attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/arithmetic-transformers-can-length-generalize
|
Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count
|
2410.15787
|
https://arxiv.org/abs/2410.15787v2
|
https://arxiv.org/pdf/2410.15787v2.pdf
|
https://github.com/hanseuljo/position-coupling
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/universal-and-transferable-adversarial
|
Universal and Transferable Adversarial Attacks on Aligned Language Models
|
2307.15043
|
https://arxiv.org/abs/2307.15043v2
|
https://arxiv.org/pdf/2307.15043v2.pdf
|
https://github.com/thu-coai/safeunlearning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-restoration-of-diacritics-for
|
Automatic Restoration of Diacritics for Speech Data Sets
|
2311.10771
|
https://arxiv.org/abs/2311.10771v2
|
https://arxiv.org/pdf/2311.10771v2.pdf
|
https://github.com/sarashatnawi/diacritization
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/flea-addressing-data-scarcity-and-label-skew
|
FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation
|
2406.09547
|
https://arxiv.org/abs/2406.09547v2
|
https://arxiv.org/pdf/2406.09547v2.pdf
|
https://github.com/xtxiatong/flea
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/reasoning-rcnn-unifying-adaptive-global
|
Reasoning-RCNN: Unifying Adaptive Global Reasoning Into Large-Scale Object Detection
| null |
http://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf
|
https://github.com/chanyn/Reasoning-RCNN
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/minmaxlttb-leveraging-minmax-preselection-to
|
MinMaxLTTB: Leveraging MinMax-Preselection to Scale LTTB
|
2305.00332
|
https://arxiv.org/abs/2305.00332v1
|
https://arxiv.org/pdf/2305.00332v1.pdf
|
https://github.com/predict-idlab/tsdownsample
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/efficient-computation-of-the-quantum-rate
|
Efficient Computation of the Quantum Rate-Distortion Function
|
2309.15919
|
https://arxiv.org/abs/2309.15919v3
|
https://arxiv.org/pdf/2309.15919v3.pdf
|
https://github.com/kerry-he/efficient-qrd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/vimts-a-unified-video-and-image-text-spotter
|
VimTS: A Unified Video and Image Text Spotter for Enhancing the Cross-domain Generalization
|
2404.19652
|
https://arxiv.org/abs/2404.19652v4
|
https://arxiv.org/pdf/2404.19652v4.pdf
|
https://github.com/Yuliang-Liu/VimTS
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/random-pareto-front-surfaces
|
Random Pareto front surfaces
|
2405.01404
|
https://arxiv.org/abs/2405.01404v2
|
https://arxiv.org/pdf/2405.01404v2.pdf
|
https://github.com/benmltu/scalarize
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/texttt-pyresias-how-to-write-a-toy-parton
|
$\texttt{Pyresias}$: How To Write a Toy Parton Shower
|
2406.03528
|
https://arxiv.org/abs/2406.03528v1
|
https://arxiv.org/pdf/2406.03528v1.pdf
|
https://github.com/apapaefs/pyresias
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/benchmarking-node-outlier-detection-on-graphs
|
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs
|
2206.10071
|
https://arxiv.org/abs/2206.10071v2
|
https://arxiv.org/pdf/2206.10071v2.pdf
|
https://github.com/betterzhou/AAGNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-diffusion-model-using
|
Privacy-Preserving Diffusion Model Using Homomorphic Encryption
|
2403.05794
|
https://arxiv.org/abs/2403.05794v2
|
https://arxiv.org/pdf/2403.05794v2.pdf
|
https://github.com/HE-diffusion/HE-diffusion
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-a-generic-compilation-approach-for
|
A Comparison of Quantum Compilers using a DAG-based or phase polynomial-based Intermediate Representation
|
2304.08814
|
https://arxiv.org/abs/2304.08814v2
|
https://arxiv.org/pdf/2304.08814v2.pdf
|
https://github.com/daehiff/pauliopt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/annealing-optimisation-of-mixed-zx-phase
|
Annealing Optimisation of Mixed ZX Phase Circuits
|
2206.11839
|
https://arxiv.org/abs/2206.11839v2
|
https://arxiv.org/pdf/2206.11839v2.pdf
|
https://github.com/daehiff/pauliopt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/architecture-aware-synthesis-of-stabilizer
|
Architecture-Aware Synthesis of Stabilizer Circuits from Clifford Tableaus
|
2309.08972
|
https://arxiv.org/abs/2309.08972v3
|
https://arxiv.org/pdf/2309.08972v3.pdf
|
https://github.com/daehiff/pauliopt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/spectral-methods-for-neural-integral
|
Spectral methods for Neural Integral Equations
|
2312.05654
|
https://arxiv.org/abs/2312.05654v3
|
https://arxiv.org/pdf/2312.05654v3.pdf
|
https://github.com/emazap7/spectral_nie
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hint-healthy-influential-noise-based-training
