code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# Function to print upper half of diamond (pyramid) def _a ( lowerCAmelCase )-> Tuple: for i in range(0 , __lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def _a ( lowerCAmelCase )-> int: for i in range(__lowercase , 0 , -1 ): for _ in range(__lowercase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def _a ( lowerCAmelCase )-> Dict: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__lowercase ) # upper half reverse_floyd(__lowercase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') SCREAMING_SNAKE_CASE: Union[str, Any] = 1 while K: SCREAMING_SNAKE_CASE: str = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) SCREAMING_SNAKE_CASE: Tuple = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
360
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase_ : """simple docstring""" @staticmethod def __lowercase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: pass def _a ( __lowercase ) -> str: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _snake_case = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: __UpperCamelCase = pipeline( 'document-question-answering' , model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) ) __UpperCamelCase = 'What is the placebo?' __UpperCamelCase = [ { 'image': load_image(_SCREAMING_SNAKE_CASE ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __UpperCamelCase = dqa_pipeline(_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ {'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE ), 'start': ANY(_SCREAMING_SNAKE_CASE ), 'end': ANY(_SCREAMING_SNAKE_CASE )}, {'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE ), 'start': ANY(_SCREAMING_SNAKE_CASE ), 'end': ANY(_SCREAMING_SNAKE_CASE )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __lowercase( self ) -> Dict: __UpperCamelCase = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'How many cats are there?' __UpperCamelCase = [ {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , _SCREAMING_SNAKE_CASE ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __UpperCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) # We can optionnally pass directly the words and bounding boxes __UpperCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , words=_SCREAMING_SNAKE_CASE , boxes=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __lowercase( self ) -> str: __UpperCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __lowercase( self ) -> int: __UpperCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __lowercase( self ) -> Optional[int]: __UpperCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_SCREAMING_SNAKE_CASE , revision='3dc6de3' , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) __UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) ) # This model should also work if `image` is set to None __UpperCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __lowercase( self ) -> Dict: __UpperCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_SCREAMING_SNAKE_CASE , revision='3dc6de3' , max_seq_len=50 , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) __UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) ) # This model should also work if `image` is set to None __UpperCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def __lowercase( self ) -> Union[str, Any]: __UpperCamelCase = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def __lowercase( self ) -> Optional[Any]: pass
383
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = """linear""" SCREAMING_SNAKE_CASE : Union[str, Any] = """cosine""" SCREAMING_SNAKE_CASE : Tuple = """cosine_with_restarts""" SCREAMING_SNAKE_CASE : Tuple = """polynomial""" SCREAMING_SNAKE_CASE : Tuple = """constant""" SCREAMING_SNAKE_CASE : Dict = """constant_with_warmup""" SCREAMING_SNAKE_CASE : Tuple = """piecewise_constant""" def lowerCamelCase__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int = -1 ) -> Optional[Any]: return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int = -1 ) -> int: def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : str , _lowerCamelCase : int = -1 ) -> Tuple: lowerCamelCase_ = {} lowerCamelCase_ = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowerCamelCase_ , lowerCamelCase_ = rule_str.split(':' ) lowerCamelCase_ = int(_lowerCamelCase ) lowerCamelCase_ = float(_lowerCamelCase ) lowerCamelCase_ = value lowerCamelCase_ = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase : Optional[int] , _lowerCamelCase : int ): def rule_func(_lowerCamelCase : int ) -> float: lowerCamelCase_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCamelCase_ = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]=-1 ) -> int: def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = -1 ) -> str: def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) lowerCamelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1 ) -> List[Any]: def lr_lambda(_lowerCamelCase : Optional[Any] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) lowerCamelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]=1e-7 , _lowerCamelCase : str=1.0 , _lowerCamelCase : Any=-1 ) -> Dict: lowerCamelCase_ = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCamelCase_ = lr_init - lr_end lowerCamelCase_ = num_training_steps - num_warmup_steps lowerCamelCase_ = 1 - (current_step - num_warmup_steps) / decay_steps lowerCamelCase_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase__ ( _lowerCamelCase : Union[str, SchedulerType] , _lowerCamelCase : Optimizer , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : int = -1 , ) -> Dict: lowerCamelCase_ = SchedulerType(_lowerCamelCase ) lowerCamelCase_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
709
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a ( unittest.TestCase ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Tuple=30 , __SCREAMING_SNAKE_CASE : str=400 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : List[Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=1 / 255 , __SCREAMING_SNAKE_CASE : Dict=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_pad def UpperCamelCase ( self : List[Any] ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> str: if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image.size else: lowerCamelCase_ , lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size['shortest_edge'] * h / w ) lowerCamelCase_ = self.size['shortest_edge'] elif w > h: lowerCamelCase_ = self.size['shortest_edge'] lowerCamelCase_ = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase_ = self.size['shortest_edge'] lowerCamelCase_ = self.size['shortest_edge'] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] lowerCamelCase_ = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Any = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Optional[int] ) -> Optional[int]: lowerCamelCase_ = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase ( self : Optional[int] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : int ) -> str: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCamelCase ( self : Optional[int] ) -> int: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] ) -> List[Any]: pass def UpperCamelCase ( self : Union[str, Any] ) -> str: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : str ) -> Any: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self : Tuple ) -> str: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self : Optional[Any] ) -> str: # prepare image and target lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {'image_id': 39769, 'annotations': target} # encode them lowerCamelCase_ = DeformableDetrImageProcessor() lowerCamelCase_ = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __SCREAMING_SNAKE_CASE ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __SCREAMING_SNAKE_CASE ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __SCREAMING_SNAKE_CASE ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __SCREAMING_SNAKE_CASE ) ) @slow def UpperCamelCase ( self : Tuple ) -> str: # prepare image, target and masks_path lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} lowerCamelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCamelCase_ = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCamelCase_ = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __SCREAMING_SNAKE_CASE ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __SCREAMING_SNAKE_CASE ) ) # verify masks lowerCamelCase_ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __SCREAMING_SNAKE_CASE ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __SCREAMING_SNAKE_CASE ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __SCREAMING_SNAKE_CASE ) )
137
0
def _a ( lowercase__ : str ): '''simple docstring''' if n_term == "": return [] SCREAMING_SNAKE_CASE__ : list = [] for temp in range(int(lowercase__ ) ): series.append(f'''1/{temp + 1}''' if series else '1' ) return series if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
85
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __A : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __A ( datasets.BuilderConfig ): lowerCAmelCase_ : Optional[datasets.Features] = None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, ) -> Union[str, Any]: '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase : str = df.select('*', pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCAmelCase : List[Any] = df_with_partition_id.select('*' ).where(f"part_id = {partition_id}" ).drop('part_id' ) lowerCAmelCase : Optional[Any] = partition_df.collect() lowerCAmelCase : Optional[Any] = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class __A ( _BaseExamplesIterable ): def __init__( self : Optional[Any] , UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : List[Any]=None , ): lowerCAmelCase : Optional[Any] = df lowerCAmelCase : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Union[str, Any] ): yield from self.generate_examples_fn() def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : np.random.Generator ): lowerCAmelCase : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCAmelCase : List[Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ , UpperCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase_ ) @property def lowercase__ ( self : Optional[Any] ): return len(self.partition_order ) class __A ( datasets.DatasetBuilder ): lowerCAmelCase_ : Any = SparkConfig def __init__( self : List[Any] , UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : str = None , **UpperCAmelCase_ : Optional[Any] , ): import pyspark lowerCAmelCase : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase : Dict = df lowerCAmelCase : Dict = working_dir super().__init__( cache_dir=UpperCAmelCase_ , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase_ , ) def lowercase__ ( self : int ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ : Union[str, Any] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase_ ) lowerCAmelCase : Any = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def lowercase__ ( self : Optional[int] ): return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ : Tuple ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCAmelCase : int = self.df.count() lowerCAmelCase : str = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase : Tuple = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase : Tuple = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase : List[str] = min(UpperCAmelCase_ , int(approx_total_size / max_shard_size ) ) lowerCAmelCase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int , ): import pyspark lowerCAmelCase : Tuple = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCAmelCase : int = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath lowerCAmelCase : str = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase : int = self.config.features lowerCAmelCase : Union[str, Any] = self._writer_batch_size lowerCAmelCase : Tuple = self._fs.storage_options def write_arrow(UpperCAmelCase_ : int ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase : List[Any] = pyspark.TaskContext().taskAttemptId() lowerCAmelCase : str = next(UpperCAmelCase_ , UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = writer_class( features=UpperCAmelCase_ , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase_ , storage_options=UpperCAmelCase_ , embed_local_files=UpperCAmelCase_ , ) lowerCAmelCase : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase , lowerCAmelCase : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 lowerCAmelCase : Tuple = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase_ , storage_options=UpperCAmelCase_ , embed_local_files=UpperCAmelCase_ , ) lowerCAmelCase : str = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: lowerCAmelCase , lowerCAmelCase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): lowerCAmelCase : Optional[int] = os.path.join(os.path.dirname(UpperCAmelCase_ ) , os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = ( self.df.mapInArrow(UpperCAmelCase_ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase__ ( self : int , UpperCAmelCase_ : "datasets.SplitGenerator" , UpperCAmelCase_ : str = "arrow" , UpperCAmelCase_ : Optional[Union[str, int]] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : str , ): self._validate_cache_dir() lowerCAmelCase : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = not is_remote_filesystem(self._fs ) lowerCAmelCase : Union[str, Any] = os.path.join if is_local else posixpath.join lowerCAmelCase : List[Any] = '-TTTTT-SSSSS-of-NNNNN' lowerCAmelCase : Optional[Any] = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" lowerCAmelCase : int = path_join(self._output_dir , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[Any] = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Dict = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) lowerCAmelCase : Dict = total_num_examples lowerCAmelCase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards." ) if total_shards > 1: lowerCAmelCase : Tuple = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase : str = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): rename( UpperCAmelCase_ , fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace('TTTTT-SSSSS' , f"{global_shard_id:05d}" ).replace('NNNNN' , f"{total_shards:05d}" ) , ) lowerCAmelCase : int = [] lowerCAmelCase : List[Any] = 0 for i in range(len(UpperCAmelCase_ ) ): lowerCAmelCase , lowerCAmelCase : Dict = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ , len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern lowerCAmelCase : int = 0 lowerCAmelCase : Union[str, Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f"{shard_id:05d}" ).replace('TTTTT' , f"{task_id:05d}" ) , fpath.replace(UpperCAmelCase_ , '' ) , ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
343
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list: UpperCamelCase = len(__UpperCamelCase ) UpperCamelCase = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): UpperCamelCase = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: UpperCamelCase = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
704
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( lowerCamelCase ): lowercase = """deformable_detr""" lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.2_5 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = backbone_config.get("""model_type""" ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def A__ ( self ) -> int: """simple docstring""" return self.d_model def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
35
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "spiece.model"} UpperCamelCase = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } UpperCamelCase = {"bert_for_seq_generation": 512} class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[int] = [] _UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<::::>" , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowercase : Tuple = vocab_file _lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def __a ( self ): return self.sp_model.get_piece_size() def __a ( self ): _lowercase : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowercase : Optional[int] = self.__dict__.copy() _lowercase : Optional[int] = None return state def __setstate__( self , _lowerCAmelCase ): _lowercase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowercase : List[str] = {} _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return self.sp_model.piece_to_id(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : int = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def __a ( self , _lowerCAmelCase ): _lowercase : str = [] _lowercase : Union[str, Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token _lowercase : Dict = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : str = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , 'wb' ) as fi: _lowercase : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
66
from __future__ import annotations UpperCamelCase = tuple[int, int, int] UpperCamelCase = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCamelCase = "EGZWVONAHDCLFQMSIPJBYUKXTR" UpperCamelCase = "FOBHMDKEXQNRAULPGSJVTYICZW" UpperCamelCase = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- UpperCamelCase = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- UpperCamelCase = "RMDJXFUWGISLHVTCQNKYPBEZOA" UpperCamelCase = "SGLCPQWZHKXAREONTFBVIYJUDM" UpperCamelCase = "HVSICLTYKQUBXDWAJZOMFGPREN" UpperCamelCase = "RZWQHFMVDBKICJLNTUXAGYPSOE" UpperCamelCase = "LFKIJODBEGAMQPXVUHYSTCZRWN" UpperCamelCase = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(SCREAMING_SNAKE_CASE ) )) < 3: _lowercase : Optional[int] = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid _lowercase , _lowercase , _lowercase : int = rotpos if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): _lowercase : Dict = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): _lowercase : int = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): _lowercase : str = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(SCREAMING_SNAKE_CASE ) # Validates string and returns dict _lowercase : Tuple = _plugboard(SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = F"""Plugboard setting isn't type string ({type(SCREAMING_SNAKE_CASE )})""" raise TypeError(SCREAMING_SNAKE_CASE ) elif len(SCREAMING_SNAKE_CASE ) % 2 != 0: _lowercase : Optional[int] = F"""Odd number of symbols ({len(SCREAMING_SNAKE_CASE )})""" raise Exception(SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique _lowercase : Dict = set() for i in pbstring: if i not in abc: _lowercase : str = F"""'{i}' not in list of symbols""" raise Exception(SCREAMING_SNAKE_CASE ) elif i in tmppbl: _lowercase : int = F"""Duplicate symbol ({i})""" raise Exception(SCREAMING_SNAKE_CASE ) else: tmppbl.add(SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary _lowercase : Optional[Any] = {} for j in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 , 2 ): _lowercase : Dict = pbstring[j + 1] _lowercase : Union[str, Any] = pbstring[j] return pb def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , SCREAMING_SNAKE_CASE = "" , ) -> str: _lowercase : List[str] = text.upper() _lowercase , _lowercase , _lowercase : List[str] = _validator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , plugb.upper() ) _lowercase , _lowercase , _lowercase : Optional[int] = rotor_position _lowercase , _lowercase , _lowercase : Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _lowercase : Optional[int] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _lowercase : Dict = plugboard[symbol] # rotor ra -------------------------- _lowercase : Optional[Any] = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa _lowercase : Union[str, Any] = rotora[index % len(SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- _lowercase : Tuple = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa _lowercase : str = rotora[index % len(SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- _lowercase : List[Any] = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa _lowercase : List[str] = rotora[index % len(SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _lowercase : List[str] = reflector[symbol] # 2nd rotors _lowercase : List[str] = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] _lowercase : Tuple = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] _lowercase : Dict = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: _lowercase : int = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): _lowercase : Any = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): _lowercase : int = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): _lowercase : Any = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = "This is my Python script that emulates the Enigma machine from WWII." UpperCamelCase = (1, 1, 1) UpperCamelCase = "pictures" UpperCamelCase = (rotora, rotora, rotora) UpperCamelCase = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
66
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase : Dict = True except ImportError: _lowercase : Any = False _lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase ( UpperCAmelCase__ : Namespace ) -> List[str]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __magic_name__ ( _UpperCAmelCase): @staticmethod def SCREAMING_SNAKE_CASE_ ( lowercase_ : ArgumentParser ): lowercase_ : int = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowercase_ , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowercase_ , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : Optional[int] , lowercase_ : bool , lowercase_ : str , lowercase_ : Union[str, Any]=None , *lowercase_ : Dict ): lowercase_ : Union[str, Any] = testing lowercase_ : List[Any] = testing_file lowercase_ : int = path def SCREAMING_SNAKE_CASE_ ( self : Any ): warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowercase_ : List[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowercase_ ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) lowercase_ : str = ( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowercase_ : List[Any] = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , """r""" ) as configuration_file: lowercase_ : Union[str, Any] = json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) lowercase_ : List[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: lowercase_ : Optional[int] = json.load(lowercase_ ) lowercase_ : List[Any] = configuration["""lowercase_modelname"""] lowercase_ : List[Any] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'''{directory}/configuration.json''' ) lowercase_ : Any = """PyTorch""" in generate_tensorflow_pytorch_and_flax lowercase_ : Tuple = """TensorFlow""" in generate_tensorflow_pytorch_and_flax lowercase_ : Any = """Flax""" in generate_tensorflow_pytorch_and_flax lowercase_ : List[str] = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , """w""" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowercase_ : int ): with open(lowercase_ , """r""" ) as f: lowercase_ : Union[str, Any] = f.readlines() with open(lowercase_ , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase_ : str , lowercase_ : str , lowercase_ : List[str] ): # Create temp file lowercase_ , lowercase_ : Any = mkstemp() lowercase_ : List[str] = False with fdopen(lowercase_ , """w""" ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: lowercase_ : int = True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(lowercase_ : str ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase_ : int ): with open(lowercase_ ) as datafile: lowercase_ : Optional[int] = [] lowercase_ : List[Any] = False lowercase_ : Dict = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowercase_ : Optional[Any] = line.split("""\"""" )[1] lowercase_ : Optional[int] = skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: lowercase_ : List[str] = line.split("""\"""" )[1] lowercase_ : Union[str, Any] = skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : int = [] elif "# Replace with" in line and "##" not in line: lowercase_ : Optional[int] = [] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowercase_ )
30
