File size: 30,473 Bytes
bbc558b ca24e8f fbe9e4a 7fdad36 42f56cc af6584b 5083e17 8d18142 fb8592f 5083e17 8295760 5083e17 4ed264b 4c6ebab 8295760 5bbf055 797be6b 8295760 4c6ebab 8295760 4c6ebab bbc558b 8295760 4c6ebab 8295760 5083e17 8295760 5083e17 bbc558b 5083e17 53f36cd cd0b356 bbc558b 8295760 bbc558b 8295760 bbc558b 5bbf055 bbc558b 4c6ebab 8295760 bbc558b 8295760 bbc558b 8d18142 cd0b356 797be6b 8295760 bbc558b 8295760 bbc558b 8295760 bbc558b 8295760 fbe9e4a 8295760 4c6ebab 8295760 4ed264b 4c6ebab fbe9e4a 4c6ebab fbe9e4a 4c6ebab bbc558b 5083e17 4c6ebab 9c2fb56 fbe9e4a 8d18142 8295760 4c6ebab 8295760 9c2fb56 4c6ebab bbc558b 8295760 5083e17 4c6ebab 53f36cd bbc558b 53f36cd 5083e17 4c6ebab b746adc fbe9e4a 4c6ebab fbe9e4a ca24e8f 4ed264b fbe9e4a bbc558b 797be6b 5083e17 bbc558b 5083e17 53f36cd bbc558b 53f36cd 5083e17 8295760 bbc558b efa2e5a eee101a 797be6b 42f56cc bbc558b fbe9e4a efa2e5a fbe9e4a 42f56cc bbc558b 42f56cc efa2e5a fbe9e4a cbb9529 4c6ebab bbc558b 4c6ebab bbc558b eee101a bbc558b 4c6ebab bbc558b 4c6ebab bbc558b 4c6ebab bbc558b 5083e17 4c6ebab bbc558b 8295760 ca24e8f 4c6ebab bbc558b 797be6b 65a3db4 4c6ebab bbc558b 4c6ebab 8295760 bbc558b 8d18142 7785336 4c6ebab 8295760 eee101a 7fdad36 8295760 4c6ebab 65a3db4 bbc558b 8295760 5bbf055 4c6ebab 65a3db4 8295760 4c6ebab 4ed264b 65a3db4 4c6ebab 4ed264b 4c6ebab cbb9529 4ed264b 4c6ebab cbb9529 4c6ebab ca24e8f c7ea09b ca24e8f 4c6ebab 8295760 0dfa99d bbc558b fbe9e4a 8295760 bbc558b 8295760 bbc558b fbe9e4a 064bf5c 653d088 04c51ad cbb9529 064bf5c 04c51ad cbb9529 064bf5c 653d088 3cb3ebf 653d088 064bf5c cbb9529 4c6ebab cbb9529 bbc558b e056211 3cb3ebf bbc558b cbb9529 e056211 cbb9529 bbc558b 8295760 65a3db4 8295760 56a394e 8295760 bbc558b cbb9529 04c51ad cbb9529 c7ea09b cbb9529 8295760 bbc558b cbb9529 04c51ad cbb9529 c7ea09b cbb9529 4c6ebab ca24e8f 8295760 4c6ebab 8295760 5bbf055 cbb9529 8295760 bbc558b addb902 65a3db4 bbc558b cbb9529 04c51ad cbb9529 c7ea09b cbb9529 bbc558b 65a3db4 cbb9529 bbc558b 8295760 653d088 cbb9529 4ed264b 8295760 bbc558b cbb9529 4ed264b 4c6ebab 54bd91f 4c6ebab 3cb3ebf 4c6ebab 3cb3ebf bbc558b 4c6ebab bbc558b 8295760 4c6ebab 8295760 eee101a 8295760 54bd91f eee101a 8295760 3f96b28 cbb9529 8295760 e056211 cbb9529 04c51ad cbb9529 bbc558b eee101a cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad cbb9529 04c51ad 653d088 cbb9529 653d088 cbb9529 0dfa99d cbb9529 c83ef19 cbb9529 04c51ad cbb9529 04c51ad cbb9529 b88f474 cbb9529 4c6ebab cbb9529 4c6ebab cbb9529 4c6ebab cbb9529 4c6ebab 8295760 56a394e 8295760 42f56cc db76cb7 04c51ad cbb9529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
# app.py
import os, io, math, time, warnings
warnings.filterwarnings("ignore")
from typing import List, Tuple, Dict, Optional
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import requests
import yfinance as yf
import gradio as gr
# ---- runtime niceties ----
os.environ.setdefault("MPLCONFIGDIR", os.getenv("MPLCONFIGDIR", "/home/user/.config/matplotlib"))
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
for d in [
"/home/user/.cache",
"/home/user/.cache/huggingface",
"/home/user/.cache/huggingface/hub",
"/home/user/.cache/sentencetransformers",
]:
os.makedirs(d, exist_ok=True)
# ---------------- config ----------------
DATA_DIR = "data"
os.makedirs(DATA_DIR, exist_ok=True)
MAX_TICKERS = 30
DEFAULT_LOOKBACK_YEARS = 10
MARKET_TICKER = "VOO"
SYNTH_ROWS = 1000 # synthetic candidate portfolios per compute
# Globals that update with horizon changes
HORIZON_YEARS = 10
