paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/robotic-pick-and-place-of-novel-objects-in
|
Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching
|
1710.01330
|
https://arxiv.org/abs/1710.01330v5
|
https://arxiv.org/pdf/1710.01330v5.pdf
|
https://github.com/andyzeng/arc-robot-vision
| true
| false
| true
|
torch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/MLH-Fellowship/Social-BERTerfly
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/automatic-differentiation-of-sylvester
|
Automatic differentiation of Sylvester, Lyapunov, and algebraic Riccati equations
|
2011.11430
|
https://arxiv.org/abs/2011.11430v2
|
https://arxiv.org/pdf/2011.11430v2.pdf
|
https://github.com/tachukao/autodiff-inverse-lqr
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sensing-ambiguity-in-henry-james-the-turn-of
|
Sensing Ambiguity in Henry James' "The Turn of the Screw"
|
2011.10832
|
https://arxiv.org/abs/2011.10832v1
|
https://arxiv.org/pdf/2011.10832v1.pdf
|
https://github.com/vicmak/TurnOfTheScrew
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/two-stage-generative-adversarial-networks-for
|
Two-stage generative adversarial networks for document image binarization with color noise and background removal
|
2010.10103
|
https://arxiv.org/abs/2010.10103v3
|
https://arxiv.org/pdf/2010.10103v3.pdf
|
https://github.com/opensuh/DocumentBinarization
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/supervised-edge-attention-network-for
|
Supervised Edge Attention Network for Accurate Image Instance Segmentation
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/5884_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123720613.pdf
|
https://github.com/IPIU-detection/SEANet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/teacher-student-consistency-for-multi-source
|
Teacher-Student Consistency For Multi-Source Domain Adaptation
|
2010.10054
|
https://arxiv.org/abs/2010.10054v1
|
https://arxiv.org/pdf/2010.10054v1.pdf
|
https://github.com/amosy3/MUST
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mesh-denoising-with-facet-graph-convolutions
|
Mesh Denoising with Facet Graph Convolutions
| null |
https://github.com/Elensil/Facet_Graph_Convolution#abstract
|
https://hal.inria.fr/hal-03066322
|
https://github.com/Elensil/Facet_Graph_Convolution
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/counterfactual-multi-agent-policy-gradients
|
Counterfactual Multi-Agent Policy Gradients
|
1705.08926
|
https://arxiv.org/abs/1705.08926v3
|
https://arxiv.org/pdf/1705.08926v3.pdf
|
https://github.com/opendilab/DI-engine/blob/main/ding/policy/coma.py
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/confnet2seq-full-length-answer-generation
|
ConfNet2Seq: Full Length Answer Generation from Spoken Questions
|
2006.05163
|
https://arxiv.org/abs/2006.05163v2
|
https://arxiv.org/pdf/2006.05163v2.pdf
|
https://github.com/kolk/ConfnetPointerGenBaseline
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
|
MMDetection: Open MMLab Detection Toolbox and Benchmark
|
1906.07155
|
https://arxiv.org/abs/1906.07155v1
|
https://arxiv.org/pdf/1906.07155v1.pdf
|
https://github.com/IPIU-detection/SEANet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/joint-multi-leaf-segmentation-alignment-and
|
Joint Multi-Leaf Segmentation, Alignment and Tracking from Fluorescence Plant Videos
|
1505.00353
|
http://arxiv.org/abs/1505.00353v2
|
http://arxiv.org/pdf/1505.00353v2.pdf
|
https://github.com/xiyinmsu/PlantVision
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/meta-reinforcement-learning-by-tracking-task
|
Meta-Reinforcement Learning by Tracking Task Non-stationarity
|
2105.08834
|
https://arxiv.org/abs/2105.08834v1
|
https://arxiv.org/pdf/2105.08834v1.pdf
|
