Method314's picture
Update app.py
b0f9ac3 verified
raw
history blame
7.72 kB
import gradio as gr
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
from io import BytesIO
import base64
def download_stock_data(ticker, start_date, end_date):
stock = yf.Ticker(ticker)
df = stock.history(start=start_date, end=end_date)
return df
def plot_interactive_chart(ticker, start_date, end_date, chart_type):
try:
stock = yf.Ticker(ticker)
data = stock.history(start=start_date, end=end_date)
if data.empty:
return "No data available for the specified date range."
if chart_type == "Logarithmic":
fig = create_logarithmic_chart(data, ticker)
else:
fig = create_candlestick_chart(data, ticker)
return fig
except Exception as e:
return f"An error occurred: {str(e)}"
def create_logarithmic_chart(data, ticker):
x = (data.index - data.index[0]).days
y = np.log(data['Close'])
slope, intercept = np.polyfit(x, y, 1)
future_days = 365 * 10
all_days = np.arange(len(x) + future_days)
log_trend = np.exp(intercept + slope * all_days)
inner_upper_band = log_trend * 2
inner_lower_band = log_trend / 2
outer_upper_band = log_trend * 4
outer_lower_band = log_trend / 4
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
fig = go.Figure()
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))
fig.update_layout(
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
xaxis_title='Date',
yaxis_title='Price (Log Scale)',
yaxis_type="log",
height=800,
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
hovermode='x unified'
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig
def create_candlestick_chart(data, ticker):
fig = go.Figure(data=[go.Candlestick(x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'])])
fig.update_layout(
title=f'{ticker} Stock Price (Candlestick Chart)',
xaxis_title='Date',
yaxis_title='Price',
height=800,
hovermode='x unified'
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig
def export_data(ticker, start_date, end_date, format):
data = download_stock_data(ticker, start_date, end_date)
if format == 'CSV':
output = BytesIO()
data.to_csv(output, index=True)
b64 = base64.b64encode(output.getvalue()).decode()
return f'data:text/csv;base64,{b64}'
elif format == 'Excel':
output = BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
data.to_excel(writer, sheet_name='Stock Data', index=True)
b64 = base64.b64encode(output.getvalue()).decode()
return f'data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}'
elif format == 'PDF':
output = BytesIO()
fig = go.Figure(data=[go.Table(
header=dict(values=list(data.columns)),
cells=dict(values=[data[col] for col in data.columns])
)])
fig.write_image(output, format='pdf')
b64 = base64.b64encode(output.getvalue()).decode()
return f'data:application/pdf;base64,{b64}'
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Custom CSS to make charts full-width and larger, and apply additional styling
custom_css = """
.container {max-width: 100% !important; padding: 0 !important;}
.plot-container {height: 800px !important; width: 100% !important;}
.react-plotly-container {height: 100% !important; width: 100% !important;}
body {
background-color: #f0f0f0;
font-family: 'Helvetica', sans-serif;
}
.gradio-container {
margin: auto;
padding: 15px;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #4CAF50;
border: none;
color: white;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 5px;
padding: 10px 24px;
}
.gr-button:hover {
background-color: #45a049;
}
.gr-form {
border: 1px solid #ddd;
border-radius: 5px;
padding: 15px;
margin-bottom: 20px;
}
.gr-input {
width: 100%;
padding: 12px 20px;
margin: 8px 0;
display: inline-block;
border: 1px solid #ccc;
border-radius: 4px;
box-sizing: border-box;
}
.gr-input:focus {
border-color: #4CAF50;
outline: none;
}
.gr-label {
font-weight: bold;
margin-bottom: 5px;
}
"""
# Create Gradio interface with updated theme
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="Log Charting Tool") as iface:
gr.Markdown("# Log Charting Tool")
gr.Markdown("Enter a stock ticker and date range to generate a chart and export data.")
with gr.Row():
ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
start_date = gr.Textbox(label="Start Date", value="2015-01-01")
end_date = gr.Textbox(label="End Date", value=current_date)
with gr.Row():
chart_type = gr.Radio(["Logarithmic", "Candlestick"], label="Chart Type", value="Logarithmic")
export_format = gr.Dropdown(["CSV", "Excel", "PDF"], label="Export Format", value="CSV")
with gr.Row():
generate_button = gr.Button("Generate Chart")
export_button = gr.Button("Export Data")
with gr.Row():
chart_output = gr.Plot(label="Stock Chart")
export_output = gr.File(label="Exported Data")
generate_button.click(
plot_interactive_chart,
inputs=[ticker, start_date, end_date, chart_type],
outputs=[chart_output]
)
export_button.click(
export_data,
inputs=[ticker, start_date, end_date, export_format],
outputs=[export_output]
)
# Launch the app
iface.launch()