RF_CODE = "DGS10"
RF_ANN = 0.0375 # refreshed at launch
# ---------------- helpers ----------------
def fred_series_for_horizon(years: float) -> str:
y = max(1.0, min(100.0, float(years)))
if y <= 2: return "DGS2"
if y <= 3: return "DGS3"
if y <= 5: return "DGS5"
if y <= 7: return "DGS7"
if y <= 10: return "DGS10"
if y <= 20: return "DGS20"
return "DGS30"
def fetch_fred_yield_annual(code: str) -> float:
url = f"https://fred.stlouisfed.org/graph/fredgraph.csv?id={code}"
try:
r = requests.get(url, timeout=10)
r.raise_for_status()
df = pd.read_csv(io.StringIO(r.text))
s = pd.to_numeric(df.iloc[:, 1], errors="coerce").dropna()
return float(s.iloc[-1] / 100.0) if len(s) else 0.03
except Exception:
return 0.03
def fetch_prices_monthly(tickers: List[str], years: int) -> pd.DataFrame:
tickers = list(dict.fromkeys([t.upper().strip() for t in tickers]))
start = (pd.Timestamp.today(tz="UTC") - pd.DateOffset(years=years, days=7)).date()
end = pd.Timestamp.today(tz="UTC").date()
df = yf.download(
tickers,
start=start,
end=end,
interval="1mo",
auto_adjust=True,
actions=False,
progress=False,
group_by="column",
threads=False,
)
if isinstance(df, pd.Series):
df = df.to_frame()
if isinstance(df.columns, pd.MultiIndex):
lvl0 = [str(x) for x in df.columns.get_level_values(0).unique()]
if "Close" in lvl0:
df = df["Close"]
elif "Adj Close" in lvl0:
df = df["Adj Close"]
else:
df = df.xs(df.columns.levels[0][-1], axis=1, level=0, drop_level=True)
cols = [c for c in tickers if c in df.columns]
out = df[cols].dropna(how="all").fillna(method="ffill")
return out
def monthly_returns(prices: pd.DataFrame) -> pd.DataFrame:
return prices.pct_change().dropna()
def yahoo_search(query: str):
if not query or not str(query).strip():
return []
url = "https://query1.finance.yahoo.com/v1/finance/search"
params = {"q": query.strip(), "quotesCount": 10, "newsCount": 0}
headers = {"User-Agent": "Mozilla/5.0"}
try:
r = requests.get(url, params=params, headers=headers, timeout=10)
r.raise_for_status()
data = r.json()
out = []
for q in data.get("quotes", []):
sym = q.get("symbol")
name = q.get("shortname") or q.get("longname") or ""
exch = q.get("exchDisp") or ""
if sym and sym.isascii():
out.append(f"{sym} | {name} | {exch}")
if not out:
out = [f"{query.strip().upper()} | typed symbol | n/a"]
return out[:10]
except Exception:
return [f"{query.strip().upper()} | typed symbol | n/a"]
def validate_tickers(symbols: List[str], years: int) -> List[str]:
base = [s for s in dict.fromkeys([t.upper().strip() for t in symbols]) if s]
px = fetch_prices_monthly(base + [MARKET_TICKER], years)
ok = [s for s in base if s in px.columns]
# require market proxy to compute CAPM
if MARKET_TICKER not in px.columns:
return []
return ok
# -------------- aligned moments --------------
def get_aligned_monthly_returns(symbols: List[str], years: int) -> pd.DataFrame:
uniq = [c for c in dict.fromkeys(symbols) if c != MARKET_TICKER]
tickers = uniq + [MARKET_TICKER]
px = fetch_prices_monthly(tickers, years)
rets = monthly_returns(px)
cols = [c for c in uniq if c in rets.columns] + ([MARKET_TICKER] if MARKET_TICKER in rets.columns else [])
R = rets[cols].dropna(how="any")
return R.loc[:, ~R.columns.duplicated()]
def estimate_all_moments_aligned(symbols: List[str], years: int, rf_ann: float):
R = get_aligned_monthly_returns(symbols, years)
if MARKET_TICKER not in R.columns or len(R) < 3:
raise ValueError("Not enough aligned data with market proxy.")
