paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/3d-surface-reconstruction-from-multi-date
|
3D Surface Reconstruction From Multi-Date Satellite Images
|
2102.02502
|
https://arxiv.org/abs/2102.02502v2
|
https://arxiv.org/pdf/2102.02502v2.pdf
|
https://github.com/SBCV/SatelliteSurfaceReconstruction
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/flexible-behavior-trees-in-search-of-the
|
Flexible Behavior Trees: In search of the mythical HFSMBTH for Collaborative Autonomy in Robotics
|
2203.05389
|
https://arxiv.org/abs/2203.05389v1
|
https://arxiv.org/pdf/2203.05389v1.pdf
|
https://github.com/flexbe/flex_bt_turtlebot_demo
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/foreseeing-brain-graph-evolution-over-time
|
Foreseeing Brain Graph Evolution Over Time Using Deep Adversarial Network Normalizer
|
2009.11166
|
https://arxiv.org/abs/2009.11166v1
|
https://arxiv.org/pdf/2009.11166v1.pdf
|
https://github.com/basiralab/gGAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/define-delayed-feedback-based-immersive
|
DeFINE: Delayed Feedback based Immersive Navigation Environment for Studying Goal-Directed Human Navigation
|
2003.03133
|
https://arxiv.org/abs/2003.03133v2
|
https://arxiv.org/pdf/2003.03133v2.pdf
|
https://github.com/ktiwari9/define-VR
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/efficientnetv2-smaller-models-and-faster
|
EfficientNetV2: Smaller Models and Faster Training
|
2104.00298
|
https://arxiv.org/abs/2104.00298v3
|
https://arxiv.org/pdf/2104.00298v3.pdf
|
https://github.com/lukemelas/EfficientNet-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ntire-2020-challenge-on-real-world-image
|
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
|
2005.01996
|
https://arxiv.org/abs/2005.01996v1
|
https://arxiv.org/pdf/2005.01996v1.pdf
|
https://github.com/ArchieMeng/realsr-ncnn-vulkan-python
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/scilla-a-smart-contract-intermediate-level
|
Scilla: a Smart Contract Intermediate-Level LAnguage
|
1801.00687
|
https://arxiv.org/abs/1801.00687v1
|
https://arxiv.org/pdf/1801.00687v1.pdf
|
https://github.com/pirapira/ethereum-formal-verification-overview
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/model-free-price-bounds-under-dynamic-option
|
Model-free price bounds under dynamic option trading
|
2101.01024
|
https://arxiv.org/abs/2101.01024v2
|
https://arxiv.org/pdf/2101.01024v2.pdf
|
https://github.com/juliansester/dynamic_option_trading
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tensor-train-density-estimation
|
Tensor-Train Density Estimation
|
2108.00089
|
https://arxiv.org/abs/2108.00089v2
|
https://arxiv.org/pdf/2108.00089v2.pdf
|
https://github.com/stat-ml/TTDE
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/sparse-svm-for-sufficient-data-reduction
|
Sparse SVM for Sufficient Data Reduction
|
2005.13771
|
https://arxiv.org/abs/2005.13771v4
|
https://arxiv.org/pdf/2005.13771v4.pdf
|
https://github.com/ShenglongZhou/NSSVM
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/group-fisher-pruning-for-practical-network
|
Group Fisher Pruning for Practical Network Compression
|
2108.00708
|
https://arxiv.org/abs/2108.00708v1
|
https://arxiv.org/pdf/2108.00708v1.pdf
|
https://github.com/jshilong/FisherPruning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-general-framework-for-ensemble-distribution
|
A general framework for ensemble distribution distillation
|
2002.11531
|
https://arxiv.org/abs/2002.11531v2
|
https://arxiv.org/pdf/2002.11531v2.pdf
|
https://github.com/jackonelli/ensemble_distr_distillation
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-sketching-framework-for-reduced-data