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : str = tau * frequency / samplerate lowercase_ : Tuple = sin(UpperCAmelCase__ ) lowercase_ : int = cos(UpperCAmelCase__ ) lowercase_ : Any = _sin / (2 * q_factor) lowercase_ : Dict = (1 - _cos) / 2 lowercase_ : Optional[int] = 1 - _cos lowercase_ : Dict = 1 + alpha lowercase_ : List[Any] = -2 * _cos lowercase_ : Union[str, Any] = 1 - alpha lowercase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : str = tau * frequency / samplerate lowercase_ : Optional[int] = sin(UpperCAmelCase__ ) lowercase_ : Dict = cos(UpperCAmelCase__ ) lowercase_ : Optional[int] = _sin / (2 * q_factor) lowercase_ : Dict = (1 + _cos) / 2 lowercase_ : str = -1 - _cos lowercase_ : Dict = 1 + alpha lowercase_ : Optional[Any] = -2 * _cos lowercase_ : List[Any] = 1 - alpha lowercase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : int = tau * frequency / samplerate lowercase_ : int = sin(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = cos(UpperCAmelCase__ ) lowercase_ : str = _sin / (2 * q_factor) lowercase_ : str = _sin / 2 lowercase_ : Any = 0 lowercase_ : Optional[Any] = -ba lowercase_ : Dict = 1 + alpha lowercase_ : Union[str, Any] = -2 * _cos lowercase_ : Union[str, Any] = 1 - alpha lowercase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: lowercase_ : List[str] = tau * frequency / samplerate lowercase_ : Any = sin(UpperCAmelCase__ ) lowercase_ : List[Any] = cos(UpperCAmelCase__ ) lowercase_ : Optional[Any] = _sin / (2 * q_factor) lowercase_ : Any = 1 - alpha lowercase_ : Optional[Any] = -2 * _cos lowercase_ : Optional[int] = 1 + alpha lowercase_ : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase_ : Dict = tau * frequency / samplerate lowercase_ : Tuple = sin(UpperCAmelCase__ ) lowercase_ : List[Any] = cos(UpperCAmelCase__ ) lowercase_ : List[Any] = _sin / (2 * q_factor) lowercase_ : Any = 10 ** (gain_db / 40) lowercase_ : List[str] = 1 + alpha * big_a lowercase_ : List[Any] = -2 * _cos lowercase_ : Dict = 1 - alpha * big_a lowercase_ : str = 1 + alpha / big_a lowercase_ : List[str] = -2 * _cos lowercase_ : Tuple = 1 - alpha / big_a lowercase_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase_ : Dict = tau * frequency / samplerate lowercase_ : Union[str, Any] = sin(UpperCAmelCase__ ) lowercase_ : Any = cos(UpperCAmelCase__ ) lowercase_ : Any = _sin / (2 * q_factor) lowercase_ : Any = 10 ** (gain_db / 40) lowercase_ : Any = (big_a + 1) - (big_a - 1) * _cos lowercase_ : int = (big_a + 1) + (big_a - 1) * _cos lowercase_ : Tuple = (big_a - 1) - (big_a + 1) * _cos lowercase_ : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos lowercase_ : int = 2 * sqrt(UpperCAmelCase__ ) * alpha lowercase_ : Tuple = big_a * (pmc + aaa) lowercase_ : List[str] = 2 * big_a * mpc lowercase_ : Union[str, Any] = big_a * (pmc - aaa) lowercase_ : Optional[int] = ppmc + aaa lowercase_ : Optional[int] = -2 * pmpc lowercase_ : Any = ppmc - aaa lowercase_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase_ : str = tau * frequency / samplerate lowercase_ : int = sin(UpperCAmelCase__ ) lowercase_ : int = cos(UpperCAmelCase__ ) lowercase_ : Dict = _sin / (2 * q_factor) lowercase_ : Union[str, Any] = 10 ** (gain_db / 40) lowercase_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos lowercase_ : Optional[int] = (big_a + 1) + (big_a - 1) * _cos lowercase_ : Any = (big_a - 1) - (big_a + 1) * _cos lowercase_ : str = (big_a - 1) + (big_a + 1) * _cos lowercase_ : Optional[int] = 2 * sqrt(UpperCAmelCase__ ) * alpha lowercase_ : Tuple = big_a * (ppmc + aaa) lowercase_ : List[Any] = -2 * big_a * pmpc lowercase_ : Optional[Any] = big_a * (ppmc - aaa) lowercase_ : Optional[Any] = pmc + aaa lowercase_ : int = 2 * mpc lowercase_ : Tuple = pmc - aaa lowercase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
30
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp _lowerCAmelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } _lowerCAmelCase = { '''RUCAIBox/mvp''': 1024, } class _SCREAMING_SNAKE_CASE ( __lowerCamelCase ): __SCREAMING_SNAKE_CASE :List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE :Optional[int] = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE :List[Any] = MvpTokenizer def __init__( self : Tuple , a__ : List[str]=None , a__ : Optional[Any]=None , a__ : List[Any]=None , a__ : Optional[int]="replace" , a__ : List[Any]="<s>" , a__ : Optional[Any]="</s>" , a__ : int="</s>" , a__ : Any="<s>" , a__ : Union[str, Any]="<unk>" , a__ : Optional[Any]="<pad>" , a__ : Any="<mask>" , a__ : Union[str, Any]=False , a__ : Dict=True , **a__ : Optional[Any] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) __magic_name__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __A ) != add_prefix_space: __magic_name__ = getattr(__A , pre_tok_state.pop('''type''' ) ) __magic_name__ = add_prefix_space __magic_name__ = pre_tok_class(**__A ) __magic_name__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __magic_name__ = '''post_processor''' __magic_name__ = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: __magic_name__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __magic_name__ = tuple(state['''sep'''] ) if "cls" in state: __magic_name__ = tuple(state['''cls'''] ) __magic_name__ = False if state.get('''add_prefix_space''' , __A ) != add_prefix_space: __magic_name__ = add_prefix_space __magic_name__ = True if state.get('''trim_offsets''' , __A ) != trim_offsets: __magic_name__ = trim_offsets __magic_name__ = True if changes_to_apply: __magic_name__ = getattr(__A , state.pop('''type''' ) ) __magic_name__ = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property def snake_case__ ( self : int ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : List[str] , a__ : Union[str, Any] ): __magic_name__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value __magic_name__ = value def snake_case__ ( self : List[str] , *a__ : List[Any] , **a__ : Union[str, Any] ): __magic_name__ = kwargs.get('''is_split_into_words''' , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__A , **__A ) def snake_case__ ( self : Tuple , *a__ : Union[str, Any] , **a__ : List[Any] ): __magic_name__ = kwargs.get('''is_split_into_words''' , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__A , **__A ) def snake_case__ ( self : int , a__ : str , a__ : Optional[str] = None ): __magic_name__ = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def snake_case__ ( self : Dict , a__ : str , a__ : Optional[int]=None ): __magic_name__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : str , a__ : List[int] , a__ : Optional[List[int]] = None ): __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
432
'''simple docstring''' from __future__ import annotations from random import random class snake_case : """simple docstring""" def __init__( self : Tuple , __A : int | None = None ): __UpperCamelCase = value __UpperCamelCase = random() __UpperCamelCase = None __UpperCamelCase = None def __repr__( self : List[str] ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : List[str] ): __UpperCamelCase = str(self.value ) + ' ' __UpperCamelCase = str(self.left or '' ) __UpperCamelCase = str(self.right or '' ) return value + left + right def lowercase__ ( __lowercase : Node | None , __lowercase : int ) -> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __UpperCamelCase , __UpperCamelCase = split(root.left , __lowercase ) return left, root else: __UpperCamelCase , __UpperCamelCase = split(root.right , __lowercase ) return root, right def lowercase__ ( __lowercase : Node | None , __lowercase : Node | None ) -> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __UpperCamelCase = merge(left.right , __lowercase ) return left else: __UpperCamelCase = merge(__lowercase , right.left ) return right def lowercase__ ( __lowercase : Node | None , __lowercase : int ) -> Node | None: """simple docstring""" __UpperCamelCase = Node(__lowercase ) __UpperCamelCase , __UpperCamelCase = split(__lowercase , __lowercase ) return merge(merge(__lowercase , __lowercase ) , __lowercase ) def lowercase__ ( __lowercase : Node | None , __lowercase : int ) -> Node | None: """simple docstring""" __UpperCamelCase , __UpperCamelCase = split(__lowercase , value - 1 ) __UpperCamelCase , __UpperCamelCase = split(__lowercase , __lowercase ) return merge(__lowercase , __lowercase ) def lowercase__ ( __lowercase : Node | None ) -> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowercase__ ( __lowercase : Node | None , __lowercase : str ) -> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": __UpperCamelCase = insert(__lowercase , int(arg[1:] ) ) elif arg[0] == "-": __UpperCamelCase = erase(__lowercase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowercase__ ( ) -> None: """simple docstring""" __UpperCamelCase = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) __UpperCamelCase = input() while args != "q": __UpperCamelCase = interact_treap(__lowercase , __lowercase ) print(__lowercase ) __UpperCamelCase = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
399
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase ( unittest.TestCase): def a_ ( self : Tuple ): """simple docstring""" A_ : int = '''hf-internal-testing/tiny-random-t5''' A_ : List[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) A_ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ) A_ : Tuple = tokenizer('''This is me''' , return_tensors='''pt''' ) A_ : Union[str, Any] = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) A_ : Optional[int] = model.generate(**_lowerCamelCase ) A_ : Optional[int] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) A_ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) A_ : Union[str, Any] = model_reloaded.generate(**_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase ) ) def a_ ( self : Tuple ): """simple docstring""" A_ : List[str] = '''hf-internal-testing/tiny-random-t5''' A_ : Any = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ) A_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCamelCase ): model.save_pretrained(_lowerCamelCase ) A_ : List[str] = model.reverse_bettertransformer() model.save_pretrained(_lowerCamelCase )
361
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCamelCase : Optional[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowercase ( unittest.TestCase): __lowerCAmelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCAmelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCAmelCase : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCAmelCase : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def a_ ( self : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = ZeroShotClassificationPipeline( model=_lowerCamelCase , tokenizer=_lowerCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def a_ ( self : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) # No kwarg A_ : Tuple = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) A_ : List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) A_ : Union[str, Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( _lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) A_ : Tuple = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( _lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) A_ : List[str] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 A_ : str = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(1 ) ] , ) A_ : str = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_lowerCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(_lowerCamelCase ): classifier(_lowerCamelCase , candidate_labels='''politics''' ) with self.assertRaises(_lowerCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(_lowerCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_lowerCamelCase , ) self.run_entailment_id(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : Pipeline ): """simple docstring""" A_ : int = zero_shot_classifier.model.config A_ : Dict = config.labelaid A_ : Optional[int] = zero_shot_classifier.entailment_id A_ : Optional[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A_ : Union[str, Any] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ : int = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ : Optional[Any] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A_ : List[Any] = original_labelaid self.assertEqual(_lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def a_ ( self : List[Any] ): """simple docstring""" A_ : List[str] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_00 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def a_ ( self : Dict ): """simple docstring""" A_ : Optional[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) A_ : Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def a_ ( self : Dict ): """simple docstring""" A_ : List[str] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) A_ : List[str] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def a_ ( self : int ): """simple docstring""" A_ : Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) A_ : str = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) A_ : str = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) A_ : str = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) A_ : Tuple = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
361