https://github.com/riccardopoiani/trio-non-stationary-meta-rl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rotate-to-attend-convolutional-triplet
|
Rotate to Attend: Convolutional Triplet Attention Module
|
2010.03045
|
https://arxiv.org/abs/2010.03045v2
|
https://arxiv.org/pdf/2010.03045v2.pdf
|
https://github.com/LandskapeAI/triplet-attention
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-sampling-policy-for-selecting-a
|
Efficient Sampling Policy for Selecting a Good Enough Subset
|
2111.14534
|
https://arxiv.org/abs/2111.14534v1
|
https://arxiv.org/pdf/2111.14534v1.pdf
|
https://github.com/gongbozhang-pku/Good-Enough-Selection
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/autofocus-layer-for-semantic-segmentation
|
Autofocus Layer for Semantic Segmentation
|
1805.08403
|
http://arxiv.org/abs/1805.08403v3
|
http://arxiv.org/pdf/1805.08403v3.pdf
|
https://github.com/luvgold/auotofoucus3D-Brats
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/bengali-abstractive-news-summarization-bans-a
|
Bengali Abstractive News Summarization(BANS): A Neural Attention Approach
|
2012.01747
|
https://arxiv.org/abs/2012.01747v1
|
https://arxiv.org/pdf/2012.01747v1.pdf
|
https://github.com/Prithwiraj12/Bengali-Deep-News-Summarization
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/transferable-visual-words-exploiting-the
|
Transferable Visual Words: Exploiting the Semantics of Anatomical Patterns for Self-supervised Learning
|
2102.10680
|
https://arxiv.org/abs/2102.10680v1
|
https://arxiv.org/pdf/2102.10680v1.pdf
|
https://github.com/JLiangLab/TransVW
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/locally-checkable-problems-in-rooted-trees
|
Locally Checkable Problems in Rooted Trees
|
2102.09277
|
https://arxiv.org/abs/2102.09277v5
|
https://arxiv.org/pdf/2102.09277v5.pdf
|
https://github.com/jendas1/rooted-tree-classifier
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sprint-ultrafast-protein-protein-interaction
|
SPRINT: Ultrafast protein-protein interaction prediction of the entire human interactome
|
1705.06848
|
http://arxiv.org/abs/1705.06848v1
|
http://arxiv.org/pdf/1705.06848v1.pdf
|
https://github.com/lucian-ilie/SPRINT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/profiler-a-fast-and-versatile-new-program-for
|
$Profiler$ - A Fast and Versatile New Program for Decomposing Galaxy Light Profiles
|
1607.08620
|
http://arxiv.org/abs/1607.08620v1
|
http://arxiv.org/pdf/1607.08620v1.pdf
|
https://github.com/BogdanCiambur/PROFILER
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cell-veto-monte-carlo-algorithm-for-long
|
Cell-veto Monte Carlo algorithm for long-range systems
|
1606.06780
|
http://arxiv.org/abs/1606.06780v2
|
http://arxiv.org/pdf/1606.06780v2.pdf
|
https://github.com/Cell-veto/postlhc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-accelerometer-based-calculator-for
|
An Accelerometer Based Calculator for Visually Impaired People Using Mobile Devices
|
1604.07660
|
http://arxiv.org/abs/1604.07660v1
|
http://arxiv.org/pdf/1604.07660v1.pdf
|
https://github.com/ereneld/accelerometerbasedcalculatorios
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/identification-of-port-hamiltonian-systems
|
Identification of Port-Hamiltonian Systems from Frequency Response Data
|
1911.00080
|
https://arxiv.org/abs/1911.00080v1
|
https://arxiv.org/pdf/1911.00080v1.pdf
|
https://github.com/mpimd-csc/Identify_PortHamiltonian_Realization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/using-gaia-dr2-to-constrain-local-dark-matter
|
Using Gaia DR2 to Constrain Local Dark Matter Density and Thin Dark Disk
|
1808.05603
|
https://arxiv.org/abs/1808.05603v2
|
https://arxiv.org/pdf/1808.05603v2.pdf
|
https://github.com/bbsonjohn/darkdisk
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/githru-visual-analytics-for-understanding
|