m = R[MARKET_TICKER]
if isinstance(m, pd.DataFrame):
m = m.iloc[:, 0].squeeze()
mu_m_ann = float(m.mean() * 12.0)
sigma_m_ann = float(m.std(ddof=1) * math.sqrt(12.0))
erp_ann = float(mu_m_ann - rf_ann)
rf_m = rf_ann / 12.0
ex_m = m - rf_m
var_m = float(np.var(ex_m.values, ddof=1))
var_m = max(var_m, 1e-9)
betas: Dict[str, float] = {}
for s in [c for c in R.columns if c != MARKET_TICKER]:
ex_s = R[s] - rf_m
cov_sm = float(np.cov(ex_s.values, ex_m.values, ddof=1)[0, 1])
betas[s] = cov_sm / var_m
betas[MARKET_TICKER] = 1.0
# include market in covariance so σ for portfolios holding VOO is correct
asset_cols_all = list(R.columns) # includes market
cov_m_all = np.cov(R[asset_cols_all].values.T, ddof=1) if asset_cols_all else np.zeros((0, 0))
covA = pd.DataFrame(cov_m_all * 12.0, index=asset_cols_all, columns=asset_cols_all)
return {"betas": betas, "cov_ann": covA, "erp_ann": erp_ann, "sigma_m_ann": sigma_m_ann}
def capm_er(beta: float, rf_ann: float, erp_ann: float) -> float:
return float(rf_ann + beta * erp_ann)
def portfolio_stats(weights: Dict[str, float],
cov_ann: pd.DataFrame,
betas: Dict[str, float],
rf_ann: float,
erp_ann: float) -> Tuple[float, float, float]:
tickers = list(weights.keys())
w = np.array([weights[t] for t in tickers], dtype=float)
gross = float(np.sum(np.abs(w)))
if gross <= 1e-12:
return 0.0, rf_ann, 0.0
w_expo = w / gross
beta_p = float(np.dot([betas.get(t, 0.0) for t in tickers], w_expo))
mu_capm = capm_er(beta_p, rf_ann, erp_ann)
cov = cov_ann.reindex(index=tickers, columns=tickers).fillna(0.0).to_numpy()
sigma_hist = float(max(w_expo.T @ cov @ w_expo, 0.0)) ** 0.5
return beta_p, mu_capm, sigma_hist
def efficient_same_sigma(sigma_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
if sigma_mkt <= 1e-12:
return 0.0, 1.0, rf_ann
a = sigma_target / sigma_mkt
return a, 1.0 - a, rf_ann + a * erp_ann
def efficient_same_return(mu_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
if abs(erp_ann) <= 1e-12:
return 0.0, 1.0, rf_ann
a = (mu_target - rf_ann) / erp_ann
return a, 1.0 - a, abs(a) * sigma_mkt
# -------------- plotting --------------
def _pct(x):
return np.asarray(x, dtype=float) * 100.0
def plot_cml(rf_ann, erp_ann, sigma_mkt,
sigma_hist_p, mu_capm_p,
same_sigma_mu, same_mu_sigma,
sugg_sigma_hist=None, sugg_mu_capm=None) -> Image.Image:
fig = plt.figure(figsize=(6.5, 4.3), dpi=120)
xmax = max(0.3, sigma_mkt * 2.4, (sigma_hist_p or 0.0) * 1.6, (sugg_sigma_hist or 0.0) * 1.6)
xs = np.linspace(0, xmax, 200)
slope = erp_ann / max(sigma_mkt, 1e-9)
cml = rf_ann + slope * xs
plt.plot(_pct(xs), _pct(cml), label="CML (Market/Bills)", linewidth=1.8)
plt.scatter([_pct(0)], [_pct(rf_ann)], label="Risk-free")
plt.scatter([_pct(sigma_mkt)], [_pct(rf_ann + erp_ann)], label="Market")
y_cml_at_sigma_p = rf_ann + slope * max(0.0, float(sigma_hist_p))
y_you = min(float(mu_capm_p), y_cml_at_sigma_p)
plt.scatter([_pct(sigma_hist_p)], [_pct(y_you)], label="Your CAPM point")
plt.scatter([_pct(sigma_hist_p)], [_pct(same_sigma_mu)], marker="^", label="Efficient (same σ)")
plt.scatter([_pct(same_mu_sigma)], [_pct(mu_capm_p)], marker="^", label="Efficient (same E[r])")
