Spaces:
Sleeping
Sleeping
| # π Phase 1 Implementation Plan - Research Features | |
| ## Quick Wins: Build These First (2-3 days) | |
| ### Priority 1: RAG Pipeline Visualization βββ | |
| **Why:** Shows research credibility, transparency, visual appeal | |
| **Effort:** Medium | |
| **Impact:** High | |
| #### Implementation Steps: | |
| 1. **Backend: Track RAG stages** (`api/rag_tracker.py`) | |
| ```python | |
| class RAGTracker: | |
| def __init__(self): | |
| self.stages = [] | |
| def track_query_encoding(self, query, embedding): | |
| self.stages.append({ | |
| "stage": "encoding", | |
| "query": query, | |
| "embedding_preview": embedding[:10], # First 10 dims | |
| "timestamp": time.time() | |
| }) | |
| def track_retrieval(self, documents, scores): | |
| self.stages.append({ | |
| "stage": "retrieval", | |
| "num_docs": len(documents), | |
| "top_scores": scores[:5], | |
| "documents": [{"text": d[:100], "score": s} | |
| for d, s in zip(documents[:5], scores[:5])] | |
| }) | |
| def track_generation(self, context, response): | |
| self.stages.append({ | |
| "stage": "generation", | |
| "context_length": len(context), | |
| "response_length": len(response), | |
| "attribution": self.extract_citations(response) | |
| }) | |
| ``` | |
| 2. **Frontend: RAG Pipeline Viewer** (add to `index.html`) | |
| ```html | |
| <div class="rag-pipeline" id="rag-pipeline"> | |
| <div class="stage" data-stage="encoding"> | |
| <div class="stage-icon">π</div> | |
| <div class="stage-title">Query Encoding</div> | |
| <div class="stage-details"> | |
| <div class="embedding-preview"></div> | |
| </div> | |
| </div> | |
| <div class="stage" data-stage="retrieval"> | |
| <div class="stage-icon">π</div> | |
| <div class="stage-title">Document Retrieval</div> | |
| <div class="retrieved-docs"></div> | |
| </div> | |
| <div class="stage" data-stage="generation"> | |
| <div class="stage-icon">βοΈ</div> | |
| <div class="stage-title">Generation</div> | |
| <div class="citations"></div> | |
| </div> | |
| </div> | |
| ``` | |
| 3. **Styling: Research Lab Theme** | |
| ```css | |
| .rag-pipeline { | |
| background: #1e1e1e; | |
| color: #d4d4d4; | |
| font-family: 'Fira Code', monospace; | |
| padding: 20px; | |
| border-radius: 8px; | |
| margin: 20px 0; | |
| } | |
| .stage { | |
| border-left: 3px solid #007acc; | |
| padding: 15px; | |
| margin: 10px 0; | |
| transition: all 0.3s; | |
| } | |
| .stage.active { | |
| border-left-color: #4ec9b0; | |
| background: #2d2d2d; | |
| } | |
| .embedding-preview { | |
| font-family: 'Courier New', monospace; | |
| background: #0e0e0e; | |
| padding: 10px; | |
| border-radius: 4px; | |
| overflow-x: auto; | |
| } | |
| ``` | |
| --- | |
| ### Priority 2: Attention Visualization ββ | |
| **Why:** Shows interpretability, looks impressive, educational | |
| **Effort:** Medium-High | |
| **Impact:** Very High (visually stunning) | |
| #### Implementation: | |
| 1. **Mock attention data in demo mode** | |
| ```python | |
| def generate_attention_heatmap(query: str, response: str): | |
| """Generate synthetic attention weights for demo.""" | |
| query_tokens = query.split() | |
| response_tokens = response.split()[:20] # First 20 tokens | |
| # Simulate attention: query tokens attend to relevant response tokens | |
| attention = np.random.rand(len(query_tokens), len(response_tokens)) | |
| # Add some structure (diagonal-ish for realistic look) | |
| for i in range(len(query_tokens)): | |
| attention[i, i:i+3] *= 2 # Boost nearby tokens | |
| attention = softmax(attention, axis=1) | |
| return { | |
| "query_tokens": query_tokens, | |
| "response_tokens": response_tokens, | |
| "attention_weights": attention.tolist() | |
| } | |
| ``` | |
| 2. **Interactive heatmap with Plotly or D3.js** | |
| ```javascript | |
| function renderAttentionHeatmap(data) { | |
| const trace = { | |
| x: data.response_tokens, | |
| y: data.query_tokens, | |
| z: data.attention_weights, | |
| type: 'heatmap', | |
| colorscale: 'Viridis', | |
| hoverongaps: false | |
| }; | |
| const layout = { | |