Githru: Visual Analytics for Understanding Software Development History Through Git Metadata Analysis
|
2009.03115
|
https://arxiv.org/abs/2009.03115v2
|
https://arxiv.org/pdf/2009.03115v2.pdf
|
https://github.com/githru/githru
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-gaia-dr2-view-of-the-open-cluster
|
A Gaia DR2 view of the Open Cluster population in the Milky Way
|
1805.08726
|
https://arxiv.org/abs/1805.08726v2
|
https://arxiv.org/pdf/1805.08726v2.pdf
|
https://github.com/ignotur/Random-forest-open-cluster
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-hypothesis-testing-trials-factor
|
On hypothesis testing, trials factor, hypertests and the BumpHunter
|
1101.0390
|
https://arxiv.org/abs/1101.0390v2
|
https://arxiv.org/pdf/1101.0390v2.pdf
|
https://github.com/lovaslin/pyBumpHunter
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/client-based-control-channel-analysis-for
|
Client-Based Control Channel Analysis for Connectivity Estimation in LTE Networks
|
1701.03304
|
https://arxiv.org/abs/1701.03304v1
|
https://arxiv.org/pdf/1701.03304v1.pdf
|
https://github.com/falkenber9/falcon
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discover-your-competition-in-lte-client-based
|
Discover Your Competition in LTE: Client-Based Passive Data Rate Prediction by Machine Learning
|
1711.06820
|
https://arxiv.org/abs/1711.06820v2
|
https://arxiv.org/pdf/1711.06820v2.pdf
|
https://github.com/falkenber9/falcon
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/problem-agnostic-speech-embeddings-for-multi
|
Problem-Agnostic Speech Embeddings for Multi-Speaker Text-to-Speech with SampleRNN
|
1906.00733
|
https://arxiv.org/abs/1906.00733v3
|
https://arxiv.org/pdf/1906.00733v3.pdf
|
https://github.com/santi-pdp/pase
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mugnet-multi-resolution-graph-neural-network
|
MuGNet: Multi-Resolution Graph Neural Network for Large-Scale Pointcloud Segmentation
| null |
https://arxiv.org/abs/2009.08924?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
|
https://arxiv.org/abs/2009.08924?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
|
https://github.com/liuyuex97/MuGNet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/implementing-perceptron-models-with-qubits
|
Implementing perceptron models with qubits
|
1905.06728
|
https://arxiv.org/abs/1905.06728v2
|
https://arxiv.org/pdf/1905.06728v2.pdf
|
https://github.com/therooler/pennylane-qllh
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/faster-family-wise-error-control-for
|
Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap
|
1708.05037
|
http://arxiv.org/abs/1708.05037v2
|
http://arxiv.org/pdf/1708.05037v2.pdf
|
https://bitbucket.org/simonvandekar/param-boot
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/decentralized-baseband-processing-for-massive
|
Decentralized Baseband Processing for Massive MU-MIMO Systems
|
1702.04458
|
http://arxiv.org/abs/1702.04458v2
|
http://arxiv.org/pdf/1702.04458v2.pdf
|
https://github.com/VIP-Group/DBP
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/aerial-imagery-pixel-level-segmentation
|
Aerial Imagery Pixel-level Segmentation
|
2012.02024
|
https://arxiv.org/abs/2012.02024v1
|
https://arxiv.org/pdf/2012.02024v1.pdf
|
https://github.com/mrheffels/aerial-imagery-segmentation
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/on-the-adoption-usage-and-evolution-of-kotlin
|
On the adoption, usage and evolution of Kotlin Features on Android development
|
1907.09003
|
http://arxiv.org/abs/1907.09003v3
|
http://arxiv.org/pdf/1907.09003v3.pdf
|
https://github.com/UPHF/kotlin_features
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-learning-to-generate-in-silico-chemical
|
Deep learning to generate in silico chemical property libraries and candidate molecules for small molecule identification in complex samples
