Spaces:
Paused
Paused
File size: 27,733 Bytes
d75c95a df5b340 d75c95a bd971da d75c95a 72b29fc d75c95a 0d082c0 e2284a9 0d082c0 d75c95a ca70721 e2284a9 3797dd4 72b29fc d75c95a 3797dd4 c7a84e1 3797dd4 c7a84e1 d75c95a 3797dd4 d75c95a 3797dd4 4faed86 3797dd4 c7a84e1 4faed86 72b29fc d75c95a c7a84e1 d75c95a 0d082c0 72b29fc e2284a9 72b29fc 0d082c0 72b29fc e2284a9 72b29fc 0d082c0 d75c95a e2284a9 d75c95a e2284a9 d75c95a bd971da d75c95a 869484c d75c95a bd971da 869484c 0d082c0 72b29fc bd971da 36d2903 bd971da d75c95a e2284a9 72b29fc bd971da d75c95a bd971da d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a e2284a9 d75c95a e2284a9 d75c95a e2284a9 d75c95a 72b29fc d75c95a e2284a9 d75c95a e2284a9 d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a bd971da d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a bd971da d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a e2284a9 d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a e2284a9 d75c95a 72b29fc d75c95a 72b29fc d75c95a 72b29fc d75c95a e2284a9 72b29fc d75c95a 72b29fc e2284a9 72b29fc e2284a9 d75c95a e2284a9 d75c95a 0d082c0 bd971da a51ca9d bd971da a51ca9d bd971da a51ca9d bd971da a51ca9d 267a813 a51ca9d 72b29fc a51ca9d bd971da a51ca9d bd971da a51ca9d e2284a9 a51ca9d e2284a9 bd971da 4479af2 bd971da 4479af2 bd971da 8da673b bd971da 8da673b bd971da 6dc43e2 72b29fc e2284a9 0d082c0 d75c95a 72b29fc 44089aa bd971da 44089aa bd971da 44089aa bd971da 72b29fc 44089aa bd971da 44089aa 72b29fc bd971da 72b29fc d75c95a 72b29fc 0d082c0 72b29fc 44089aa 72b29fc bd971da 72b29fc d75c95a 871c551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
import gradio as gr
import requests
import re
import time
import sys
import logging
import urllib3 # Import urllib3 to handle warnings
# --- Suppress specific noisy asyncio errors on shutdown ---
if sys.version_info >= (3, 10):
logging.getLogger("asyncio").setLevel(logging.WARNING)
# --- Suppress InsecureRequestWarning ---
# This is expected behavior for a Phishing Detector as we often scan sites with invalid SSL
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# --- import your architecture ---
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
# and update the import path accordingly.
from model import DeBERTaLSTMClassifier # <-- your class
# --- Import RAG modules ---
from rag_engine import RAGEngine
from llm_client import LLMClient
# --------- Config ----------
REPO_ID = "dungeon29/deberta-lstm-detect-phishing"
CKPT_NAME = "pytorch_model.bin"
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
LABELS = ["benign", "phishing"] # adjust to your classes
# If your checkpoint contains hyperparams, you can fetch them like:
# checkpoint.get("config") or checkpoint.get("model_args")
# and pass into DeBERTaLSTMClassifier(**model_args)
# --------- Load model/tokenizer once (global) ----------
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
checkpoint = torch.load(ckpt_path, map_location=device)
# If you saved hyperparams in the checkpoint, use them:
model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
model = DeBERTaLSTMClassifier(**model_args)
# Load weights
try:
state_dict = torch.load(ckpt_path, map_location=device)
# Xử lý nếu file lưu dạng checkpoint đầy đủ (có key "model_state_dict")
if "model_state_dict" in state_dict:
state_dict = state_dict["model_state_dict"]
model.load_state_dict(state_dict, strict=False)
# Kiểm tra layer attention
if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
else:
print("✅ Load weights successfully!")
except Exception as e:
print(f"❌ Error when loading weights: {e}")
raise e
model.to(device).eval()
# --------- Initialize RAG & LLM ----------
print("Initializing RAG Engine (LangChain)...")
rag_engine = RAGEngine()
print("RAG Engine ready.")
print("Initializing Qwen2.5-3B LLM (LangChain)...")