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__ = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __magic_name__ = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): """simple docstring""" a_ : Optional[Any] =VOCAB_FILES_NAMES a_ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =["""input_ids""", """attention_mask"""] a_ : List[Any] =BartTokenizer def __init__( self : Union[str, Any] , _snake_case : str=None , _snake_case : Union[str, Any]=None , _snake_case : List[str]=None , _snake_case : Dict="replace" , _snake_case : Optional[int]="<s>" , _snake_case : Optional[int]="</s>" , _snake_case : str="</s>" , _snake_case : int="<s>" , _snake_case : Any="<unk>" , _snake_case : Tuple="<pad>" , _snake_case : int="<mask>" , _snake_case : List[str]=False , _snake_case : Optional[Any]=True , **_snake_case : int , ) -> Union[str, Any]: '''simple docstring''' super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) a__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase__ ) != add_prefix_space: a__ = getattr(lowercase__ , pre_tok_state.pop('type' ) ) a__ = add_prefix_space a__ = pre_tok_class(**lowercase__ ) a__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ = """post_processor""" a__ = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: a__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ = tuple(state['sep'] ) if "cls" in state: a__ = tuple(state['cls'] ) a__ = False if state.get('add_prefix_space' , lowercase__ ) != add_prefix_space: a__ = add_prefix_space a__ = True if state.get('trim_offsets' , lowercase__ ) != trim_offsets: a__ = trim_offsets a__ = True if changes_to_apply: a__ = getattr(lowercase__ , state.pop('type' ) ) a__ = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property def _lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCAmelCase ( self : List[Any] , _snake_case : Union[str, Any] ) -> str: '''simple docstring''' a__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value a__ = value def _lowerCAmelCase ( self : Any , *_snake_case : Any , **_snake_case : str ) -> int: '''simple docstring''' a__ = kwargs.get('is_split_into_words' , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def _lowerCAmelCase ( self : List[str] , *_snake_case : Dict , **_snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' a__ = kwargs.get('is_split_into_words' , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def _lowerCAmelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Any = None ) -> Dict: '''simple docstring''' a__ = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def _lowerCAmelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=None ) -> Optional[int]: '''simple docstring''' a__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self : List[Any] , _snake_case : List[str] , _snake_case : Optional[Any] = None ) -> List[str]: '''simple docstring''' a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
232
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 2_0_0_0_0_0_0 ): """simple docstring""" snake_case_ : Optional[Any] = [0 for i in range(n + 1 )] snake_case_ : int = 1 snake_case_ : str = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = 1 snake_case_ : Any = 0 for i in range(SCREAMING_SNAKE_CASE__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
480
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _A : List[str] = logging.getLogger() def __lowerCAmelCase ( ) -> int: __lowerCamelCase: List[str] = argparse.ArgumentParser() parser.add_argument("""-f""" ) __lowerCamelCase: str = parser.parse_args() return args.f class a ( UpperCamelCase_ ): def SCREAMING_SNAKE_CASE__ ( self : Tuple ): __lowerCamelCase: Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): __lowerCamelCase: List[str] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): __lowerCamelCase: Dict = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : int ): __lowerCamelCase: Optional[Any] = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) __lowerCamelCase: int = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) __lowerCamelCase: List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
712
class a : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str = "" , SCREAMING_SNAKE_CASE_ : bool = False ): # Mapping from the first character of the prefix of the node __lowerCamelCase: dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word __lowerCamelCase: str = is_leaf __lowerCamelCase: Optional[int] = prefix def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: Optional[Any] = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : list[str] ): for word in words: self.insert(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __lowerCamelCase: Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowerCamelCase: Any = RadixNode(prefix=SCREAMING_SNAKE_CASE_ , is_leaf=SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase: Union[str, Any] = self.nodes[word[0]] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase: List[str] = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowerCamelCase: List[Any] = remaining_prefix __lowerCamelCase: Optional[Any] = self.nodes[matching_string[0]] __lowerCamelCase: Optional[int] = RadixNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Union[str, Any] = aux_node if remaining_word == "": __lowerCamelCase: Optional[int] = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: int = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE_ ) if not incoming_node: return False else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase: Any = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: str = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE_ ) if not incoming_node: return False else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase: Dict = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __lowerCamelCase: List[Any] = list(self.nodes.values() )[0] __lowerCamelCase: Any = merging_node.is_leaf self.prefix += merging_node.prefix __lowerCamelCase: Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __lowerCamelCase: int = False # If there is 1 edge, we merge it with its child else: __lowerCamelCase: Union[str, Any] = list(incoming_node.nodes.values() )[0] __lowerCamelCase: List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowerCamelCase: Union[str, Any] = merging_node.nodes return True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowerCAmelCase ( ) -> bool: __lowerCamelCase: Optional[int] = """banana bananas bandana band apple all beast""".split() __lowerCamelCase: Optional[Any] = RadixNode() root.insert_many(snake_case ) assert all(root.find(snake_case ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCAmelCase ( ) -> None: assert test_trie() def __lowerCAmelCase ( ) -> None: __lowerCamelCase: int = RadixNode() __lowerCamelCase: str = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(snake_case ) print("""Words:""" , snake_case ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
189
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class a : def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ,__lowercase :Tuple ): pass def __lowerCamelCase ( self :Optional[int] ): pass def __lowerCamelCase ( self :Optional[Any] ): pass def __lowerCamelCase ( self :str ,__lowercase :int ,__lowercase :Any ,__lowercase :Optional[Any] ): snake_case__ : Any = np.abs((a - b) ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :str ,__lowercase :Optional[int] ,__lowercase :Optional[int] ,__lowercase :str=None ,**__lowercase :Optional[int] ): snake_case__ : int = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case__ : str = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def __lowerCamelCase ( self :str ,__lowercase :List[Any] ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :Any=None ,**__lowercase :str ): snake_case__ , snake_case__ : Union[str, Any] = self.get_vision_text_model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case__ : str = {'''vision_model''': vision_model, '''text_model''': text_model} snake_case__ : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def __lowerCamelCase ( self :List[Any] ,__lowercase :List[str] ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Dict ,__lowercase :Any=None ,**__lowercase :List[Any] ): snake_case__ , snake_case__ : str = self.get_vision_text_model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case__ : str = {'''vision_model''': vision_model, '''text_model''': text_model} snake_case__ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) snake_case__ : int = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : int = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = after_output[0] snake_case__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE ,1e-3 ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Dict ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :str=None ,**__lowercase :int ): snake_case__ , snake_case__ : List[Any] = self.get_vision_text_model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case__ : int = {'''vision_model''': vision_model, '''text_model''': text_model} snake_case__ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model( input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,output_attentions=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : int = to_atuple(vision_model.config.image_size ) snake_case__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) snake_case__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :List[Any] ,__lowercase :Optional[int] ): pt_model.to(__SCREAMING_SNAKE_CASE ) pt_model.eval() # prepare inputs snake_case__ : Dict = inputs_dict snake_case__ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): snake_case__ : int = pt_model(**__SCREAMING_SNAKE_CASE ).to_tuple() snake_case__ : Any = fx_model(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE ,pt_output.numpy() ,4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ,from_pt=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = fx_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE ,pt_output.numpy() ,4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ,from_flax=__SCREAMING_SNAKE_CASE ) pt_model_loaded.to(__SCREAMING_SNAKE_CASE ) pt_model_loaded.eval() with torch.no_grad(): snake_case__ : Tuple = pt_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(__SCREAMING_SNAKE_CASE ,pt_output_loaded.numpy() ,4e-2 ) def __lowerCamelCase ( self :List[str] ,__lowercase :int ,__lowercase :Optional[int] ,__lowercase :Tuple ): snake_case__ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case__ : int = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = fx_state self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :List[str] ): snake_case__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case__ : int = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE ,fx_model.params ) self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self :int ): snake_case__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self :str ): snake_case__ : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __lowerCamelCase ( self :str ): snake_case__ : int = self.prepare_config_and_inputs() snake_case__ : Optional[Any] = config_inputs_dict.pop('''vision_config''' ) snake_case__ : str = config_inputs_dict.pop('''text_config''' ) snake_case__ : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self :Optional[int] ): snake_case__ , snake_case__ : List[Any] = self.get_pretrained_model_and_inputs() snake_case__ : Optional[int] = model_a(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : int = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : str = model_a(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = after_outputs[0] snake_case__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE ,1e-5 ) @require_flax class a ( lowerCAmelCase_ , unittest.TestCase ): def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=__SCREAMING_SNAKE_CASE ,text_from_pt=__SCREAMING_SNAKE_CASE ,) snake_case__ : List[str] = 1_3 snake_case__ : Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case__ : List[Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) snake_case__ : Optional[Any] = random_attention_mask([batch_size, 4] ) snake_case__ : Union[str, Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCamelCase ( self :Tuple ,__lowercase :int ,__lowercase :str ): snake_case__ : Tuple = FlaxViTModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = FlaxViTModelTester(self ) snake_case__ : Tuple = FlaxBertModelTester(self ) snake_case__ : List[str] = vit_model_tester.prepare_config_and_inputs() snake_case__ : Tuple = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ : List[str] = vision_config_and_inputs snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a ( lowerCAmelCase_ , unittest.TestCase ): def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=__SCREAMING_SNAKE_CASE ,text_from_pt=__SCREAMING_SNAKE_CASE ,) snake_case__ : int = 1_3 snake_case__ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case__ : Optional[int] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) snake_case__ : Dict = random_attention_mask([batch_size, 4] ) snake_case__ : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowerCamelCase ( self :str ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ): snake_case__ : Any = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = FlaxBertModel(__SCREAMING_SNAKE_CASE ) return vision_model, text_model def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[str] = FlaxCLIPVisionModelTester(self ) snake_case__ : Tuple = FlaxBertModelTester(self ) snake_case__ : str = clip_model_tester.prepare_config_and_inputs() snake_case__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ : List[Any] = vision_config_and_inputs snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ) snake_case__ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) snake_case__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) snake_case__ : Optional[Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) snake_case__ : Tuple = model(**__SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) snake_case__ : Union[str, Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) )