|
1905.08411
|
http://arxiv.org/abs/1905.08411v1
|
http://arxiv.org/pdf/1905.08411v1.pdf
|
https://github.com/pnnl/darkchem
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/rowhammer-and-beyond
|
RowHammer and Beyond
|
1903.11056
|
http://arxiv.org/abs/1903.11056v1
|
http://arxiv.org/pdf/1903.11056v1.pdf
|
https://github.com/google/rowhammer-test
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/radynversion-learning-to-invert-a-solar-flare
|
RADYNVERSION: Learning to Invert a Solar Flare Atmosphere with Invertible Neural Networks
|
1901.08626
|
http://arxiv.org/abs/1901.08626v2
|
http://arxiv.org/pdf/1901.08626v2.pdf
|
https://github.com/Goobley/Radynversion
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/arja-automated-repair-of-java-programs-via
|
ARJA: Automated Repair of Java Programs via Multi-Objective Genetic Programming
|
1712.07804
|
http://arxiv.org/abs/1712.07804v1
|
http://arxiv.org/pdf/1712.07804v1.pdf
|
https://github.com/yyxhdy/SeededBugs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/kern
|
KERN
|
1710.09145
|
http://arxiv.org/abs/1710.09145v1
|
http://arxiv.org/pdf/1710.09145v1.pdf
|
https://github.com/ska-sa/meqtrees-cattery
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/re-run-repeat-reproduce-reuse-replicate
|
Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into Scientific Contributions
|
1708.08205
|
https://arxiv.org/abs/1708.08205v2
|
https://arxiv.org/pdf/1708.08205v2.pdf
|
https://github.com/benureau/r5
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multiscale-information-decomposition-exact
|
Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes
|
1706.07136
|
http://arxiv.org/abs/1706.07136v2
|
http://arxiv.org/pdf/1706.07136v2.pdf
|
https://github.com/danielemarinazzo/multiscale_PID
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/compressing-recurrent-neural-networks-with
|
Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition
|
1811.07503
|
http://arxiv.org/abs/1811.07503v1
|
http://arxiv.org/pdf/1811.07503v1.pdf
|
https://github.com/tnbar/tednet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/bayesian-adaptive-n-of-1-trials-for
|
Bayesian adaptive N-of-1 trials for estimating population and individual treatment effects
|
1911.00878
|
http://arxiv.org/abs/1911.00878v3
|
http://arxiv.org/pdf/1911.00878v3.pdf
|
https://github.com/SenarathneSGJ/Adaptive_N-of-1_trials_design
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/interactive-discovery-system-for-direct
|
Interactive Discovery System for Direct Democracy
|
1807.04448
|
http://arxiv.org/abs/1807.04448v1
|
http://arxiv.org/pdf/1807.04448v1.pdf
|
https://github.com/elaragon/decide-topics
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/encryptgan-image-steganography-with-domain
|
EncryptGAN: Image Steganography with Domain Transform
|
1905.11582
|
http://arxiv.org/abs/1905.11582v2
|
http://arxiv.org/pdf/1905.11582v2.pdf
|
https://github.com/zhengziqiang/EncryptGAN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deep-active-inference
|
Deep Active Inference
|
1709.02341
|
http://arxiv.org/abs/1709.02341v5
|
http://arxiv.org/pdf/1709.02341v5.pdf
|
https://github.com/kaiu85/deepAI_paper
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/setiburst-a-robotic-commensal-realtime-multi
|
SETIBURST: A Robotic, Commensal, Realtime Multi-Science Backend for the Arecibo Telescope
|
1701.04538
|
http://arxiv.org/abs/1701.04538v1
|
http://arxiv.org/pdf/1701.04538v1.pdf
|
https://github.com/griffinfoster/alfaburst-survey
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-adaptive-partition-of-unity-method-for
|
An adaptive partition of unity method for multivariate Chebyshev polynomial approximations
|
1805.00423
|
http://arxiv.org/abs/1805.00423v3