| title: 'Attention Pattern: Query β Response', | |
| xaxis: { title: 'Response Tokens' }, | |
| yaxis: { title: 'Query Tokens' }, | |
| paper_bgcolor: '#1e1e1e', | |
| plot_bgcolor: '#1e1e1e', | |
| font: { color: '#d4d4d4' } | |
| }; | |
| Plotly.newPlot('attention-heatmap', [trace], layout); | |
| } | |
| ``` | |
| --- | |
| ### Priority 3: Paper Citation System βββ | |
| **Why:** Academic credibility, research positioning | |
| **Effort:** Low | |
| **Impact:** High (perception) | |
| #### Implementation: | |
| 1. **Paper database** (`api/papers.py`) | |
| ```python | |
| RESEARCH_PAPERS = { | |
| "attention": { | |
| "title": "Attention is All You Need", | |
| "authors": "Vaswani et al.", | |
| "year": 2017, | |
| "venue": "NeurIPS", | |
| "url": "https://arxiv.org/abs/1706.03762", | |
| "citations": 87000, | |
| "summary": "Introduced the Transformer architecture using self-attention." | |
| }, | |
| "rag": { | |
| "title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks", | |
| "authors": "Lewis et al.", | |
| "year": 2020, | |
| "venue": "NeurIPS", | |
| "url": "https://arxiv.org/abs/2005.11401", | |
| "citations": 3200, | |
| "summary": "Combines retrieval with generation for factual QA." | |
| }, | |
| "tot": { | |
| "title": "Tree of Thoughts: Deliberate Problem Solving with LLMs", | |
| "authors": "Yao et al.", | |
| "year": 2023, | |
| "venue": "NeurIPS", | |
| "url": "https://arxiv.org/abs/2305.10601", | |
| "citations": 450, | |
| "summary": "Explores multiple reasoning paths like human problem-solving." | |
| }, | |
| # Add 15+ more papers... | |
| } | |
| def get_relevant_papers(feature: str) -> List[Dict]: | |
| """Return papers relevant to the current feature.""" | |
| feature_paper_map = { | |
| "rag": ["rag", "dense_retrieval"], | |
| "attention": ["attention", "transformers"], | |
| "reasoning": ["tot", "cot", "self_consistency"], | |
| # ... | |
| } | |
| return [RESEARCH_PAPERS[p] for p in feature_paper_map.get(feature, [])] | |
| ``` | |
| 2. **Citation widget** | |
| ```html | |
| <div class="paper-citations"> | |
| <div class="citation-header"> | |
| π Research Foundations | |
| </div> | |
| <div class="citation-list"> | |
| <div class="citation-item"> | |
| <div class="citation-title"> | |
| "Attention is All You Need" | |
| </div> | |
| <div class="citation-meta"> | |
| Vaswani et al., NeurIPS 2017 | 87k citations | |
| </div> | |
| <div class="citation-actions"> | |
| <a href="#" class="btn-citation">PDF</a> | |
| <a href="#" class="btn-citation">Code</a> | |
| <a href="#" class="btn-citation">Cite</a> | |
| </div> | |
| </div> | |
| </div> | |
| </div> | |
| ``` | |
| --- | |
| ### Priority 4: Uncertainty Quantification ββ | |
| **Why:** Shows sophistication, useful for users | |
| **Effort:** Low-Medium | |
| **Impact:** Medium-High | |
| #### Implementation: | |
| 1. **Confidence estimation** (demo mode) | |
| ```python | |
| def estimate_confidence(query: str, response: str, mode: str) -> Dict: | |
| """ | |
| Estimate confidence based on heuristics. | |
| In production, use actual model logits. | |
| """ | |
| # Heuristics for demo | |
| confidence_base = 0.7 | |
| # Boost confidence for technical mode (seems more certain) | |
| if mode == "technical": | |
| confidence_base += 0.1 | |
| # Lower confidence for vague queries | |
| if len(query.split()) < 5: | |
| confidence_base -= 0.15 | |
| # Add some noise for realism | |
| confidence = confidence_base + np.random.uniform(-0.1, 0.1) | |
| confidence = np.clip(confidence, 0.3, 0.95) | |
| # Estimate epistemic vs aleatoric | |
| epistemic = confidence * 0.6 # Model uncertainty | |
| aleatoric = confidence * 0.4 # Data ambiguity | |
| return { | |
| "overall": round(confidence, 2), | |
| "epistemic": round(epistemic, 2), | |
| "aleatoric": round(aleatoric, 2), | |
| "calibration_error": round(abs(confidence - 0.8), 3), | |
| "interpretation": interpret_confidence(confidence) | |
| } | |
| def interpret_confidence(conf: float) -> str: | |
| if conf > 0.85: | |
| return "High confidence - well-established knowledge" | |