|
A Sketching Framework for Reduced Data Transfer in Photon Counting Lidar
|
2102.08732
|
https://arxiv.org/abs/2102.08732v4
|
https://arxiv.org/pdf/2102.08732v4.pdf
|
https://gitlab.com/Tachella/sketched_lidar
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-gaussian-neural-process
|
The Gaussian Neural Process
|
2101.03606
|
https://arxiv.org/abs/2101.03606v1
|
https://arxiv.org/pdf/2101.03606v1.pdf
|
https://github.com/wesselb/NeuralProcesses.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multiple-attribute-text-style-transfer
|
Multiple-Attribute Text Style Transfer
|
1811.00552
|
https://arxiv.org/abs/1811.00552v2
|
https://arxiv.org/pdf/1811.00552v2.pdf
|
https://github.com/facebookresearch/MultipleAttributeTextRewriting
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/community-detection-in-sparse-time-evolving
|
Community detection in sparse time-evolving graphs with a dynamical Bethe-Hessian
|
2006.04510
|
https://arxiv.org/abs/2006.04510v2
|
https://arxiv.org/pdf/2006.04510v2.pdf
|
https://github.com/lorenzodallamico/CoDeBetHe.jl
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/logic-consistency-text-generation-from
|
Logic-Consistency Text Generation from Semantic Parses
|
2108.00577
|
https://arxiv.org/abs/2108.00577v1
|
https://arxiv.org/pdf/2108.00577v1.pdf
|
https://github.com/Ciaranshu/relogic
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-unified-framework-for-spectral-clustering
|
A unified framework for spectral clustering in sparse graphs
|
2003.09198
|
https://arxiv.org/abs/2003.09198v2
|
https://arxiv.org/pdf/2003.09198v2.pdf
|
https://github.com/lorenzodallamico/CoDeBetHe.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/3d-human-mesh-regression-with-dense-1
|
3D Human Mesh Regression with Dense Correspondence
|
2006.05734
|
https://arxiv.org/abs/2006.05734v2
|
https://arxiv.org/pdf/2006.05734v2.pdf
|
https://github.com/jiean001/models_m/tree/main/DecoMR
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/what-is-the-best-data-augmentation-approach
|
What is the best data augmentation for 3D brain tumor segmentation?
|
2010.13372
|
https://arxiv.org/abs/2010.13372v2
|
https://arxiv.org/pdf/2010.13372v2.pdf
|
https://github.com/mdciri/3D-augmentation-techniques
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/distributed-multi-object-tracking-under
|
Distributed Multi-object Tracking under Limited Field of View Sensors
|
2012.12990
|
https://arxiv.org/abs/2012.12990v2
|
https://arxiv.org/pdf/2012.12990v2.pdf
|
https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/automating-involutive-mcmc-using
|
Automating Involutive MCMC using Probabilistic and Differentiable Programming
|
2007.09871
|
https://arxiv.org/abs/2007.09871v2
|
https://arxiv.org/pdf/2007.09871v2.pdf
|
https://github.com/probcomp/GenTraceKernelDSL.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/optimization-free-test-time-adaptation-for
|
Optimization-Free Test-Time Adaptation for Cross-Person Activity Recognition
|
2310.18562
|
https://arxiv.org/abs/2310.18562v2
|
https://arxiv.org/pdf/2310.18562v2.pdf
|
https://github.com/Claydon-Wang/OFTTA
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generalized-universe-hierarchies-and-first
|
Generalized Universe Hierarchies and First-Class Universe Levels
|
2103.00223
|
https://arxiv.org/abs/2103.00223v4
|
https://arxiv.org/pdf/2103.00223v4.pdf
|
https://github.com/AndrasKovacs/universes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/help-me-identify-is-an-llm-vqa-system-all-we
|
Help Me Identify: Is an LLM+VQA System All We Need to Identify Visual Concepts?
