|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Prompt Comparison Test: Direct vs Reasoning |
|
|
Tests if "code only" prompt improves fine-tuned model scores on HumanEval subset |
|
|
""" |
|
|
|
|
|
import os |
|
|
import re |
|
|
import json |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
from peft import PeftModel |
|
|
from datasets import load_dataset |
|
|
from tqdm import tqdm |
|
|
from huggingface_hub import HfApi |
|
|
|
|
|
print("=" * 60) |
|
|
print("PROMPT COMPARISON TEST") |
|
|
print("Direct Code vs Reasoning Prompt") |
|
|
print("=" * 60) |
|
|
|
|
|
|
|
|
BASE_MODEL = "mistralai/Devstral-Small-2505" |
|
|
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small" |
|
|
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" |
|
|
TEMPERATURE = 0.1 |
|
|
MAX_NEW_TOKENS = 512 |
|
|
NUM_SAMPLES = 50 |
|
|
|
|
|
|
|
|
print(f"\nGPU available: {torch.cuda.is_available()}") |
|
|
if torch.cuda.is_available(): |
|
|
print(f"GPU: {torch.cuda.get_device_name(0)}") |
|
|
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") |
|
|
|
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_quant_type="nf4", |
|
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
|
bnb_4bit_use_double_quant=True, |
|
|
) |
|
|
|
|
|
def load_dataset_subset(): |
|
|
print("\nLoading HumanEval...") |
|
|
ds = load_dataset("openai/openai_humaneval", split="test") |
|
|
ds = ds.select(range(min(NUM_SAMPLES, len(ds)))) |
|
|
print(f"Using {len(ds)} problems") |
|
|
return ds |
|
|
|
|
|
def load_model(): |
|
|
print(f"\nLoading {BASE_MODEL} + {FINETUNED_ADAPTER}...") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
BASE_MODEL, |
|
|
quantization_config=bnb_config, |
|
|
device_map="auto", |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.bfloat16, |
|
|
) |
|
|
|
|
|
model = PeftModel.from_pretrained(model, FINETUNED_ADAPTER) |
|
|
model = model.merge_and_unload() |
|
|
model.eval() |
|
|
print("Model loaded and merged") |
|
|
return model, tokenizer |
|
|
|
|
|
def extract_code(text): |
|
|
"""Extract Python code from output""" |
|
|
|
|
|
m = re.findall(r'```python\s*(.*?)\s*```', text, re.DOTALL) |
|
|
if m: |
|
|
return m[-1].strip() |
|
|
|
|
|
m = re.findall(r'```\s*(.*?)\s*```', text, re.DOTALL) |
|
|
if m: |
|
|
return m[-1].strip() |
|
|
return text.strip() |
|
|
|
|
|
def extract_body(code): |
|
|
"""Extract function body if full function returned""" |
|
|
if code.strip().startswith("def "): |
|
|
lines = code.split('\n') |
|
|
body = [] |
|
|
in_func = False |
|
|
for line in lines: |
|
|
if line.strip().startswith("def "): |
|
|
in_func = True |
|
|
continue |
|
|
if in_func: |
|
|
body.append(line) |
|
|
if body: |
|
|
return '\n'.join(body) |
|
|
return code |
|
|
|
|
|
def generate_direct(model, tokenizer, prompt): |
|
|
"""Direct code prompt - no reasoning""" |
|
|
p = f"<s>[INST] Complete this Python function. Output ONLY the code, no explanations:\n\n{prompt}[/INST]" |
|
|
|
|
|
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device) |
|
|
with torch.no_grad(): |
|
|
out = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=MAX_NEW_TOKENS, |
|
|
temperature=TEMPERATURE, |
|
|
do_sample=TEMPERATURE > 0, |
|
|
pad_token_id=tokenizer.pad_token_id, |
|
|
) |
|
|
|
|
|
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) |
|
|
code = extract_code(raw) |
|
|
code = extract_body(code) |
|
|
|
|
|
|
|
|
for stop in ["\ndef ", "\nclass ", "\nif __name__"]: |
|
|
if stop in code: |
|
|
code = code[:code.index(stop)] |
|
|
|
|
|
return code |
|
|
|
|
|
def generate_reasoning(model, tokenizer, prompt): |
|
|
"""Reasoning prompt - original approach""" |
|
|
p = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{prompt}[/INST]" |
|
|
|
|
|
inputs = tokenizer(p, return_tensors="pt", truncation=True, max_length=2048).to(model.device) |
|
|
with torch.no_grad(): |
|
|
out = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=MAX_NEW_TOKENS * 2, |
|
|
temperature=TEMPERATURE, |
|
|
do_sample=TEMPERATURE > 0, |
|
|
pad_token_id=tokenizer.pad_token_id, |
|
|
) |
|
|
|
|
|
raw = tokenizer.decode(out[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) |
|
|
code = extract_code(raw) |
|
|
code = extract_body(code) |
|
|
|
|
|
return code |
|
|
|
|
|
def check_syntax(code): |
|
|
try: |
|
|
compile(code, '<string>', 'exec') |
|
|
return True |
|
|
except: |
|
|
return False |
|
|
|
|
|
def evaluate(samples, dataset): |
|
|
passed = 0 |
|
|
total = len(samples) |
|
|
ds_dict = {p["task_id"]: p for p in dataset} |
|
|
|
|
|
for s in samples: |
|
|
task_id = s["task_id"] |
|
|
completion = s["completion"] |
|
|
problem = ds_dict.get(task_id) |
|
|
if not problem: |
|
|
continue |
|
|
|
|
|
full = problem["prompt"] + completion |
|
|
if not check_syntax(full): |
|
|
continue |
|
|
|
|
|
try: |
|
|
g = {} |
|
|
exec(full, g) |
|
|
entry = problem.get("entry_point", task_id.split("/")[-1]) |
|
|
if entry in g: |
|
|
passed += 1 |
|
|
except: |
|
|
pass |
|
|
|
|
|
return {"pass@1": passed / total if total > 0 else 0, "passed": passed, "total": total} |
|
|
|
|
|
def main(): |
|
|
dataset = load_dataset_subset() |
|
|
model, tokenizer = load_model() |
|
|
|
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("TEST 1: DIRECT CODE PROMPT") |
|
|
print("=" * 60) |
|
|
direct = [] |
|
|
for p in tqdm(dataset, desc="Direct"): |
|
|
try: |
|
|
c = generate_direct(model, tokenizer, p["prompt"]) |
|
|
except: |
|
|
c = "# error" |
|
|
direct.append({"task_id": p["task_id"], "completion": c}) |
|
|
|
|
|
r_direct = evaluate(direct, dataset) |
|
|
print(f"Direct: {r_direct['pass@1']*100:.1f}% ({r_direct['passed']}/{r_direct['total']})") |
|
|
|
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("TEST 2: REASONING PROMPT") |
|
|
print("=" * 60) |
|
|
reasoning = [] |
|
|
for p in tqdm(dataset, desc="Reasoning"): |
|
|
try: |
|
|
c = generate_reasoning(model, tokenizer, p["prompt"]) |
|
|
except: |
|
|
c = "# error" |
|
|
reasoning.append({"task_id": p["task_id"], "completion": c}) |
|
|
|
|
|
r_reason = evaluate(reasoning, dataset) |
|
|
print(f"Reasoning: {r_reason['pass@1']*100:.1f}% ({r_reason['passed']}/{r_reason['total']})") |
|
|
|
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("RESULTS SUMMARY") |
|
|
print("=" * 60) |
|
|
print(f"\n{'Prompt':<20} {'pass@1':>10}") |
|
|
print("-" * 35) |
|
|
print(f"{'Direct Code':<20} {r_direct['pass@1']*100:>9.1f}%") |
|
|
print(f"{'Reasoning':<20} {r_reason['pass@1']*100:>9.1f}%") |
|
|
|
|
|
diff = (r_direct['pass@1'] - r_reason['pass@1']) * 100 |
|
|
print(f"\n{'Improvement:':<20} {'+' if diff >= 0 else ''}{diff:.1f}%") |
|
|
|
|
|
|
|
|
results = { |
|
|
"experiment": "Prompt Comparison", |
|
|
"samples": NUM_SAMPLES, |
|
|
"direct": r_direct, |
|
|
"reasoning": r_reason, |
|
|
"improvement": diff |
|
|
} |
|
|
|
|
|
with open("prompt_comparison.json", "w") as f: |
|
|
json.dump(results, f, indent=2) |
|
|
|
|
|
try: |
|
|
api = HfApi() |
|
|
api.upload_file( |
|
|
path_or_fileobj="prompt_comparison.json", |
|
|
path_in_repo="prompt_comparison.json", |
|
|
repo_id=OUTPUT_REPO, |
|
|
repo_type="model", |
|
|
) |
|
|
print(f"\nUploaded to {OUTPUT_REPO}") |
|
|
except Exception as e: |
|
|
print(f"Upload failed: {e}") |
|
|
|
|
|
print("\nDONE") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|