if sugg_sigma_hist is not None and sugg_mu_capm is not None:
y_cml_at_sugg = rf_ann + slope * max(0.0, float(sugg_sigma_hist))
y_sugg = min(float(sugg_mu_capm), y_cml_at_sugg)
plt.scatter([_pct(sugg_sigma_hist)], [_pct(y_sugg)], label="Selected Suggestion", marker="X", s=60)
plt.xlabel("σ (historical, annualized, %)")
plt.ylabel("CAPM E[r] (annual, %)")
plt.legend(loc="best", fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# -------------- synthetic dataset & suggestions --------------
def build_synthetic_dataset(universe_user: List[str],
covA: pd.DataFrame,
betas: Dict[str, float],
rf_ann: float,
erp_ann: float,
sigma_mkt: float,
n_rows: int = SYNTH_ROWS) -> pd.DataFrame:
rng = np.random.default_rng(12345)
assets = list(universe_user)
if len(assets) == 0:
return pd.DataFrame(columns=["tickers", "weights", "beta", "mu_capm", "sigma_hist"])
rows = []
for _ in range(n_rows):
k = int(rng.integers(low=1, high=min(8, len(assets)) + 1))
picks = list(rng.choice(assets, size=k, replace=False))
w = rng.dirichlet(np.ones(k))
beta_p = float(np.dot([betas.get(t, 0.0) for t in picks], w))
mu_capm = capm_er(beta_p, rf_ann, erp_ann)
sub = covA.reindex(index=picks, columns=picks).fillna(0.0).to_numpy()
sigma_hist = float(max(w.T @ sub @ w, 0.0)) ** 0.5
rows.append({
"tickers": ",".join(picks),
"weights": ",".join(f"{x:.6f}" for x in w),
"beta": beta_p,
"mu_capm": mu_capm,
"sigma_hist": sigma_hist
})
return pd.DataFrame(rows)
def _band_bounds(sigma_mkt: float, band: str) -> Tuple[float, float]:
band = (band or "Medium").strip().lower()
if band.startswith("low"):
return 0.0, 0.8 * sigma_mkt
if band.startswith("high"):
return 1.2 * sigma_mkt, 3.0 * sigma_mkt
return 0.8 * sigma_mkt, 1.2 * sigma_mkt
def _exposure_vec(row: pd.Series, universe: List[str]) -> np.ndarray:
vec = np.zeros(len(universe))
idx_map = {t: i for i, t in enumerate(universe)}
ts = [t.strip() for t in str(row["tickers"]).split(",") if t.strip()]
ws = [float(x) for x in str(row["weights"]).split(",")]
s = sum(ws) or 1.0
ws = [max(0.0, w) / s for w in ws]
for t, w in zip(ts, ws):
if t in idx_map:
vec[idx_map[t]] = w
return vec
def rerank_and_pick_one(df_band: pd.DataFrame,
universe: List[str],
desired_band: str,
alpha: float = 0.6) -> pd.Series:
if df_band.empty:
return pd.Series(dtype=object)
exp_target = np.ones(len(universe))
exp_target = exp_target / np.sum(exp_target)
embs_ok = True
try:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("FinLang/finance-embeddings-investopedia")
prompt_map = {
"low": "low risk conservative diversified stable portfolio",
"medium": "balanced medium risk diversified portfolio",
"high": "high risk growth aggressive portfolio higher expected return",
}
prompt = prompt_map.get(desired_band.lower(), prompt_map["medium"])
q = model.encode([prompt])
except Exception:
embs_ok = False
q = None
def _cos(a, b):
an = np.linalg.norm(a) + 1e-12
bn = np.linalg.norm(b) + 1e-12
return float(np.dot(a, b) / (an * bn))
X_exp = np.stack([_exposure_vec(r, universe) for _, r in df_band.iterrows()], axis=0)
exp_sims = np.array([_cos(x, exp_target) for x in X_exp])
if embs_ok:
cand_texts = []
for _, r in df_band.iterrows():
