background
stringlengths
19
2.63k
We read with interest the article by di Cecco et al. (2018), but have reservations about the usefulness of the latent class model specifically for estimating overcoverage. In particular, we question the interpretation of the parameters of the fitted latent class model.
Recent advances in machine learning and their applications have lead to the development of diverse structure-property relationship models for crucial chemical properties, and the solvation free energy is one of them. Here, we introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic interactions. The novelty of the proposed model consists of a simple architecture: two encoding functions extract atomic feature vectors from the given chemical structure, while the inner product between two atomistic features calculates their interactions. The results on 6,493 experimental measurements achieve outstanding performance and transferability for enlarging training data due to its solvent-non-specific nature. Analysis of the interaction map shows there is a great potential that our model reproduces group contributions on the solvation energy, which makes us believe that the model not only provides the predicted target property but also gives us more detailed physicochemical insights.
High-dimensional k-sample comparison is a common applied problem. We construct a class of easy-to-implement nonparametric distribution-free tests based on new tools and unexplored connections with spectral graph theory. The test is shown to possess various desirable properties along with a characteristic exploratory flavor that has practical consequences. The numerical examples show that our method works surprisingly well under a broad range of realistic situations.
Millions of young people are not immunized in low- and middle-income (LMI) countries because of low vaccine availability resulting from inefficiencies in cold supply chains. We create supply chain network design and distribution models to address the unique characteristics and challenges facing vaccine supply chains in LMI countries. The models capture the uncertainties of demand for vaccinations and the resulting impacts on immunization, the unique challenges of vaccine administration (such as open vial wastage), the interactions between technological improvements of vaccines and immunizations, and the trade-offs between immunization coverage rates and available resources. The objective is to maximize both the percentage of fully immunized children and the vaccine availability in clinics. Our research examines how these two metrics are affected by three factors: number of tiers in the supply chain, vaccine vial size, and new vaccine technologies. We tested the model using Niger's Expanded Program on Immunization, which is sponsored by the World Health Organization. We make many observations and recommendations to help LMI countries increase their immunization coverage.
In many practical tasks it is needed to estimate an effect of treatment on individual level. For example, in medicine it is essential to determine the patients that would benefit from a certain medicament. In marketing, knowing the persons that are likely to buy a new product would reduce the amount of spam. In this chapter, we review the methods to estimate an individual treatment effect from a randomized trial, i.e., an experiment when a part of individuals receives a new treatment, while the others do not. Finally, it is shown that new efficient methods are needed in this domain.
Networks are a widely-used tool to investigate the large-scale connectivity structure in complex systems and graphons have been proposed as an infinite size limit of dense networks. The detection of communities or other meso-scale structures is a prominent topic in network science as it allows the identification of functional building blocks in complex systems. When such building blocks may be present in graphons is an open question. In this paper, we define a graphon-modularity and demonstrate that it can be maximised to detect communities in graphons. We then investigate specific synthetic graphons and show that they may show a wide range of different community structures. We also reformulate the graphon-modularity maximisation as a continuous optimisation problem and so prove the optimal community structure or lack thereof for some graphons, something that is usually not possible for networks. Furthermore, we demonstrate that estimating a graphon from network data as an intermediate step can improve the detection of communities, in comparison with exclusively maximising the modularity of the network. While the choice of graphon-estimator may strongly influence the accord between the community structure of a network and its estimated graphon, we find that there is a substantial overlap if an appropriate estimator is used. Our study demonstrates that community detection for graphons is possible and may serve as a privacy-preserving way to cluster network data.
We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.
This article proposes a generalisation of the delete-$d$ jackknife to solve hyperparameter selection problems for time series. This novel technique is compatible with dependent data since it substitutes the jackknife removal step with a fictitious deletion, wherein observed datapoints are replaced with artificial missing values. In order to emphasise this point, I called this methodology artificial delete-$d$ jackknife. As an illustration, it is used to regulate vector autoregressions with an elastic-net penalty on the coefficients. A software implementation, ElasticNetVAR.jl, is available on GitHub.
For many practical problems, the regression models follow the strong heredity property (also known as the marginality), which means they include parent main effects when a second-order effect is present. Existing methods rely mostly on special penalty functions or algorithms to enforce the strong heredity in variable selection. We propose a novel hierarchical standardization procedure to maintain strong heredity in variable selection. Our method is effortless to implement and is applicable to any variable selection method for any type of regression. The performance of the hierarchical standardization is comparable to that of the regular standardization. We also provide robustness checks and real data analysis to illustrate the merits of our method.
Gelman and Rubin's (1992) convergence diagnostic is one of the most popular methods for terminating a Markov chain Monte Carlo (MCMC) sampler. Since the seminal paper, researchers have developed sophisticated methods for estimating variance of Monte Carlo averages. We show that these estimators find immediate use in the Gelman-Rubin statistic, a connection not previously established in the literature. We incorporate these estimators to upgrade both the univariate and multivariate Gelman-Rubin statistics, leading to improved stability in MCMC termination time. An immediate advantage is that our new Gelman-Rubin statistic can be calculated for a single chain. In addition, we establish a one-to-one relationship between the Gelman-Rubin statistic and effective sample size. Leveraging this relationship, we develop a principled termination criterion for the Gelman-Rubin statistic. Finally, we demonstrate the utility of our improved diagnostic via examples.
BACKGROUND. The clinical effectiveness of primary prevention implantable cardioverter defibrillator (ICD) therapy is under debate. It is urgently needed to better identify patients who benefit from prophylactic ICD therapy. The EUropean Comparative Effectiveness Research to Assess the Use of Primary ProphylacTic Implantable Cardioverter Defibrillators (EU-CERT-ICD) completed in 2019 will assess this issue. SUMMARY. The EU-CERT-ICD is a prospective investigator-initiated non-randomized, controlled, multicenter observational cohort study done in 44 centers across 15 European countries. A total of 2327 patients with heart failure due to ischemic heart disease or dilated cardiomyopathy indicated for primary prophylactic ICD implantation were recruited between 2014 and 2018 (>1500 patients at first ICD implantation, >750 patients non-randomized non-ICD control group). The primary endpoint was all-cause mortality, first appropriate shock was co-primary endpoint. At baseline, all patients underwent 12-lead ECG and Holter-ECG analysis using multiple advanced methods for risk stratification as well as documentation of clinical characteristics and laboratory values. The EU-CERT-ICD data will provide much needed information on the survival benefit of preventive ICD therapy and expand on previous prospective risk stratification studies which showed very good applicability of clinical parameters and advanced risk stratifiers in order to define patient subgroups with above or below average ICD benefit. CONCLUSION. The EU-CERT-ICD study will provide new and current data about effectiveness of primary prophylactic ICD implantation. The study also aims for improved risk stratification and patient selection using clinical risk markers in general, and advanced ECG risk markers in particular.
We consider balanced one-, two- and three-way ANOVA models to test the hypothesis that the fixed factor A has no effect. The other factors are fixed or random. We determine the noncentrality parameter for the exact F-test, describe its minimal value by a sharp lower bound, and thus we can guarantee the worst case power for the F-test. These results allow us to compute the minimal sample size. We also provide a structural result for the minimum sample size, proving a conjecture on the optimal experimental design.
The age dynamics of sexual partnership formation determine patterns of sexually transmitted disease transmission and have long been a focus of researchers studying human immunodeficiency virus. Data on self-reported sexual partner age distributions are available from a variety of sources. We sought to explore statistical models that accurately predict the distribution of sexual partner ages over age and sex. We identified which probability distributions and outcome specifications best captured variation in partner age and quantified the benefits of modelling these data using distributional regression. We found that distributional regression with a sinh-arcsinh distribution replicated observed partner age distributions most accurately across three geographically diverse data sets. This framework can be extended with well-known hierarchical modelling tools and can help improve estimates of sexual age-mixing dynamics.
We portray the evolution of the Covid-19 epidemic during the crisis of March-April 2020 in the Paris area, by analyzing the medical emergency calls received by the EMS of the four central departments of this area (Centre 15 of SAMU 75, 92, 93 and 94). Our study reveals strong dissimilarities between these departments. We show that the logarithm of each epidemic observable can be approximated by a piecewise linear function of time. This allows us to distinguish the different phases of the epidemic, and to identify the delay between sanitary measures and their influence on the load of EMS. This also leads to an algorithm, allowing one to detect epidemic resurgences. We rely on a transport PDE epidemiological model, and we use methods from Perron-Frobenius theory and tropical geometry.