# Pass vector_store to LLMClient for RetrievalQA
llm_client = LLMClient(vector_store=rag_engine.vector_store)
print("LLM ready.")
# --------- Helper functions ----------
def is_url(text):
"""Check if text is a URL"""
url_pattern = re.compile(
r'^https?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|' # domain...
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip
r'(?::\d+)?' # optional port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
return url_pattern.match(text) is not None
def fetch_html_content(url, timeout=10):
"""Fetch HTML content from URL (Raw HTML for Model)"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9,vi;q=0.8',
'Referer': 'https://www.google.com/'
}
# verify=False is intentional for phishing detection, warning suppressed globally
response = requests.get(url, headers=headers, timeout=15, verify=False)
response.raise_for_status()
# Return FULL RAW HTML content instead of stripped text
# Model needs HTML tags/structure to detect hidden threats
return response.text, response.status_code
except requests.exceptions.RequestException as e:
return None, f"Request error: {str(e)}"
except Exception as e:
return None, f"General error: {str(e)}"
def predict_single_text(text, text_type="text"):
"""Predict for a single text input"""
# Tokenize
# Increased max_length to 512 to capture more HTML content
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
# DeBERTa typically doesn't use token_type_ids
inputs.pop("token_type_ids", None)
# Move to device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
try:
# Try to get predictions with attention weights
result = model(**inputs, return_attention=True)
if isinstance(result, tuple) and len(result) == 3:
logits, attention_weights, deberta_attentions = result
has_attention = True
else:
logits = result
has_attention = False
except TypeError:
# Fallback for older model without return_attention parameter
logits = model(**inputs)
has_attention = False
probs = F.softmax(logits, dim=-1).squeeze(0).tolist()
# Get tokens for visualization
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze(0).tolist())
return probs, tokens, has_attention, attention_weights if has_attention else None
def combine_predictions(url_probs, html_probs, url_weight=0.3, html_weight=0.7):
"""Combine URL and HTML content predictions"""
combined_probs = [
url_weight * url_probs[0] + html_weight * html_probs[0], # benign
url_weight * url_probs[1] + html_weight * html_probs[1] # phishing
]
return combined_probs
# --------- Inference function ----------
def predict_fn(text: str):
if not text or not text.strip():
return {"error": "Please enter a URL or text."}, ""
# Check if input is URL
if is_url(text.strip()):
# Process URL
url = text.strip()
# Get prediction for URL itself
url_probs, url_tokens, url_has_attention, url_attention = predict_single_text(url, "URL")
# Try to fetch HTML content
html_content, status = fetch_html_content(url)
if html_content:
# Get prediction for HTML content (Raw HTML now)
html_probs, html_tokens, html_has_attention, html_attention = predict_single_text(html_content, "HTML")
# Combine predictions
combined_probs = combine_predictions(url_probs, html_probs)
# Use combined probabilities but show analysis for both
probs = combined_probs
tokens = url_tokens + ["[SEP]"] + html_tokens[:50] # Limit HTML tokens for display
has_attention = url_has_attention or html_has_attention