|
http://arxiv.org/pdf/1805.00423v3.pdf
|
https://github.com/kevinwaiton/PUchebfun
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hazelnut-a-bidirectionally-typed-structure
|
Hazelnut: A Bidirectionally Typed Structure Editor Calculus
|
1607.04180
|
https://arxiv.org/abs/1607.04180v5
|
https://arxiv.org/pdf/1607.04180v5.pdf
|
https://github.com/hazelgrove/hazelnut-dynamics-agda
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/live-functional-programming-with-typed-holes
|
Live Functional Programming with Typed Holes
|
1805.00155
|
http://arxiv.org/abs/1805.00155v4
|
http://arxiv.org/pdf/1805.00155v4.pdf
|
https://github.com/hazelgrove/hazelnut-dynamics-agda
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/on-location-relevance-and-diversity-in-human
|
On Location Relevance and Diversity in Human Mobility Data
|
2010.10198
|
http://arxiv.org/abs/2010.10198v1
|
http://arxiv.org/pdf/2010.10198v1.pdf
|
https://github.com/SeqScan/SeqScan-D
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-analysis-and-influence-of
|
Automatic Analysis and Influence of Hierarchical Structure on Melody, Rhythm and Harmony in Popular Music
|
2010.07518
|
http://arxiv.org/abs/2010.07518v1
|
http://arxiv.org/pdf/2010.07518v1.pdf
|
https://github.com/Dsqvival/hierarchical-structure-analysis
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/centering-noisy-images-with-application-to
|
Centering noisy images with application to cryo-EM
|
2009.04810
|
http://arxiv.org/abs/2009.04810v1
|
http://arxiv.org/pdf/2009.04810v1.pdf
|
https://github.com/nirsharon/RACER
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/model-selection-for-estimation-of-causal
|
Model selection for estimation of causal parameters
|
2008.12892
|
https://arxiv.org/abs/2008.12892v2
|
https://arxiv.org/pdf/2008.12892v2.pdf
|
https://github.com/rothenhaeusler/tms
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/macsen-a-voice-assistant-for-speakers-of-a
|
Macsen: A Voice Assistant for Speakers of a Lesser Resourced Language
| null |
https://aclanthology.org/2020.sltu-1.27
|
https://aclanthology.org/2020.sltu-1.27.pdf
|
https://github.com/techiaith/macsen-sgwrsfot
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/fault-slip-in-hydraulic-stimulation-of
|
Fault slip in hydraulic stimulation of geothermal reservoirs: governing mechanisms and process-structure interaction
|
2008.11190
|
https://arxiv.org/abs/2008.11190v2
|
https://arxiv.org/pdf/2008.11190v2.pdf
|
https://github.com/IvarStefansson/Fault-Slip-in-Hydraulic-Stimulation-of-Geothermal-Reservoirs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-group-theoretic-perspective-on
|
A group theoretic perspective on entanglements of division fields
|
2008.09886
|
https://arxiv.org/abs/2008.09886v3
|
https://arxiv.org/pdf/2008.09886v3.pdf
|
https://github.com/jmorrow4692/Entanglements
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-bayesian-inference-for-the-extended
|
On Bayesian inference for the Extended Plackett-Luce model
|
2002.05953
|
http://arxiv.org/abs/2002.05953v1
|
http://arxiv.org/pdf/2002.05953v1.pdf
|
https://github.com/srjresearch/ExtendedPL
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/boundary-solution-based-on-rescaling-method
|
Boundary solution based on rescaling method: recoup the first and second-order statistics of neuron network dynamics
|
2002.02381
|
http://arxiv.org/abs/2002.02381v1
|
http://arxiv.org/pdf/2002.02381v1.pdf
|
https://github.com/ceciliaromaro/recoup-the-first-and-second-order-statistics-of-neuron-network-dynamics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cold-start-aware-user-and-product-attention
|
Cold-Start Aware User and Product Attention for Sentiment Classification
|
1806.05507
|
http://arxiv.org/abs/1806.05507v1
|