We propose a Bayesian physics-informed neural network (B-PINN) to solve both forward and inverse nonlinear problems described by partial differential equations (PDEs) and noisy data. In this Bayesian framework, the Bayesian neural network (BNN) combined with a PINN for PDEs serves as the prior while the Hamiltonian Monte Carlo (HMC) or the variational inference (VI) could serve as an estimator of the posterior. B-PINNs make use of both physical laws and scattered noisy measurements to provide predictions and quantify the aleatoric uncertainty arising from the noisy data in the Bayesian framework. Compared with PINNs, in addition to uncertainty quantification, B-PINNs obtain more accurate predictions in scenarios with large noise due to their capability of avoiding overfitting. We conduct a systematic comparison between the two different approaches for the B-PINN posterior estimation (i.e., HMC or VI), along with dropout used for quantifying uncertainty in deep neural networks. Our experiments show that HMC is more suitable than VI for the B-PINNs posterior estimation, while dropout employed in PINNs can hardly provide accurate predictions with reasonable uncertainty. Finally, we replace the BNN in the prior with a truncated Karhunen-Lo\`eve (KL) expansion combined with HMC or a deep normalizing flow (DNF) model as posterior estimators. The KL is as accurate as BNN and much faster but this framework cannot be easily extended to high-dimensional problems unlike the BNN based framework.
We present an active-learning strategy for undergraduates that applies Bayesian analysis to candy-covered chocolate $\text{m&m's}^\circledR$. The exercise is best suited for small class sizes and tutorial settings, after students have been introduced to the concepts of Bayesian statistics. The exercise takes advantage of the non-uniform distribution of $\text{m&m's}^\circledR~$ colours, and the difference in distributions made at two different factories. In this paper, we provide the intended learning outcomes, lesson plan and step-by-step guide for instruction, and open-source teaching materials. We also suggest an extension to the exercise for the graduate-level, which incorporates hierarchical Bayesian analysis.
The human body is able to generate a diverse set of high affinity antibodies, the soluble form of B cell receptors (BCRs), that bind to and neutralize invading pathogens. The natural development of BCRs must be understood in order to design vaccines for highly mutable pathogens such as influenza and HIV. BCR diversity is induced by naturally occurring combinatorial "V(D)J" rearrangement, mutation, and selection processes. Most current methods for BCR sequence analysis focus on separately modeling the above processes. Statistical phylogenetic methods are often used to model the mutational dynamics of BCR sequence data, but these techniques do not consider all the complexities associated with B cell diversification such as the V(D)J rearrangement process. In particular, standard phylogenetic approaches assume the DNA bases of the progenitor (or "naive") sequence arise independently and according to the same distribution, ignoring the complexities of V(D)J rearrangement. In this paper, we introduce a novel approach to Bayesian phylogenetic inference for BCR sequences that is based on a phylogenetic hidden Markov model (phylo-HMM). This technique not only integrates a naive rearrangement model with a phylogenetic model for BCR sequence evolution but also naturally accounts for uncertainty in all unobserved variables, including the phylogenetic tree, via posterior distribution sampling.
Stein discrepancies (SDs) monitor convergence and non-convergence in approximate inference when exact integration and sampling are intractable. However, the computation of a Stein discrepancy can be prohibitive if the Stein operator - often a sum over likelihood terms or potentials - is expensive to evaluate. To address this deficiency, we show that stochastic Stein discrepancies (SSDs) based on subsampled approximations of the Stein operator inherit the convergence control properties of standard SDs with probability 1. Along the way, we establish the convergence of Stein variational gradient descent (SVGD) on unbounded domains, resolving an open question of Liu (2017). In our experiments with biased Markov chain Monte Carlo (MCMC) hyperparameter tuning, approximate MCMC sampler selection, and stochastic SVGD, SSDs deliver comparable inferences to standard SDs with orders of magnitude fewer likelihood evaluations.
Random graph alignment refers to recovering the underlying vertex correspondence between two random graphs with correlated edges. This can be viewed as an average-case and noisy version of the well-known NP-hard graph isomorphism problem. For the correlated Erd\"os-R\'enyi model, we prove an impossibility result for partial recovery in the sparse regime, with constant average degree and correlation, as well as a general bound on the maximal reachable overlap. Our bound is tight in the noiseless case (the graph isomorphism problem) and we conjecture that it is still tight with noise. Our proof technique relies on a careful application of the probabilistic method to build automorphisms between tree components of a subcritical Erd\"os-R\'enyi graph.
Cyanure is an open-source C++ software package with a Python interface. The goal of Cyanure is to provide state-of-the-art solvers for learning linear models, based on stochastic variance-reduced stochastic optimization with acceleration mechanisms. Cyanure can handle a large variety of loss functions (logistic, square, squared hinge, multinomial logistic) and regularization functions (l_2, l_1, elastic-net, fused Lasso, multi-task group Lasso). It provides a simple Python API, which is very close to that of scikit-learn, which should be extended to other languages such as R or Matlab in a near future.
Two decades ago, Leo Breiman identified two cultures for statistical modeling. The data modeling culture (DMC) refers to practices aiming to conduct statistical inference on one or several quantities of interest. The algorithmic modeling culture (AMC) refers to practices defining a machine-learning (ML) procedure that generates accurate predictions about an event of interest. Breiman argued that statisticians should give more attention to AMC than to DMC, because of the strengths of ML in adapting to data. While twenty years later, DMC has lost some of its dominant role in statistics because of the data-science revolution, we observe that this culture is still the leading practice in the natural and social sciences. DMC is the modus operandi because of the influence of the established scientific method, called the hypothetico-deductive scientific method. Despite the incompatibilities of AMC with this scientific method, among some research groups, AMC and DMC cultures mix intensely. We argue that this mixing has formed a fertile spawning pool for a mutated culture that we called the hybrid modeling culture (HMC) where prediction and inference have fused into new procedures where they reinforce one another. This article identifies key characteristics of HMC, thereby facilitating the scientific endeavor and fueling the evolution of statistical cultures towards better practices. By better, we mean increasingly reliable, valid, and efficient statistical practices in analyzing causal relationships. In combining inference and prediction, the result of HMC is that the distinction between prediction and inference, taken to its limit, melts away. We qualify our melting-away argument by describing three HMC practices, where each practice captures an aspect of the scientific cycle, namely, ML for causal inference, ML for data acquisition, and ML for theory prediction.
Training neural networks involves finding minima of a high-dimensional non-convex loss function. Knowledge of the structure of this energy landscape is sparse. Relaxing from linear interpolations, we construct continuous paths between minima of recent neural network architectures on CIFAR10 and CIFAR100. Surprisingly, the paths are essentially flat in both the training and test landscapes. This implies that neural networks have enough capacity for structural changes, or that these changes are small between minima. Also, each minimum has at least one vanishing Hessian eigenvalue in addition to those resulting from trivial invariance.
In this discussion, we compare the choice of seeded intervals and that of random intervals for change point segmentation from practical, statistical and computational perspectives. Furthermore, we investigate a novel estimator of the noise level, which improves many existing model selection procedures (including the steepest drop to low levels), particularly for challenging frequent change point scenarios with low signal-to-noise ratios.
We make the first steps towards generalizing the theory of stochastic block models, in the sparse regime, towards a model where the discrete community structure is replaced by an underlying geometry. We consider a geometric random graph over a homogeneous metric space where the probability of two vertices to be connected is an arbitrary function of the distance. We give sufficient conditions under which the locations can be recovered (up to an isomorphism of the space) in the sparse regime. Moreover, we define a geometric counterpart of the model of flow of information on trees, due to Mossel and Peres, in which one considers a branching random walk on a sphere and the goal is to recover the location of the root based on the locations of leaves. We give some sufficient conditions for percolation and for non-percolation of information in this model.
Personalizing drug prescriptions in cancer care based on genomic information requires associating genomic markers with treatment effects. This is an unsolved challenge requiring genomic patient data in yet unavailable volumes as well as appropriate quantitative methods. We attempt to solve this challenge for an experimental proxy for which sufficient data is available: 42 drugs tested on 1018 cancer cell lines. Our goal is to develop a method to identify the drug that is most promising based on a cell line's genomic information. For this, we need to identify for each drug the machine learning method, choice of hyperparameters and genomic features for optimal predictive performance. We extensively compare combinations of gene sets (both curated and random), genetic features, and machine learning algorithms for all 42 drugs. For each drug, the best performing combination (considering only the curated gene sets) is selected. We use these top model parameters for each drug to build and demonstrate a Drug Recommendation System (Dr.S). Insights resulting from this analysis are formulated as best practices for developing drug recommendation systems. The complete software system, called the Cell Line Analyzer, is written in Python and available on github.
In a landmark paper published in 2001, Leo Breiman described the tense standoff between two cultures of data modeling: parametric statistical and algorithmic machine learning. The cultural division between these two statistical learning frameworks has been growing at a steady pace in recent years. What is the way forward? It has become blatantly obvious that this widening gap between "the two cultures" cannot be averted unless we find a way to blend them into a coherent whole. This article presents a solution by establishing a link between the two cultures. Through examples, we describe the challenges and potential gains of this new integrated statistical thinking.