|
HINT: Healthy Influential-Noise based Training to Defend against Data Poisoning Attacks
|
2309.08549
|
https://arxiv.org/abs/2309.08549v3
|
https://arxiv.org/pdf/2309.08549v3.pdf
|
https://github.com/minhhao97vn/hint
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/differentiable-all-pole-filters-for-time
|
Differentiable All-pole Filters for Time-varying Audio Systems
|
2404.07970
|
https://arxiv.org/abs/2404.07970v4
|
https://arxiv.org/pdf/2404.07970v4.pdf
|
https://github.com/DiffAPF/torchcomp
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/iisan-efficiently-adapting-multimodal
|
IISAN: Efficiently Adapting Multimodal Representation for Sequential Recommendation with Decoupled PEFT
|
2404.02059
|
https://arxiv.org/abs/2404.02059v3
|
https://arxiv.org/pdf/2404.02059v3.pdf
|
https://github.com/gair-lab/iisan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/long-term-fairness-in-sequential-multi-agent
|
Long-Term Fairness in Sequential Multi-Agent Selection with Positive Reinforcement
|
2407.07350
|
https://arxiv.org/abs/2407.07350v1
|
https://arxiv.org/pdf/2407.07350v1.pdf
|
https://github.com/guldoganozgur/long_term_fairness_pos_reinf
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/rade-gs-rasterizing-depth-in-gaussian
|
RaDe-GS: Rasterizing Depth in Gaussian Splatting
|
2406.01467
|
https://arxiv.org/abs/2406.01467v2
|
https://arxiv.org/pdf/2406.01467v2.pdf
|
https://github.com/BaowenZ/RaDe-GS
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/preliminary-wmt24-ranking-of-general-mt
|
Preliminary WMT24 Ranking of General MT Systems and LLMs
|
2407.19884
|
https://arxiv.org/abs/2407.19884v1
|
https://arxiv.org/pdf/2407.19884v1.pdf
|
https://github.com/wmt-conference/wmt-collect-translations
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/tight-fusion-of-events-and-inertial
|
Tight Fusion of Events and Inertial Measurements for Direct Velocity Estimation
|
2401.09296
|
https://arxiv.org/abs/2401.09296v1
|
https://arxiv.org/pdf/2401.09296v1.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/specter-an-instrument-concept-for-cmb
|
SPECTER: An Instrument Concept for CMB Spectral Distortion Measurements with Enhanced Sensitivity
|
2409.12188
|
https://arxiv.org/abs/2409.12188v1
|
https://arxiv.org/pdf/2409.12188v1.pdf
|
https://github.com/asabyr/specter_optimization
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/crosslocate-cross-modal-large-scale-visual
|
CrossLocate: Cross-modal Large-scale Visual Geo-Localization in Natural Environments using Rendered Modalities
| null |
https://cphoto.fit.vutbr.cz/crosslocate/
|
https://cphoto.fit.vutbr.cz/crosslocate/data/paper/CrossLocate.pdf
|
https://github.com/JanTomesek/CrossLocate
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/semi-siamese-bi-encoder-neural-ranking-model
|
Semi-Siamese Bi-encoder Neural Ranking Model Using Lightweight Fine-Tuning
|
2110.14943
|
https://arxiv.org/abs/2110.14943v2
|
https://arxiv.org/pdf/2110.14943v2.pdf
|
https://github.com/xlpczv/semi_siamese
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/3dmasc-accessible-explainable-3d-point-clouds
|
3DMASC: Accessible, explainable 3D point clouds classification. Application to Bi-spectral Topo-bathymetric lidar data
|
2401.09481
|
https://arxiv.org/abs/2401.09481v1
|
https://arxiv.org/pdf/2401.09481v1.pdf
|
https://github.com/Rennes-LiDAR-Platform/lidar_platform
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/ladic-are-diffusion-models-really-inferior-to
|
LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
|
2404.10763
|
https://arxiv.org/abs/2404.10763v1
|
https://arxiv.org/pdf/2404.10763v1.pdf
|
https://github.com/wangyuchi369/ladic
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/analytical-approximation-of-the-elbo-gradient
|
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
|
2404.10550
|
https://arxiv.org/abs/2404.10550v3
|
https://arxiv.org/pdf/2404.10550v3.pdf
|
https://github.com/rpopov42/elbo_gaa
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/explingo-explaining-ai-predictions-using
|
Explingo: Explaining AI Predictions using Large Language Models
|
2412.05145
|
https://arxiv.org/abs/2412.05145v1
|
https://arxiv.org/pdf/2412.05145v1.pdf
|
https://github.com/sibyl-dev/pyreal
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/differentially-private-sgd-without-clipping
|
Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach
|
2311.14632
|
https://arxiv.org/abs/2311.14632v2
|
https://arxiv.org/pdf/2311.14632v2.pdf
|
https://github.com/564612540/DiceSGD
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/exploiting-inter-layer-expert-affinity-for
|
Exploiting Inter-Layer Expert Affinity for Accelerating Mixture-of-Experts Model Inference