252
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __UpperCAmelCase :Optional[int] = ["bert-base-uncased", "bert-base-cased"] __UpperCAmelCase :str = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class a ( tf.keras.Model ): """simple docstring""" def __init__( self : List[str] , snake_case : List[str] ) -> str: super().__init__() __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(snake_case ) __UpperCAmelCase : int = TFAutoModel.from_config(snake_case ) def lowerCamelCase__ ( self : List[Any] , snake_case : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = self.tokenizer(snake_case ) __UpperCAmelCase : Optional[Any] = self.bert(**snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: super().setUp() __UpperCAmelCase : Tuple = [ BertTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __UpperCAmelCase : Any = [TFBertTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case , use_fast_bert_tokenizer=snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase : Optional[int] = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __UpperCAmelCase : Optional[int] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCAmelCase : Any = tokenizer(snake_case , return_tensors='''tf''' , padding='''longest''' ) __UpperCAmelCase : Optional[int] = tf_tokenizer(snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowerCamelCase__ ( self : List[Any] ) -> str: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : Any = tf_tokenizer(self.paired_sentences ) __UpperCAmelCase : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowerCamelCase__ ( self : str ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : Optional[int] = tf.function(snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCAmelCase : int = tf.constant(snake_case ) __UpperCAmelCase : Tuple = compiled_tokenizer(snake_case ) __UpperCAmelCase : Optional[int] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase__ ( self : str ) -> str: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : List[Any] = ModelToSave(tokenizer=snake_case ) __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) __UpperCAmelCase : Tuple = model(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase : Any = Path(snake_case ) / '''saved.model''' model.save(snake_case ) __UpperCAmelCase : str = tf.keras.models.load_model(snake_case ) __UpperCAmelCase : Optional[int] = loaded_model(snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
711
'''simple docstring''' from __future__ import annotations def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : str = [True] * limit __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __UpperCAmelCase : Dict = i * 2 while index < limit: __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Union[str, Any] = index + i __UpperCAmelCase : Optional[Any] = [2] for i in range(3 , _lowercase , 2 ): if is_prime[i]: primes.append(_lowercase ) return primes def _a ( _lowercase : int = 1000000 ): '''simple docstring''' __UpperCAmelCase : List[str] = prime_sieve(_lowercase ) __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : int = 0 for i in range(len(_lowercase ) ): for j in range(i + length , len(_lowercase ) ): __UpperCAmelCase : Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __UpperCAmelCase : Any = j - i __UpperCAmelCase : List[Any] = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
266
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Optional[int] = logging.get_logger(__name__) A__ : int = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} A__ : int = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } A__ : List[Any] = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ) -> int: with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase : Optional[int] = json.loads(f.read() ) __lowerCamelCase : Union[str, Any] = collections.OrderedDict() __lowerCamelCase : Union[str, Any] = collections.OrderedDict() __lowerCamelCase : Optional[Any] = collections.OrderedDict() with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase : Any = f.readlines() __lowerCamelCase : Tuple = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(UpperCAmelCase_ ): __lowerCamelCase : int = b __lowerCamelCase : Any = idx for wd in b: __lowerCamelCase : Union[str, Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|startoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , do_clean_text=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) __lowerCamelCase : int = do_clean_text __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = load_vocab_and_emoji(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowercase_ ( self ) -> List[str]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowercase_ ( self ) -> Any: return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.subword_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , clean=self.do_clean_text ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.vocab.get(SCREAMING_SNAKE_CASE_ , self.vocab.get(self.unk_token ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: return self.subword_tokenizer.convert_id_to_token(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Any = ''.join(SCREAMING_SNAKE_CASE_ ).strip() return out_string def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[int]: __lowerCamelCase : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: __lowerCamelCase : List[Any] = input_ids[-self.model_max_length :] return input_ids def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : List[Any] = 0 if os.path.isdir(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: __lowerCamelCase : List[Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Any = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __lowerCamelCase : Dict = token_index writer.write(','.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , SCREAMING_SNAKE_CASE_ ) return vocab_file, emoji_file class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Optional[int] = vocab # same as swe __lowerCamelCase : Dict = ids_to_tokens # same as bpe __lowerCamelCase : str = emoji __lowerCamelCase : str = np.max([len(SCREAMING_SNAKE_CASE_ ) for w in self.vocab.keys()] ) __lowerCamelCase : Union[str, Any] = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) __lowerCamelCase : Optional[Any] = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) __lowerCamelCase : List[Any] = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) __lowerCamelCase : Dict = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __lowerCamelCase : int = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __lowerCamelCase : List[str] = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) __lowerCamelCase : Optional[int] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' __lowerCamelCase : Any = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' __lowerCamelCase : Optional[Any] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ) -> Any: return len(self.ids_to_tokens ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Any = self.content_repattera.sub('<URL>' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.content_repattera.sub('<EMAIL>' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.content_repattera.sub('<TEL>' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.content_repattera.sub('<DATE>' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.content_repattera.sub('<DATE>' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.content_repattera.sub('<PRICE>' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCamelCase : Optional[int] = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Tuple: __lowerCamelCase : Tuple = text.replace(' ' , '<SP>' ) __lowerCamelCase : Optional[Any] = text.replace(' ' , '<SP>' ) __lowerCamelCase : str = text.replace('\r\n' , '<BR>' ) __lowerCamelCase : List[Any] = text.replace('\n' , '<BR>' ) __lowerCamelCase : Tuple = text.replace('\r' , '<BR>' ) __lowerCamelCase : int = text.replace('\t' , '<TAB>' ) __lowerCamelCase : Optional[int] = text.replace('—' , 'ー' ) __lowerCamelCase : List[Any] = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCamelCase : Tuple = text.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if clean: __lowerCamelCase : Union[str, Any] = self.clean_text(SCREAMING_SNAKE_CASE_ ) def check_simbol(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[Any] = x.encode() if len(SCREAMING_SNAKE_CASE_ ) == 1 and len(SCREAMING_SNAKE_CASE_ ) == 2: __lowerCamelCase : Dict = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = x.encode() if len(SCREAMING_SNAKE_CASE_ ) == 1 and len(SCREAMING_SNAKE_CASE_ ) == 3: __lowerCamelCase : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False __lowerCamelCase : Any = 0 __lowerCamelCase : Union[str, Any] = [] while pos < len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Dict = min(len(SCREAMING_SNAKE_CASE_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 __lowerCamelCase : Dict = [] # (token_id, token, pos) for e in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 ): __lowerCamelCase : List[str] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(SCREAMING_SNAKE_CASE_ ) > 2: __lowerCamelCase : str = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: # the smallest token_id is adopted __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )[0] result.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = e else: __lowerCamelCase : List[Any] = pos + 1 __lowerCamelCase : int = text[pos:end] if check_simbol(SCREAMING_SNAKE_CASE_ ): result.append('<KIGOU>' ) elif checkuae(SCREAMING_SNAKE_CASE_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) __lowerCamelCase : str = end return result def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="\n" ) -> Union[str, Any]: __lowerCamelCase : Dict = [] __lowerCamelCase : int = [] __lowerCamelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(SCREAMING_SNAKE_CASE_ ) > 0: words.append(bytearray(SCREAMING_SNAKE_CASE_ ).decode('utf-8' , errors='replace' ) ) __lowerCamelCase : Union[str, Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(SCREAMING_SNAKE_CASE_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: words.append(bytearray(SCREAMING_SNAKE_CASE_ ).decode('utf-8' , errors='replace' ) ) __lowerCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ) return text
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
444
0
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A_ : Any ={ """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } A_ : List[str] =logging.WARNING def lowerCamelCase_ ( ): """simple docstring""" a_ = os.getenv("""DATASETS_VERBOSITY""" , __lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def lowerCamelCase_ ( ): """simple docstring""" return __name__.split(""".""" )[0] def lowerCamelCase_ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def lowerCamelCase_ ( ): """simple docstring""" a_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCamelCase_ ( ): """simple docstring""" a_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCamelCase_ ( UpperCAmelCase__ = None ): """simple docstring""" if name is None: a_ = _get_library_name() return logging.getLogger(__lowercase ) def lowerCamelCase_ ( ): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" _get_library_root_logger().setLevel(__lowercase ) def lowerCamelCase_ ( ): """simple docstring""" return set_verbosity(__lowercase ) def lowerCamelCase_ ( ): """simple docstring""" return set_verbosity(__lowercase ) def lowerCamelCase_ ( ): """simple docstring""" return set_verbosity(__lowercase ) def lowerCamelCase_ ( ): """simple docstring""" return set_verbosity(__lowercase ) def lowerCamelCase_ ( ): """simple docstring""" a_ = False def lowerCamelCase_ ( ): """simple docstring""" a_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowercase_ : """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): # pylint: disable=unused-argument """simple docstring""" a_ = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , _UpperCAmelCase ): """simple docstring""" def empty_fn(*_UpperCAmelCase , **_UpperCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return A_ : Optional[Any] =True class lowercase_ : """simple docstring""" def __call__( self , *_UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*__a , **__a ) else: return EmptyTqdm(*__a , **__a ) def lowercase__ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): """simple docstring""" a_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__a , **__a ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ : Optional[Any] =_tqdm_cls() def lowerCamelCase_ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase_ ( ): """simple docstring""" global _tqdm_active a_ = True def lowerCamelCase_ ( ): """simple docstring""" global _tqdm_active a_ = False
483