In the past years we have witnessed the rise of new data sources for the potential production of official statistics, which, by and large, can be classified as survey, administrative, and digital data. Apart from the differences in their generation and collection, we claim that their lack of statistical metadata, their economic value, and their lack of ownership by data holders pose several entangled challenges lurking the incorporation of new data into the routinely production of official statistics. We argue that every challenge must be duly overcome in the international community to bring new statistical products based on these sources. These challenges can be naturally classified into different entangled issues regarding access to data, statistical methodology, quality, information technologies, and management. We identify the most relevant to be necessarily tackled before new data sources can be definitively considered fully incorporated into the production of official statistics.
The classical GM(1,1) model is an efficient tool to {make accurate forecasts} with limited samples. But the accuracy of the GM(1,1) model still needs to be improved. This paper proposes a novel discrete GM(1,1) model, named ${\rm GM_{SD}}$(1,1) model, of which the background value is reconstructed using Simpson formula. The expression of the specific time response function is deduced, and the relationship between our model} and the continuous GM(1,1) model with Simpson formula called ${\rm GM_{SC} }$(1,1) model is systematically discussed. The proposed model is proved to be unbiased to simulate the homogeneous exponent sequence. Further, some numerical examples are given to validate the accuracy of the new ${\rm GM_{SD}}$(1,1) model. Finally, this model is used to predict the Gross Domestic Product and the freightage of Lanzhou, and the results illustrate the ${\rm GM_{SD}}$(1,1) model provides accurate prediction.
The upper tail of a claim size distribution of a property line of business is frequently modelled by Pareto distribution. However, the upper tail does not need to be Pareto distributed, extraordinary shapes are possible. Here, the opportunities for the modelling of loss distributions are extended. The basic idea is the adjustment of a base distribution for their tails. The (generalised) Pareto distribution is used as base distribution for different reasons. The upper tail is in the focus and can be modelled well for special cases by a discrete mixture of the base distribution with a combination of the base distribution with an adapting distribution via the product of their survival functions. A kind of smoothed step is realised in this way in the original line function between logarithmic loss and logarithmic exceedance probability. The lower tail can also be adjusted. The new approaches offer the opportunity for stochastic interpretation and are applied to observed losses. For parameter estimation, a modification of the minimum Anderson Darling distance method is used. A new test is suggested to exclude that the observed upper tail is better modelled by a simple Pareto distribution. Q-Q plots are applied, and secondary results are also discussed.
There is increasing need for highly predictive and stable models for the prediction of drought as an aid to better planning for drought response. This paper presents the performance of both homogenous and heterogenous model ensembles in the prediction of drought severity using the study case techniques of artificial neural networks (ANN) and support vector regression (SVR). For each of the homogenous and heterogenous model ensembles, the study investigates the performance of three model ensembling approaches: linear averaging (non-weighted), ranked weighted averaging and model stacking using artificial neural networks. Using the approach of 'over-produce then select', the study used 17 years of data on 16 selected variables for predictive drought monitoring to build 244 individual ANN and SVR models from which 111 models were selected for the building of the model ensembles. The results indicate marginal superiority of heterogenous to homogenous model ensembles. Model stacking is shown to realize models that are superior in performance in the prediction of future vegetation conditions as compared to the linear averaging and weighted averaging approaches. The best performance from the heterogenous stacked model ensembles recorded an R2 of 0.94 in the prediction of future vegetation conditions as compared to an R2 of 0.83 and R2 of 0.78 for both ANN and SVR respectively in the traditional champion model approaches to the realization of predictive models. We conclude that despite the computational resource intensiveness of the model ensembling approach to drought prediction, the returns in terms of model performance is worth the investment, especially in the context of the recent exponential increase in computational power.
Colocalization aims at characterizing spatial associations between two fluorescently-tagged biomolecules by quantifying the co-occurrence and correlation between the two channels acquired in fluorescence microscopy. Colocalization is presented either as the degree of overlap between the two channels or the overlays of the red and green images, with areas of yellow indicating colocalization of the molecules. This problem remains an open issue in diffraction-limited microscopy and raises new challenges with the emergence of super-resolution imaging, a microscopic technique awarded by the 2014 Nobel prize in chemistry. We propose GcoPS, for Geo-coPositioning System, an original method that exploits the random sets structure of the tagged molecules to provide an explicit testing procedure. Our simulation study shows that GcoPS unequivocally outperforms the best competitive methods in adverse situations (noise, irregularly shaped fluorescent patterns, different optical resolutions). GcoPS is also much faster, a decisive advantage to face the huge amount of data in super-resolution imaging. We demonstrate the performances of GcoPS on two biological real datasets, obtained by conventional diffraction-limited microscopy technique and by super-resolution technique, respectively.
In applications such as wireless communication, it is important to study the statistical properties of $L_{2}$, the minimal arc distance between a random point (e.g., a cellphone user) uniformly distributed on a sphere to a set of pre-defined seeds (e.g., wireless towers) on that sphere. In this study, we first derive the distribution (CDF) and density (PDF) functions of the arc distance between a selected vertex of a spherical triangle to a random point uniformly distributed within this triangle. Next, using computational techniques based on spherical Voronoi diagram and triangular partition of Voronoi cells, we derive moments of $L_{2}$ and $\cos L_{2}$. These results are verified by extensive Monte Carlo simulations.
For modelling the location of pyramidal cells in the human cerebral cortex we suggest a hierarchical point process in $\mathbb{R}^3$ that exhibits anisotropy in the form of cylinders extending along the $z$-axis. The model consists first of a generalised shot noise Cox process for the $xy$-coordinates, providing cylindrical clusters, and next of a Markov random field model for the $z$-coordinates conditioned on the $xy$-coordinates, providing either repulsion, aggregation, or both within specified areas of interaction. Several cases of these hierarchical point processes are fitted to two pyramidal cell datasets, and of these a final model allowing for both repulsion and attraction between the points seem adequate. We discuss how the final model relates to the so-called minicolumn hypothesis in neuroscience.
Topological Data Analysis (TDA) is an approach to handle with big data by studying its shape. A main tool of TDA is the persistence diagram, and one can use it to compare data sets. One approach to learn on the similarity between two persistence diagrams is to use the Bottleneck and the Wasserstein distances. Another approach is to fit a parametric model for each diagram, and then to compare the model coefficients. We study the behaviour of both distance measures and the RST parametric model. The theoretical behaviour of the distance measures is difficult to be developed, and therefore we study their behaviour numerically. We conclude that the RST model has an advantage over the Bottleneck and the Wasserstein distances in sense that it can give a definite conclusion regarding the similarity between two persistence diagrams. More of that, a great advantage of the RST is its ability to distinguish between two data sets that are geometrically different but topologically are the same, which is impossible to have by the two distance measures.
The information-based optimal subdata selection (IBOSS) is a computationally efficient method to select informative data points from large data sets through processing full data by columns. However, when the volume of a data set is too large to be processed in the available memory of a machine, it is infeasible to implement the IBOSS procedure. This paper develops a divide-and-conquer IBOSS approach to solving this problem, in which the full data set is divided into smaller partitions to be loaded into the memory and then subsets of data are selected from each partitions using the IBOSS algorithm. We derive both finite sample properties and asymptotic properties of the resulting estimator. Asymptotic results show that if the full data set is partitioned randomly and the number of partitions is not very large, then the resultant estimator has the same estimation efficiency as the original IBOSS estimator. We also carry out numerical experiments to evaluate the empirical performance of the proposed method.
This paper produces an efficient Semidefinite Programming (SDP) solution for community detection that incorporates non-graph data, which in this context is known as side information. SDP is an efficient solution for standard community detection on graphs. We formulate a semi-definite relaxation for the maximum likelihood estimation of node labels, subject to observing both graph and non-graph data. This formulation is distinct from the SDP solution of standard community detection, but maintains its desirable properties. We calculate the exact recovery threshold for three types of non-graph information, which in this paper are called side information: partially revealed labels, noisy labels, as well as multiple observations (features) per node with arbitrary but finite cardinality. We find that SDP has the same exact recovery threshold in the presence of side information as maximum likelihood with side information. Thus, the methods developed herein are computationally efficient as well as asymptotically accurate for the solution of community detection in the presence of side information. Simulations show that the asymptotic results of this paper can also shed light on the performance of SDP for graphs of modest size.
This paper considers the problem of testing if a sequence of means $(\mu_t)_{t =1,\ldots ,n }$ of a non-stationary time series $(X_t)_{t =1,\ldots ,n }$ is stable in the sense that the difference of the means $\mu_1$ and $\mu_t$ between the initial time $t=1$ and any other time is smaller than a given level, that is $ | \mu_1 - \mu_t | \leq c $ for all $t =1,\ldots ,n $. A test for hypotheses of this type is developed using a biascorrected monotone rearranged local linear estimator and asymptotic normality of the corresponding test statistic is established. As the asymptotic variance depends on the location and order of the critical roots of the equation $| \mu_1 - \mu_t | = c$ a new bootstrap procedure is proposed to obtain critical values and its consistency is established. As a consequence we are able to quantitatively describe relevant deviations of a non-stationary sequence from its initial value. The results are illustrated by means of a simulation study and by analyzing data examples.
