paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/conditional-neural-processes
|
Conditional Neural Processes
|
1807.01613
|
http://arxiv.org/abs/1807.01613v1
|
http://arxiv.org/pdf/1807.01613v1.pdf
|
https://github.com/wesselb/NeuralProcesses.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/supervised-multimodal-bitransformers-for
|
Supervised Multimodal Bitransformers for Classifying Images and Text
|
1909.02950
|
https://arxiv.org/abs/1909.02950v2
|
https://arxiv.org/pdf/1909.02950v2.pdf
|
https://github.com/IsaacRodgz/multimodal-transformers-movies
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adversarial-audio-synthesis
|
Adversarial Audio Synthesis
|
1802.04208
|
http://arxiv.org/abs/1802.04208v3
|
http://arxiv.org/pdf/1802.04208v3.pdf
|
https://github.com/MaxHolmberg96/WaveGAN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/towards-faster-reasoners-by-using-transparent
|
Towards Faster Reasoners By Using Transparent Huge Pages
|
2004.14378
|
https://arxiv.org/abs/2004.14378v1
|
https://arxiv.org/pdf/2004.14378v1.pdf
|
https://github.com/daajoe/thp_docker_build
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/challenging-euclidean-topological
|
Challenging Euclidean Topological Autoencoders
| null |
https://openreview.net/forum?id=P3dZuOUnyEY
|
https://openreview.net/pdf?id=P3dZuOUnyEY
|
https://github.com/BorgwardtLab/topo-ae-distances
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/harsh2011/Yolov3-Detector
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/high-quality-monocular-depth-estimation-via
|
High Quality Monocular Depth Estimation via Transfer Learning
|
1812.11941
|
http://arxiv.org/abs/1812.11941v2
|
http://arxiv.org/pdf/1812.11941v2.pdf
|
https://github.com/Noopuragr/DepthModel
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tednet-a-pytorch-toolkit-for-tensor
|
TedNet: A Pytorch Toolkit for Tensor Decomposition Networks
|
2104.05018
|
https://arxiv.org/abs/2104.05018v2
|
https://arxiv.org/pdf/2104.05018v2.pdf
|
https://github.com/tnbar/tednet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/annual-modulations-from-secular-variations
|
Annual modulations from secular variations: not relaxing DAMA?
|
2003.03340
|
https://arxiv.org/abs/2003.03340v2
|
https://arxiv.org/pdf/2003.03340v2.pdf
|
https://github.com/piacent/bayes_analysis
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/task-programming-learning-data-efficient
|
Task Programming: Learning Data Efficient Behavior Representations
|
2011.13917
|
https://arxiv.org/abs/2011.13917v2
|
https://arxiv.org/pdf/2011.13917v2.pdf
|
https://github.com/neuroethology/TREBA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cubic-function-fields-with-prescribed
|
Cubic function fields with prescribed ramification
|
2003.06673
|
https://arxiv.org/abs/2003.06673v2
|
https://arxiv.org/pdf/2003.06673v2.pdf
|
https://github.com/JRSijsling/parshin_experiments
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/can-multi-label-classification-networks-know-1
|
Can multi-label classification networks know what they don’t know?