cand_texts.append(
f"portfolio with tickers {r['tickers']} having beta {float(r['beta']):.2f}, "
f"expected return {float(r['mu_capm']):.3f}, sigma {float(r['sigma_hist']):.3f}"
)
from numpy.linalg import norm
C = model.encode(cand_texts)
qv = q.reshape(-1)
coss = (C @ qv) / (norm(C, axis=1) * (norm(qv) + 1e-12))
coss = np.nan_to_num(coss, nan=0.0)
else:
coss = np.zeros(len(df_band))
base = alpha * exp_sims + (1 - alpha) * coss
order = np.argsort(-base)
best_idx = int(order[0])
return df_band.iloc[best_idx]
def suggest_one_per_band(synth: pd.DataFrame, sigma_mkt: float, universe_user: List[str]) -> Dict[str, pd.Series]:
out: Dict[str, pd.Series] = {}
for band in ["Low", "Medium", "High"]:
lo, hi = _band_bounds(sigma_mkt, band)
pool = synth[(synth["sigma_hist"] >= lo) & (synth["sigma_hist"] <= hi)].copy()
if pool.empty:
if band.lower() == "low":
pool = synth.nsmallest(50, "sigma_hist").copy()
elif band.lower() == "high":
pool = synth.nlargest(50, "sigma_hist").copy()
else:
tmp = synth.copy()
tmp["dist_med"] = (tmp["sigma_hist"] - sigma_mkt).abs()
pool = tmp.nsmallest(100, "dist_med").drop(columns=["dist_med"])
chosen = rerank_and_pick_one(pool, universe_user, band)
out[band.lower()] = chosen
return out
# -------------- UI helpers --------------
def empty_positions_df():
return pd.DataFrame(columns=["ticker", "amount_usd", "weight_exposure", "beta"])
def empty_suggestion_df():
return pd.DataFrame(columns=["ticker", "weight_%", "amount_$"])
def set_horizon(years: float):
y = max(1.0, min(100.0, float(years)))
code = fred_series_for_horizon(y)
rf = fetch_fred_yield_annual(code)
global HORIZON_YEARS, RF_CODE, RF_ANN
HORIZON_YEARS = y
RF_CODE = code
RF_ANN = rf
def search_tickers_cb(q: str):
opts = yahoo_search(q)
if not opts:
opts = ["No matches found"]
# Pre-select the first result and put helper text into the box
return gr.update(
choices=opts,
value=opts[0],
info="Select a symbol and click 'Add selected to portfolio'."
)
def add_symbol(selection: str, table: Optional[pd.DataFrame]):
if (not selection) or ("No matches" in selection) or ("Select a symbol" in selection) or ("type above" in selection):
return (
table if isinstance(table, pd.DataFrame) else pd.DataFrame(columns=["ticker","amount_usd"]),
"Pick a valid match first."
)
symbol = selection.split("|")[0].strip().upper()
current = []
if isinstance(table, pd.DataFrame) and not table.empty:
current = [str(x).upper() for x in table["ticker"].tolist() if str(x) != "nan"]
tickers = current if symbol in current else current + [symbol]
val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
tickers = [t for t in tickers if t in val]
amt_map = {}
if isinstance(table, pd.DataFrame) and not table.empty:
for _, r in table.iterrows():
t = str(r.get("ticker", "")).upper()
if t in tickers:
amt_map[t] = float(pd.to_numeric(r.get("amount_usd", 0.0), errors="coerce") or 0.0)
new_table = pd.DataFrame({"ticker": tickers, "amount_usd": [amt_map.get(t, 0.0) for t in tickers]})
if len(new_table) > MAX_TICKERS:
new_table = new_table.iloc[:MAX_TICKERS]
return new_table, f"Reached max of {MAX_TICKERS}."
return new_table, f"Added {symbol}."