In this paper, we propose a novel perturbation-based exploration method in bandit algorithms with bounded or unbounded rewards, called residual bootstrap exploration (\texttt{ReBoot}). The \texttt{ReBoot} enforces exploration by injecting data-driven randomness through a residual-based perturbation mechanism. This novel mechanism captures the underlying distributional properties of fitting errors, and more importantly boosts exploration to escape from suboptimal solutions (for small sample sizes) by inflating variance level in an \textit{unconventional} way. In theory, with appropriate variance inflation level, \texttt{ReBoot} provably secures instance-dependent logarithmic regret in Gaussian multi-armed bandits. We evaluate the \texttt{ReBoot} in different synthetic multi-armed bandits problems and observe that the \texttt{ReBoot} performs better for unbounded rewards and more robustly than \texttt{Giro} \cite{kveton2018garbage} and \texttt{PHE} \cite{kveton2019perturbed}, with comparable computational efficiency to the Thompson sampling method.
Understanding differences in hospital case-fatality rates (HCFRs) of coronavirus disease (COVID-19) may help evaluate its severity and the capacity of the healthcare system to reduce mortality. We examined the variability in HCFRs of COVID-19 in relation to spatial inequalities in socioeconomic factors across the city of Sao Paulo, Brazil. We found that HCFRs were higher for men and for individuals aged 60 years and older. Our models identified per capita income as a significant factor that is negatively associated with the HCFRs of COVID-19, even after adjusting by age, sex and presence of risk factors.
This paper 1) analyzes the extent to which drivers engage in multitasking additional-to-driving (MAD) under various conditions, 2) specifies odds ratios (ORs) of crashing associated with MAD compared to no task engagement, and 3) explores the structure of MAD, based on data from the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP2 NDS). Sensitivity analysis in which secondary tasks were re-defined by grouping similar tasks was performed to investigate the extent to which ORs are affected by the specific task definitions in SHRP2. A novel visual representation of multitasking was developed to show which secondary tasks co-occur frequently and which ones do not. MAD occurs in 11% of control driving segments, 22% of crashes and near-crashes (CNC), 26% of Level 1-3 crashes and 39% of rear-end striking crashes, and 9%, 16%, 17% and 28% respectively for the same event types if MAD is defined in terms of general task groups. The most common co-occurrences of secondary tasks vary substantially among event types; for example, 'Passenger in adjacent seat - interaction' and 'Other non-specific internal eye glance' tend to co-occur in CNC but tend not to co-occur in control driving segments. The odds ratios of MAD compared to driving without any secondary task and the corresponding 95% confidence intervals are 2.38 (2.17-2.61) for CNC, 3.72 (3.11-4.45) for Level 1-3 crashes and 8.48 (5.11-14.07) for rear-end striking crashes. The corresponding ORs using general task groups to define MAD are slightly lower at 2.00 (1.80-2.21) for CNC, 3.03 (2.48-3.69) for Level 1-3 crashes and 6.94 (4.04-11.94) for rear-end striking crashes. The results confirm that independently of whether secondary tasks are defined according to SHRP2 or general task groups, the reduction of driving performance from MAD observed in simulator studies is manifested in real-world crashes as well.
The National Health and Nutrition Examination Survey (NHANES) is a major program of the National Center for Health Statistics, designed to assess the health and nutritional status of adults and children in the United States. The analysis of NHANES dental caries data faces several challenges, including (1) the data were collected using a complex, multistage, stratified, unequal-probability sampling design; (2) the sample size of some primary sampling units (PSU), e.g., counties, is very small; (3) the measures of dental caries have complicated structure and correlation, and (4) there is a substantial percentage of nonresponses, for which the missing data are expected to be not missing at random or non-ignorable. We propose a Bayesian hierarchical spatial model to address these analysis challenges. We develop a two-level Potts model that closely resembles the caries evolution process and captures complicated spatial correlations between teeth and surfaces of the teeth. By adding Bayesian hierarchies to the Potts model, we account for the multistage survey sampling design and also enable information borrowing across PSUs for small area estimation. We incorporate sampling weights by including them as a covariate in the model and adopt flexible B-splines to achieve robust inference. We account for non-ignorable missing outcomes and covariates using the selection model. We use data augmentation coupled with the noisy exchange sampler to obtain the posterior of model parameters that involve doubly-intractable normalizing constants. Our analysis results show strong spatial associations between teeth and tooth surfaces and that dental hygienic factors, fluorosis and sealant reduce the risks of having dental diseases.
One important partition of algorithms for controlling the false discovery rate (FDR) in multiple testing is into offline and online algorithms. The first generally achieve significantly higher power of discovery, while the latter allow making decisions sequentially as well as adaptively formulating hypotheses based on past observations. Using existing methodology, it is unclear how one could trade off the benefits of these two broad families of algorithms, all the while preserving their formal FDR guarantees. To this end, we introduce $\text{Batch}_{\text{BH}}$ and $\text{Batch}_{\text{St-BH}}$, algorithms for controlling the FDR when a possibly infinite sequence of batches of hypotheses is tested by repeated application of one of the most widely used offline algorithms, the Benjamini-Hochberg (BH) method or Storey's improvement of the BH method. We show that our algorithms interpolate between existing online and offline methodology, thus trading off the best of both worlds.
The coronavirus disease 2019 (COVID-19) has quickly grown from a regional outbreak in Wuhan, China to a global pandemic. Early estimates of the epidemic growth and incubation period of COVID-19 may have been biased due to sample selection. Using detailed case reports from 14 locations in and outside mainland China, we obtained 378 Wuhan-exported cases who left Wuhan before an abrupt travel quarantine. We developed a generative model we call BETS for four key epidemiological events---Beginning of exposure, End of exposure, time of Transmission, and time of Symptom onset (BETS)---and derived explicit formulas to correct for the sample selection. We gave a detailed illustration of why some early and highly influential analyses of the COVID-19 pandemic were severely biased. All our analyses, regardless of which subsample and model were being used, point to an epidemic doubling time of 2 to 2.5 days during the early outbreak in Wuhan. A Bayesian nonparametric analysis further suggests that about 5% of the symptomatic cases may not develop symptoms within 14 days of infection and that men may be much more likely than women to develop symptoms within 2 days of infection.
Selection of appropriate link function for binary regression remains an important issue for data analysis and its influence on related inference. We prescribe a new data-driven methodology to search for the same, considering some popular classification assessment metrics. A case-study with World Happiness report,2018 with special reference to immigration is presented for demonstrating utility of the prescribed routine.
Scenario Analysis is a risk assessment tool that aims to evaluate the impact of a small number of distinct plausible future scenarios. In this paper, we provide an overview of important aspects of Scenario Analysis including when it is appropriate, the design of scenarios, uncertainty and encouraging creativity. Each of these issues is discussed in the context of climate, energy and legal scenarios.
This note shows that, for a fixed Lipschitz constant $L > 0$, one layer neural networks that are $L$-Lipschitz are dense in the set of all $L$-Lipschitz functions with respect to the uniform norm on bounded sets.
An improved and extended Bayesian synthetic control model is presented, expanding upon the latent factor model in Tuomaala 2019. The changes we make include 1) standardization of the data prior to model fit - which improves efficiency and generalization across different data sets; 2) adding time varying covariates; 3) adding the ability to have multiple treated units; 4) fitting the latent factors within the Bayesian model; and, 5) a sparsity inducing prior to automatically tune the number of latent factors. We demonstrate the similarity of estimates to two traditional synthetic control studies in Abadie, Diamond, and Hainmueller 2010 and Abadie, Diamond, and Hainmueller 2015 and extend to multiple target series with a new example of estimating digital website visitation from changes in data collection due to digital privacy laws.
Large tensor (multi-dimensional array) data are now routinely collected in a wide range of applications, due to modern data collection capabilities. Often such observations are taken over time, forming tensor time series. In this paper we present a factor model approach for analyzing high-dimensional dynamic tensor time series and multi-category dynamic transport networks. Two estimation procedures along with their theoretical properties and simulation results are presented. Two applications are used to illustrate the model and its interpretations.
We consider the task of causal structure learning over measurement dependence inducing latent (MeDIL) causal models. We show that this task can be framed in terms of the graph theoretic problem of finding edge clique covers,resulting in an algorithm for returning minimal MeDIL causal models (minMCMs). This algorithm is non-parametric, requiring no assumptions about linearity or Gaussianity. Furthermore, despite rather weak assumptions aboutthe class of MeDIL causal models, we show that minimality in minMCMs implies some rather specific and interesting properties. By establishing MeDIL causal models as a semantics for edge clique covers, we also provide a starting point for future work further connecting causal structure learning to developments in graph theory and network science.
Cardiovascular disease lead the cause of death world wide and several studies have been carried out to understand and explore cardiovascular risk markers in normoglycemic and diabetic populations. In this work, we explore the association structure between hyperglycemic markers and cardiovascular risk markers controlled by triglycerides, body mass index, age and gender, for the normoglycemic population in The Mexico City Diabetes Study. Understanding the association structure could contribute to the assessment of additional cardiovascular risk markers in this low income urban population with a high prevalence of classic cardiovascular risk biomarkers. The association structure is measured by conditional Kendall's tau, defined through conditional copula functions. The latter are in turn modeled under a fully Bayesian nonparametric approach, which allows the complete shape of the copula function to vary for different values of the controlled covariates.