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig lowercase : int = logging.getLogger(__name__) class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """masked_bert""" def __init__( self ,__a=30_522 ,__a=768 ,__a=12 ,__a=12 ,__a=3_072 ,__a="gelu" ,__a=0.1 ,__a=0.1 ,__a=512 ,__a=2 ,__a=0.02 ,__a=1E-12 ,__a=0 ,__a="topK" ,__a="constant" ,__a=0.0 ,**__a ,) -> List[str]: super().__init__(pad_token_id=__a ,**__a ) snake_case : Dict = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Dict = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Dict = hidden_act snake_case : Any = intermediate_size snake_case : Optional[int] = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : int = type_vocab_size snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = pruning_method snake_case : Union[str, Any] = mask_init snake_case : int = mask_scale
116
0
"""simple docstring""" import math import unittest def lowercase ( __snake_case : Any ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _UpperCAmelCase ( unittest.TestCase ): def A ( self : int ) -> Union[str, Any]: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def A ( self : Optional[int] ) -> List[str]: with self.assertRaises(A ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
701
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : int = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['''DeiTFeatureExtractor'''] __A : int = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
141
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
256
from __future__ import annotations from typing import Any class A( UpperCamelCase ): '''simple docstring''' pass class A: '''simple docstring''' def __init__( self : List[str] , A_ : Any ) -> None: """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = None def __iter__( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self lowerCamelCase_ = [] while node: if node in visited: raise ContainsLoopError visited.append(A_ ) yield node.data lowerCamelCase_ = node.next_node @property def a__ ( self : List[str] ) -> bool: """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase : int = Node(1) lowerCamelCase : Optional[int] = Node(2) lowerCamelCase : Union[str, Any] = Node(3) lowerCamelCase : List[Any] = Node(4) print(root_node.has_loop) # False lowerCamelCase : int = root_node.next_node print(root_node.has_loop) # True lowerCamelCase : Dict = Node(5) lowerCamelCase : Optional[int] = Node(6) lowerCamelCase : str = Node(5) lowerCamelCase : Union[str, Any] = Node(6) print(root_node.has_loop) # False lowerCamelCase : List[str] = Node(1) print(root_node.has_loop) # False
70
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase = """bert-base-cased""" UpperCamelCase = """fp16""" UpperCamelCase = """bf16""" UpperCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase_ (_UpperCAmelCase ): def lowerCamelCase__ ( self ) ->str: '''simple docstring''' super().setUp() _a = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def lowerCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_UpperCAmelCase ): _a = self.dist_env.copy() _a = f'''{i + 1}''' _a = strategy with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_UpperCAmelCase ): _a = self.dist_env.copy() _a = prefetch_policy with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_UpperCAmelCase ): _a = self.dist_env.copy() _a = state_dict_type with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCamelCase__ ( self ) ->str: '''simple docstring''' _a = AutoModel.from_pretrained(_UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: _a = self.dist_env.copy() _a = policy if policy == "TRANSFORMER_BASED_WRAP": _a = "BertLayer" elif policy == "SIZE_BASED_WRAP": _a = "2000" with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _a = self.dist_env.copy() _a = "TRANSFORMER_BASED_WRAP" _a = "T5Layer" with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() with self.assertRaises(_UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _a = self.dist_env.copy() _a = "SIZE_BASED_WRAP" _a = "0" with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _a = self.dist_env.copy() _a = mp_dtype with mockenv_context(**_UpperCAmelCase ): _a = Accelerator() if mp_dtype == "fp16": _a = torch.floataa elif mp_dtype == "bf16": _a = torch.bfloataa _a = MixedPrecision(param_dtype=_UpperCAmelCase , reduce_dtype=_UpperCAmelCase , buffer_dtype=_UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_UpperCAmelCase ) def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _a = self.dist_env.copy() _a = str(_UpperCAmelCase ).lower() with mockenv_context(**_UpperCAmelCase ): _a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class lowercase_ (_UpperCAmelCase ): def lowerCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' super().setUp() _a = 0.82 _a = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _a = { "multi_gpu_fp16": 3_2_0_0, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_0_0_0, "fsdp_full_shard_transformer_based_wrap_fp16": 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _a = 1_6_0 _a = 1_6_0 _a = inspect.getfile(accelerate.test_utils ) _a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' _a = os.path.join(self.test_scripts_folder , "test_performance.py" ) _a = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _a = cmd.copy() for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def lowerCamelCase__ ( self ) ->List[str]: '''simple docstring''' _a = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _a = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(_UpperCAmelCase ): _a = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue _a = len(_UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: _a = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) _a = cmd_config[:-1] _a = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def lowerCamelCase__ ( self ) ->List[str]: '''simple docstring''' _a = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _a = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _a = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
714
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (_UpperCAmelCase ): A__ : Union[str, Any] = (PNDMScheduler,) A__ : Optional[int] = (('''num_inference_steps''', 50),) def lowerCamelCase__ ( self , **a_ ) ->Optional[Any]: '''simple docstring''' _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a_ ) return config def lowerCamelCase__ ( self , a_=0 , **a_ ) ->Tuple: '''simple docstring''' _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , a_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config(**a_ ) _a = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _a = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _a = dummy_past_residuals[:] _a = scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _a = scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' pass def lowerCamelCase__ ( self , a_=0 , **a_ ) ->Tuple: '''simple docstring''' _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , a_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _a = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _a = dummy_past_residuals[:] _a = scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _a = scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , **a_ ) ->Optional[int]: '''simple docstring''' _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**a_ ) _a = scheduler_class(**a_ ) _a = 1_0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.prk_timesteps ): _a = model(a_ , a_ ) _a = scheduler.step_prk(a_ , a_ , a_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _a = model(a_ , a_ ) _a = scheduler.step_plms(a_ , a_ , a_ ).prev_sample return sample def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , a_ ) for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) _a = self.dummy_sample _a = 0.1 * sample if num_inference_steps is not None and hasattr(a_ , "set_timesteps" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_ , "set_timesteps" ): _a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _a = dummy_past_residuals[:] _a = scheduler.step_prk(a_ , 0 , a_ , **a_ ).prev_sample _a = scheduler.step_prk(a_ , 1 , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _a = scheduler.step_plms(a_ , 0 , a_ , **a_ ).prev_sample _a = scheduler.step_plms(a_ , 1 , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self ) ->int: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def lowerCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a_ ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**a_ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=a_ , beta_end=a_ ) def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a_ ) def lowerCamelCase__ ( self ) ->str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=a_ ) def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=a_ ) def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' _a = 2_7 for scheduler_class in self.scheduler_classes: _a = self.dummy_sample _a = 0.1 * sample _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _a = scheduler.step_prk(a_ , a_ , a_ ).prev_sample def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' with self.assertRaises(a_ ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' _a = self.full_loop() _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def lowerCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = self.full_loop(set_alpha_to_one=a_ , beta_start=0.01 ) _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def lowerCamelCase__ ( self ) ->str: '''simple docstring''' _a = self.full_loop(set_alpha_to_one=a_ , beta_start=0.01 ) _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
612
0
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__=-1 ) -> Optional[int]: # in NER datasets, the last column is usually reserved for NER label A__ = label_idx def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = mode.value A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) A__ = 1 A__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: A__ = [] A__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(" " ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) return examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(SCREAMING_SNAKE_CASE__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = mode.value A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) A__ = 1 A__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): A__ = [] A__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 return examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): A__ = preds_list[example_id] A__ = "" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(SCREAMING_SNAKE_CASE__ ) example_id += 1 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
104
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _A = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def A_ ( __SCREAMING_SNAKE_CASE : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __SCREAMING_SNAKE_CASE : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __SCREAMING_SNAKE_CASE : Dict = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __SCREAMING_SNAKE_CASE : str = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
158
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : Union[str, Any] , a__ : str ) -> int: _UpperCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowercase ( a__ : List[str] , a__ : List[Any] ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase ( a__ : List[Any] , a__ : List[str] , a__ : Dict ) -> str: _UpperCamelCase = dct.pop(a__ ) _UpperCamelCase = val def lowercase ( a__ : List[Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _UpperCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowercase ( a__ : Any , a__ : List[str] ) -> Tuple: _UpperCamelCase = ViTConfig(image_size=384 , qkv_bias=a__ ) _UpperCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase = 768 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase = 1024 _UpperCamelCase = 4096 _UpperCamelCase = 24 _UpperCamelCase = 16 _UpperCamelCase = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = False _UpperCamelCase = '''relu''' _UpperCamelCase = 1024 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False # load HuggingFace model _UpperCamelCase = ViTModel(a__ , add_pooling_layer=a__ ) _UpperCamelCase = TrOCRForCausalLM(a__ ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=a__ , decoder=a__ ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' , check_hash=a__ )['''model'''] _UpperCamelCase = create_rename_keys(a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase = state_dict.pop(a__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _UpperCamelCase = val else: _UpperCamelCase = val # load state dict model.load_state_dict(a__ ) # Check outputs on an image _UpperCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _UpperCamelCase = TrOCRProcessor(a__ , a__ ) _UpperCamelCase = processor(images=prepare_img(a__ ) , return_tensors='''pt''' ).pixel_values # verify logits _UpperCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase = model(pixel_values=a__ , decoder_input_ids=a__ ) _UpperCamelCase = outputs.logits _UpperCamelCase = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a__ , atol=1e-3 ), "First elements of logits not as expected" Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