attention_weights = url_attention if url_has_attention else html_attention
analysis_type = "Combined URL + HTML Analysis"
fetch_status = f"✅ Successfully fetched HTML content (Status: {status})"
else:
# Fallback for URL-only analysis
probs = url_probs
tokens = url_tokens
has_attention = url_has_attention
attention_weights = url_attention
analysis_type = "URL-only Analysis"
fetch_status = f"⚠️ Could not fetch HTML content: {status}"
else:
# Process as regular text
probs, tokens, has_attention, attention_weights = predict_single_text(text, "text")
analysis_type = "Text Analysis"
fetch_status = ""
# Create detailed analysis
predicted_class = "phishing" if probs[1] > probs[0] else "benign"
confidence = max(probs)
detailed_analysis = f"""
<div style="font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; background: #1e1e1e; padding: 20px; border-radius: 15px;">
<div style="background: linear-gradient(135deg, {'#8b0000' if predicted_class == 'phishing' else '#006400'} 0%, {'#dc143c' if predicted_class == 'phishing' else '#228b22'} 100%); padding: 25px; border-radius: 20px; color: white; text-align: center; margin-bottom: 20px; box-shadow: 0 8px 32px rgba(0,0,0,0.5); border: 2px solid {'#ff4444' if predicted_class == 'phishing' else '#44ff44'};">
<h2 style="margin: 0 0 10px 0; font-size: 28px; color: white;">🔍 {analysis_type}</h2>
<div style="font-size: 36px; font-weight: bold; margin: 10px 0; color: white;">
{predicted_class.upper()}
</div>
<div style="font-size: 18px; color: #f0f0f0;">
Confidence: {confidence:.1%}
</div>
<div style="margin-top: 15px; font-size: 14px; color: #e0e0e0;">
{'This appears to be a phishing attempt!' if predicted_class == 'phishing' else '✅ This appears to be legitimate content.'}
</div>
</div>
"""
if fetch_status:
detailed_analysis += f"""
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
<strong>Fetch Status:</strong> {fetch_status}
</div>
"""
if has_attention and attention_weights is not None:
attention_scores = attention_weights.squeeze(0).tolist()
token_analysis = []
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
# More lenient filtering - include more tokens for text analysis
if token not in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>'] and len(token.strip()) > 0 and score > 0.005:
clean_token = token.replace(' ', '').replace('Ġ', '').strip() # Handle different tokenizer prefixes
if clean_token: # Only add if token has content after cleaning
token_analysis.append({
'token': clean_token,
'importance': score,
'position': i
})
# Sort by importance
token_analysis.sort(key=lambda x: x['importance'], reverse=True)
detailed_analysis += f"""
## Top important tokens:
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
<strong>Analysis Info:</strong> Found {len(token_analysis)} important tokens out of {len(tokens)} total tokens
</div>
<div style="font-family: Arial, sans-serif;">
"""
for i, token_info in enumerate(token_analysis[:10]): # Top 10 tokens
bar_width = int(token_info['importance'] * 100)
color = "#ff4444" if predicted_class == "phishing" else "#44ff44"
detailed_analysis += f"""
<div style="margin: 8px 0; display: flex; align-items: center; background: #2d2d2d; padding: 8px; border-radius: 8px; border-left: 4px solid {color};">
<div style="width: 30px; text-align: right; margin-right: 10px; font-weight: bold; color: #ffffff;">
{i+1}.