def add_symbol_table_only(selection: str, table: Optional[pd.DataFrame]):
new_table, _msg = add_symbol(selection, table)
return new_table
def lock_ticker_column(tb: Optional[pd.DataFrame]):
if not isinstance(tb, pd.DataFrame) or tb.empty:
return pd.DataFrame(columns=["ticker", "amount_usd"])
tickers = [str(x).upper() for x in tb["ticker"].tolist()]
amounts = pd.to_numeric(tb["amount_usd"], errors="coerce").fillna(0.0).tolist()
val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
tickers = [t for t in tickers if t in val]
amounts = amounts[:len(tickers)] + [0.0] * max(0, len(tickers) - len(amounts))
return pd.DataFrame({"ticker": tickers, "amount_usd": amounts})
def current_ticker_choices(tb: Optional[pd.DataFrame]):
if not isinstance(tb, pd.DataFrame) or tb.empty:
return gr.update(choices=[], value=None)
tickers = [str(x).upper() for x in tb["ticker"].tolist() if str(x) != "nan"]
return gr.update(choices=tickers, value=None)
def remove_selected_ticker(symbol: Optional[str], table: Optional[pd.DataFrame]):
if not isinstance(table, pd.DataFrame) or table.empty or not symbol:
# nothing to do
return table if isinstance(table, pd.DataFrame) else pd.DataFrame(columns=["ticker", "amount_usd"]), gr.update()
out = table[table["ticker"].str.upper() != symbol.upper()].copy()
return out, current_ticker_choices(out)
# -------------- main compute (STREAMING to show progress) --------------
UNIVERSE: List[str] = [MARKET_TICKER, "QQQ", "VTI", "SOXX", "IBIT"]
def _holdings_table_from_row(row: pd.Series, budget: float) -> pd.DataFrame:
ts = [t.strip() for t in str(row["tickers"]).split(",") if t.strip()]
ws = [float(x) for x in str(row["weights"]).split(",")]
s = sum(ws) if ws else 1.0
ws = [max(0.0, w) / s for w in ws]
return pd.DataFrame(
[{"ticker": t, "weight_%": round(w*100.0, 2), "amount_$": round(w*budget, 0)} for t, w in zip(ts, ws)],
columns=["ticker", "weight_%", "amount_$"]
)
def compute_stream(
years_lookback: int,
table: Optional[pd.DataFrame],
pick_band_to_show: str, # "Low" | "Medium" | "High"
progress=gr.Progress(track_tqdm=True),
):
# Yield 0: show loading banner, keep right panel hidden
loading_banner = "**🔄 Computations running…** This can take a moment."
yield (
None, "", empty_positions_df(), empty_suggestion_df(), None,
"", "", "",
gr.update(visible=False), # right_col
gr.update(visible=False), # sugg_row
gr.update(value=loading_banner, visible=True) # status_md
)
progress(0.05, desc="Validating inputs…")
# sanitize table
if isinstance(table, pd.DataFrame):
df = table.copy()
else:
df = pd.DataFrame(columns=["ticker", "amount_usd"])
df = df.dropna(how="all")
if "ticker" not in df.columns: df["ticker"] = []
if "amount_usd" not in df.columns: df["amount_usd"] = []
df["ticker"] = df["ticker"].astype(str).str.upper().str.strip()
df["amount_usd"] = pd.to_numeric(df["amount_usd"], errors="coerce").fillna(0.0)
symbols = [t for t in df["ticker"].tolist() if t]
if len(symbols) == 0:
# final yield with message; keep right panel hidden
yield (
None,
"Add at least one ticker.",
empty_positions_df(),
empty_suggestion_df(),
None,
"", "", "",
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="", visible=False)
)
return
symbols = validate_tickers(symbols, years_lookback)
if len(symbols) == 0:
yield (
None,
"Could not validate any tickers.",
empty_positions_df(),
empty_suggestion_df(),
None,
"", "", "",
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="", visible=False)
)
return
global UNIVERSE
UNIVERSE = list(sorted(set(symbols)))[:MAX_TICKERS]
df = df[df["ticker"].isin(symbols)].copy()
amounts = {r["ticker"]: float(r["amount_usd"]) for _, r in df.iterrows()}
rf_ann = RF_ANN
progress(0.25, desc="Estimating betas & covariances…")
moms = estimate_all_moments_aligned(symbols, years_lookback, rf_ann)
betas, covA, erp_ann, sigma_mkt = moms["betas"], moms["cov_ann"], moms["erp_ann"], moms["sigma_m_ann"]
gross = sum(abs(v) for v in amounts.values())
if gross <= 1e-12:
yield (
None,
"All amounts are zero.",
empty_positions_df(),
empty_suggestion_df(),
None,
"", "", "",
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="", visible=False)
)
return
weights = {k: v / gross for k, v in amounts.items()}
progress(0.45, desc="Computing portfolio statistics…")
beta_p, mu_capm, sigma_hist = portfolio_stats(weights, covA, betas, rf_ann, erp_ann)
a_sigma, b_sigma, mu_eff_same_sigma = efficient_same_sigma(sigma_hist, rf_ann, erp_ann, sigma_mkt)
a_mu, b_mu, sigma_eff_same_mu = efficient_same_return(mu_capm, rf_ann, erp_ann, sigma_mkt)
progress(0.7, desc="Generating candidate portfolios…")
user_universe = list(symbols)
synth = build_synthetic_dataset(user_universe, covA, betas, rf_ann, erp_ann, sigma_mkt, n_rows=SYNTH_ROWS)
csv_path = os.path.join(DATA_DIR, f"investor_profiles_{int(time.time())}.csv")
try:
synth.to_csv(csv_path, index=False)
except Exception:
csv_path = None
progress(0.85, desc="Selecting suggestions…")
picks = suggest_one_per_band(synth, sigma_mkt, user_universe)
def _fmt(row: pd.Series) -> str:
if row is None or row.empty:
return "No pick available."