| null |
https://openreview.net/forum?id=enKhMfthDFS
|
https://openreview.net/pdf?id=enKhMfthDFS
|
https://github.com/deeplearning-wisc/multi-label-ood
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/general-audio-tagging-with-ensembling
|
General audio tagging with ensembling convolutional neural network and statistical features
|
1810.12832
|
http://arxiv.org/abs/1810.12832v1
|
http://arxiv.org/pdf/1810.12832v1.pdf
|
https://github.com/r0mer0m/learning_audio_modeling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-benchmark-determining-best
|
Learning to Benchmark: Determining Best Achievable Misclassification Error from Training Data
|
1909.07192
|
https://arxiv.org/abs/1909.07192v1
|
https://arxiv.org/pdf/1909.07192v1.pdf
|
https://github.com/mrtnoshad/Bayes_Error_Estimator
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bert-has-a-mouth-and-it-must-speak-bert-as-a
|
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model
|
1902.04094
|
http://arxiv.org/abs/1902.04094v2
|
http://arxiv.org/pdf/1902.04094v2.pdf
|
https://github.com/vatsal199/Obedient_BERT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-unified-successive-pseudo-convex
|
A Unified Successive Pseudo-Convex Approximation Framework
|
1506.04972
|
https://arxiv.org/abs/1506.04972v2
|
https://arxiv.org/pdf/1506.04972v2.pdf
|
https://github.com/optyang/STELA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cutmix-regularization-strategy-to-train
|
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
|
1905.04899
|
https://arxiv.org/abs/1905.04899v2
|
https://arxiv.org/pdf/1905.04899v2.pdf
|
https://github.com/Kaushal28/CutMix-Regularization-using-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-texture-bias-for-few-shot-cnn
|
On the Texture Bias for Few-Shot CNN Segmentation
|
2003.04052
|
https://arxiv.org/abs/2003.04052v3
|
https://arxiv.org/pdf/2003.04052v3.pdf
|
https://github.com/rezazad68/fewshot-segmentation
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/kermit-complementing-transformer
|
KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations
| null |
https://aclanthology.org/2020.emnlp-main.18
|
https://aclanthology.org/2020.emnlp-main.18.pdf
|
https://github.com/ART-Group-it/KERMIT
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/solving-even-parity-problems-using-traceless
|
Solving even-parity problems using traceless genetic programming
|
2110.02014
|
https://arxiv.org/abs/2110.02014v1
|
https://arxiv.org/pdf/2110.02014v1.pdf
|
https://github.com/mihaioltean/traceless-genetic-programming
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact
|
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
|
1602.07261
|
http://arxiv.org/abs/1602.07261v2
|
http://arxiv.org/pdf/1602.07261v2.pdf
|
https://github.com/waynecoffee9/Traffic-Sign-Classifier
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-winnability-of-klondike-and-many-other
|
The Winnability of Klondike Solitaire and Many Other Patience Games
|
1906.12314
|
https://arxiv.org/abs/1906.12314v5
|
https://arxiv.org/pdf/1906.12314v5.pdf
|
https://github.com/thecharlieblake/Solvitaire
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/dynaslam-tracking-mapping-and-inpainting-in
|
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
|
1806.05620
|
http://arxiv.org/abs/1806.05620v2
|
http://arxiv.org/pdf/1806.05620v2.pdf
|
https://github.com/linmeeka/slamProject
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/multinet-real-time-joint-semantic-reasoning
|
MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving
|
1612.07695
|
http://arxiv.org/abs/1612.07695v2
|
http://arxiv.org/pdf/1612.07695v2.pdf
|
https://github.com/ziyuan400/video_segmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/squeeze-and-excitation-networks
|
Squeeze-and-Excitation Networks
|
1709.01507
|
https://arxiv.org/abs/1709.01507v4
|
https://arxiv.org/pdf/1709.01507v4.pdf
|
https://github.com/tsubasawb/DeepLearning_Paper
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/tsubasawb/DeepLearning_Paper
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/policyspace-a-modeling-platform
|
PolicySpace: a modeling platform
|
1801.00259
|
http://arxiv.org/abs/1801.00259v1
|
http://arxiv.org/pdf/1801.00259v1.pdf
|
https://github.com/IpeaDISET/PolicySpace