We propose a stochastic model for claims reserving that captures dependence along development years within a single triangle. This dependence is of autoregressive form of order $p$ and is achieved through the use of latent variables. We carry out bayesian inference on model parameters and borrow strength across several triangles, coming from different lines of businesses or companies, through the use of hierarchical priors.
In observational clinic registries, time to treatment is often of interest, but treatment can be given at any time during follow-up and there is no structure or intervention to ensure regular clinic visits for data collection. To address these challenges, we introduce the time-dependent propensity process as a generalization of the propensity score. We show that the propensity process balances the entire time-varying covariate history which cannot be achieved by existing propensity score methods and that treatment assignment is strongly ignorable conditional on the propensity process. We develop methods for estimating the propensity process using observed data and for matching based on the propensity process. We illustrate the propensity process method using the Emory Amyotrophic Lateral Sclerosis (ALS) Registry data.
Numerical climate models are used to project future climate change due to both anthropogenic and natural causes. Differences between projections from different climate models are a major source of uncertainty about future climate. Emergent relationships shared by multiple climate models have the potential to constrain our uncertainty when combined with historical observations. We combine projections from 13 climate models with observational data to quantify the impact of emergent relationships on projections of future warming in the Arctic at the end of the 21st century. We propose a hierarchical Bayesian framework based on a coexchangeable representation of the relationship between climate models and the Earth system. We show how emergent constraints fit into the coexchangeable representation, and extend it to account for internal variability simulated by the models and natural variability in the Earth system. Our analysis shows that projected warming in some regions of the Arctic may be more than 2C lower and our uncertainty reduced by up to 30% when constrained by historical observations. A detailed theoretical comparison with existing multi-model projection frameworks is also provided. In particular, we show that projections may be biased if we do not account for internal variability in climate model predictions.
In this study we used company level administrative data from the National Labour Inspectorate and The Polish Social Insurance Institution in order to estimate the prevalence of informal employment in Poland. Since the selection mechanism is non-ignorable we employed a generalization of Heckman's sample selection model assuming non-Gaussian correlation of errors and clustering by incorporation of random effects. We found that 5.7% (4.6%, 7.1%; 95% CI) of registered enterprises in Poland, to some extent, take advantage of the informal labour force. Our study exemplifies a new approach to measuring informal employment, which can be implemented in other countries. It also contributes to the existing literature by providing, to the best of our knowledge, the first estimates of informal employment at the level of companies based solely on administrative data.
For fixed training data and network parameters in the other layers the L1 loss of a ReLU neural network as a function of the first layer's parameters is a piece-wise affine function. We use the Deep ReLU Simplex algorithm to iteratively minimize the loss monotonically on adjacent vertices and analyze the trajectory of these vertex positions. We empirically observe that in a neighbourhood around a local minimum, the iterations behave differently such that conclusions on loss level and proximity of the local minimum can be made before it has been found: Firstly the loss seems to decay exponentially slow at iterated adjacent vertices such that the loss level at the local minimum can be estimated from the loss levels of subsequently iterated vertices, and secondly we observe a strong increase of the vertex density around local minima. This could have far-reaching consequences for the design of new gradient-descent algorithms that might improve convergence rate by exploiting these facts.
Let n respondents rank order d items, and suppose that d << n. Our main task is to uncover and display the structure of the observed rank data by an exploratory riffle shuffling procedure which sequentially decomposes the n voters into a finite number of coherent groups plus a noisy group : where the noisy group represents the outlier voters and each coherent group is composed of a finite number of coherent clusters. We consider exploratory riffle shuffling of a set of items to be equivalent to optimal two blocks seriation of the items with crossing of some scores between the two blocks. A riffle shuffled coherent cluster of voters within its coherent group is essentially characterized by the following facts : a) Voters have identical first TCA factor score, where TCA designates taxicab correspondence analysis, an L1 variant of correspondence analysis ; b) Any preference is easily interpreted as riffle shuffling of its items ; c) The nature of different riffle shuffling of items can be seen in the structure of the contingency table of the first-order marginals constructed from the Borda scorings of the voters ; d) The first TCA factor scores of the items of a coherent cluster are interpreted as Borda scale of the items. We also introduce a crossing index, which measures the extent of crossing of scores of voters between the two blocks seriation of the items. The novel approach is explained on the benchmarking SUSHI data set, where we show that this data set has a very simple structure, which can also be communicated in a tabular form.
Stochastic volatility (SV) models are nonlinear state-space models that enjoy increasing popularity for fitting and predicting heteroskedastic time series. However, due to the large number of latent quantities, their efficient estimation is non-trivial and software that allows to easily fit SV models to data is rare. We aim to alleviate this issue by presenting novel implementations of four SV models delivered in two R packages. Several unique features are included and documented. As opposed to previous versions, stochvol is now capable of handling linear mean models, heavy-tailed SV, and SV with leverage. Moreover, we newly introduce factorstochvol which caters for multivariate SV. Both packages offer a user-friendly interface through the conventional R generics and a range of tailor-made methods. Computational efficiency is achieved via interfacing R to C++ and doing the heavy work in the latter. In the paper at hand, we provide a detailed discussion on Bayesian SV estimation and showcase the use of the new software through various examples.
Simultaneous orthogonal matching pursuit (SOMP) and block OMP (BOMP) are two widely used techniques for sparse support recovery in multiple measurement vector (MMV) and block sparse (BS) models respectively. For optimal performance, both SOMP and BOMP require \textit{a priori} knowledge of signal sparsity or noise variance. However, sparsity and noise variance are unavailable in most practical applications. This letter presents a novel technique called generalized residual ratio thresholding (GRRT) for operating SOMP and BOMP without the \textit{a priori} knowledge of signal sparsity and noise variance and derive finite sample and finite signal to noise ratio (SNR) guarantees for exact support recovery. Numerical simulations indicate that GRRT performs similar to BOMP and SOMP with \textit{a priori} knowledge of signal and noise statistics.
Data integration, or the strategic analysis of multiple sources of data simultaneously, can often lead to discoveries that may be hidden in individualistic analyses of a single data source. We develop a new unsupervised data integration method named Integrated Principal Components Analysis (iPCA), which is a model-based generalization of PCA and serves as a practical tool to find and visualize common patterns that occur in multiple data sets. The key idea driving iPCA is the matrix-variate normal model, whose Kronecker product covariance structure captures both individual patterns within each data set and joint patterns shared by multiple data sets. Building upon this model, we develop several penalized (sparse and non-sparse) covariance estimators for iPCA, and using geodesic convexity, we prove that our non-sparse iPCA estimator converges to the global solution of a non-convex problem. We also demonstrate the practical advantages of iPCA through extensive simulations and a case study application to integrative genomics for Alzheimer's disease. In particular, we show that the joint patterns extracted via iPCA are highly predictive of a patient's cognition and Alzheimer's diagnosis.
We investigate the potential occurrence of change points - commonly referred to as "momentum shifts" - in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state correlation of the variables considered, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.
This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The 'cdt' package implements the end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the 'Bnlearn' and 'Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. 'cdt' is available under the MIT License at https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox.
This is a reader's reaction to a recent paper by E. Schechtman and G. Schechtman (Metron, 2019) about the correct definition of a concentration function for the diagnostic, i.e. supervised classification, problem. We propose and motivate a different definition and refer to the relevant literature.
We propose a new, flexible model for inference of the effect of a binary treatment on a continuous outcome observed over subsequent time periods. The model allows to seperate association due to endogeneity of treatment selection from additional longitudinal association of the outcomes and hence unbiased estimation of dynamic treatment effects. We investigate the performance of the proposed method on simulated data and employ it to reanalyse data on the longitudinal effects of a long maternity leave on mothers' earnings after their return to the labour market.
We investigate under and overfitting in Generative Adversarial Networks (GANs), using discriminators unseen by the generator to measure generalization. We find that the model capacity of the discriminator has a significant effect on the generator's model quality, and that the generator's poor performance coincides with the discriminator underfitting. Contrary to our expectations, we find that generators with large model capacities relative to the discriminator do not show evidence of overfitting on CIFAR10, CIFAR100, and CelebA.
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that the treatment or control condition is not well-defined, existing instead in more than one version. A simple, widely applicable analysis is proposed to address the possibility that the treatment or control condition exists in two versions with two different treatment effects. This analysis loses no power in the main comparison of treatment and control, provides additional information about version effects, and controls the family-wise error rate in several comparisons. The method is motivated and illustrated using an on-going study of the possibility that repeated head trauma in high school football causes an increase in risk of early on-set dementia.