342
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCAmelCase = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase ( ) -> Union[str, Any]: _UpperCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _UpperCamelCase = bs[:] _UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(a__ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase = [chr(a__ ) for n in cs] return dict(zip(a__ , a__ ) ) def lowercase ( a__ : Any ) -> Union[str, Any]: _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char return pairs class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str]="replace" , __UpperCamelCase : Any="<s>" , __UpperCamelCase : List[str]="</s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Any="<s>" , __UpperCamelCase : Tuple="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : List[Any]=False , **__UpperCamelCase : Optional[int] , ) -> Optional[Any]: _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(__UpperCamelCase ) _UpperCamelCase = {v: k for k, v in self.encoder.items()} _UpperCamelCase = errors # how to handle errors in decoding _UpperCamelCase = bytes_to_unicode() _UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding='''utf-8''' ) as merges_handle: _UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCamelCase = {} _UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCamelCase ( self : Dict ) -> List[Any]: return len(self.encoder ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCamelCase ( self : int , __UpperCamelCase : int ) -> Optional[Any]: if token in self.cache: return self.cache[token] _UpperCamelCase = tuple(__UpperCamelCase ) _UpperCamelCase = get_pairs(__UpperCamelCase ) if not pairs: return token while True: _UpperCamelCase = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(__UpperCamelCase ): try: _UpperCamelCase = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase = tuple(__UpperCamelCase ) _UpperCamelCase = new_word if len(__UpperCamelCase ) == 1: break else: _UpperCamelCase = get_pairs(__UpperCamelCase ) _UpperCamelCase = ''' '''.join(__UpperCamelCase ) _UpperCamelCase = word return word def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] ) -> Optional[int]: _UpperCamelCase = [] for token in re.findall(self.pat , __UpperCamelCase ): _UpperCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(''' ''' ) ) return bpe_tokens def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[Any] ) -> Optional[Any]: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: return self.decoder.get(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> Any: _UpperCamelCase = ''''''.join(__UpperCamelCase ) _UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + '''\n''' ) _UpperCamelCase = 0 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCamelCase = token_index writer.write(''' '''.join(__UpperCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _UpperCamelCase ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , __UpperCamelCase : Any , __UpperCamelCase : Tuple=False , **__UpperCamelCase : Optional[int] ) -> Any: _UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): _UpperCamelCase = ''' ''' + text return (text, kwargs) def _UpperCamelCase ( self : Any , __UpperCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , ) -> dict: _UpperCamelCase = super()._pad( encoded_inputs=__UpperCamelCase , max_length=__UpperCamelCase , padding_strategy=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: _UpperCamelCase = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCamelCase = len(encoded_inputs['''global_attention_mask'''] ) != len(__UpperCamelCase ) if needs_to_be_padded: _UpperCamelCase = len(__UpperCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCamelCase = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _UpperCamelCase = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
342
1
from __future__ import annotations def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ): if start is None: A : Union[str, Any] = 0 if end is None: A : Union[str, Any] = len(lowercase_ ) - 1 if start >= end: return A : List[str] = (start + end) // 2 slowsort(lowercase_ , lowercase_ , lowercase_ ) slowsort(lowercase_ , mid + 1 , lowercase_ ) if sequence[end] < sequence[mid]: A : str = sequence[mid], sequence[end] slowsort(lowercase_ , lowercase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
542
import os def __UpperCAmelCase( ): with open(os.path.dirname(lowercase_ ) + '''/p022_names.txt''' ) as file: _lowerCamelCase : Optional[int] = str(file.readlines()[0] ) _lowerCamelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _lowerCamelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
114
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("transformers.models.speecht5") _UpperCAmelCase = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } _UpperCAmelCase = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } _UpperCAmelCase = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } _UpperCAmelCase = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } _UpperCAmelCase = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } _UpperCAmelCase = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } _UpperCAmelCase = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } _UpperCAmelCase = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } _UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCAmelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCAmelCase = [] _UpperCAmelCase = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] _UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] _UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] _UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _lowerCamelCase ( _a , _a , _a , _a , _a ): """simple docstring""" for attribute in key.split('''.''' ): _lowerCamelCase = getattr(_a , _a ) if weight_type is not None: _lowerCamelCase = getattr(_a , _a ).shape else: _lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value elif weight_type == "running_mean": _lowerCamelCase = value elif weight_type == "running_var": _lowerCamelCase = value elif weight_type == "num_batches_tracked": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowerCamelCase ( _a , _a ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCamelCase , _lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCamelCase ( _a , _a , _a ): """simple docstring""" _lowerCamelCase = [] if task == "s2t": _lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCamelCase = MAPPING_S2T _lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": _lowerCamelCase = None _lowerCamelCase = MAPPING_T2S _lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": _lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCamelCase = MAPPING_S2S _lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_a , _a ): logger.info(F'''{name} was ignored''' ) continue _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCamelCase , _lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(_a )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , _a ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: _lowerCamelCase = '''weight''' elif "running_mean" in name: _lowerCamelCase = '''running_mean''' elif "running_var" in name: _lowerCamelCase = '''running_var''' elif "num_batches_tracked" in name: _lowerCamelCase = '''num_batches_tracked''' else: _lowerCamelCase = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( _a , _a , _a , _a , _a ): """simple docstring""" _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_a ) @torch.no_grad() def _lowerCamelCase ( _a , _a , _a , _a=None , _a=None , _a=None , ): """simple docstring""" if config_path is not None: _lowerCamelCase = SpeechTaConfig.from_pretrained(_a ) else: _lowerCamelCase = SpeechTaConfig() if task == "s2t": _lowerCamelCase = config.max_text_positions _lowerCamelCase = SpeechTaForSpeechToText(_a ) elif task == "t2s": _lowerCamelCase = 1_8_7_6 _lowerCamelCase = 6_0_0 _lowerCamelCase = config.max_speech_positions _lowerCamelCase = SpeechTaForTextToSpeech(_a ) elif task == "s2s": _lowerCamelCase = 1_8_7_6 _lowerCamelCase = config.max_speech_positions _lowerCamelCase = SpeechTaForSpeechToSpeech(_a ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _lowerCamelCase = SpeechTaTokenizer(_a , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken('''<mask>''' , lstrip=_a , rstrip=_a ) _lowerCamelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _lowerCamelCase = SpeechTaFeatureExtractor() _lowerCamelCase = SpeechTaProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(_a ) _lowerCamelCase = torch.load(_a ) recursively_load_weights(fairseq_checkpoint['''model'''] , _a , _a ) model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _UpperCAmelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
297
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __magic_name__ ( lowercase_ ): """simple docstring""" _UpperCamelCase = "xmod" def __init__( self , a__=3_05_22 , a__=7_68 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1E-12 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , a__=None , a__=False , a__=2 , a__=False , a__=True , a__=True , a__=("en_XX",) , a__=None , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = use_cache _lowerCamelCase = classifier_dropout _lowerCamelCase = pre_norm _lowerCamelCase = adapter_reduction_factor _lowerCamelCase = adapter_layer_norm _lowerCamelCase = adapter_reuse_layer_norm _lowerCamelCase = ln_before_adapter _lowerCamelCase = list(a__ ) _lowerCamelCase = default_language class __magic_name__ ( lowercase_ ): """simple docstring""" @property def _UpperCAmelCase ( self ): if self.task == "multiple-choice": _lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
297
1
'''simple docstring''' import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _A ( A ) -> int: lowercase : Tuple = botoa.client("iam" ) lowercase : Any = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A ,AssumeRolePolicyDocument=json.dumps(_A ,indent=2 ) ) lowercase : List[str] = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A ,PolicyName=F'''{role_name}_policy_permission''' ,PolicyDocument=json.dumps(_A ,indent=2 ) ,) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def _A ( A ) -> int: lowercase : int = botoa.client("iam" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def _A ( ) -> Any: lowercase : Tuple = _ask_options( "How do you want to authorize?" ,["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] ,_A ,) lowercase : str = None if credentials_configuration == 0: lowercase : str = _ask_field("Enter your AWS Profile name: [default] " ,default="default" ) lowercase : List[str] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) lowercase : Dict = _ask_field("AWS Access Key ID: " ) lowercase : Any = aws_access_key_id lowercase : List[str] = _ask_field("AWS Secret Access Key: " ) lowercase : List[Any] = aws_secret_access_key lowercase : Any = _ask_field("Enter your AWS Region: [us-east-1]" ,default="us-east-1" ) lowercase : List[Any] = aws_region lowercase : Optional[int] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" ,["Provide IAM Role name", "Create new IAM role using credentials"] ,_A ,) if role_management == 0: lowercase : int = _ask_field("Enter your IAM role name: " ) else: lowercase : List[str] = """accelerate_sagemaker_execution_role""" print(F'''Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials''' ) _create_iam_role_for_sagemaker(_A ) lowercase : str = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) lowercase : int = None if is_custom_docker_image: lowercase : Tuple = _ask_field("Enter your Docker image: " ,lambda A : str(_A ).lower() ) lowercase : str = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) lowercase : Union[str, Any] = None if is_sagemaker_inputs_enabled: lowercase : Any = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " ,lambda A : str(_A ).lower() ,) lowercase : Optional[int] = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) lowercase : Optional[Any] = None if is_sagemaker_metrics_enabled: lowercase : Tuple = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " ,lambda A : str(_A ).lower() ,) lowercase : Dict = _ask_options( "What is the distributed mode?" ,["No distributed training", "Data parallelism"] ,_convert_sagemaker_distributed_mode ,) lowercase : List[Any] = {} lowercase : str = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) if use_dynamo: lowercase : List[str] = """dynamo_""" lowercase : int = _ask_options( "Which dynamo backend would you like to use?" ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,) lowercase : Tuple = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) if use_custom_options: lowercase : Optional[int] = _ask_options( "Which mode do you want to use?" ,_A ,lambda A : TORCH_DYNAMO_MODES[int(_A )] ,default="default" ,) lowercase : Union[str, Any] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) lowercase : List[str] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " ,_convert_yes_no_to_bool ,default=_A ,error_message="Please enter yes or no." ,) lowercase : Union[str, Any] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: lowercase : Optional[int] = _ask_options( _A ,_A ,lambda A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase : Any = _ask_field(_A ,lambda A : str(_A ).lower() ,default="ml.p3.2xlarge" ) lowercase : int = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase : Union[str, Any] = _ask_field( "How many machines do you want use? [1]: " ,_A ,default=1 ,) lowercase : List[str] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" ,["no", "fp16", "bf16", "fp8"] ,_convert_mixed_precision ,) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=_A ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=_A ,use_cpu=_A ,dynamo_config=_A ,eca_instance_type=_A ,profile=_A ,region=_A ,iam_role_name=_A ,mixed_precision=_A ,num_machines=_A ,sagemaker_inputs_file=_A ,sagemaker_metrics_file=_A ,)