</div>
<div style="width: 120px; margin-right: 10px; font-weight: bold; color: #e0e0e0; text-align: right;">
{token_info['token']}
</div>
<div style="width: 300px; background-color: #404040; border-radius: 10px; overflow: hidden; margin-right: 10px; border: 1px solid #555;">
<div style="width: {bar_width}%; background-color: {color}; height: 20px; border-radius: 10px; transition: width 0.3s ease;"></div>
</div>
<div style="color: #cccccc; font-size: 12px; font-weight: bold;">
{token_info['importance']:.1%}
</div>
</div>
"""
detailed_analysis += "</div>\n"
detailed_analysis += f"""
## Detailed analysis:
<div style="font-family: Arial, sans-serif; background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
<h3 style="margin: 0 0 15px 0; color: white;">Statistical Overview</h3>
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
<div style="font-size: 14px; color: #e0e0e0;">Total tokens</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold, color: white;">{len([t for t in token_analysis if t['importance'] > 0.05])}</div>
<div style="font-size: 14px, color: #e0e0e0;">High impact tokens (>5%)</div>
</div>
</div>
</div>
<div style="font-family: Arial, sans-serif; margin: 15px 0; background: #2d2d2d; padding: 20px; border-radius: 15px; border: 1px solid #555;">
<h3 style="color: #ffffff; margin-bottom: 15px;"> Prediction Confidence</h3>
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
<span style="font-weight: bold; color: #ff4444;">Phishing</span>
<span style="font-weight: bold; color: #44ff44;">Benign</span>
</div>
<div style="width: 100%; background-color: #404040; border-radius: 25px; overflow: hidden; height: 30px; border: 1px solid #666;">
<div style="width: {probs[1]*100:.1f}%; background: linear-gradient(90deg, #ff4444 0%, #ff6666 100%); height: 100%; display: flex; align-items: center; justify-content: center; color: white; font-weight: bold; font-size: 14px;">
{probs[1]:.1%}
</div>
</div>
<div style="margin-top: 10px; text-align: center; color: #cccccc; font-size: 14px;">
Benign: {probs[0]:.1%}
</div>
</div>
"""
else:
# Fallback analysis without attention weights
detailed_analysis += f"""
<div style="background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
<h3 style="margin: 0 0 15px 0; color: white;">Basic Analysis</h3>
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[1]:.1%}</div>
<div style="font-size: 14px; color: #e0e0e0;">Phishing</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[0]:.1%}</div>
<div style="font-size: 14px; color: #e0e0e0;">Benign</div>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
<div style="font-size: 14px; color: #e0e0e0;">Tokens</div>
</div>
</div>
</div>
<div style="font-family: Arial, sans-serif; margin: 15px 0; background: #2d2d2d; padding: 20px; border-radius: 15px; border: 1px solid #555;">
<h3 style="color: #ffffff; margin: 0 0 15px 0;">🔤 Tokens in text:</h3>
<div style="display: flex; flex-wrap: wrap; gap: 8px;">""" + ''.join([f'<span style="background: #404040; color: #64b5f6; padding: 4px 8px; border-radius: 15px; font-size: 12px; border: 1px solid #666;">{token.replace(" ", "")}</span>' for token in tokens if token not in ['[CLS]', '[SEP]', '[PAD]']]) + f"""</div>
<div style="margin-top: 15px; padding: 10px; background: #3d2914; border-radius: 8px; border-left: 4px solid #ff9800;">
<strong style="color: #ffcc02;">Debug info:</strong> <span style="color: #e0e0e0;">Found {len(tokens)} total tokens, {len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])} content tokens</span>
</div>
</div>
<div style="background: #3d2914; padding: 15px; border-radius: 10px; border-left: 4px solid #ff9800; margin: 15px 0;">
<p style="margin: 0; color: #ffcc02; font-size: 14px;">
<strong>Note:</strong> Detailed attention weights analysis is not available for the current model.
</p>
</div>
"""
# Build label->prob mapping for Gradio Label output
if len(LABELS) == len(probs):
prediction_result = {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
else:
prediction_result = {f"class_{i}": float(p) for i, p in enumerate(probs)}
return prediction_result, detailed_analysis
# --------- RAG Inference function ----------
def rag_predict_fn(text: str):
if not text or not text.strip():
return "Please enter text to analyze."
start_time = time.time()
# Check if input is a URL
input_text = text.strip()
is_link = is_url(input_text)
analysis_context = input_text
status_msg = ""
if is_link:
print(f"🌐 Detected URL: {input_text}. Fetching content...")
fetched_content, status = fetch_html_content(input_text)
if fetched_content:
# Limit content length to avoid token overflow
truncated_content = fetched_content[:4000]
analysis_context = f"URL: {input_text}\n\nWebsite Content:\n{truncated_content}\n..."
status_msg = f"✅ Successfully fetched {len(fetched_content)} chars from URL (Status: {status})."
print(status_msg)
else:
analysis_context = f"URL: {input_text}\n\n(Could not fetch website content. Error: {status})"
status_msg = f"⚠️ Failed to fetch URL content: {status}"
print(status_msg)
else:
status_msg = "📝 Analyzing raw text input."