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/self-critical-sequence-training-for-image
|
Self-critical Sequence Training for Image Captioning
|
1612.00563
|
http://arxiv.org/abs/1612.00563v2
|
http://arxiv.org/pdf/1612.00563v2.pdf
|
https://github.com/xiaobai714/image_caption
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/flexible-marginal-models-for-dependent-data
|
Flexible Marginal Models for Dependent Data
|
2204.07188
|
https://arxiv.org/abs/2204.07188v1
|
https://arxiv.org/pdf/2204.07188v1.pdf
|
https://github.com/awstringer1/mam
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/gagan16/DcGan-Tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/leon-liangwu/py-caffe-yolo
| false
| false
| true
|
caffe2
|
https://paperswithcode.com/paper/ask-me-anything-dynamic-memory-networks-for
|
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
|
1506.07285
|
http://arxiv.org/abs/1506.07285v5
|
http://arxiv.org/pdf/1506.07285v5.pdf
|
https://github.com/scakc/QAwiki
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/video-to-video-synthesis
|
Video-to-Video Synthesis
|
1808.06601
|
http://arxiv.org/abs/1808.06601v2
|
http://arxiv.org/pdf/1808.06601v2.pdf
|
https://github.com/divyanshpuri02/divyansh.github.io
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diversity-in-valuing-social-contact-and-risk
|
Diversity in Valuing Social Contact and Risk Tolerance Lead to the Emergence of Homophily in Populations Facing Infectious Threats
|
2111.11362
|
https://arxiv.org/abs/2111.11362v1
|
https://arxiv.org/pdf/2111.11362v1.pdf
|
https://github.com/kazarraha/socdistmodel
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bag-of-tricks-for-efficient-text
|
Bag of Tricks for Efficient Text Classification
|
1607.01759
|
http://arxiv.org/abs/1607.01759v3
|
http://arxiv.org/pdf/1607.01759v3.pdf
|
https://github.com/FengJiaChunFromSYSU/fastText
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fcos-fully-convolutional-one-stage-object
|
FCOS: Fully Convolutional One-Stage Object Detection
|
1904.01355
|
https://arxiv.org/abs/1904.01355v5
|
https://arxiv.org/pdf/1904.01355v5.pdf
|
https://github.com/abcxs/maskrcnn-contest
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/retinamask-learning-to-predict-masks-improves
|
RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free
|
1901.03353
|
http://arxiv.org/abs/1901.03353v1
|
http://arxiv.org/pdf/1901.03353v1.pdf
|
https://github.com/abcxs/maskrcnn-contest
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/how-to-make-chord-correct
|
How to Make Chord Correct
|
1502.06461
|
http://arxiv.org/abs/1502.06461v2
|
http://arxiv.org/pdf/1502.06461v2.pdf
|
https://github.com/kratikagupta-developer/CHORD-Protocol-Implementation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cross-domain-ensemble-distillation-for-domain-2
|
Cross-Domain Ensemble Distillation for Domain Generalization
|
2211.14058
|
https://arxiv.org/abs/2211.14058v1
|
https://arxiv.org/pdf/2211.14058v1.pdf
|
https://github.com/leekyungmoon/XDED
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/190600722
|
Topological Autoencoders
|
1906.00722
|
https://arxiv.org/abs/1906.00722v5
|
https://arxiv.org/pdf/1906.00722v5.pdf
|
https://github.com/BorgwardtLab/topo-ae-distances
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/qanet-combining-local-convolution-with-global
|
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
|
1804.09541
|
http://arxiv.org/abs/1804.09541v1
|
http://arxiv.org/pdf/1804.09541v1.pdf
|
https://github.com/shikhar1sharma/NLP-Resources
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-the-fly-aligned-data-augmentation-for
|
On-the-Fly Aligned Data Augmentation for Sequence-to-Sequence ASR
|
2104.01393
|
https://arxiv.org/abs/2104.01393v2
|
https://arxiv.org/pdf/2104.01393v2.pdf
|
https://github.com/StatNLP/ada4asr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-the-automatic-anime-characters
|
Towards the Automatic Anime Characters Creation with Generative Adversarial Networks
|
1708.05509
|
http://arxiv.org/abs/1708.05509v1
|
http://arxiv.org/pdf/1708.05509v1.pdf
|
https://github.com/MasayaGit/AnimeGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/video-captioning-with-recurrent-networks
|
Video captioning with recurrent networks based on frame- and video-level features and visual content classification
