Spaces:
Paused
Paused
File size: 12,614 Bytes
6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 2e8da0d 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 792bd64 6d29b78 792bd64 0e6b7b0 8ee0e91 0e6b7b0 8ee0e91 97426e5 8ee0e91 97426e5 8ee0e91 97426e5 8ee0e91 97426e5 8ee0e91 66aa19e 6d29b78 9d1bc12 792bd64 8ee0e91 792bd64 8ee0e91 792bd64 8ee0e91 792bd64 8ee0e91 792bd64 8ee0e91 792bd64 8ee0e91 696c058 6d29b78 9d1bc12 6d29b78 25905dd 6d29b78 25905dd 6d29b78 9d1bc12 6d29b78 9d1bc12 26bc6ef 9d1bc12 6d29b78 25905dd 6d29b78 9d1bc12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []
# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
global LOGS
print(msg)
LOGS += msg + "\n"
return msg
# ============================================================
# SYSTEM METRICS β LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
try:
log(f"\n===== π₯ SYSTEM STATS {tag} =====")
# ============= GPU STATS =============
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / 1e9
reserved = torch.cuda.memory_reserved(0) / 1e9
total = torch.cuda.get_device_properties(0).total_memory / 1e9
free = total - allocated
log(f"π GPU Total : {total:.2f} GB")
log(f"π GPU Allocated : {allocated:.2f} GB")
log(f"π GPU Reserved : {reserved:.2f} GB")
log(f"π GPU Free : {free:.2f} GB")
# ============= CPU STATS ============
cpu = psutil.cpu_percent()
ram_used = psutil.virtual_memory().used / 1e9
ram_total = psutil.virtual_memory().total / 1e9
log(f"π§ CPU Usage : {cpu}%")
log(f"π§ RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
except Exception as e:
log(f"β οΈ Failed to log system stats: {e}")
# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("π Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")
log(f"π PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
log(f"π PLATFORM : {platform.platform()}")
log(f"π TORCH VERSION : {torch.__version__}")
log(f"π TRANSFORMERS VERSION : {transformers.__version__}")
log(f"π DIFFUSERS VERSION : {diffusers.__version__}")
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
log_system_stats("AT STARTUP")
if not torch.cuda.is_available():
raise RuntimeError("β CUDA Required")
device = "cuda"
gpu_id = 0
# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False
log("\n===================================================")
log("π§ MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype : {torch_dtype}")
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
log_system_stats("BEFORE TRANSFORMER LOAD")
# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
try:
img_tensor = pipe.vae.decode(latent)
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
pil_img = T.ToPILImage()(img_tensor[0])
return pil_img
except Exception as e:
log(f"β οΈ Failed to decode latent: {e}")
return None
# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
log(f"\nπ Inspecting {name}")
try:
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
for attr in candidates:
if hasattr(model, attr):
blocks = getattr(model, attr)
break
if blocks is None:
log(f"β οΈ No block structure found in {name}")
return
if hasattr(blocks, "__len__"):
log(f"Total Blocks = {len(blocks)}")
else:
log("β οΈ Blocks exist but are not iterable")
for i in range(min(10, len(blocks) if hasattr(blocks, "__len__") else 0)):
log(f"Block {i} = {blocks[i].__class__.__name__}")
except Exception as e:
log(f"β οΈ Transformer inspect error: {e}")
# ============================================================
# LOAD TRANSFORMER β WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("π§ LOADING TRANSFORMER BLOCK")
log("===================================================")
log("π Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")
try:
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
transformer = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="transformer",
quantization_config=quant_cfg,
torch_dtype=torch_dtype,
device_map=device,
)
log("β
Transformer loaded successfully.")
except Exception as e:
log(f"β Transformer load failed: {e}")
transformer = None
log_system_stats("AFTER TRANSFORMER LOAD")
if transformer:
inspect_transformer(transformer, "Transformer")
# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("π§ LOADING TEXT ENCODER")
log("===================================================")
log_system_stats("START TEXT ENCODER LOAD")
try:
quant_cfg2 = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
text_encoder = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="text_encoder",
quantization_config=quant_cfg2,
torch_dtype=torch_dtype,
device_map=device,
)
log("β
Text encoder loaded successfully.")