# Call LLM (which now handles retrieval internally via LangChain)
response = llm_client.analyze(analysis_context)
end_time = time.time()
elapsed_time = end_time - start_time
# Parse response to extract Label and Explanation
label = "ANALYSIS"
explanation = response
# Clean up response for parsing
clean_response = response.strip()
# Basic parsing logic for "LABEL: ... EXPLANATION: ..." format
if "LABEL:" in clean_response:
try:
parts = clean_response.split("EXPLANATION:")
label_part = parts[0].replace("LABEL:", "").strip().upper()
if len(parts) > 1:
explanation = parts[1].strip()
else:
explanation = "" # Just label found
# Normalize label part
label_part = parts[0].replace("LABEL:", "").strip().upper()
# Robust parsing logic
if "BENIGN" in label_part or "SAFE" in label_part or "LEGITIMATE" in label_part:
label = "BENIGN"
elif "NOT PHISHING" in label_part:
label = "BENIGN"
elif "PHISHING" in label_part or "MALICIOUS" in label_part:
label = "PHISHING"
# Clean up explanation (remove artifacts)
explanation = explanation.replace("> EOF by user", "").strip()
except:
pass # Fallback to showing full response
# Set colors based on label
if label == "PHISHING":
color_grad = "linear-gradient(135deg, #8b0000 0%, #dc143c 100%)"
border_col = "#ff4444"
icon = "⚠️"
msg = "Cảnh báo: Đây có thể là lừa đảo!"
elif label == "BENIGN":
color_grad = "linear-gradient(135deg, #006400 0%, #228b22 100%)"
border_col = "#44ff44"
icon = "✅"
msg = "An toàn: Không phát hiện dấu hiệu độc hại."
else:
# Default/Uncertain
color_grad = "linear-gradient(135deg, #2c3e50 0%, #4ca1af 100%)"
border_col = "#6dd5ed"
icon = "🤖"
msg = "Kết quả phân tích từ AI:"
# HTML Output
html_output = f"""
<div style="font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; background: #1e1e1e; padding: 20px; border-radius: 15px; max-height: 600px; overflow-y: auto;">
<div style="background: {color_grad}; padding: 25px; border-radius: 20px; color: white; text-align: center; margin-bottom: 20px; box-shadow: 0 8px 32px rgba(0,0,0,0.5); border: 2px solid {border_col};">
<h2 style="margin: 0 0 10px 0; font-size: 36px; color: white; font-weight: bold;">{icon} {label}</h2>
<div style="font-size: 18px; color: #f0f0f0; margin-bottom: 10px; text-align: left; white-space: pre-wrap;">
{explanation}
</div>
<div style="font-size: 14px; color: rgba(255,255,255,0.9); margin-top: 15px; border-top: 1px solid rgba(255,255,255,0.3); padding-top: 10px;">
⏱️ Xử lý trong: <b>{elapsed_time:.2f}s</b>
</div>
</div>
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin-top: 15px; border-left: 4px solid {border_col}; color: #e0e0e0;">
<strong>Trạng thái Input:</strong> {status_msg}<br>
<span style="font-size: 12px; color: #888;">AI có thể mắc lỗi. Luôn kiểm tra kỹ trước khi click.</span>
</div>
</div>
"""
return html_output
# --------- Refresh Knowledge Base function ----------
def refresh_kb():
return rag_engine.refresh_knowledge_base()
# --------- Gradio UI ----------
css_style="""
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: #1e1e1e !important;
color: #ffffff !important;
}
/* Customize Buttons */
.gradio-container button.primary, .gradio-container button.secondary {
background-color: #4a4a4a !important;
color: #ffffff !important;
border: 1px solid #666 !important;
}
.gradio-container button.primary:hover, .gradio-container button.secondary:hover {
background-color: #5a5a5a !important;
}
/* Customize Textboxes (Inputs) */
.gradio-container textarea, .gradio-container input {
background-color: #3d3d3d !important;
color: #ffffff !important;
border: 1px solid #666 !important;
}
/* Customize Blocks/Panels */
.gradio-container .block {
background-color: #2d2d2d !important;
border: 1px solid #444 !important;
}
"""
with gr.Blocks() as demo:
gr.HTML(f"<style>{css_style}</style>")
gr.Markdown("# 🛡️ Phishing Detector (DeBERTa + LSTM + RAG)")
with gr.Tabs():
# --- Tab 1: Standard Detection ---
with gr.TabItem("🔍 Standard Detection"):
gr.Markdown("""
Enter a URL or text for analysis using the DeBERTa + LSTM model.