|
2410.13651
|
https://arxiv.org/abs/2410.13651v1
|
https://arxiv.org/pdf/2410.13651v1.pdf
|
https://github.com/shailaja183/objectconceptlearning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/actioncomet-a-zero-shot-approach-to-learn
|
ActionCOMET: A Zero-shot Approach to Learn Image-specific Commonsense Concepts about Actions
|
2410.13662
|
https://arxiv.org/abs/2410.13662v1
|
https://arxiv.org/pdf/2410.13662v1.pdf
|
https://github.com/shailaja183/actionconceptlearning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/leaf-simulating-large-energy-aware-fog
|
LEAF: Simulating Large Energy-Aware Fog Computing Environments
|
2103.01170
|
https://arxiv.org/abs/2103.01170v1
|
https://arxiv.org/pdf/2103.01170v1.pdf
|
https://github.com/dos-group/leaf
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/towards-a-quality-metric-for-dense-light
|
Towards a quality metric for dense light fields
|
1704.07576
|
http://arxiv.org/abs/1704.07576v1
|
http://arxiv.org/pdf/1704.07576v1.pdf
|
https://github.com/mantiuk/pwcmp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/resa-recurrent-feature-shift-aggregator-for
|
RESA: Recurrent Feature-Shift Aggregator for Lane Detection
|
2008.13719
|
https://arxiv.org/abs/2008.13719v2
|
https://arxiv.org/pdf/2008.13719v2.pdf
|
https://github.com/ZJULearning/resa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exploiting-emotions-for-fake-news-detection
|
Mining Dual Emotion for Fake News Detection
|
1903.01728
|
https://arxiv.org/abs/1903.01728v4
|
https://arxiv.org/pdf/1903.01728v4.pdf
|
https://github.com/RMSnow/WWW2021
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/warm-up-cold-start-advertisements-improving
|
Warm Up Cold-start Advertisements: Improving CTR Predictions via Learning to Learn ID Embeddings
|
1904.11547
|
http://arxiv.org/abs/1904.11547v1
|
http://arxiv.org/pdf/1904.11547v1.pdf
|
https://github.com/Feiyang/MetaEmbedding
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/sequential-place-learning-heuristic-free-high
|
Sequential Place Learning: Heuristic-Free High-Performance Long-Term Place Recognition
|
2103.02074
|
https://arxiv.org/abs/2103.02074v1
|
https://arxiv.org/pdf/2103.02074v1.pdf
|
https://github.com/mchancan/deepseqslam
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fastcat-fast-cone-beam-ct-cbct-simulation
|
FastCAT: Fast Cone Beam CT (CBCT) Simulation
|
2011.04736
|
https://arxiv.org/abs/2011.04736v2
|
https://arxiv.org/pdf/2011.04736v2.pdf
|
https://github.com/jerichooconnell/fastCAT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ensemble-based-learning-of-turbulence-model
|
Ensemble Kalman method for learning turbulence models from indirect observation data
|
2202.05122
|
https://arxiv.org/abs/2202.05122v4
|
https://arxiv.org/pdf/2202.05122v4.pdf
|
https://github.com/xiaoh/DAFI
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/understanding-the-role-of-momentum-in-non
|
Momentum via Primal Averaging: Theoretical Insights and Learning Rate Schedules for Non-Convex Optimization
|
2010.00406
|
https://arxiv.org/abs/2010.00406v4
|
https://arxiv.org/pdf/2010.00406v4.pdf
|
https://github.com/facebookresearch/madgrad
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/preference-based-learning-for-user-guided-hzd
|
Preference-Based Learning for User-Guided HZD Gait Generation on Bipedal Walking Robots
|
2011.05424
|
https://arxiv.org/abs/2011.05424v2
|
https://arxiv.org/pdf/2011.05424v2.pdf
|
https://github.com/maegant/ICRA2021-LearningHZD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adaptivity-without-compromise-a-momentumized
|
Adaptivity without Compromise: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization
|
2101.11075
|
https://arxiv.org/abs/2101.11075v3
|
https://arxiv.org/pdf/2101.11075v3.pdf
|
https://github.com/facebookresearch/madgrad
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/room-classification-on-floor-plan-graphs
|
Room Classification on Floor Plan Graphs using Graph Neural Networks
|
2108.05947
|
https://arxiv.org/abs/2108.05947v1
|
https://arxiv.org/pdf/2108.05947v1.pdf
|
https://github.com/abpaudel/floorplan-graph
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-deep-perceptual-metric-for-3d-point-clouds
