|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
"""Basic building block for ResNet-18/34""" |
|
|
expansion = 1 |
|
|
|
|
|
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None): |
|
|
super().__init__() |
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) |
|
|
self.bn1 = nn.BatchNorm2d(out_channels) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
|
self.downsample = downsample |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
identity = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.bn1(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.bn2(out) |
|
|
|
|
|
if self.downsample is not None: |
|
|
identity = self.downsample(x) |
|
|
|
|
|
out += identity |
|
|
out = self.relu(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
"""Bottleneck building block for ResNet-50/101/152""" |
|
|
expansion = 4 |
|
|
|
|
|
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None): |
|
|
super().__init__() |
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) |
|
|
self.bn1 = nn.BatchNorm2d(out_channels) |
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) |
|
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
|
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False) |
|
|
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.downsample = downsample |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
identity = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.bn1(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.bn2(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv3(out) |
|
|
out = self.bn3(out) |
|
|
|
|
|
if self.downsample is not None: |
|
|
identity = self.downsample(x) |
|
|
|
|
|
out += identity |
|
|
out = self.relu(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class ResNet(nn.Module): |
|
|
"""ResNet model for image classification |
|
|
|
|
|
Supports ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152 |
|
|
Adapted for small images like MedMNIST (28x28) |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
block: type[BasicBlock | Bottleneck], |
|
|
layers: list[int], |
|
|
num_classes: int = 11, |
|
|
in_channels: int = 1, |
|
|
): |
|
|
super().__init__() |
|
|
self.in_channels = 64 |
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.bn1 = nn.BatchNorm2d(64) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
|
|
|
|
|
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
|
|
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
|
|
|
self._initialize_weights() |
|
|
|
|
|
def _make_layer(self, block: type[BasicBlock | Bottleneck], out_channels: int, blocks: int, stride: int = 1) -> nn.Sequential: |
|
|
downsample = None |
|
|
if stride != 1 or self.in_channels != out_channels * block.expansion: |
|
|
downsample = nn.Sequential( |
|
|
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), |
|
|
nn.BatchNorm2d(out_channels * block.expansion), |
|
|
) |
|
|
|
|
|
layers = [] |
|
|
layers.append(block(self.in_channels, out_channels, stride, downsample)) |
|
|
self.in_channels = out_channels * block.expansion |
|
|
for _ in range(1, blocks): |
|
|
layers.append(block(self.in_channels, out_channels)) |
|
|
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _initialize_weights(self): |
|
|
for m in self.modules(): |
|
|
if isinstance(m, nn.Conv2d): |
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
|
nn.init.constant_(m.weight, 1) |
|
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = self.conv1(x) |
|
|
x = self.bn1(x) |
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.layer1(x) |
|
|
x = self.layer2(x) |
|
|
x = self.layer3(x) |
|
|
x = self.layer4(x) |
|
|
|
|
|
x = self.avgpool(x) |
|
|
x = torch.flatten(x, 1) |
|
|
x = self.fc(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def resnet18(num_classes: int = 11, in_channels: int = 1) -> ResNet: |
|
|
"""ResNet-18 model |
|
|
|
|
|
Args: |
|
|
num_classes: Number of output classes (default: 11 for organamnist) |
|
|
in_channels: Number of input channels (default: 1 for grayscale) |
|
|
|
|
|
Returns: |
|
|
ResNet-18 model |
|
|
""" |
|
|
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_channels=in_channels) |
|
|
|
|
|
|
|
|
def resnet50(num_classes: int = 11, in_channels: int = 1) -> ResNet: |
|
|
"""ResNet-50 model |
|
|
|
|
|
Args: |
|
|
num_classes: Number of output classes (default: 11 for organamnist) |
|
|
in_channels: Number of input channels (default: 1 for grayscale) |
|
|
|
|
|
Returns: |
|
|
ResNet-50 model |
|
|
""" |
|
|
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_channels=in_channels) |
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module): |
|
|
"""Just a dummy model to show how to structure your code""" |
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
self.layer = nn.Linear(1, 1) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
return self.layer(x) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
model18 = resnet18(num_classes=11, in_channels=1) |
|
|
x = torch.rand(4, 1, 28, 28) |
|
|
output = model18(x) |
|
|
print(f"ResNet-18 output shape: {output.shape}") |
|
|
|
|
|
|
|
|
model50 = resnet50(num_classes=11, in_channels=1) |
|
|
output50 = model50(x) |
|
|
print(f"ResNet-50 output shape: {output50.shape}") |
|
|
|
|
|
|
|
|
params18 = sum(p.numel() for p in model18.parameters()) |
|
|
params50 = sum(p.numel() for p in model50.parameters()) |
|
|
print(f"ResNet-18 parameters: {params18:,}") |
|
|
print(f"ResNet-50 parameters: {params50:,}") |
|
|
|