metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:149460
- loss:ContrastiveLoss
base_model: sentence-transformers/clip-ViT-B-32
widget:
- source_sentence: Meltdown
sentences:
- Ancient Imperiosaur
- >-
https://cards.scryfall.io/normal/front/1/9/192ccc7f-ffb1-4f78-8cf0-a220df612be7.jpg?1682536817
- >-
https://cards.scryfall.io/normal/front/5/6/56301392-3496-48d0-8d91-6b82e1164c98.jpg?1721427942
- source_sentence: Etali, Primal Storm
sentences:
- >-
https://cards.scryfall.io/normal/front/4/8/4874388e-0227-4b89-a986-d86c14482c81.jpg?1594065427
- Battle of Wits
- >-
https://cards.scryfall.io/normal/front/1/d/1d3d8bb4-0430-45bb-930d-5d6db6521945.jpg?1587309687
- source_sentence: Chrome Prowler
sentences:
- >-
https://cards.scryfall.io/normal/front/a/2/a263f594-621e-46af-8561-f7eee565a19a.jpg?1562643297
- >-
https://cards.scryfall.io/normal/front/3/d/3dff363d-7e9f-4764-a9ee-ec2f23239df6.jpg?1562907900
- >-
https://cards.scryfall.io/normal/front/2/1/21121857-85b8-4ba8-9363-beafdb1005c2.jpg?1730486782
- source_sentence: Beastbreaker of Bala Ged
sentences:
- >-
https://cards.scryfall.io/normal/front/2/8/287ca034-9cea-4b84-98ba-76c24f038edb.jpg?1599709496
- >-
https://cards.scryfall.io/normal/front/5/4/547f2641-bcd6-4536-ba5a-f46170dd2803.jpg?1573513110
- >-
https://cards.scryfall.io/normal/front/4/c/4c29f6a1-42a5-433f-9c09-c160b096f8e1.jpg?1562542378
- source_sentence: Against All Odds
sentences:
- >-
https://cards.scryfall.io/normal/front/4/a/4ab2f81a-fcbe-44d1-8281-04dd78bb9ea3.jpg?1593274931
- >-
https://cards.scryfall.io/normal/front/3/c/3cd8dd4e-6892-49d7-8fae-97d04f9f6c84.jpg?1675956885
- Sheltering Prayers
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/clip-ViT-B-32
This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-B-32. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/clip-ViT-B-32
- Maximum Sequence Length: 77 tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): CLIPModel()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/MTGEmb-small")
# Run inference
sentences = [
'Against All Odds',
'https://cards.scryfall.io/normal/front/3/c/3cd8dd4e-6892-49d7-8fae-97d04f9f6c84.jpg?1675956885',
'https://cards.scryfall.io/normal/front/4/a/4ab2f81a-fcbe-44d1-8281-04dd78bb9ea3.jpg?1593274931',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9248, 0.6695],
# [0.9248, 1.0000, 0.6947],
# [0.6695, 0.6947, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 149,460 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 3 tokens
- mean: 17.16 tokens
- max: 69 tokens
- min: 3 tokens
- mean: 54.64 tokens
- max: 69 tokens
- 0: ~57.60%
- 1: ~42.40%
- Samples:
sentence_0 sentence_1 label Comparative Analysishttps://cards.scryfall.io/normal/front/d/d/dd83129b-7e8c-4cc5-a7b3-e0ae221d7ad4.jpg?15629395491Breathkeeper Seraphhttps://cards.scryfall.io/normal/front/1/b/1bdd3ecb-8c11-4a4c-a503-bc29f79a9dcb.jpg?16822046910Wei Infantryhttps://cards.scryfall.io/normal/front/7/2/72c6465f-3144-4faf-b248-a9fb941dc002.jpg?15622570161 - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64per_device_eval_batch_size: 64multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.2140 | 500 | 0.0342 |
| 0.4281 | 1000 | 0.0311 |
| 0.6421 | 1500 | 0.0306 |
| 0.8562 | 2000 | 0.0302 |
| 1.0702 | 2500 | 0.0287 |
| 1.2842 | 3000 | 0.0262 |
| 1.4983 | 3500 | 0.025 |
| 1.7123 | 4000 | 0.0236 |
| 1.9264 | 4500 | 0.022 |
| 2.1404 | 5000 | 0.016 |
| 2.3545 | 5500 | 0.0128 |
| 2.5685 | 6000 | 0.0119 |
| 2.7825 | 6500 | 0.0108 |
| 2.9966 | 7000 | 0.0103 |
Framework Versions
- Python: 3.13.7
- Sentence Transformers: 5.1.2
- Transformers: 4.49.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}