return f"CAPM E[r] {row['mu_capm']*100:.2f}%, σ(h) {row['sigma_hist']*100:.2f}%"
txt_low = _fmt(picks.get("low", pd.Series(dtype=object)))
txt_med = _fmt(picks.get("medium", pd.Series(dtype=object)))
txt_high = _fmt(picks.get("high", pd.Series(dtype=object)))
chosen_band = (pick_band_to_show or "Medium").strip().lower()
chosen = picks.get(chosen_band, pd.Series(dtype=object))
if chosen is None or chosen.empty:
chosen_sigma = None
chosen_mu = None
sugg_table = empty_suggestion_df()
else:
chosen_sigma = float(chosen["sigma_hist"])
chosen_mu = float(chosen["mu_capm"])
sugg_table = _holdings_table_from_row(chosen, budget=gross)
pos_table = pd.DataFrame(
[{
"ticker": t,
"amount_usd": amounts.get(t, 0.0),
"weight_exposure": weights.get(t, 0.0),
"beta": 1.0 if t == MARKET_TICKER else betas.get(t, np.nan)
} for t in symbols],
columns=["ticker", "amount_usd", "weight_exposure", "beta"]
)
img = plot_cml(
rf_ann, erp_ann, sigma_mkt,
sigma_hist, mu_capm,
mu_eff_same_sigma, sigma_eff_same_mu,
sugg_sigma_hist=chosen_sigma, sugg_mu_capm=chosen_mu
)
info = "\n".join([
"### Inputs",
f"- Lookback years {years_lookback}",
f"- Horizon years {int(round(HORIZON_YEARS))}",
f"- Risk-free {rf_ann:.2%} from {RF_CODE}",
f"- Market ERP {erp_ann:.2%}",
f"- Market σ (hist) {sigma_mkt:.2%}",
"",
"### Your portfolio",
f"- CAPM E[r] {mu_capm:.2%}",
f"- σ (historical) {sigma_hist:.2%}",
"",
"### Efficient market/bills mixes (replication weights)",
f"- **Same σ as your portfolio** → Market weight **{a_sigma:.2f}**, Bills weight **{b_sigma:.2f}** → E[r] **{mu_eff_same_sigma:.2%}**",
f"- **Same E[r] as your portfolio** → Market weight **{a_mu:.2f}**, Bills weight **{b_mu:.2f}** → σ **{sigma_eff_same_mu:.2%}**",
"",
"_How to replicate:_ use a broad market ETF (e.g., VOO) for **Market** and a T-bill/money-market fund for **Bills**. ",
"Weights can be >1 or negative. If leverage isn’t allowed, scale both weights proportionally toward 1.0.",
])
# Final yield: results + reveal right column and suggestion row; hide banner
yield (
img, info, pos_table, sugg_table, csv_path,
txt_low, txt_med, txt_high,
gr.update(visible=True),
gr.update(visible=True),
gr.update(value="", visible=False)
)
# -------------- UI --------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
:root {
--lensiq-accent: #8b5cf6;
--lensiq-bg: #0b1220;
--lensiq-card: #121a2b;
--lensiq-text: #e5e7eb;
}
.gradio-container { font-family: Inter, ui-sans-serif, system-ui, -apple-system !important; }
.lensiq-card { background: var(--lensiq-card); border-radius: 14px; padding: 14px; }
button, .gr-button { border-radius: 10px !important; }
.lensiq-status { background: #1f2937; color: #e5e7eb; border-left: 4px solid var(--lensiq-accent); padding: 10px 12px; border-radius: 8px; }
"""
with gr.Blocks(title="Efficient Portfolio Advisor", css=custom_css) as demo:
gr.Markdown("## Efficient Portfolio Advisor")
with gr.Row():
# LEFT COLUMN (full width pre-compute)
with gr.Column(scale=1) as left_col:
with gr.Group(elem_classes="lensiq-card"):
q = gr.Textbox(label="Search symbol")
search_btn = gr.Button("Search")
matches = gr.Dropdown(choices=[], label="Matches", info="Type a query and hit Search")
add_btn = gr.Button("Add selected to portfolio")
with gr.Group(elem_classes="lensiq-card"):
gr.Markdown("### Portfolio positions")
table = gr.Dataframe(
headers=["ticker", "amount_usd"],
datatype=["str", "number"],
row_count=0,