http://arxiv.org/pdf/1806.05507v1.pdf
|
https://github.com/rktamplayo/HCSC
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-data-set-of-piercing-needle-through
|
A data-set of piercing needle through deformable objects for Deep Learning from Demonstrations
|
2012.02458
|
https://arxiv.org/abs/2012.02458v1
|
https://arxiv.org/pdf/2012.02458v1.pdf
|
https://github.com/imanlab/d-lfd
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/flexwatts-a-power-and-workload-aware-hybrid
|
FlexWatts: A Power- and Workload-Aware Hybrid Power Delivery Network for Energy-Efficient Microprocessors
|
2009.09094
|
http://arxiv.org/abs/2009.09094v1
|
http://arxiv.org/pdf/2009.09094v1.pdf
|
https://github.com/CMU-SAFARI/PDNspot
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/local-variables-and-quantum-relational-hoare
|
Local Variables and Quantum Relational Hoare Logic
|
2007.14155
|
http://arxiv.org/abs/2007.14155v1
|
http://arxiv.org/pdf/2007.14155v1.pdf
|
https://github.com/dominique-unruh/qrhl-local-variables-isabelle
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rethinking-fun-frequency-domain-utilization
|
Rethinking FUN: Frequency-Domain Utilization Networks
|
2012.03357
|
https://arxiv.org/abs/2012.03357v1
|
https://arxiv.org/pdf/2012.03357v1.pdf
|
https://github.com/kfir99/FUN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/selfpose-3d-egocentric-pose-estimation-from-a
|
SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera
|
2011.01519
|
https://arxiv.org/abs/2011.01519v1
|
https://arxiv.org/pdf/2011.01519v1.pdf
|
https://github.com/facebookresearch/xR-EgoPose
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/balancing-rational-and-other-regarding
|
Balancing Rational and Other-Regarding Preferences in Cooperative-Competitive Environments
|
2102.12307
|
https://arxiv.org/abs/2102.12307v1
|
https://arxiv.org/pdf/2102.12307v1.pdf
|
https://github.com/jbr-ai-labs/BAROCCO
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/one-shot-video-object-segmentation
|
One-Shot Video Object Segmentation
|
1611.05198
|
http://arxiv.org/abs/1611.05198v4
|
http://arxiv.org/pdf/1611.05198v4.pdf
|
https://github.com/Mind23-2/MindCode-5/tree/main/OSVOS
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/reducing-network-agnostophobia
|
Reducing Network Agnostophobia
|
1811.04110
|
http://arxiv.org/abs/1811.04110v2
|
http://arxiv.org/pdf/1811.04110v2.pdf
|
https://github.com/ROBOTICSENGINEER/Reducing-Network-Agnostophobia-Center-Loss
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/boundary-topological-entanglement-entropy-in
|
Boundary topological entanglement entropy in two and three dimensions
|
2012.05244
|
https://arxiv.org/abs/2012.05244v2
|
https://arxiv.org/pdf/2012.05244v2.pdf
|
https://github.com/JCBridgeman/UnitaryPremodularCategoryData
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/securing-deep-spiking-neural-networks-against
|
Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters
|
2012.05321
|
https://arxiv.org/abs/2012.05321v1
|
https://arxiv.org/pdf/2012.05321v1.pdf
|
https://github.com/rda-ela/SNN-Adversarial-Attacks
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-from-an-exploring-demonstrator
|
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
|
2106.14866
|
https://arxiv.org/abs/2106.14866v2
|
https://arxiv.org/pdf/2106.14866v2.pdf
|
https://github.com/wenshuoguo/inverse-bandit-code-release
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mali-a-memory-efficient-and-reverse-accurate-1
|
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
|
2102.04668
|
https://arxiv.org/abs/2102.04668v2
|
https://arxiv.org/pdf/2102.04668v2.pdf
|
https://github.com/juntang-zhuang/TorchDiffEqPack
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/direct-design-of-biquad-filter-cascades-with
|