**Features:**
- **URL Analysis**: For URLs, the system will fetch HTML content and combine both URL and content analysis
- **Combined Prediction**: Uses weighted combination of URL structure and webpage content analysis
- **Visual Analysis**: Predict phishing/benign probability with visual charts
- **Token Importance**: Display the most important tokens in classification
- **Detailed Insights**: Comprehensive analysis of the impact of each token
**How it works for URLs:**
1. Analyze the URL structure itself
2. Fetch the webpage HTML content
3. Analyze the webpage content
4. Combine both results for final prediction (30% URL + 70% content)
""")
with gr.Row():
with gr.Column(scale=2):
input_box = gr.Textbox(
label="URL or text",
placeholder="Example: http://suspicious-site.example or paste any text",
lines=3
)
btn_submit = gr.Button("🔍 Analyze", variant="primary")
gr.Examples(
examples=[
["http://rendmoiunserviceeee.com"],
["https://www.google.com"],
["Dear customer, your account has been suspended. Click here to verify your identity immediately."],
["https://mail-secure-login-verify.example/path?token=suspicious"],
["http://paypaI-security-update.net/login"],
["Your package has been delivered successfully. Thank you for using our service."],
["https://github.com/user/repo"],
["Dear customer, your account has been suspended. Click here to verify."],
],
inputs=input_box
)
with gr.Column(scale=3):
output_html = gr.HTML(label="Analysis Result")
btn_submit.click(fn=predict_fn, inputs=input_box, outputs=output_html)
# --- Tab 2: LLM + RAG Analysis ---
with gr.TabItem("🤖 AI Assistant (RAG)"):
gr.Markdown("""
**AI Assistant** uses **Qwen2.5-3B** + **LangChain** to explain *why* a message is suspicious.
**Features:**
- 🌐 Multilingual support (English + Vietnamese)
- 📚 Knowledge Base retrieval (Auto-sync)
- 🚀 No rate limits (self-hosted)
""")
with gr.Row():
with gr.Column(scale=1):
rag_input = gr.Textbox(
label="Suspicious Text/URL",
placeholder="Paste the email content or URL here...",
lines=5
)
with gr.Row():
btn_rag = gr.Button("🤖 Ask AI Assistant", variant="primary")
btn_refresh = gr.Button("♻️ Refresh Knowledge Base")
gr.Examples(
examples=[
["Your PayPal account has been suspended. Click http://paypal-verify.com to unlock."],
["Tài khoản ngân hàng của bạn bị khóa. Nhấn vào đây để mở khóa ngay."],
["Your package is ready for delivery. Track here: https://fedex-track.com"],
],
inputs=rag_input
)
with gr.Column(scale=1):
# Changed from gr.Markdown to gr.HTML for custom styling
rag_output = gr.HTML(label="AI Analysis")
refresh_output = gr.Markdown(label="Status")
btn_rag.click(fn=rag_predict_fn, inputs=[rag_input], outputs=rag_output)
btn_refresh.click(fn=refresh_kb, inputs=[], outputs=refresh_output)
if __name__ == "__main__":
demo.launch(ssr_mode=False) |