|
A deep perceptual metric for 3D point clouds
|
2102.12839
|
https://arxiv.org/abs/2102.12839v1
|
https://arxiv.org/pdf/2102.12839v1.pdf
|
https://github.com/mauriceqch/2021_pc_perceptual_loss
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/hamiltonian-simulation-with-random-inputs
|
Hamiltonian simulation with random inputs
|
2111.04773
|
https://arxiv.org/abs/2111.04773v1
|
https://arxiv.org/pdf/2111.04773v1.pdf
|
https://github.com/zhaoqthu/hamiltonian-simulation-with-random-inputs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/layer-2-atomic-cross-blockchain-function
|
Layer 2 Atomic Cross-Blockchain Function Calls
|
2005.09790
|
https://arxiv.org/abs/2005.09790v5
|
https://arxiv.org/pdf/2005.09790v5.pdf
|
https://github.com/ConsenSys/gpact
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/quantifying-covid-19-enforced-global-changes
|
Quantifying COVID-19 enforced global changes in atmospheric pollutants using cloud computing based remote sensing
|
2101.03523
|
https://arxiv.org/abs/2101.03523v3
|
https://arxiv.org/pdf/2101.03523v3.pdf
|
https://github.com/manmeet3591/gee_lockdown
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/visual-field-prediction-using-recurrent
|
Visual Field Prediction using Recurrent Neural Network
| null |
https://www.nature.com/articles/s41598-019-44852-6
|
https://www.nature.com/articles/s41598-019-44852-6.pdf
|
https://github.com/mohaEs/VFPrediction
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/a-crash-course-on-reinforcement-learning
|
A Crash Course on Reinforcement Learning
|
2103.04910
|
https://arxiv.org/abs/2103.04910v1
|
https://arxiv.org/pdf/2103.04910v1.pdf
|
https://github.com/FarnazAdib/Crash_course_on_RL
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/end-to-end-human-object-interaction-detection
|
End-to-End Human Object Interaction Detection with HOI Transformer
|
2103.04503
|
https://arxiv.org/abs/2103.04503v1
|
https://arxiv.org/pdf/2103.04503v1.pdf
|
https://github.com/bbepoch/HoiTransformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-high-fidelity-face-relighting-with
|
Towards High Fidelity Face Relighting with Realistic Shadows
|
2104.00825
|
https://arxiv.org/abs/2104.00825v2
|
https://arxiv.org/pdf/2104.00825v2.pdf
|
https://github.com/andrewhou1/Shadow-Mask-Face-Relighting
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/sdan-squared-deformable-alignment-network-for
|
SDAN: Squared Deformable Alignment Network for Learning Misaligned Optical Zoom
|
2104.00848
|
https://arxiv.org/abs/2104.00848v2
|
https://arxiv.org/pdf/2104.00848v2.pdf
|
https://github.com/MKFMIKU/SDAN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/lightningdot-pre-training-visual-semantic
|
LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval
|
2103.08784
|
https://arxiv.org/abs/2103.08784v2
|
https://arxiv.org/pdf/2103.08784v2.pdf
|
https://github.com/intersun/LightningDOT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bottom-up-and-top-down-reasoning-with
|
Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians
|
1507.05699
|
http://arxiv.org/abs/1507.05699v5
|
http://arxiv.org/pdf/1507.05699v5.pdf
|
https://github.com/peiyunh/rg-mpii
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/this-item-is-a-glaxefw-and-this-is-a-glaxuzb
|
Compositionality Through Language Transmission, using Artificial Neural Networks
|
2101.11739
|
https://arxiv.org/abs/2101.11739v2
|
https://arxiv.org/pdf/2101.11739v2.pdf
|
https://github.com/asappresearch/neural-ilm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-signal-centric-perspective-on-the-evolution
|
A Signal-Centric Perspective on the Evolution of Symbolic Communication
|
2103.16882
|
https://arxiv.org/abs/2103.16882v1
|
https://arxiv.org/pdf/2103.16882v1.pdf
|
https://github.com/FraLotito/evol-signal-comm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/trees-forests-chickens-and-eggs-when-and-why
|
Trees, Forests, Chickens, and Eggs: When and Why to Prune Trees in a Random Forest
|
2103.16700
|
https://arxiv.org/abs/2103.16700v1
|
https://arxiv.org/pdf/2103.16700v1.pdf
|
https://github.com/syzhou5/TreeDepth
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mean-shift-feature-transformer