Direct design of biquad filter cascades with deep learning by sampling random polynomials
|
2110.03691
|
https://arxiv.org/abs/2110.03691v2
|
https://arxiv.org/pdf/2110.03691v2.pdf
|
https://github.com/csteinmetz1/iirnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/woodbury-transformations-for-deep-generative
|
Woodbury Transformations for Deep Generative Flows
|
2002.12229
|
https://arxiv.org/abs/2002.12229v3
|
https://arxiv.org/pdf/2002.12229v3.pdf
|
https://github.com/yolu1055/WoodburyTransformations
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/using-inverse-optimization-to-learn-cost
|
Using Inverse Optimization to Learn Cost Functions in Generalized Nash Games
|
2102.12415
|
https://arxiv.org/abs/2102.12415v1
|
https://arxiv.org/pdf/2102.12415v1.pdf
|
https://github.com/sallen7/IO_GNEP
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/causal-discovery-with-unobserved-confounding
|
Causal Discovery with Unobserved Confounding and non-Gaussian Data
|
2007.11131
|
https://arxiv.org/abs/2007.11131v2
|
https://arxiv.org/pdf/2007.11131v2.pdf
|
https://github.com/ysamwang/ngBap
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/swagan-a-style-based-wavelet-driven
|
SWAGAN: A Style-based Wavelet-driven Generative Model
|
2102.06108
|
https://arxiv.org/abs/2102.06108v1
|
https://arxiv.org/pdf/2102.06108v1.pdf
|
https://github.com/dkn16/stylegan2-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rounding-error-using-low-precision
|
Rounding error using low precision approximate random variables
|
2012.09739
|
https://arxiv.org/abs/2012.09739v1
|
https://arxiv.org/pdf/2012.09739v1.pdf
|
https://github.com/oliversheridanmethven/low_precision_approximate_random_variables
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/draw-your-neural-networks
|
Draw your Neural Networks
|
2012.09609
|
https://arxiv.org/abs/2012.09609v1
|
https://arxiv.org/pdf/2012.09609v1.pdf
|
https://github.com/jatinsha/sketch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/impact-of-non-normal-error-distributions-on
|
Impact of non-normal error distributions on the benchmarking and ranking of Quantum Machine Learning models
|
2004.02524
|
https://arxiv.org/abs/2004.02524v1
|
https://arxiv.org/pdf/2004.02524v1.pdf
|
https://github.com/ppernot/ML2020
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/analyzing-and-improving-the-image-quality-of
|
Analyzing and Improving the Image Quality of StyleGAN
|
1912.04958
|
https://arxiv.org/abs/1912.04958v2
|
https://arxiv.org/pdf/1912.04958v2.pdf
|
https://github.com/dkn16/stylegan2-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/training-effective-ensemble-on-imbalanced
|
Self-paced Ensemble for Highly Imbalanced Massive Data Classification
|
1909.03500
|
https://arxiv.org/abs/1909.03500v3
|
https://arxiv.org/pdf/1909.03500v3.pdf
|
https://github.com/ZhiningLiu1998/self-paced-ensemble
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/node-feature-extraction-by-self-supervised-1
|
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
|
2111.00064
|
https://arxiv.org/abs/2111.00064v3
|
https://arxiv.org/pdf/2111.00064v3.pdf
|
https://github.com/elichienxD/SAGN_with_SLE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-weighted-kendall-and-high-order-kernels
|
The Weighted Kendall and High-order Kernels for Permutations
|
1802.08526
|
http://arxiv.org/abs/1802.08526v2
|
http://arxiv.org/pdf/1802.08526v2.pdf
|
https://github.com/YunlongJiao/weightedkendall
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/collision-free-trajectory-optimization-in
|
Collision-Free Trajectory Optimization in Cluttered Environments Using Sums-of-Squares Programming
|
2404.05242
|
https://arxiv.org/abs/2404.05242v2
|
https://arxiv.org/pdf/2404.05242v2.pdf
|
https://github.com/lyl00/minimum_scaling_free_region