|
1512.02949
|
http://arxiv.org/abs/1512.02949v1
|
http://arxiv.org/pdf/1512.02949v1.pdf
|
https://github.com/rakshithShetty/captionGAN
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fasttrack-an-open-source-software-for
|
FastTrack: an open-source software for tracking varying numbers of deformable objects
|
2011.06837
|
https://arxiv.org/abs/2011.06837v1
|
https://arxiv.org/pdf/2011.06837v1.pdf
|
https://github.com/FastTrackOrg/FastTrack
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-semantically-enhanced-feature-for
|
Learning Semantically Enhanced Feature for Fine-Grained Image Classification
|
2006.13457
|
https://arxiv.org/abs/2006.13457v3
|
https://arxiv.org/pdf/2006.13457v3.pdf
|
https://github.com/YNCao/mysef
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/online-abuse-detection-the-value-of
|
Online abuse detection: the value of preprocessing and neural attention models
| null |
https://aclanthology.org/W19-1303
|
https://aclanthology.org/W19-1303.pdf
|
https://github.com/ddhruvkr/Online_Abuse_Detection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/debface-de-biasing-face-recognition
|
Jointly De-biasing Face Recognition and Demographic Attribute Estimation
|
1911.08080
|
https://arxiv.org/abs/1911.08080v4
|
https://arxiv.org/pdf/1911.08080v4.pdf
|
https://github.com/gongsixue/DebFace
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/explaining-anomalies-detected-by-autoencoders
|
Explaining Anomalies Detected by Autoencoders Using SHAP
|
1903.02407
|
https://arxiv.org/abs/1903.02407v2
|
https://arxiv.org/pdf/1903.02407v2.pdf
|
https://github.com/ronniemi/explainAnomaliesUsingSHAP
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/painting-with-baryons-augmenting-n-body
|
Painting with baryons: augmenting N-body simulations with gas using deep generative models
|
1903.12173
|
https://arxiv.org/abs/1903.12173v2
|
https://arxiv.org/pdf/1903.12173v2.pdf
|
https://github.com/tilmantroester/baryon_painter
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/teaching-temporal-logics-to-neural-networks
|
Teaching Temporal Logics to Neural Networks
|
2003.04218
|
https://arxiv.org/abs/2003.04218v3
|
https://arxiv.org/pdf/2003.04218v3.pdf
|
https://github.com/reactive-systems/deepltl
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/smart-mc-sparse-matrix-estimation-with
|
SMART-MC: Characterizing the Dynamics of Multiple Sclerosis Therapy Transitions Using a Covariate-Based Markov Model
|
2412.03596
|
https://arxiv.org/abs/2412.03596v2
|
https://arxiv.org/pdf/2412.03596v2.pdf
|
https://github.com/priyamdas2/SMART-MC-MSCOR
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/victordibia/handtracking
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/corresponding-projections-for-orphan
|
Corresponding Projections for Orphan Screening
|
1812.00058
|
http://arxiv.org/abs/1812.00058v1
|
http://arxiv.org/pdf/1812.00058v1.pdf
|
https://github.com/diogofbraga/OrphanPrincipalComponentAnalysis
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/robustness-quantification-for-classification
|
Adversarial Robustness Guarantees for Classification with Gaussian Processes
|
1905.11876
|
https://arxiv.org/abs/1905.11876v3
|
https://arxiv.org/pdf/1905.11876v3.pdf
|
https://github.com/andreapatane/check-GPclass
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/real-time-and-accurate-object-detection-in
|
Real-Time and Accurate Object Detection in Compressed Video by Long Short-term Feature Aggregation
|
2103.14529
|
https://arxiv.org/abs/2103.14529v1
|
https://arxiv.org/pdf/2103.14529v1.pdf
|
https://github.com/hustvl/LSFA
| true
| true
| false
|
mxnet
|
https://paperswithcode.com/paper/on-catastrophic-interference-in-atari-2600
|
On Catastrophic Interference in Atari 2600 Games
|
2002.12499
|
https://arxiv.org/abs/2002.12499v2
|
https://arxiv.org/pdf/2002.12499v2.pdf
|
https://github.com/google-research/google-research/tree/master/memento
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/topological-control-of-synchronization
|
Topological Control of Synchronization Patterns: Trading Symmetry for Stability
|
1902.03255
|
https://arxiv.org/abs/1902.03255v1
|
https://arxiv.org/pdf/1902.03255v1.pdf
|
https://github.com/y-z-zhang/optimize_sym_cluster