col_count=(2, "fixed")
)
# remove controls
with gr.Row():
rm_dropdown = gr.Dropdown(choices=[], label="Remove ticker", value=None)
rm_btn = gr.Button("Remove selected")
with gr.Group(elem_classes="lensiq-card"):
horizon = gr.Number(label="Horizon in years (1–100)", value=HORIZON_YEARS, precision=0)
lookback = gr.Slider(1, 15, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Lookback years for betas & covariances")
run_btn = gr.Button("Compute (build dataset & suggest)")
# visible loading/status banner
status_md = gr.Markdown("", visible=False, elem_classes="lensiq-status")
sugg_hdr = gr.Markdown("### Suggestions", visible=False)
with gr.Row(visible=False) as sugg_row:
btn_low = gr.Button("Show Low")
btn_med = gr.Button("Show Medium")
btn_high = gr.Button("Show High")
low_txt = gr.Markdown()
med_txt = gr.Markdown()
high_txt = gr.Markdown()
# RIGHT COLUMN (hidden pre-compute)
with gr.Column(scale=1, visible=False) as right_col:
plot = gr.Image(label="Capital Market Line (CAPM)", type="pil")
summary = gr.Markdown(label="Inputs & Results")
positions = gr.Dataframe(
label="Computed positions",
headers=["ticker", "amount_usd", "weight_exposure", "beta"],
datatype=["str", "number", "number", "number"],
col_count=(4, "fixed"),
value=empty_positions_df(),
interactive=False
)
sugg_table = gr.Dataframe(
label="Selected suggestion holdings (% / $)",
headers=["ticker", "weight_%", "amount_$"],
datatype=["str", "number", "number"],
col_count=(3, "fixed"),
value=empty_suggestion_df(),
interactive=False
)
dl = gr.File(label="Generated dataset CSV", value=None, visible=True)
# ---------- wiring ----------
# search / add
search_btn.click(fn=search_tickers_cb, inputs=q, outputs=matches)
add_btn.click(fn=add_symbol_table_only, inputs=[matches, table], outputs=table)
# keep tickers valid & refresh remove dropdown when table changes
table.change(fn=lock_ticker_column, inputs=table, outputs=table)
table.change(fn=current_ticker_choices, inputs=table, outputs=rm_dropdown)
# remove a ticker
rm_btn.click(fn=remove_selected_ticker, inputs=[rm_dropdown, table], outputs=[table, rm_dropdown])
# horizon updates globals silently
horizon.change(fn=set_horizon, inputs=horizon, outputs=[])
# compute + reveal results (default Medium band); STREAMING for visible progress
run_btn.click(
fn=compute_stream,
inputs=[lookback, table, gr.State("Medium")],
outputs=[plot, summary, positions, sugg_table, dl, low_txt, med_txt, high_txt, right_col, sugg_row, status_md]
).then( # after results are visible, show Suggestions header too
lambda: (gr.update(visible=True),),
None,
[sugg_hdr]
)
# band buttons recompute picks quickly (also stream with banner)
btn_low.click(
fn=compute_stream,
inputs=[lookback, table, gr.State("Low")],
outputs=[plot, summary, positions, sugg_table, dl, low_txt, med_txt, high_txt, right_col, sugg_row, status_md]
)
btn_med.click(
fn=compute_stream,
inputs=[lookback, table, gr.State("Medium")],
outputs=[plot, summary, positions, sugg_table, dl, low_txt, med_txt, high_txt, right_col, sugg_row, status_md]
)
btn_high.click(
fn=compute_stream,
inputs=[lookback, table, gr.State("High")],
outputs=[plot, summary, positions, sugg_table, dl, low_txt, med_txt, high_txt, right_col, sugg_row, status_md]
)
# initialize risk-free at launch
RF_CODE = fred_series_for_horizon(HORIZON_YEARS)
RF_ANN = fetch_fred_yield_annual(RF_CODE)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|