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/you-only-look-twice-rapid-multi-scale-object
|
You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery
|
1805.09512
|
http://arxiv.org/abs/1805.09512v1
|
http://arxiv.org/pdf/1805.09512v1.pdf
|
https://github.com/zk2ly/Glass_insulator_defect_detection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/chatgpt-for-digital-forensic-investigation
|
ChatGPT for Digital Forensic Investigation: The Good, The Bad, and The Unknown
|
2307.10195
|
https://arxiv.org/abs/2307.10195v1
|
https://arxiv.org/pdf/2307.10195v1.pdf
|
https://github.com/markscanlonucd/chatgpt-for-digital-forensics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bilinear-representation-for-language-based
|
Bilinear Representation for Language-based Image Editing Using Conditional Generative Adversarial Networks
|
1903.07499
|
http://arxiv.org/abs/1903.07499v1
|
http://arxiv.org/pdf/1903.07499v1.pdf
|
https://github.com/vtddggg/BilinearGAN_for_LBIE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/non-commutative-blahut-arimoto-algorithms
|
Computing Quantum Channel Capacities
|
1905.01286
|
https://arxiv.org/abs/1905.01286v4
|
https://arxiv.org/pdf/1905.01286v4.pdf
|
https://github.com/sagnikb/quantum-blahut-arimoto
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/beyond-part-models-person-retrieval-with
|
Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
|
1711.09349
|
http://arxiv.org/abs/1711.09349v3
|
http://arxiv.org/pdf/1711.09349v3.pdf
|
https://github.com/Mind23-2/MindCode-5/tree/main/pcb_rpp
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/convtransformer-a-convolutional-transformer
|
ConvTransformer: A Convolutional Transformer Network for Video Frame Synthesis
|
2011.10185
|
https://arxiv.org/abs/2011.10185v2
|
https://arxiv.org/pdf/2011.10185v2.pdf
|
https://github.com/harryzhu123/ConvTransformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/decoupling-semantic-context-and-color
|
Decoupling Semantic Context and Color Correlation with multi-class cross branch regularization
|
1810.07901
|
http://arxiv.org/abs/1810.07901v2
|
http://arxiv.org/pdf/1810.07901v2.pdf
|
https://github.com/tejgvsl/Color-constancy
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/visual-transformers-token-based-image
|
Visual Transformers: Token-based Image Representation and Processing for Computer Vision
|
2006.03677
|
https://arxiv.org/abs/2006.03677v4
|
https://arxiv.org/pdf/2006.03677v4.pdf
|
https://github.com/aws-samples/amazon-sagemaker-visual-transformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-by-fixing-solving-math-word-problems
|
Learning by Fixing: Solving Math Word Problems with Weak Supervision
|
2012.10582
|
https://arxiv.org/abs/2012.10582v2
|
https://arxiv.org/pdf/2012.10582v2.pdf
|
https://github.com/evelinehong/LBF
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-co-attention-network-for-multi-view
|
Deep Co-Attention Network for Multi-View Subspace Learning
|
2102.07751
|
https://arxiv.org/abs/2102.07751v1
|
https://arxiv.org/pdf/2102.07751v1.pdf
|
https://github.com/Leo02016/ANTS
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bridging-textual-and-tabular-data-for-cross
|
Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing
|
2012.12627
|
https://arxiv.org/abs/2012.12627v2
|
https://arxiv.org/pdf/2012.12627v2.pdf
|
https://github.com/salesforce/TabularSemanticParsing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/autoprof-i-an-automated-non-parametric-light
|
AutoProf -- I. An automated non-parametric light profile pipeline for modern galaxy surveys
|
2106.13809
|
https://arxiv.org/abs/2106.13809v2
|
https://arxiv.org/pdf/2106.13809v2.pdf
|
https://github.com/ConnorStoneAstro/AutoProf
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.