|
2401.08383
|
https://arxiv.org/abs/2401.08383v2
|
https://arxiv.org/pdf/2401.08383v2.pdf
|
https://github.com/yjhmitweb/exflow
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/multimodal-machine-learning-combining-facial
|
GestaltMML: Enhancing Rare Genetic Disease Diagnosis through Multimodal Machine Learning Combining Facial Images and Clinical Texts
|
2312.15320
|
https://arxiv.org/abs/2312.15320v2
|
https://arxiv.org/pdf/2312.15320v2.pdf
|
https://github.com/wglab/gestaltmml-gestaltgpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/linear-time-one-class-classification-with
|
Linear-time One-Class Classification with Repeated Element-wise Folding
|
2408.11412
|
https://arxiv.org/abs/2408.11412v1
|
https://arxiv.org/pdf/2408.11412v1.pdf
|
https://github.com/jenniraitoharju/ref
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dyport-dynamic-importance-based-hypothesis
|
Dyport: Dynamic Importance-based Hypothesis Generation Benchmarking Technique
|
2312.03303
|
https://arxiv.org/abs/2312.03303v1
|
https://arxiv.org/pdf/2312.03303v1.pdf
|
https://github.com/ilyatyagin/dyport
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-image-compression-with-text-guided
|
Neural Image Compression with Text-guided Encoding for both Pixel-level and Perceptual Fidelity
|
2403.02944
|
https://arxiv.org/abs/2403.02944v2
|
https://arxiv.org/pdf/2403.02944v2.pdf
|
https://github.com/effl-lab/taco
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/real-time-flying-object-detection-with-yolov8
|
Real-Time Flying Object Detection with YOLOv8
|
2305.09972
|
https://arxiv.org/abs/2305.09972v2
|
https://arxiv.org/pdf/2305.09972v2.pdf
|
https://github.com/dillonreis/real-time-flying-object-detection_with_yolov8
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generating-causal-explanations-of-vehicular
|
Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
|
2503.14557
|
https://arxiv.org/abs/2503.14557v1
|
https://arxiv.org/pdf/2503.14557v1.pdf
|
https://github.com/cognitive-robots/gce_vbai_lrp_paper_resources
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/exact-information-bottleneck-with-invertible
|
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification
|
2001.06448
|
https://arxiv.org/abs/2001.06448v5
|
https://arxiv.org/pdf/2001.06448v5.pdf
|
https://github.com/VLL-HD/FrEIA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fer-yolo-mamba-facial-expression-detection
|
FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space
|
2405.01828
|
https://arxiv.org/abs/2405.01828v3
|
https://arxiv.org/pdf/2405.01828v3.pdf
|
https://github.com/swjtuma/fer-yolo-mamba
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reshuffling-resampling-splits-can-improve
|
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization
|
2405.15393
|
https://arxiv.org/abs/2405.15393v2
|
https://arxiv.org/pdf/2405.15393v2.pdf
|
https://github.com/sumny/reshuffling
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/venomancer-towards-imperceptible-and-target
|
Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
|
2407.03144
|
https://arxiv.org/abs/2407.03144v2
|
https://arxiv.org/pdf/2407.03144v2.pdf
|
https://github.com/nguyenhongson1902/venomancer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gradient-boosting-reinforcement-learning
|
Gradient Boosting Reinforcement Learning
|
2407.08250
|
https://arxiv.org/abs/2407.08250v1
|
https://arxiv.org/pdf/2407.08250v1.pdf
|
https://github.com/nvlabs/gbrl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-network-based-measure-of-cosponsorship
|
A Network-Based Measure of Cosponsorship Influence on Bill Passing in the United States House of Representatives
|
2406.19554
|
https://arxiv.org/abs/2406.19554v1
|
https://arxiv.org/pdf/2406.19554v1.pdf
|
https://github.com/sarahsotoudeh/LegislativeInfluence
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-cross-domain-few-shot
|
Improving Cross-domain Few-shot Classification with Multilayer Perceptron
|
2312.09589
|
https://arxiv.org/abs/2312.09589v1
|
https://arxiv.org/pdf/2312.09589v1.pdf
|
https://github.com/BaiShuanghao/CDFSC-MLP
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/jup2kub-algorithms-and-a-system-to-translate
|
Jup2Kub: algorithms and a system to translate a Jupyter Notebook pipeline to a fault tolerant distributed Kubernetes deployment
|
2311.12308
|
https://arxiv.org/abs/2311.12308v1
|
https://arxiv.org/pdf/2311.12308v1.pdf
|
https://github.com/shirou10086/scientificworkflow
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/energy-based-sliced-wasserstein-distance-1
|
Energy-Based Sliced Wasserstein Distance
|
2304.13586
|
https://arxiv.org/abs/2304.13586v3
|
https://arxiv.org/pdf/2304.13586v3.pdf
|