| elif conf > 0.65: | |
| return "Moderate confidence - generally accurate" | |
| else: | |
| return "Low confidence - consider verifying independently" | |
| ``` | |
| 2. **Confidence gauge widget** | |
| ```html | |
| <div class="confidence-gauge"> | |
| <div class="gauge-header">Confidence Analysis</div> | |
| <div class="gauge-visual"> | |
| <svg viewBox="0 0 200 100"> | |
| <!-- Arc background --> | |
| <path d="M 20,80 A 60,60 0 0,1 180,80" | |
| stroke="#333" stroke-width="20" fill="none"/> | |
| <!-- Confidence arc (dynamic) --> | |
| <path id="confidence-arc" | |
| d="M 20,80 A 60,60 0 0,1 180,80" | |
| stroke="url(#confidence-gradient)" | |
| stroke-width="20" | |
| fill="none" | |
| stroke-dasharray="251.2" | |
| stroke-dashoffset="125.6"/> | |
| <defs> | |
| <linearGradient id="confidence-gradient"> | |
| <stop offset="0%" stop-color="#f56565"/> | |
| <stop offset="50%" stop-color="#f6ad55"/> | |
| <stop offset="100%" stop-color="#48bb78"/> | |
| </linearGradient> | |
| </defs> | |
| </svg> | |
| <div class="gauge-value">76%</div> | |
| </div> | |
| <div class="uncertainty-breakdown"> | |
| <div class="uncertainty-item"> | |
| <span class="label">Epistemic (Model)</span> | |
| <div class="bar" style="width: 60%"></div> | |
| </div> | |
| <div class="uncertainty-item"> | |
| <span class="label">Aleatoric (Data)</span> | |
| <div class="bar" style="width: 85%"></div> | |
| </div> | |
| </div> | |
| </div> | |
| ``` | |
| --- | |
| ## Integration Plan | |
| ### Step 1: Update `api/ask.py` | |
| Add these fields to response: | |
| ```python | |
| { | |
| "result": "...", | |
| "research_data": { | |
| "rag_pipeline": {...}, # RAG stages | |
| "attention": {...}, # Attention weights | |
| "confidence": {...}, # Uncertainty metrics | |
| "papers": [...] # Relevant citations | |
| } | |
| } | |
| ``` | |
| ### Step 2: Update `public/index.html` | |
| Add new sections: | |
| ```html | |
| <div class="research-panel" style="display:none" id="research-panel"> | |
| <div class="panel-tabs"> | |
| <button class="tab active" data-tab="rag">RAG Pipeline</button> | |
| <button class="tab" data-tab="attention">Attention</button> | |
| <button class="tab" data-tab="confidence">Confidence</button> | |
| <button class="tab" data-tab="papers">Papers</button> | |
| </div> | |
| <div class="panel-content"> | |
| <div id="rag-tab" class="tab-pane active"></div> | |
| <div id="attention-tab" class="tab-pane"></div> | |
| <div id="confidence-tab" class="tab-pane"></div> | |
| <div id="papers-tab" class="tab-pane"></div> | |
| </div> | |
| </div> | |
| <button id="toggle-research" class="btn-toggle"> | |
| π¬ Show Research Details | |
| </button> | |
| ``` | |
| ### Step 3: Add Dependencies | |
| ```bash | |
| # For visualization | |
| npm install plotly.js d3 | |
| # Or use CDN in HTML | |
| <script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script> | |
| ``` | |
| --- | |
| ## Timeline | |
| **Day 1:** | |
| - β Set up paper database | |
| - β Add citation widget | |
| - β Basic confidence estimation | |
| - β Update response structure | |
| **Day 2:** | |
| - β Implement RAG tracker (mock data) | |
| - β Build RAG pipeline UI | |
| - β Style research panel | |
| - β Add confidence gauge | |
| **Day 3:** | |
| - β Generate attention heatmaps | |
| - β Integrate Plotly visualization | |
| - β Polish animations | |
| - β Test & deploy | |
| --- | |
| ## Success Criteria | |
| β Users can toggle "Research Mode" | |
| β 4 interactive visualizations working | |
| β 10+ papers cited with links | |
| β Confidence scores shown per response | |
| β Dark theme, monospace aesthetic | |
| β Export visualizations as images | |
| β Mobile responsive | |
| --- | |
| ## Next Phase Preview | |
| Once Phase 1 is solid, Phase 2 adds: | |
| - π³ Tree-of-Thoughts interactive explorer | |
| - πΈοΈ Knowledge graph visualization | |
| - π§ Cognitive load real-time monitor | |
| - π A/B testing dashboard | |
| **Ready to start implementing?** Let's begin with the paper citation system (easiest) or RAG pipeline (most visual impact)? | |