except Exception as e:
log(f"β Text encoder load failed: {e}")
text_encoder = None
log_system_stats("AFTER TEXT ENCODER LOAD")
if text_encoder:
inspect_transformer(text_encoder, "Text Encoder")
# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("π§ BUILDING PIPELINE")
log("===================================================")
log_system_stats("START PIPELINE BUILD")
try:
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
pipe.to(device)
log("β
Pipeline built successfully.")
except Exception as e:
log(f"β Pipeline build failed: {e}")
pipe = None
log_system_stats("AFTER PIPELINE BUILD")
import torch
from PIL import Image
import io
logs = []
latent_gallery = []
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: int = None,
device: str = None,
timesteps: list = None,
sigmas: list = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of timesteps or sigmas can be passed")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@spaces.GPU
def generate_image(prompt, height, width, steps, seed):
generator = torch.Generator(device).manual_seed(int(seed))
# Encode prompt
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)
batch_size = len(prompt_embeds)
num_images_per_prompt = 1
actual_batch_size = batch_size * num_images_per_prompt
num_channels_latents = pipe.transformer.in_channels
# Prepare latents
latents = pipe.prepare_latents(
actual_batch_size, num_channels_latents, height, width, torch.float32, device, generator
)
# Repeat embeddings for multiple images per prompt
if num_images_per_prompt > 1:
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
if pipe.do_classifier_free_guidance and negative_prompt_embeds:
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)
mu = calculate_shift(image_seq_len)
pipe.scheduler.sigma_min = 0.0
scheduler_kwargs = {"mu": mu}
timesteps, num_inference_steps = retrieve_timesteps(pipe.scheduler, steps, device, **scheduler_kwargs)
# Denoising loop
for i, t in enumerate(timesteps):
timestep = t.expand(latents.shape[0])
timestep = (1000 - timestep) / 1000
t_norm = timestep[0].item()
apply_cfg = pipe.do_classifier_free_guidance and pipe.guidance_scale > 0
if apply_cfg:
latent_model_input = latents.to(pipe.transformer.dtype).repeat(2, 1, 1, 1).unsqueeze(2)
prompt_input = prompt_embeds + negative_prompt_embeds
timestep_input = timestep.repeat(2)
else:
latent_model_input = latents.to(pipe.transformer.dtype).unsqueeze(2)
prompt_input = prompt_embeds
timestep_input = timestep
latent_list = list(latent_model_input.unbind(0))
model_out_list = pipe.transformer(latent_list, timestep_input, prompt_input, return_dict=False)[0]
if apply_cfg:
pos_out = model_out_list[:actual_batch_size]
neg_out = model_out_list[actual_batch_size:]
noise_pred = torch.stack([p + pipe.guidance_scale * (p - n) for p, n in zip(pos_out, neg_out)])
else:
noise_pred = torch.stack([t.float() for t in model_out_list], 0)
noise_pred = noise_pred.squeeze(2)
noise_pred = -noise_pred
latents = pipe.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
# Decode final image
latents = latents.to(pipe.vae.dtype)
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
image = pipe.vae.decode(latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image, output_type="pil")
return image, None, None
# ============================================================
# UI
# ============================================================
with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
gr.Markdown("# **π Z-Image-Turbo β Final Image & Latents**")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="Realistic mid-aged male image")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
seed = gr.Number(value=42, label="Seed")
run_btn = gr.Button("Generate Image")
with gr.Column(scale=1):
final_image = gr.Image(label="Final Image")
latent_gallery = gr.Gallery(
label="Latent Steps",
columns=4,
height=256,
preview=True
)
logs_box = gr.Textbox(label="Logs", lines=15)
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed],
outputs=[final_image, latent_gallery, logs_box]
)
demo.launch() |