https://github.com/khainb/ebsw
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/poker-hand-history-file-format-specification
|
Recording and Describing Poker Hands
|
2312.11753
|
https://arxiv.org/abs/2312.11753v5
|
https://arxiv.org/pdf/2312.11753v5.pdf
|
https://github.com/uoftcprg/phh-std
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scalable-cross-entropy-loss-for-sequential
|
Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs
|
2409.18721
|
https://arxiv.org/abs/2409.18721v2
|
https://arxiv.org/pdf/2409.18721v2.pdf
|
https://github.com/AIRI-Institute/Scalable-SASRec
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/free-surgs-sfm-free-3d-gaussian-splatting-for
|
Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction
|
2407.02918
|
https://arxiv.org/abs/2407.02918v1
|
https://arxiv.org/pdf/2407.02918v1.pdf
|
https://github.com/wrld/free-surgs
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/growing-artificial-neural-networks-for
|
Growing Artificial Neural Networks for Control: the Role of Neuronal Diversity
|
2405.08510
|
https://arxiv.org/abs/2405.08510v1
|
https://arxiv.org/pdf/2405.08510v1.pdf
|
https://github.com/eleninisioti/GrowNeuralNets
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/secml-a-python-library-for-secure-and
|
secml: A Python Library for Secure and Explainable Machine Learning
|
1912.10013
|
https://arxiv.org/abs/1912.10013v2
|
https://arxiv.org/pdf/1912.10013v2.pdf
|
https://github.com/pralab/secml
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/image-coding-for-machines-with-edge
|
Image Coding for Machines with Edge Information Learning Using Segment Anything
|
2403.04173
|
https://arxiv.org/abs/2403.04173v3
|
https://arxiv.org/pdf/2403.04173v3.pdf
|
https://github.com/final-0/sa-icm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/p-bench-a-multi-level-privacy-evaluation
|
PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
|
2311.04044
|
https://arxiv.org/abs/2311.04044v3
|
https://arxiv.org/pdf/2311.04044v3.pdf
|
https://github.com/hkust-knowcomp/privlm-bench
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/denseseg-joint-learning-for-semantic
|
DenseSeg: Joint Learning for Semantic Segmentation and Landmark Detection Using Dense Image-to-Shape Representation
|
2405.19746
|
https://arxiv.org/abs/2405.19746v2
|
https://arxiv.org/pdf/2405.19746v2.pdf
|
https://github.com/MDL-UzL/DenseSeg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/elastic-feature-consolidation-for-cold-start
|
Elastic Feature Consolidation for Cold Start Exemplar-Free Incremental Learning
|
2402.03917
|
https://arxiv.org/abs/2402.03917v3
|
https://arxiv.org/pdf/2402.03917v3.pdf
|
https://github.com/simomagi/elastic_feature_consolidation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cpsycoun-a-report-based-multi-turn-dialogue
|
CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling
|
2405.16433
|
https://arxiv.org/abs/2405.16433v3
|
https://arxiv.org/pdf/2405.16433v3.pdf
|
https://github.com/cas-siat-xinhai/cpsycoun
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/improved-techniques-for-training-score-based
|
Improved Techniques for Training Score-Based Generative Models
|
2006.09011
|
https://arxiv.org/abs/2006.09011v2
|
https://arxiv.org/pdf/2006.09011v2.pdf
|
https://github.com/tpresser570/Lambert-Diffusion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/folded-spectrum-vqe-a-quantum-computing
|
Folded Spectrum VQE : A quantum computing method for the calculation of molecular excited states
|
2305.04783
|
https://arxiv.org/abs/2305.04783v2
|
https://arxiv.org/pdf/2305.04783v2.pdf
|
https://github.com/ichen17/Qhack2024-project
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dormant-defending-against-pose-driven-human
|
Dormant: Defending against Pose-driven Human Image Animation
|
2409.14424
|
https://arxiv.org/abs/2409.14424v2
|
https://arxiv.org/pdf/2409.14424v2.pdf
|
https://github.com/Manu21JC/Dormant
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/tart-an-open-source-tool-augmented-framework
|
TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning
|
2409.11724
|
https://arxiv.org/abs/2409.11724v2
|
https://arxiv.org/pdf/2409.11724v2.pdf
|
https://github.com/xinyuanlu00/tart
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/chibench-a-benchmark-suite-for-testing
|
ChiBench: a Benchmark Suite for Testing Electronic Design Automation Tools
|
2406.06550
|
https://arxiv.org/abs/2406.06550v1
|
https://arxiv.org/pdf/2406.06550v1.pdf
|
https://github.com/lac-dcc/chimera
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/federated-learning-you-may-communicate-less
|
Lessons from Generalization Error Analysis of Federated Learning: You May Communicate Less Often!