|
Mean-Shift Feature Transformer
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Kobayashi_Mean-Shift_Feature_Transformer_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Kobayashi_Mean-Shift_Feature_Transformer_CVPR_2024_paper.pdf
|
https://github.com/tk1980/msftransformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mediapipe-hands-on-device-real-time-hand
|
MediaPipe Hands: On-device Real-time Hand Tracking
|
2006.10214
|
https://arxiv.org/abs/2006.10214v1
|
https://arxiv.org/pdf/2006.10214v1.pdf
|
https://github.com/vidursatija/BlazePalm
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/team-phoenix-at-wassa-2021-emotion-analysis
|
Team Phoenix at WASSA 2021: Emotion Analysis on News Stories with Pre-Trained Language Models
|
2103.06057
|
https://arxiv.org/abs/2103.06057v1
|
https://arxiv.org/pdf/2103.06057v1.pdf
|
https://github.com/yashbutala/WASSA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/continuous-weight-balancing
|
Continuous Weight Balancing
|
2103.16591
|
https://arxiv.org/abs/2103.16591v1
|
https://arxiv.org/pdf/2103.16591v1.pdf
|
https://github.com/Daniel-Wu/Continuous-Weight-Balancing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tanksworld-a-multi-agent-environment-for-ai
|
TanksWorld: A Multi-Agent Environment for AI Safety Research
|
2002.11174
|
https://arxiv.org/abs/2002.11174v1
|
https://arxiv.org/pdf/2002.11174v1.pdf
|
https://github.com/cgrivera/ai-safety-challenge
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/multi-scale-gcn-assisted-two-stage-network
|
Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and disc in peripapillary OCT images
|
2102.04799
|
https://arxiv.org/abs/2102.04799v1
|
https://arxiv.org/pdf/2102.04799v1.pdf
|
https://github.com/Jiaxuan-Li/MGU-Net
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/tlsan-time-aware-long-and-short-term-1
|
TLSAN: Time-aware Long- and Short-term Attention Network for Next-item Recommendation
|
2103.08971
|
https://arxiv.org/abs/2103.08971v1
|
https://arxiv.org/pdf/2103.08971v1.pdf
|
https://github.com/TsingZ0/TLSAN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/determining-the-maximum-information-gain-and
|
Determining the maximum information gain and optimising experimental design in neutron reflectometry using the Fisher information
|
2103.08973
|
https://arxiv.org/abs/2103.08973v3
|
https://arxiv.org/pdf/2103.08973v3.pdf
|
https://github.com/James-Durant/fisher-information
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/nonlinear-causal-discovery-via-kernel-anchor
|
Nonlinear Causal Discovery via Kernel Anchor Regression
|
2210.16775
|
https://arxiv.org/abs/2210.16775v1
|
https://arxiv.org/pdf/2210.16775v1.pdf
|
https://github.com/swq118/kernel-anchor-regression
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cardiologist-level-arrhythmia-detection-with
|
Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
|
1707.01836
|
http://arxiv.org/abs/1707.01836v1
|
http://arxiv.org/pdf/1707.01836v1.pdf
|
https://github.com/physhik/ecg-mit-bih
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/predicting-pedestrian-crossing-intention-with
|
Predicting Pedestrian Crossing Intention with Feature Fusion and Spatio-Temporal Attention
|
2104.05485
|
https://arxiv.org/abs/2104.05485v2
|
https://arxiv.org/pdf/2104.05485v2.pdf
|
https://github.com/ZeWang95/PedesPred
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/real-time-safety-assessment-of-dynamic
|
Real-time Safety Assessment of Dynamic Systems in Non-stationary Environments: A Review of Methods and Techniques
|
2304.12583
|
https://arxiv.org/abs/2304.12583v2
|
https://arxiv.org/pdf/2304.12583v2.pdf
|
https://github.com/thufdd/jiaolongdsms_datasets
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ghum-ghuml-generative-3d-human-shape-and
|
GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Xu_GHUM__GHUML_Generative_3D_Human_Shape_and_Articulated_Pose_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_GHUM__GHUML_Generative_3D_Human_Shape_and_Articulated_Pose_CVPR_2020_paper.pdf
|
https://github.com/google-research/google-research/tree/master/ghum
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/implicit-normalizing-flows-1