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/knowledge-tracing-for-complex-problem-solving
|
Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization
|
2210.09013
|
https://arxiv.org/abs/2210.09013v1
|
https://arxiv.org/pdf/2210.09013v1.pdf
|
https://github.com/persai-lab/umap2021-grate
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/optimization-of-molecules-via-deep
|
Optimization of Molecules via Deep Reinforcement Learning
|
1810.08678
|
http://arxiv.org/abs/1810.08678v3
|
http://arxiv.org/pdf/1810.08678v3.pdf
|
https://github.com/google-research/google-research/tree/master/mol_dqn
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/drop-an-octave-reducing-spatial-redundancy-in
|
Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution
|
1904.05049
|
https://arxiv.org/abs/1904.05049v3
|
https://arxiv.org/pdf/1904.05049v3.pdf
|
https://github.com/SharadGitHub/OctaveUnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/digging-into-self-supervised-monocular-depth
|
Digging Into Self-Supervised Monocular Depth Estimation
|
1806.01260
|
https://arxiv.org/abs/1806.01260v4
|
https://arxiv.org/pdf/1806.01260v4.pdf
|
https://github.com/FangGet/tf-monodepth2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-fully-differentiable-beam-search-decoder
|
A Fully Differentiable Beam Search Decoder
|
1902.06022
|
http://arxiv.org/abs/1902.06022v1
|
http://arxiv.org/pdf/1902.06022v1.pdf
|
https://github.com/johnhw/differentiable_sorting
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/statistical-models-for-the-analysis-of
|
Statistical Models for the Analysis of Optimization Algorithms with Benchmark Functions
|
2010.03783
|
https://arxiv.org/abs/2010.03783v4
|
https://arxiv.org/pdf/2010.03783v4.pdf
|
https://github.com/davidissamattos/statscomp
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/automatically-designing-cnn-architectures
|
Automatically designing CNN architectures using genetic algorithm for image classification
|
1808.03818
|
https://arxiv.org/abs/1808.03818v3
|
https://arxiv.org/pdf/1808.03818v3.pdf
|
https://github.com/Marius-Juston/AutoCNN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/an-application-of-paraexp-to-electromagnetic
|
An Application of ParaExp to Electromagnetic Wave Problems
|
1607.00368
|
https://arxiv.org/abs/1607.00368v2
|
https://arxiv.org/pdf/1607.00368v2.pdf
|
https://github.com/temf/paraexp
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/paraexp-using-leapfrog-as-integrator-for-high
|
ParaExp using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations
|
1705.08019
|
https://arxiv.org/abs/1705.08019v2
|
https://arxiv.org/pdf/1705.08019v2.pdf
|
https://github.com/temf/paraexp
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/asymmetric-statistical-errors
|
Asymmetric Statistical Errors
|
physics/0406120
|
https://arxiv.org/abs/physics/0406120v1
|
https://arxiv.org/pdf/physics/0406120v1.pdf
|
https://github.com/muryelgp/asymmetric_uncertainties
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/are-undocumented-workers-the-same-as-illegal
|
Are "Undocumented Workers" the Same as "Illegal Aliens"? Disentangling Denotation and Connotation in Vector Spaces
|
2010.02976
|
https://arxiv.org/abs/2010.02976v2
|
https://arxiv.org/pdf/2010.02976v2.pdf
|
https://github.com/awebson/congressional_adversary
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sample-efficient-actor-critic-with-experience
|
Sample Efficient Actor-Critic with Experience Replay
|
1611.01224
|
http://arxiv.org/abs/1611.01224v2
|
http://arxiv.org/pdf/1611.01224v2.pdf
|
https://github.com/Kaixhin/ACER
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fedhca2-towards-hetero-client-federated-multi
|
FedHCA2: Towards Hetero-Client Federated Multi-Task Learning
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Lu_FedHCA2_Towards_Hetero-Client_Federated_Multi-Task_Learning_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Lu_FedHCA2_Towards_Hetero-Client_Federated_Multi-Task_Learning_CVPR_2024_paper.pdf
|
https://github.com/innovator-zero/fedhca2
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/naturalization-of-text-by-the-insertion-of
|
Naturalization of Text by the Insertion of Pauses and Filler Words
|
2011.03713
|
https://arxiv.org/abs/2011.03713v1