Local environmental organizations and media have recently expressed concerns over air pollution induced by maritime traffic and its potential adverse health effects on the population of Mediterranean port cities. We explore this issue with unique high-frequency data from Marseille, France's largest port for cruise ships, over the 2008-2018 period. Using a new pair-matching algorithm designed for time series data, we create hypothetical randomized experiments and estimate the variation in air pollutant concentrations caused by a short-term increase in cruise vessel traffic. We carry out a randomization-based approach to compute 95% Fisherian intervals (FI) for constant treatment effects consistent with the matched data and the hypothetical intervention. At the hourly level, cruise vessels' arrivals increase concentrations of nitrogen dioxide (NO$_{2}$) by 4.7 $\mu g/m^3$ (95% FI: [1.4, 8.0]), of sulfur dioxide (SO$_{2}$) by 1.2 $\mu g/m^3$ (95% FI: [-0.1, 2.5]), and of particulate matter (PM$_{10}$) by 4.6 $\mu g/m^3$ (95% FI: [0.9, 8.3]). At the daily level, cruise traffic increases concentrations of NO$_{2}$ by 1.2 $\mu g/m^3$ (95% FI: [-0.5, 3.0]) and of PM$_{10}$ by 1.3 $\mu g/m^3$ (95% FI: [-0.3, 3.0]). Our results suggest that well-designed hypothetical randomized experiments provide a principled approach to better understand the negative externalities of maritime traffic.
In the bioinformatics field, there has been a growing interest in modelling dihedral angles of amino acids by viewing them as data on the torus. This has motivated, over the past years, new proposals of distributions on the bivariate torus. The main drawback of most of these models is that the related densities are (pointwise) symmetric, despite the fact that the data usually present asymmetric patterns. This motivates the need to find a new way of constructing asymmetric toroidal distributions starting from a symmetric distribution. We tackle this problem in this paper by introducing the sine-skewed toroidal distributions. The general properties of the new models are derived. Based on the initial symmetric model, explicit expressions for the shape parameters are obtained, a simple algorithm for generating random numbers is provided, and asymptotic results for the maximum likelihood estimators are established. An important feature of our construction is that no normalizing constant needs to be calculated, leading to more flexible distributions without increasing the complexity of the models. The benefit of employing these new sine-skewed distributions is shown on the basis of protein data, where, in general, the new models outperform their symmetric antecedents.
We present a new algorithm which detects the maximal possible number of matched disjoint pairs satisfying a given caliper when a bipartite matching is done with respect to a scalar index (e.g., propensity score), and constructs a corresponding matching. Variable width calipers are compatible with the technique, provided that the width of the caliper is a Lipschitz function of the index. If the observations are ordered with respect to the index then the matching needs $O(N)$ operations, where $N$ is the total number of subjects to be matched. The case of 1-to-$n$ matching is also considered. We offer also a new fast algorithm for optimal complete one-to-one matching on a scalar index when the treatment and control groups are of the same size. This allows us to improve greedy nearest neighbor matching on a scalar index. Keywords: propensity score matching, nearest neighbor matching, matching with caliper, variable width caliper.
In this paper we propose several variants to perform the independence test between two random elements based on recurrence rates. We will show how to calculate the test statistic in each one of these cases. From simulations we obtain that in high dimension, our test clearly outperforms, in almost all cases, the other widely used competitors. The test was performed on two data sets including small and large sample sizes and we show that in both ases the application of the test allows us to obtain interesting conclusions.
In statistical survey analysis, (partial) non-responders are integral elements during data acquisition. Treating missing values during data preparation and data analysis is therefore a non-trivial underpinning. Focusing on different data sets from the Federal Statistical Office of Germany (DESTATIS), we investigate various imputation methods regarding their imputation accuracy. Since the latter is not uniquely determined in theory and practice, we study different measures for assessing imputation accuracy: Beyond the most common measures, the normalized-root mean squared error (NRMSE) and the proportion of false classification (PFC), we put a special focus on (distribution) distance- and association measures for assessing imputation accuracy. The aim is to deliver guidelines for correctly assessing distributional accuracy after imputation. Our empirical findings indicate a discrepancy between the NRMSE resp. PFC and distance measures. While the latter measure distributional similarities, NRMSE and PFC focus on data reproducibility. We realize that a low NRMSE or PFC seem not to imply lower distributional discrepancies. Although several measures for assessing distributional discrepancies exist, our results indicate that not all of them are suitable for evaluating imputation-induced differences.
At the initial design stage engineers often rely on low-fidelity models that have high epistemic uncertainty. Traditional safety-margin-based deterministic design resorts to testing (e.g. prototype experiment, evaluation of high-fidelity simulation, etc.) to reduce epistemic uncertainty and achieve targeted levels of safety. Testing is used to calibrate models and prescribe redesign when tests are not passed. After calibration, reduced epistemic model uncertainty can be leveraged through redesign to restore safety or improve design performance; however, redesign may be associated with substantial costs or delays. In this paper, a methodology is described for optimizing the safety-margin-based design, testing, and redesign process to allow the designer to tradeoff between the risk of future redesign and the possible performance and reliability benefits. The proposed methodology represents the epistemic model uncertainty with a Kriging surrogate and is applicable in a wide range of design problems. The method is illustrated on a cantilever beam bending example and then a sounding rocket example. It is shown that redesign acts as a type of quality control measure to prevent an undesirable initial design from being accepted as the final design. It is found that the optimal design/redesign strategy for maximizing expected design performance includes not only redesign to correct an initial design that is later revealed to be unsafe, but also redesign to improve performance when an initial design is later revealed to be too conservative (e.g. too heavy).
The Exponentially Weighted Average (EWA) of observations is known to be state-of-art estimator for tracking expectations of dynamically varying data stream distributions. However, how to devise an EWA estimator to rather track quantiles of data stream distributions is not obvious. In this paper, we present a lightweight quantile estimator using a generalized form of the EWA. To the best of our knowledge, this work represents the first reported quantile estimator of this form in the literature. An appealing property of the estimator is that the update step size is adjusted online proportionally to the difference between current observation and the current quantile estimate. Thus, if the estimator is off-track compared to the data stream, large steps will be taken to promptly get the estimator back on-track. The convergence of the estimator to the true quantile is proven using the theory of stochastic learning. Extensive experimental results using both synthetic and real-life data show that our estimator clearly outperforms legacy state-of-the-art quantile tracking estimators and achieves faster adaptivity in dynamic environments. The quantile estimator was further tested on real-life data where the objective is efficient online control of indoor climate. We show that the estimator can be incorporated into a concept drift detector for efficiently decide when a machine learning model used to predict future indoor temperature should be retrained/updated.
This paper introduces the {\it particle swarm filter} (not to be confused with particle swarm optimization): a recursive and embarrassingly parallel algorithm that targets an approximation to the sequence of posterior predictive distributions by averaging expectation approximations from many particle filters. A law of large numbers and a central limit theorem are provided, as well as an numerical study of simulated data from a stochastic volatility model.
For ordinal outcomes, the average treatment effect is often ill-defined and hard to interpret. Echoing Agresti and Kateri (2017), we argue that the relative treatment effect can be a useful measure especially for ordinal outcomes, which is defined as $\gamma = \mathrm{pr}\{ Y_i(1) > Y_i(0) \} - \mathrm{pr}\{ Y_i(1) < Y_i(0) \}$, with $Y_i(1)$ and $Y_i(0)$ being the potential outcomes of unit $i$ under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on $\gamma,$ which are identifiable parameters based on the observed data. Agresti and Kateri (2017) focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.
We study exponential families of distributions that are multivariate totally positive of order 2 (MTP2), show that these are convex exponential families, and derive conditions for existence of the MLE. Quadratic exponential familes of MTP2 distributions contain attractive Gaussian graphical models and ferromagnetic Ising models as special examples. We show that these are defined by intersecting the space of canonical parameters with a polyhedral cone whose faces correspond to conditional independence relations. Hence MTP2 serves as an implicit regularizer for quadratic exponential families and leads to sparsity in the estimated graphical model. We prove that the maximum likelihood estimator (MLE) in an MTP2 binary exponential family exists if and only if both of the sign patterns $(1,-1)$ and $(-1,1)$ are represented in the sample for every pair of variables; in particular, this implies that the MLE may exist with $n=d$ observations, in stark contrast to unrestricted binary exponential families where $2^d$ observations are required. Finally, we provide a novel and globally convergent algorithm for computing the MLE for MTP2 Ising models similar to iterative proportional scaling and apply it to the analysis of data from two psychological disorders.