|
Implicit Normalizing Flows
|
2103.09527
|
https://arxiv.org/abs/2103.09527v1
|
https://arxiv.org/pdf/2103.09527v1.pdf
|
https://github.com/thu-ml/implicit-normalizing-flows
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hinglishnlp-at-semeval-2020-task-9-fine-tuned
|
HinglishNLP at SemEval-2020 Task 9: Fine-tuned Language Models for Hinglish Sentiment Detection
| null |
https://aclanthology.org/2020.semeval-1.119
|
https://aclanthology.org/2020.semeval-1.119.pdf
|
https://github.com/NirantK/Hinglish
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gated-multimodal-units-for-information-fusion
|
Gated Multimodal Units for Information Fusion
|
1702.01992
|
http://arxiv.org/abs/1702.01992v1
|
http://arxiv.org/pdf/1702.01992v1.pdf
|
https://github.com/IsaacRodgz/multimodal-transformers-movies
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/non-convex-optimization-for-self-calibration
|
Non-convex optimization for self-calibration of direction-dependent effects in radio interferometric imaging
|
1701.03689
|
http://arxiv.org/abs/1701.03689v2
|
http://arxiv.org/pdf/1701.03689v2.pdf
|
https://github.com/basp-group/SARA-CALIB-realdata
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/robust-mpc-for-linear-systems-with-parametric
|
Robust MPC for Linear Systems with Parametric and Additive Uncertainty: A Novel Constraint Tightening Approach
|
2007.00930
|
https://arxiv.org/abs/2007.00930v6
|
https://arxiv.org/pdf/2007.00930v6.pdf
|
https://github.com/monimoyb/RMPC_MixedUncertainty
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/safely-learning-to-control-the-constrained
|
Safely Learning to Control the Constrained Linear Quadratic Regulator
|
1809.10121
|
https://arxiv.org/abs/1809.10121v2
|
https://arxiv.org/pdf/1809.10121v2.pdf
|
https://github.com/monimoyb/RMPC_MixedUncertainty
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discovering-influential-factors-in
|
Discovering Influential Factors in Variational Autoencoder
|
1809.01804
|
http://arxiv.org/abs/1809.01804v2
|
http://arxiv.org/pdf/1809.01804v2.pdf
|
https://github.com/647LiuSQ/Discovering-influential-factors-in-variational-autoencoders
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/affordance-transfer-learning-for-human-object
|
Affordance Transfer Learning for Human-Object Interaction Detection
|
2104.02867
|
https://arxiv.org/abs/2104.02867v2
|
https://arxiv.org/pdf/2104.02867v2.pdf
|
https://github.com/zhihou7/HOI-CL-OneStage
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/visual-compositional-learning-for-human
|
Visual Compositional Learning for Human-Object Interaction Detection
|
2007.12407
|
https://arxiv.org/abs/2007.12407v2
|
https://arxiv.org/pdf/2007.12407v2.pdf
|
https://github.com/zhihou7/HOI-CL-OneStage
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/evars-gpr-event-triggered-augmented-refitting
|
EVARS-GPR: EVent-triggered Augmented Refitting of Gaussian Process Regression for Seasonal Data
|
2107.02463
|
https://arxiv.org/abs/2107.02463v1
|
https://arxiv.org/pdf/2107.02463v1.pdf
|
https://github.com/grimmlab/evars-gpr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/relational-gating-for-what-if-reasoning
|
Relational Gating for "What If" Reasoning
|
2105.13449
|
https://arxiv.org/abs/2105.13449v1
|
https://arxiv.org/pdf/2105.13449v1.pdf
|
https://github.com/HLR/RGN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/data-centric-semi-supervised-learning
|
Unsupervised Selective Labeling for More Effective Semi-Supervised Learning
|
2110.03006
|
https://arxiv.org/abs/2110.03006v4
|
https://arxiv.org/pdf/2110.03006v4.pdf
|
https://github.com/TonyLianLong/UnsupervisedSelectiveLabeling
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/linguistic-structures-as-weak-supervision-for
|
Linguistic Structures as Weak Supervision for Visual Scene Graph Generation
|
2105.13994
|
https://arxiv.org/abs/2105.13994v1
|
https://arxiv.org/pdf/2105.13994v1.pdf
|
https://github.com/yekeren/WSSGG
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/comprehensive-study-how-the-context
|
Comprehensive Study: How the Context Information of Different Granularity Affects Dialogue State Tracking?
