code_repo_finetuning / repos /Laddr /docs /getting-started.md
tensense's picture
Upload folder using huggingface_hub
4e909c7 verified
# Getting Started
This guide walks you through everything you need to get started with the framework — from environment setup to running your first agent.
---
## Docker Setup
For the full experience (including the web UI and isolated environments), we recommend using **Docker**.
Download it from the [official Docker website](https://www.docker.com/products/docker-desktop).
---
## Python Virtual Environment
Before installing dependencies, it’s best to create a Python virtual environment.
**Create one:**
```bash
python -m venv venv
```
**Activate it:**
On **Windows (Git Bash or CMD)**:
```bash
.\venv\Scripts\activate
```
On **macOS/Linux**:
```bash
source venv/bin/activate
```
---
## Installation
Install **Laddr** (CLI, core, and API):
```bash
pip install laddr
```
Or develop against the local repository (editable mode):
```bash
pip install -e lib/laddr
```
---
## Create a New Project
Initialize a new project and move into it:
```bash
laddr init my_agent_system
cd my_agent_system
```
The project includes:
- `agents/` — Agent modules
- `workers/` — Worker scripts
- `Dockerfile` — Build configuration
- `docker-compose.yml` — Multi-service orchestration
- `main.py` — Application runner
---
## Set API Keys
To enable integrations, add your API keys to a `.env` file in your project root:
```bash
# .env
GEMINI_API_KEY=your_gemini_api_key
SERPER_API_KEY=your_serper_api_key
```
> **Note:**
> - The `web_search` tool requires a Serper API key.
> - Gemini is used for LLM integrations.
> - Set both keys before running the stack.
---
## Run the Stack (Docker)
Start the stack using either of these commands:
```bash
laddr run dev -d
```
or
```bash
docker compose up -d
```
Once running, open:
- Dashboard → `http://localhost:5173`
- API → `http://localhost:8000`
To run agents **without Docker**, see [Local Setup](config/local-runtime).
---
## Add an Agent and Tool
Create a new agent and attach a tool to it:
```bash
laddr add agent researcher --role "Researcher" --goal "Find facts" --llm-model gemini-2.5-flash
laddr add tool web_search --agent researcher --description "Search the web"
```
---
## Quick Run
Run your agent with a quick test command:
```bash
laddr run researcher '{"topic": "Latest AI agent trends"}'
```
This executes a local run of your `researcher` agent using the default configuration.
---
You’re all set!
You’ve installed **Laddr**, initialized a project, configured API keys, and run your first agent.