|
2306.05862
|
https://arxiv.org/abs/2306.05862v2
|
https://arxiv.org/pdf/2306.05862v2.pdf
|
https://github.com/romainchor/generalization_fl_icml2024
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-deep-dive-into-the-distribution-function
|
A Deep Dive into the Distribution Function: Understanding Phase Space Dynamics with Continuum Vlasov-Maxwell Simulations
|
2005.13539
|
https://arxiv.org/abs/2005.13539v1
|
https://arxiv.org/pdf/2005.13539v1.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/occ-vo-dense-mapping-via-3d-occupancy-based
|
OCC-VO: Dense Mapping via 3D Occupancy-Based Visual Odometry for Autonomous Driving
|
2309.11011
|
https://arxiv.org/abs/2309.11011v2
|
https://arxiv.org/pdf/2309.11011v2.pdf
|
https://github.com/ustclh/occ-vo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mammalps-a-multi-view-video-behavior
|
MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps
|
2503.18223
|
https://arxiv.org/abs/2503.18223v2
|
https://arxiv.org/pdf/2503.18223v2.pdf
|
https://github.com/eceo-epfl/mammalps
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-to-iteratively-solve-routing
|
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer
|
2110.02544
|
https://arxiv.org/abs/2110.02544v3
|
https://arxiv.org/pdf/2110.02544v3.pdf
|
https://github.com/yining043/VRP-DACT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fair-classification-with-partial-feedback-an
|
Fair Classification with Partial Feedback: An Exploration-Based Data Collection Approach
|
2402.11338
|
https://arxiv.org/abs/2402.11338v2
|
https://arxiv.org/pdf/2402.11338v2.pdf
|
https://github.com/vijaykeswani/fair-classification-with-partial-feedback
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/nfi-2-learning-noise-free-illuminance
|
Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation
|
2305.10223
|
https://arxiv.org/abs/2305.10223v4
|
https://arxiv.org/pdf/2305.10223v4.pdf
|
https://github.com/googolplexgoodenough/noise_estimate
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mad-multi-alignment-meg-to-text-decoding
|
MAD: Multi-Alignment MEG-to-Text Decoding
|
2406.01512
|
https://arxiv.org/abs/2406.01512v1
|
https://arxiv.org/pdf/2406.01512v1.pdf
|
https://github.com/neuspeech/mad-meg2text
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/nerf-supervised-feature-point-detection-and
|
NeRF-Supervised Feature Point Detection and Description
|
2403.08156
|
https://arxiv.org/abs/2403.08156v3
|
https://arxiv.org/pdf/2403.08156v3.pdf
|
https://github.com/AliYoussef97/SuperPoint-PrP
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-adaptive-fusion-bank-for-multi-modal
|
Learning Adaptive Fusion Bank for Multi-modal Salient Object Detection
|
2406.01127
|
https://arxiv.org/abs/2406.01127v1
|
https://arxiv.org/pdf/2406.01127v1.pdf
|
https://github.com/angknpng/lafb
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/odgs-3d-scene-reconstruction-from
|
ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings
|
2410.20686
|
https://arxiv.org/abs/2410.20686v1
|
https://arxiv.org/pdf/2410.20686v1.pdf
|
https://github.com/esw0116/odgs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-topic-models-with-survival-supervision
|
Neural Topic Models with Survival Supervision: Jointly Predicting Time-to-Event Outcomes and Learning How Clinical Features Relate
|
2007.07796
|
https://arxiv.org/abs/2007.07796v2
|
https://arxiv.org/pdf/2007.07796v2.pdf
|
https://github.com/georgehc/survival-topics
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.