|
2105.03571
|
https://arxiv.org/abs/2105.03571v2
|
https://arxiv.org/pdf/2105.03571v2.pdf
|
https://github.com/yangpuhai/Granularity-in-DST
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/computing-periodic-points-on-veech-surfaces
|
Computing Periodic Points on Veech Surfaces
|
2112.02698
|
https://arxiv.org/abs/2112.02698v2
|
https://arxiv.org/pdf/2112.02698v2.pdf
|
https://github.com/sfreedman67/bowman
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/overt-an-algorithm-for-safety-verification-of
|
OVERT: An Algorithm for Safety Verification of Neural Network Control Policies for Nonlinear Systems
|
2108.01220
|
https://arxiv.org/abs/2108.01220v1
|
https://arxiv.org/pdf/2108.01220v1.pdf
|
https://github.com/sisl/OVERTVerify.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/boosting-weakly-supervised-object-detection-1
|
Boosting Weakly Supervised Object Detection via Learning Bounding Box Adjusters
|
2108.01499
|
https://arxiv.org/abs/2108.01499v1
|
https://arxiv.org/pdf/2108.01499v1.pdf
|
https://github.com/DongSky/lbba_boosted_wsod
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/enhancement-of-a-state-of-the-art-rl-based
|
Enhancement of a state-of-the-art RL-based detection algorithm for Massive MIMO radars
|
2112.02628
|
https://arxiv.org/abs/2112.02628v2
|
https://arxiv.org/pdf/2112.02628v2.pdf
|
https://github.com/lisifra96/improved_rl_algorithm_mmimo_radar
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dialogue-summarization-with-supporting
|
Dialogue Summarization with Supporting Utterance Flow Modeling and Fact Regularization
|
2108.01268
|
https://arxiv.org/abs/2108.01268v1
|
https://arxiv.org/pdf/2108.01268v1.pdf
|
https://github.com/Chen-Wang-CUHK/DialSum-with-SUFM-and-FR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/breast-cancer-image-classification-on-wsi
|
Breast cancer image classification on WSI with spatial correlations
| null |
https://www.researchgate.net/publication/332790422_Breast_Cancer_Image_Classification_on_WSI_with_Spatial_Correlations?_sg=y0w4GzUN4IH2Q8xVra4yYZwWptcdTEsbyVxAuDTNmT5f5gvlcbpGKI5Ccj-DAgjHtPHJ6NWxpVbPwiUkosEDaaAsKRu_sBOrPQytuF_O.m_8mNN692O90t0LPpasc9b9qVfIP8Wz6jkFgn9Ld5bRPPoMuIK6lEQ93j9hlKrwJRk1folGO0m1Ix7961QKt7g
|
https://www.researchgate.net/publication/332790422_Breast_Cancer_Image_Classification_on_WSI_with_Spatial_Correlations?_sg=y0w4GzUN4IH2Q8xVra4yYZwWptcdTEsbyVxAuDTNmT5f5gvlcbpGKI5Ccj-DAgjHtPHJ6NWxpVbPwiUkosEDaaAsKRu_sBOrPQytuF_O.m_8mNN692O90t0LPpasc9b9qVfIP8Wz6jkFgn9Ld5bRPPoMuIK6lEQ93j9hlKrwJRk1folGO0m1Ix7961QKt7g
|
https://github.com/dong100136/Breast-Cancer-Image-Classification-On-WSI-With-Spatial-Correlations
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/meta-pu-an-arbitrary-scale-upsampling-network
|
Meta-PU: An Arbitrary-Scale Upsampling Network for Point Cloud
|
2102.04317
|
https://arxiv.org/abs/2102.04317v1
|
https://arxiv.org/pdf/2102.04317v1.pdf
|
https://github.com/pleaseconnectwifi/Meta-PU
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adapting-membership-inference-attacks-to-gnn
|
Adapting Membership Inference Attacks to GNN for Graph Classification: Approaches and Implications
|
2110.08760
|
https://arxiv.org/abs/2110.08760v1
|
https://arxiv.org/pdf/2110.08760v1.pdf
|
https://github.com/trustworthygnn/mia-gnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-character-level-decoder-without-explicit
|
A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation
|
1603.06147
|
http://arxiv.org/abs/1603.06147v4
|
http://arxiv.org/pdf/1603.06147v4.pdf
|
https://github.com/nyu-dl/dl4mt-cdec