Research in mental health has implicated sleep pathologies with depression. However, the gold standard for sleep assessment, polysomnography, is not suitable for long-term, continuous, monitoring of daily sleep, and methods such as sleep diaries rely on subjective recall, which is qualitative and inaccurate. Wearable devices, on the other hand, provide a low-cost and convenient means to monitor sleep in home settings. The main aim of this study was to devise and extract sleep features, from data collected using a wearable device, and analyse their correlation with depressive symptom severity and sleep quality, as measured by the self-assessed Patient Health Questionnaire 8-item. Daily sleep data were collected passively by Fitbit wristband devices, and depressive symptom severity was self-reported every two weeks by the PHQ-8. The data used in this paper included 2,812 PHQ-8 records from 368 participants recruited from three study sites in the Netherlands, Spain, and the UK.We extracted 21 sleep features from Fitbit data which describe sleep in the following five aspects: sleep architecture, sleep stability, sleep quality, insomnia, and hypersomnia. Linear mixed regression models were used to explore associations between sleep features and depressive symptom severity. The z-test was used to evaluate the significance of the coefficient of each feature. We tested our models on the entire dataset and individually on the data of three different study sites. We identified 16 sleep features that were significantly correlated with the PHQ-8 score on the entire dataset. Associations between sleep features and the PHQ-8 score varied across different sites, possibly due to the difference in the populations.
In this paper, we use machine learning techniques to explore the H-1B application dataset disclosed by the Department of Labor (DOL), from 2008 to 2018, in order to provide more stylized facts of the international workers in US labor market. We train a LASSO Regression model to analyze the impact of different features on the applicant's wage, and a Logistic Regression with L1-Penalty as a classifier to study the feature's impact on the likelihood of the case being certified. Our analysis shows that working in the healthcare industry, working in California, higher job level contribute to higher salaries. In the meantime, lower job level, working in the education services industry and nationality of Philippines are negatively correlated with the salaries. In terms of application status, a Ph.D. degree, working in retail or finance, majoring in computer science will give the applicants a better chance of being certified. Applicants with no or an associate degree, working in the education services industry, or majoring in education are more likely to be rejected.
In this paper, we study the sample complexity lower bounds for the exact recovery of parameters and for a positive excess risk of a feed-forward, fully-connected neural network for binary classification, using information-theoretic tools. We prove these lower bounds by the existence of a generative network characterized by a backwards data generating process, where the input is generated based on the binary output, and the network is parametrized by weight parameters for the hidden layers. The sample complexity lower bound for the exact recovery of parameters is $\Omega(d r \log(r) + p )$ and for a positive excess risk is $\Omega(r \log(r) + p )$, where $p$ is the dimension of the input, $r$ reflects the rank of the weight matrices and $d$ is the number of hidden layers. To the best of our knowledge, our results are the first information theoretic lower bounds.
Stochastic control-flow models (SCFMs) are a class of generative models that involve branching on choices from discrete random variables. Amortized gradient-based learning of SCFMs is challenging as most approaches targeting discrete variables rely on their continuous relaxations---which can be intractable in SCFMs, as branching on relaxations requires evaluating all (exponentially many) branching paths. Tractable alternatives mainly combine REINFORCE with complex control-variate schemes to improve the variance of naive estimators. Here, we revisit the reweighted wake-sleep (RWS) (Bornschein and Bengio, 2015) algorithm, and through extensive evaluations, show that it outperforms current state-of-the-art methods in learning SCFMs. Further, in contrast to the importance weighted autoencoder, we observe that RWS learns better models and inference networks with increasing numbers of particles. Our results suggest that RWS is a competitive, often preferable, alternative for learning SCFMs.
In previous work, theoretical analysis based on the tensor Restricted Isometry Property (t-RIP) established the robust recovery guarantees of a low-tubal-rank tensor. The obtained sufficient conditions depend strongly on the assumption that the linear measurement maps satisfy the t-RIP. In this paper, by exploiting the probabilistic arguments, we prove that such linear measurement maps exist under suitable conditions on the number of measurements in terms of the tubal rank r and the size of third-order tensor n1, n2, n3. And the obtained minimal possible number of linear measurements is nearly optimal compared with the degrees of freedom of a tensor with tubal rank r. Specially, we consider a random sub-Gaussian distribution that includes Gaussian, Bernoulli and all bounded distributions and construct a large class of linear maps that satisfy a t-RIP with high probability. Moreover, the validity of the required number of measurements is verified by numerical experiments.
Existing studies consider Alzheimer's disease (AD) a comorbidity of epilepsy, but also recognize epilepsy to occur more frequently in patients with AD than those without. The goal of this paper is to understand the relationship between epilepsy and AD by studying causal relations among subgroups of epilepsy patients. We develop an approach combining representation learning with tensor factorization to provide an in-depth analysis of the risk factors among epilepsy patients for AD. An epilepsy-AD cohort of ~600,000 patients were extracted from Cerner Health Facts data (50M patients). Our experimental results not only suggested a causal relationship between epilepsy and later onset of AD ( p = 1.92e-51), but also identified five epilepsy subgroups with distinct phenotypic patterns leading to AD. While such findings are preliminary, the proposed method combining representation learning with tensor factorization seems to be an effective approach for risk factor analysis.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erd\"os-R\'enyi and beta-models to create hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for parameter estimation as well as simulation studies for models with sparse dependency graphs.
In retailing, it is important to understand customer behavior and determine customer value. A useful tool to achieve such goals is the cluster analysis of transaction data. Typically, a customer segmentation is based on the recency, frequency and monetary value of shopping or the structure of purchased products. We take a different approach and base our segmentation on the shopping mission - a reason why a customer visits the shop. Shopping missions include focused purchases of specific product categories and general purchases of various sizes. In an application to a Czech drugstore chain, we show that the proposed segmentation brings unique information about customers and should be used alongside the traditional methods.
We investigate the prediction capability of the orthogonal greedy algorithm (OGA) in high-dimensional regression models with dependent observations. The rates of convergence of the prediction error of OGA are obtained under a variety of sparsity conditions. To prevent OGA from overfitting, we introduce a high-dimensional Akaike's information criterion (HDAIC) to determine the number of OGA iterations. A key contribution of this work is to show that OGA, used in conjunction with HDAIC, can achieve the optimal convergence rate without knowledge of how sparse the underlying high-dimensional model is.
In this article, we perform a parameter study for a recently developed karst hydrological model. The study consists of a high-dimensional Bayesian inverse problem and a global sensitivity analysis. For the first time in karst hydrology, we use the active subspace method to find directions in the parameter space that dominate the Bayesian update from the prior to the posterior distribution in order to effectively reduce the dimension of the problem and for computational efficiency. Additionally, the calculated active subspace can be exploited to construct sensitivity metrics on each of the individual parameters and be used to construct a natural model surrogate. The model consists of 21 parameters to reproduce the hydrological behavior of spring discharge in a karst aquifer located in the Kerschbaum spring recharge area at Waidhofen a.d. Ybbs in Austria. The experimental spatial and time series data for the inference process were collected by the water works in Waidhofen. We show that this case study has implicit low-dimensionality, and we run an adjusted Markov chain Monte Carlo algorithm in a low-dimensional subspace to construct samples of the posterior distribution. The results are visualized and verified by plots of the posterior's push-forward distribution displaying the uncertainty in predicting discharge values due to the experimental noise in the data. Finally, a discussion provides hydrological interpretation of these results for the Kerschbaum area.
In immunology studies, flow cytometry is a commonly used multivariate single-cell assay. One key goal in flow cytometry analysis is to pinpoint the immune cells responsive to certain stimuli. Statistically, this problem can be translated into comparing two protein expression probability density functions (PDFs) before and after the stimulus; the goal is to pinpoint the regions where these two pdfs differ. In this paper, we model this comparison as a multiple testing problem. First, we partition the sample space into small bins. In each bin we form a hypothesis to test the existence of differential pdfs. Second, we develop a novel multiple testing method, called TEAM (Testing on the Aggregation tree Method), to identify those bins that harbor differential pdfs while controlling the false discovery rate (FDR) under the desired level. TEAM embeds the testing procedure into an aggregation tree to test from fine- to coarse-resolution. The procedure achieves the statistical goal of pinpointing differential pdfs to the smallest possible regions. TEAM is computationally efficient, capable of analyzing large flow cytometry data sets in much shorter time compared with competing methods. We applied TEAM and competing methods on a flow cytometry data set to identify T cells responsive to the cytomeglovirus (CMV)-pp65 antigen stimulation. TEAM successfully identified the monofunctional, bifunctional, and polyfunctional T cells while the competing methods either did not finish in a reasonable time frame or provided less interpretable results. Numerical simulations and theoretical justifications demonstrate that TEAM has asymptotically valid, powerful, and robust performance. Overall, TEAM is a computationally efficient and statistically powerful algorithm that can yield meaningful biological insights in flow cytometry studies.
This work proposes a new methodology to fit zero inflated Bernoulli data from a Bayesian approach, able to distinguish between two potential sources of zeros (structurals and non-structurals). Its usage is illustrated by means of a real example from the field of occupational health as the phenomenon of sickness presenteeism, in which it is reasonable to think that some individuals will never be at risk of suffering it because they have not been sick in the period of study (structural zeros). Without separating structural and non-structural zeros one would one would be studying jointly the general health status and the presenteeism itself, and therefore obtaining potentially biased estimates as the phenomenon is being implicitly underestimated by diluting it into the general health status. The proposed methodology performance has been evaluated through a comprehensive simulation study, and it has been compiled as an R package freely available to the community.