|
https://arxiv.org/pdf/2011.03713v1.pdf
|
https://github.com/parthvshah/naturalization
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/probabilistic-event-calculus-for-event
|
Probabilistic Event Calculus for Event Recognition
|
1207.3270
|
http://arxiv.org/abs/1207.3270v2
|
http://arxiv.org/pdf/1207.3270v2.pdf
|
https://github.com/koo5/notes2
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mean-subtraction-and-mode-selection-in
|
Clarifying the effect of mean subtraction on Dynamic Mode Decomposition
|
2105.03607
|
https://arxiv.org/abs/2105.03607v6
|
https://arxiv.org/pdf/2105.03607v6.pdf
|
https://github.com/gowtham-ss-ragavan/msub_mdselect_dmd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deeperforensics-10-a-large-scale-dataset-for
|
DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
|
2001.03024
|
https://arxiv.org/abs/2001.03024v2
|
https://arxiv.org/pdf/2001.03024v2.pdf
|
https://github.com/EndlessSora/DeeperForensics-1.0
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/3d-object-reconstruction-from-hand-object
|
3D Object Reconstruction from Hand-Object Interactions
|
1704.00529
|
http://arxiv.org/abs/1704.00529v1
|
http://arxiv.org/pdf/1704.00529v1.pdf
|
https://github.com/dimtziwnas/InHandScanningICCV15_Reconstruction
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/simple-and-effective-vae-training-with
|
Simple and Effective VAE Training with Calibrated Decoders
|
2006.13202
|
https://arxiv.org/abs/2006.13202v3
|
https://arxiv.org/pdf/2006.13202v3.pdf
|
https://github.com/orybkin/sigma-vae
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/multi-agent-generative-adversarial-imitation
|
Multi-Agent Generative Adversarial Imitation Learning
|
1807.09936
|
http://arxiv.org/abs/1807.09936v1
|
http://arxiv.org/pdf/1807.09936v1.pdf
|
https://github.com/ermongroup/multiagent-gail
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/where-s-crypto-automated-identification-and
|
Where's Crypto?: Automated Identification and Classification of Proprietary Cryptographic Primitives in Binary Code
|
2009.04274
|
https://arxiv.org/abs/2009.04274v1
|
https://arxiv.org/pdf/2009.04274v1.pdf
|
https://github.com/wheres-crypto/wheres-crypto
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scalable-learning-of-non-decomposable
|
Scalable Learning of Non-Decomposable Objectives
|
1608.04802
|
http://arxiv.org/abs/1608.04802v2
|
http://arxiv.org/pdf/1608.04802v2.pdf
|
https://github.com/tensorflow/models/tree/master/research/global_objectives
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/you-only-derive-once-yodo-automatic
|
You Only Derive Once (YODO): Automatic Differentiation for Efficient Sensitivity Analysis in Bayesian Networks
|
2206.08687
|
https://arxiv.org/abs/2206.08687v1
|
https://arxiv.org/pdf/2206.08687v1.pdf
|
https://github.com/rballester/yodo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mri-to-ct-translation-with-gans
|
MRI to CT Translation with GANs
|
1901.05259
|
http://arxiv.org/abs/1901.05259v1
|
http://arxiv.org/pdf/1901.05259v1.pdf
|
https://github.com/bodokaiser/mrtoct-pytorch
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/music-genre-classification-using-machine
|
Music Genre Classification using Machine Learning Techniques
|
1804.01149
|
http://arxiv.org/abs/1804.01149v1
|
http://arxiv.org/pdf/1804.01149v1.pdf
|
https://github.com/HareeshBahuleyan/music-genre-classification
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/rainfall-runoff-prediction-at-multiple
|
Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network
|
2010.07921
|
https://arxiv.org/abs/2010.07921v1
|
https://arxiv.org/pdf/2010.07921v1.pdf
|
https://github.com/gauchm/mts-lstm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/empty-cities-a-dynamic-object-invariant-space
|
Empty Cities: a Dynamic-Object-Invariant Space for Visual SLAM
|
2010.07646
|
https://arxiv.org/abs/2010.07646v1
|
https://arxiv.org/pdf/2010.07646v1.pdf
|
https://github.com/bertabescos/EmptyCities_SLAM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/new-evolutionary-computation-models-and-their
|
New Evolutionary Computation Models and their Applications to Machine Learning
|
2110.00468
|
https://arxiv.org/abs/2110.00468v1
|
https://arxiv.org/pdf/2110.00468v1.pdf
|