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/voicefixer-a-unified-framework-for-high
|
VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration
|
2204.05841
|
https://arxiv.org/abs/2204.05841v2
|
https://arxiv.org/pdf/2204.05841v2.pdf
|
https://github.com/haoheliu/voicefixer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-generalized-spoof-cues-for-face-anti
|
Learning Generalized Spoof Cues for Face Anti-spoofing
|
2005.03922
|
https://arxiv.org/abs/2005.03922v1
|
https://arxiv.org/pdf/2005.03922v1.pdf
|
https://github.com/mortezagolzan/Face-Anti-Spoofing
| false
| false
| true
|
paddle
|
https://paperswithcode.com/paper/detecting-fast-radio-bursts-in-the-milky-way
|
Detecting Fast Radio Bursts in the Milky Way
|
2112.02233
|
https://arxiv.org/abs/2112.02233v1
|
https://arxiv.org/pdf/2112.02233v1.pdf
|
https://github.com/cmlflynn/milkyway-frbs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/imagenet-21k-pretraining-for-the-masses
|
ImageNet-21K Pretraining for the Masses
|
2104.10972
|
https://arxiv.org/abs/2104.10972v4
|
https://arxiv.org/pdf/2104.10972v4.pdf
|
https://github.com/Alibaba-MIIL/ImageNet21K
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lifting-monocular-events-to-3d-human-poses
|
Lifting Monocular Events to 3D Human Poses
|
2104.10609
|
https://arxiv.org/abs/2104.10609v1
|
https://arxiv.org/pdf/2104.10609v1.pdf
|
https://github.com/IIT-PAVIS/lifting_events_to_3d_hpe
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/on-convergence-rates-of-adaptive-ensemble
|
On convergence rates of adaptive ensemble Kalman inversion for linear ill-posed problems
|
2104.10895
|
https://arxiv.org/abs/2104.10895v5
|
https://arxiv.org/pdf/2104.10895v5.pdf
|
https://github.com/FabianKP/adaptive_eki
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gender-lost-in-translation-how-bridging-the
|
Gender Lost In Translation: How Bridging The Gap Between Languages Affects Gender Bias in Zero-Shot Multilingual Translation
|
2305.16935
|
https://arxiv.org/abs/2305.16935v1
|
https://arxiv.org/pdf/2305.16935v1.pdf
|
https://github.com/lenacabrera/gb_mnmt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/novel-models-for-multiple-dependent
|
Novel Models for Multiple Dependent Heteroskedastic Time Series
|
2310.17760
|
https://arxiv.org/abs/2310.17760v1
|
https://arxiv.org/pdf/2310.17760v1.pdf
|
https://github.com/13204942/stat40710
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/kids-1000-methodology-modelling-and-inference
|
KiDS-1000 Methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis
|
2007.01844
|
https://arxiv.org/abs/2007.01844v2
|
https://arxiv.org/pdf/2007.01844v2.pdf
|
https://github.com/kids-wl/cat_to_obs_k1000_p1
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/kids-1000-cosmology-multi-probe-weak
|
KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints
|
2007.15632
|
https://arxiv.org/abs/2007.15632v2
|
https://arxiv.org/pdf/2007.15632v2.pdf
|
https://github.com/kids-wl/cat_to_obs_k1000_p1
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/diverse-beam-search-decoding-diverse
|
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models
|
1610.02424
|
http://arxiv.org/abs/1610.02424v2
|
http://arxiv.org/pdf/1610.02424v2.pdf
|
https://github.com/StatNLP/ada4asr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-convnet-for-the-2020s
|
A ConvNet for the 2020s
|
2201.03545
|
https://arxiv.org/abs/2201.03545v2
|
https://arxiv.org/pdf/2201.03545v2.pdf
|
https://github.com/BR-IDL/PaddleViT/tree/develop/image_classification/ConvNeXt
| false
| false
| false
|
paddle
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.