model-b-structured / README.md
radoslavralev's picture
Add new SentenceTransformer model
85a3389 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:713743
- loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
sentences:
- 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
- What does the Gettysburg Address really mean?
- What is eatalo.com?
- source_sentence: Has the influence of Ancient Carthage in science, math, and society
been underestimated?
sentences:
- How does one earn money online without an investment from home?
- Has the influence of Ancient Carthage in science, math, and society been underestimated?
- Has the influence of the Ancient Etruscans in science and math been underestimated?
- source_sentence: Is there any app that shares charging to others like share it how
we transfer files?
sentences:
- How do you think of Chinese claims that the present Private Arbitration is illegal,
its verdict violates the UNCLOS and is illegal?
- Is there any app that shares charging to others like share it how we transfer
files?
- Are there any platforms that provides end-to-end encryption for file transfer/
sharing?
- source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
sentences:
- What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
- What is a dc current? What are some examples?
- Why AAP’s MLA Dinesh Mohaniya has been arrested?
- source_sentence: What is the difference between economic growth and economic development?
sentences:
- How cold can the Gobi Desert get, and how do its average temperatures compare
to the ones in the Simpson Desert?
- the difference between economic growth and economic development is What?
- What is the difference between economic growth and economic development?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.38
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.54
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.38
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.136
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.38
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5686686381597302
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.49702380952380953
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5063338862610184
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.4
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.56
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.66
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12800000000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.58
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.63
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5105228253020769
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.48852380952380947
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4728184565167554
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.39
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.55
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.64
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.73
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.39
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.132
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07500000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.37
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.63
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7150000000000001
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5395957317309036
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4927738095238095
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.48957617138888687
name: Cosine Map@100
---
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/model-b-structured")
# Run inference
sentences = [
'What is the difference between economic growth and economic development?',
'What is the difference between economic growth and economic development?',
'the difference between economic growth and economic development is What?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 1.0000, -0.0629],
# [ 1.0000, 1.0000, -0.0629],
# [-0.0629, -0.0629, 1.0001]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoMSMARCO` and `NanoNQ`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoMSMARCO | NanoNQ |
|:--------------------|:------------|:-----------|
| cosine_accuracy@1 | 0.38 | 0.4 |
| cosine_accuracy@3 | 0.54 | 0.56 |
| cosine_accuracy@5 | 0.68 | 0.6 |
| cosine_accuracy@10 | 0.8 | 0.66 |
| cosine_precision@1 | 0.38 | 0.4 |
| cosine_precision@3 | 0.18 | 0.2 |
| cosine_precision@5 | 0.136 | 0.128 |
| cosine_precision@10 | 0.08 | 0.07 |
| cosine_recall@1 | 0.38 | 0.36 |
| cosine_recall@3 | 0.54 | 0.54 |
| cosine_recall@5 | 0.68 | 0.58 |
| cosine_recall@10 | 0.8 | 0.63 |
| **cosine_ndcg@10** | **0.5687** | **0.5105** |
| cosine_mrr@10 | 0.497 | 0.4885 |
| cosine_map@100 | 0.5063 | 0.4728 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"dataset_id": "lightonai/NanoBEIR-en"
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.39 |
| cosine_accuracy@3 | 0.55 |
| cosine_accuracy@5 | 0.64 |
| cosine_accuracy@10 | 0.73 |
| cosine_precision@1 | 0.39 |
| cosine_precision@3 | 0.19 |
| cosine_precision@5 | 0.132 |
| cosine_precision@10 | 0.075 |
| cosine_recall@1 | 0.37 |
| cosine_recall@3 | 0.54 |
| cosine_recall@5 | 0.63 |
| cosine_recall@10 | 0.715 |
| **cosine_ndcg@10** | **0.5396** |
| cosine_mrr@10 | 0.4928 |
| cosine_map@100 | 0.4896 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 713,743 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.96 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.93 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.72 tokens</li><li>max: 59 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
| <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
| <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
| <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 7.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 40,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.47 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.48 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.76 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
| <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
| <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 7.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `max_steps`: 5000
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `ddp_find_unused_parameters`: False
- `push_to_hub`: True
- `hub_model_id`: redis/model-b-structured
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 5000
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/model-b-structured
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:|
| 0 | 0 | - | 2.2389 | 0.6530 | 0.6552 | 0.6541 |
| 0.0448 | 250 | 1.0022 | 0.4154 | 0.6615 | 0.5429 | 0.6022 |
| 0.0897 | 500 | 0.3871 | 0.3658 | 0.6042 | 0.4458 | 0.5250 |
| 0.1345 | 750 | 0.3575 | 0.3479 | 0.5819 | 0.5160 | 0.5489 |
| 0.1793 | 1000 | 0.3454 | 0.3355 | 0.5976 | 0.5595 | 0.5785 |
| 0.2242 | 1250 | 0.337 | 0.3284 | 0.5901 | 0.4544 | 0.5223 |
| 0.2690 | 1500 | 0.3291 | 0.3235 | 0.6138 | 0.5729 | 0.5933 |
| 0.3138 | 1750 | 0.323 | 0.3182 | 0.6210 | 0.5608 | 0.5909 |
| 0.3587 | 2000 | 0.3206 | 0.3141 | 0.6139 | 0.5474 | 0.5807 |
| 0.4035 | 2250 | 0.3151 | 0.3120 | 0.6275 | 0.5665 | 0.5970 |
| 0.4484 | 2500 | 0.3132 | 0.3093 | 0.6059 | 0.5349 | 0.5704 |
| 0.4932 | 2750 | 0.3087 | 0.3072 | 0.6011 | 0.5305 | 0.5658 |
| 0.5380 | 3000 | 0.3065 | 0.3051 | 0.5816 | 0.5057 | 0.5436 |
| 0.5829 | 3250 | 0.3044 | 0.3033 | 0.5959 | 0.5203 | 0.5581 |
| 0.6277 | 3500 | 0.3053 | 0.3018 | 0.5817 | 0.5185 | 0.5501 |
| 0.6725 | 3750 | 0.3028 | 0.3006 | 0.5744 | 0.5052 | 0.5398 |
| 0.7174 | 4000 | 0.3018 | 0.2996 | 0.5783 | 0.5190 | 0.5487 |
| 0.7622 | 4250 | 0.3011 | 0.2994 | 0.5679 | 0.4959 | 0.5319 |
| 0.8070 | 4500 | 0.3009 | 0.2979 | 0.5689 | 0.5068 | 0.5378 |
| 0.8519 | 4750 | 0.2985 | 0.2975 | 0.5687 | 0.5135 | 0.5411 |
| 0.8967 | 5000 | 0.2995 | 0.2971 | 0.5687 | 0.5105 | 0.5396 |
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 2.21.0
- Tokenizers: 0.22.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->