https://github.com/mihaioltean/traceless-genetic-programming
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/vehicle-predictive-trajectory-patterns-from
|
Vehicle predictive trajectory patterns from isochronous data
|
2010.05026
|
https://arxiv.org/abs/2010.05026v2
|
https://arxiv.org/pdf/2010.05026v2.pdf
|
https://github.com/Seeker3000/AUD
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/a-run-and-tumble-model-with-autochemotaxis
|
A Run-and-Tumble Model with Autochemotaxis
|
2009.03221
|
https://arxiv.org/abs/2009.03221v1
|
https://arxiv.org/pdf/2009.03221v1.pdf
|
https://github.com/Louminator/Plankton_Signal_RT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/zinet-linking-chinese-characters-spanning
|
ZiNet: Linking Chinese Characters Spanning Three Thousand Years
| null |
https://aclanthology.org/2022.findings-acl.242
|
https://aclanthology.org/2022.findings-acl.242.pdf
|
https://github.com/yangchijlu/ancientchinesecharsim
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/low-dose-ct-image-denoising-using-a
|
Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
|
1708.00961
|
http://arxiv.org/abs/1708.00961v2
|
http://arxiv.org/pdf/1708.00961v2.pdf
|
https://github.com/SSinyu/WGAN-VGG
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/190807906
|
PCRNet: Point Cloud Registration Network using PointNet Encoding
|
1908.07906
|
https://arxiv.org/abs/1908.07906v2
|
https://arxiv.org/pdf/1908.07906v2.pdf
|
https://github.com/vinits5/pcrnet
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/human-and-automatic-detection-of-generated
|
Automatic Detection of Generated Text is Easiest when Humans are Fooled
|
1911.00650
|
https://arxiv.org/abs/1911.00650v2
|
https://arxiv.org/pdf/1911.00650v2.pdf
|
https://github.com/kirubarajan/roft
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/correlation-aware-deep-generative-model-for
|
Correlation-aware Deep Generative Model for Unsupervised Anomaly Detection
|
2002.07349
|
https://arxiv.org/abs/2002.07349v3
|
https://arxiv.org/pdf/2002.07349v3.pdf
|
https://github.com/haoyfan/CADGMM
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/towards-ai-complete-question-answering-a-set
|
Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
|
1502.05698
|
http://arxiv.org/abs/1502.05698v10
|
http://arxiv.org/pdf/1502.05698v10.pdf
|
https://github.com/kirubarajan/roft
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/verification-of-hierarchical-artifact-systems
|
Verification of Hierarchical Artifact Systems
|
1604.00967
|
http://arxiv.org/abs/1604.00967v1
|
http://arxiv.org/pdf/1604.00967v1.pdf
|
https://github.com/oi02lyl/has-verifier
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discontinuous-transition-of-molecular
|
Discontinuous transition of molecular-hydrogen chain to the quasi-atomic state: Exact diagonalization - ab initio approach
|
1506.03356
|
https://arxiv.org/abs/1506.03356v2
|
https://arxiv.org/pdf/1506.03356v2.pdf
|
https://bitbucket.org/azja/qmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/metallization-of-solid-molecular-hydrogen-in
|
Metallization of solid molecular hydrogen in two dimensions: Mott-Hubbard-type transition
|
1702.06575
|
https://arxiv.org/abs/1702.06575v1
|
https://arxiv.org/pdf/1702.06575v1.pdf
|
https://bitbucket.org/azja/qmt
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/combined-shared-and-distributed-memory-ab
|
Combined shared and distributed memory ab-initio computations of molecular-hydrogen systems in the correlated state: process pool solution and two-level parallelism
|
1504.00500
|
https://arxiv.org/abs/1504.00500v3
|
https://arxiv.org/pdf/1504.00500v3.pdf
|
https://bitbucket.org/azja/qmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dot-ring-nanostructure-rigorous-analysis-of
|
Dot-ring nanostructure: Rigorous analysis of many-electron effects
|
1605.01195
|
https://arxiv.org/abs/1605.01195v1
|
https://arxiv.org/pdf/1605.01195v1.pdf
|
https://bitbucket.org/azja/qmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-design-of-mechanical-metamaterial
|
Automatic Design of Mechanical Metamaterial Actuators
|
2002.03032
|
https://arxiv.org/abs/2002.03032v1
|
https://arxiv.org/pdf/2002.03032v1.pdf
|
https://github.com/ComplexityBiosystems/metamech_datasets
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.