The paper concerns a new statistical method for assessing dissimilarity of two random sets based on one realisation of each of them. The method focuses on shapes of the components of the random sets, namely on the curvature of their boundaries together with the ratios of their perimeters and areas. Theoretical background is introduced and then, the method is described, justified by a simulation study and applied to real data of two different types of tissue - mammary cancer and mastopathy.
We formulate the problem of neural network optimization as Bayesian filtering, where the observations are the backpropagated gradients. While neural network optimization has previously been studied using natural gradient methods which are closely related to Bayesian inference, they were unable to recover standard optimizers such as Adam and RMSprop with a root-mean-square gradient normalizer, instead getting a mean-square normalizer. To recover the root-mean-square normalizer, we find it necessary to account for the temporal dynamics of all the other parameters as they are geing optimized. The resulting optimizer, AdaBayes, adaptively transitions between SGD-like and Adam-like behaviour, automatically recovers AdamW, a state of the art variant of Adam with decoupled weight decay, and has generalisation performance competitive with SGD.
In this paper we propose a novel method to deal with Vector Autoregressive models, when the Normal-Wishart prior is considered. In particular, we depart from the current approach of setting $\nu=m+1$ by setting a loss-based prior on $\nu$. Doing so, we have been able to exploit any information about $\nu$ in the data and achieve better predictive performances than the method currently used in the literature. We show how this works both on simulated and real data sets where, in the latter case, we used data of macroeconometric fashion as well as viral data. In addition, we show the reason why we believe we achieve a better performance by showing that the data appears to suggest a value of $\nu$ far from the canonical $m+1$ value.
Joint models have received increasing attention during recent years with extensions into various directions; numerous hazard functions, different association structures, linear and non-linear longitudinal trajectories amongst others. Many of these resulted in new R packages and new formulations of the joint model. However, a joint model with a linear bivariate Gaussian association structure is still a latent Gaussian model (LGM) and thus can be implemented using most existing packages for LGM's. In this paper, we will show that these joint models can be implemented from a LGM viewpoint using the R-INLA package. As a particular example, we will focus on the joint model with a non-linear longitudinal trajectory, recently developed and termed the partially linear joint model. Instead of the usual spline approach, we argue for using a Bayesian smoothing spline framework for the joint model that is stable with respect to knot selection and hence less cumbersome for practitioners.
The pure effects described by Robins and Greenland, and later called natural effects by Pearl, have been criticized because they require a cross-world independence assumption. In this paper, we use potential outcomes and sufficient causal sets to present a conceptual perspective of the cross-world independence assumption that explains why the clinical utility of natural effects is sometimes greater than that of controlled effects. Our perspective is consistent with recent work on mediation of natural effects, path specific effects and separable effects.
Handling of missed data is one of the main tasks in data preprocessing especially in large public service datasets. We have analysed data from the Trauma Audit and Research Network (TARN) database, the largest trauma database in Europe. For the analysis we used 165,559 trauma cases. Among them, there are 19,289 cases (13.19\%) with unknown outcome. We have demonstrated that these outcomes are not missed `completely at random' and, hence, it is impossible just to exclude these cases from analysis despite the large amount of available data. We have developed a system of non-stationary Markov models for the handling of missed outcomes and validated these models on the data of 15,437 patients which arrived into TARN hospitals later than 24 hours but within 30 days from injury. We used these Markov models for the analysis of mortality. In particular, we corrected the observed fraction of death. Two na\"ive approaches give 7.20\% (available case study) or 6.36\% (if we assume that all unknown outcomes are `alive'). The corrected value is 6.78\%. Following the seminal paper of Trunkey (1983) the multimodality of mortality curves has become a much discussed idea. For the whole analysed TARN dataset the coefficient of mortality monotonically decreases in time but the stratified analysis of the mortality gives a different result: for lower severities the coefficient of mortality is a non-monotonic function of the time after injury and may have maxima at the second and third weeks. The approach developed here can be applied to various healthcare datasets which experience the problem of lost patients and missed outcomes.
We study the problem of testing the existence of a heterogeneous dense subhypergraph. The null hypothesis corresponds to a heterogeneous Erd\"{o}s-R\'{e}nyi uniform random hypergraph and the alternative hypothesis corresponds to a heterogeneous uniform random hypergraph that contains a dense subhypergraph. We establish detection boundaries when the edge probabilities are known and construct an asymptotically powerful test for distinguishing the hypotheses. We also construct an adaptive test which does not involve edge probabilities, and hence, is more practically useful.
Gaussian noise injections (GNIs) are a family of simple and widely-used regularisation methods for training neural networks, where one injects additive or multiplicative Gaussian noise to the network activations at every iteration of the optimisation algorithm, which is typically chosen as stochastic gradient descent (SGD). In this paper we focus on the so-called `implicit effect' of GNIs, which is the effect of the injected noise on the dynamics of SGD. We show that this effect induces an asymmetric heavy-tailed noise on SGD gradient updates. In order to model this modified dynamics, we first develop a Langevin-like stochastic differential equation that is driven by a general family of asymmetric heavy-tailed noise. Using this model we then formally prove that GNIs induce an `implicit bias', which varies depending on the heaviness of the tails and the level of asymmetry. Our empirical results confirm that different types of neural networks trained with GNIs are well-modelled by the proposed dynamics and that the implicit effect of these injections induces a bias that degrades the performance of networks.
The Stepped Wedge Design (SWD) is a form of cluster randomized trial, usually comparing two treatments, which is divided into time periods and sequences, with clusters allocated to sequences. Typically all sequences start with the standard treatment and end with the new treatment, with the change happening at different times in the different sequences. The clusters will usually differ in size but this is overlooked in much of the existing literature. This paper considers the case when clusters have different sizes and determines how efficient designs can be found. The approach uses an approximation to the the variance of the treatment effect which is expressed in terms of the proportions of clusters and of individuals allocated to each sequence of the design. The roles of these sets of proportions in determining an efficient design are discussed and illustrated using two SWDs, one in the treatment of sexually transmitted diseases and one in renal replacement therapy. Cluster-balanced designs, which allocate equal numbers of clusters to each sequence, are shown to have excellent statistical and practical properties; suggestions are made about the practical application of the results for these designs. The paper concentrates on the cross-sectional case, where subjects are measured once, but it is briefly indicated how the methods can be extended to the closed-cohort design.
Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{\otimes l}$ of rank $r$ (where $r\ll d$), can variants of gradient descent find a rank $m$ decomposition where $m > r$? We show that in a lazy training regime (similar to the NTK regime for neural networks) one needs at least $m = \Omega(d^{l-1})$, while a variant of gradient descent can find an approximate tensor when $m = O^*(r^{2.5l}\log d)$. Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
Aggregated Relational Data, known as ARD, capture information about a social network by asking about the number of connections between a person and a group with a particular characteristic, rather than asking about connections between each pair of individuals directly. Breza et al. (Forthcoming) and McCormick and Zheng (2015) relate ARD questions, consisting of survey items of the form "How many people with characteristic X do you know?" to parametric statistical models for complete graphs. In this paper, we propose criteria for consistent estimation of individual and graph level statistics from ARD data.
Multiple and combined endpoints involving also non-normal outcomes appear in many clinical trials in various areas in medicine. In some cases, the outcome can be observed only on an ordinal or dichotomous scale. Then the success of two therapies is assessed by comparing the outcome of two randomly selected patients from the two therapy groups by 'better', 'equal' or 'worse'. These outcomes can be described by the probabilities $p^-=P(X<Y)$, $p_0=P(X=Y)$, and $p^+ =P(X~>~Y)$. For a clinician, however, these quantities are less intuitive. Therefore, Noether (1987) introduced the quantity $\lambda=p^+ / p^-$ assuming continuous distributions. The same quantity was used by Pocock et al. (2012) and by Wang and Pocock (2016) also for general non-normal outcomes and has been called 'win-ratio' $\lambda_{WR}$. Unlike Noether (1987), Wang and Pocock (2016) explicitly allowed for ties in the data. It is the aim of this manuscript to investigate the properties of $\lambda_{WR}$ in case of ties. It turns out that it has the strange property of becoming larger if the data are observed less accurately, i.e. include more ties. Thus, in case of ties, the win-ratio looses its appealing property to describe and quantify an intuitive and well interpretable treatment effect. Therefore, a slight modification of $\lambda_{WR} = \theta / (1-\theta)$ is suggested, namely the so-called 'success-odds' where $\theta=p^+ + \frac12 p_0$ is called a success of a therapy if $\theta>\frac12$. In the case of no ties, $\lambda_{SO}$ is identical to $\lambda_{WR}$. A test for the hypothesis $\lambda_{SO}=1$ and range preserving confidence intervals for $\lambda_{SO}$ are derived. By two counterexamples it is demonstrated that generalizations of both the win-ratio and the success-odds to more than two treatments or to stratified designs are not straightforward and need more detailed considerations.