API / model.py
InfiniteLobster's picture
Migration with slight changes
250a0ca
import torch
from torch import nn
class BasicBlock(nn.Module):
"""Basic building block for ResNet-18/34"""
expansion = 1
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x: torch.Tensor) -> torch.Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
"""Bottleneck building block for ResNet-50/101/152"""
expansion = 4
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x: torch.Tensor) -> torch.Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
"""ResNet model for image classification
Supports ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152
Adapted for small images like MedMNIST (28x28)
"""
def __init__(
self,
block: type[BasicBlock | Bottleneck],
layers: list[int],
num_classes: int = 11,
in_channels: int = 1,
):
super().__init__()
self.in_channels = 64
# Initial convolution layer (adapted for small 28x28 images)
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# Removed maxpool for small images
# ResNet layers
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# Global average pooling and classifier
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# Initialize weights
self._initialize_weights()
def _make_layer(self, block: type[BasicBlock | Bottleneck], out_channels: int, blocks: int, stride: int = 1) -> nn.Sequential:
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion),
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def resnet18(num_classes: int = 11, in_channels: int = 1) -> ResNet:
"""ResNet-18 model
Args:
num_classes: Number of output classes (default: 11 for organamnist)
in_channels: Number of input channels (default: 1 for grayscale)
Returns:
ResNet-18 model
"""
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_channels=in_channels)
def resnet50(num_classes: int = 11, in_channels: int = 1) -> ResNet:
"""ResNet-50 model
Args:
num_classes: Number of output classes (default: 11 for organamnist)
in_channels: Number of input channels (default: 1 for grayscale)
Returns:
ResNet-50 model
"""
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_channels=in_channels)
# Keep the old Model class for backward compatibility
class Model(nn.Module):
"""Just a dummy model to show how to structure your code"""
def __init__(self):
super().__init__()
self.layer = nn.Linear(1, 1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.layer(x)
if __name__ == "__main__":
# Test ResNet-18
model18 = resnet18(num_classes=11, in_channels=1)
x = torch.rand(4, 1, 28, 28) # Batch of 4 grayscale 28x28 images
output = model18(x)
print(f"ResNet-18 output shape: {output.shape}") # Should be [4, 11]
# Test ResNet-50
model50 = resnet50(num_classes=11, in_channels=1)
output50 = model50(x)
print(f"ResNet-50 output shape: {output50.shape}") # Should be [4, 11]
# Count parameters
params18 = sum(p.numel() for p in model18.parameters())
params50 = sum(p.numel() for p in model50.parameters())
print(f"ResNet-18 parameters: {params18:,}")
print(f"ResNet-50 parameters: {params50:,}")