372
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _lowerCAmelCase = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCamelCase ( _A ) -> List[str]: lowercase : List[str] = EfficientNetConfig() lowercase : Any = CONFIG_MAP[model_name]["""hidden_dim"""] lowercase : List[str] = CONFIG_MAP[model_name]["""width_coef"""] lowercase : str = CONFIG_MAP[model_name]["""depth_coef"""] lowercase : int = CONFIG_MAP[model_name]["""image_size"""] lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] lowercase : int = CONFIG_MAP[model_name]["""dw_padding"""] lowercase : Optional[int] = """huggingface/label-files""" lowercase : int = """imagenet-1k-id2label.json""" lowercase : Any = 1_000 lowercase : Any = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowercase : Optional[int] = {int(_A ): v for k, v in idalabel.items()} lowercase : int = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: lowercase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCamelCase ( _A ) -> Optional[Any]: lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[int] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_A , ) return preprocessor def UpperCamelCase ( _A ) -> Optional[int]: lowercase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] lowercase : Optional[Any] = sorted(set(_A ) ) lowercase : Dict = len(_A ) lowercase : List[str] = {b: str(_A ) for b, i in zip(_A , range(_A ) )} lowercase : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: lowercase : str = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) lowercase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: lowercase : Optional[int] = """efficientnet.""" + item[1] lowercase : Any = """classifier.weight""" lowercase : Tuple = """classifier.bias""" return key_mapping def UpperCamelCase ( _A , _A , _A ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue lowercase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase : str = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase : Optional[int] = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase : List[Any] = torch.from_numpy(np.transpose(_A ) ) else: lowercase : Optional[int] = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def UpperCamelCase ( _A , _A , _A , _A ) -> str: lowercase : Any = model_classes[model_name]( include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_000 , classifier_activation="""softmax""" , ) lowercase : Dict = original_model.trainable_variables lowercase : Any = original_model.non_trainable_variables lowercase : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase : Dict = param.numpy() lowercase : List[str] = list(tf_params.keys() ) # Load HuggingFace model lowercase : str = get_efficientnet_config(_A ) lowercase : List[Any] = EfficientNetForImageClassification(_A ).eval() lowercase : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) lowercase : int = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image lowercase : Optional[int] = convert_image_processor(_A ) lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase : Union[str, Any] = hf_model(**_A ) lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference lowercase : Optional[Any] = False lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase : Optional[Any] = image.img_to_array(_A ) lowercase : Dict = np.expand_dims(_A , axis=0 ) lowercase : List[str] = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase : Dict = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _lowerCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
264
0
import random def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase = [], [], [] for element in data: if element < pivot: less.append(UpperCAmelCase__ ) elif element > pivot: greater.append(UpperCAmelCase__ ) else: equal.append(UpperCAmelCase__ ) return less, equal, greater def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if index >= len(UpperCAmelCase__ ) or index < 0: return None lowerCamelCase = items[random.randint(0 , len(UpperCAmelCase__ ) - 1 )] lowerCamelCase = 0 lowerCamelCase , lowerCamelCase , lowerCamelCase = _partition(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase = len(UpperCAmelCase__ ) lowerCamelCase = len(UpperCAmelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCAmelCase__ , UpperCAmelCase__ ) # must be in larger else: return quick_select(UpperCAmelCase__ , index - (m + count) )
484
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ : Optional[int] = (3, 9, -1_1, 0, 7, 5, 1, -1) a_ : str = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 42 class lowerCamelCase__ : """simple docstring""" def __init__(self , __a ): '''simple docstring''' lowerCamelCase = None for i in sorted(__a , reverse=__a ): lowerCamelCase = Node(__a , self.head ) def __iter__(self ): '''simple docstring''' lowerCamelCase = self.head while node: yield node.data lowerCamelCase = node.next_node def __len__(self ): '''simple docstring''' return sum(1 for _ in self ) def __str__(self ): '''simple docstring''' return " -> ".join([str(__a ) for node in self] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return SortedLinkedList(list(UpperCAmelCase__ ) + list(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ : Any = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
484
1
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def UpperCAmelCase__ ( UpperCAmelCase__ ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> np.ndarray: A_ = np.nan for i in range(UpperCAmelCase__ ): A_ = features[:, labels == i] A_ = data.mean(1 ) # Centralize the data of class i A_ = data - column_reshape(UpperCAmelCase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase__, centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) A_ = np.dot(UpperCAmelCase__, centered_data.T ) return covariance_sum / features.shape[1] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> np.ndarray: A_ = features.mean(1 ) A_ = np.nan for i in range(UpperCAmelCase__ ): A_ = features[:, labels == i] A_ = data.shape[1] A_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase__ ) - column_reshape(UpperCAmelCase__ ), (column_reshape(UpperCAmelCase__ ) - column_reshape(UpperCAmelCase__ )).T, ) else: # If covariance_sum is np.nan (i.e. first loop) A_ = device_data * np.dot( column_reshape(UpperCAmelCase__ ) - column_reshape(UpperCAmelCase__ ), (column_reshape(UpperCAmelCase__ ) - column_reshape(UpperCAmelCase__ )).T, ) return covariance_sum / features.shape[1] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> np.ndarray: # Check if the features have been loaded if features.any(): A_ = features.mean(1 ) # Center the dataset A_ = features - np.reshape(UpperCAmelCase__, (data_mean.size, 1) ) A_ = np.dot(UpperCAmelCase__, centered_data.T ) / features.shape[1] A_ , A_ = np.linalg.eigh(UpperCAmelCase__ ) # Take all the columns in the reverse order (-1), and then takes only the first A_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space A_ = np.dot(filtered_eigenvectors.T, UpperCAmelCase__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR, format="""%(message)s""", force=UpperCAmelCase__ ) logging.error("""Dataset empty""" ) raise AssertionError def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: A_ , A_ = eigh( covariance_between_classes(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), covariance_within_classes(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), ) A_ = eigenvectors[:, ::-1][:, :dimensions] A_ , A_ , A_ = np.linalg.svd(UpperCAmelCase__ ) A_ = svd_matrix[:, 0:dimensions] A_ = np.dot(filtered_svd_matrix.T, UpperCAmelCase__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR, format="""%(message)s""", force=UpperCAmelCase__ ) logging.error("""Dataset empty""" ) raise AssertionError def UpperCAmelCase__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features A_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) A_ = np.array([0, 0, 0, 1, 1] ) A_ = 2 A_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase__ ) as error_info: A_ = linear_discriminant_analysis( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def UpperCAmelCase__ ( ) -> None: A_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) A_ = 2 A_ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase__ ) as error_info: A_ = principal_component_analysis(UpperCAmelCase__, UpperCAmelCase__ ) if not np.allclose(UpperCAmelCase__, UpperCAmelCase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
288
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A__ ( _snake_case ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase__ , ) A_ = kwargs.pop("""feature_extractor""" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="max_length" , UpperCamelCase__="np" , **UpperCamelCase__ ) -> int: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ) or (isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not isinstance(text[0] , UpperCamelCase__ )): A_ = [self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(text[0] , UpperCamelCase__ ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase__ ) != max_num_queries: A_ = t + [""" """] * (max_num_queries - len(UpperCamelCase__ )) A_ = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) encodings.append(UpperCamelCase__ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A_ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' return self.image_processor.post_process(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.image_processor.post_process_object_detection(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase__ , ) return self.image_processor_class @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase__ , ) return self.image_processor
288
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : Optional[Any] ={ """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] =["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str =[ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
715
UpperCAmelCase : Any =0 # The first color of the flag. UpperCAmelCase : Optional[int] =1 # The second color of the flag. UpperCAmelCase : Optional[Any] =2 # The third color of the flag. UpperCAmelCase : Union[str, Any] =(red, white, blue) def _lowerCAmelCase (_lowerCAmelCase): if not sequence: return [] if len(_lowerCAmelCase) == 1: return list(_lowerCAmelCase) UpperCamelCase_ = 0 UpperCamelCase_ = len(_lowerCAmelCase) - 1 UpperCamelCase_ = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCamelCase_ , UpperCamelCase_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCamelCase_ , UpperCamelCase_ = sequence[high], sequence[mid] high -= 1 else: UpperCamelCase_ = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(_lowerCAmelCase) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Tuple =input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase : Any =[int(item.strip()) for item in user_input.split(""",""")] print(F"{dutch_national_flag_sort(unsorted)}")
504
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : List[Any] ={"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __lowerCAmelCase : int =_LazyModule(__name__, globals()["__file__"], _import_structure)
440
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = 42 class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Tuple , lowercase_ :int = 3 , lowercase_ :int = 3 , lowercase_ :Tuple[str] = ("DownEncoderBlock2D",) , lowercase_ :Tuple[str] = ("UpDecoderBlock2D",) , lowercase_ :Tuple[int] = (64,) , lowercase_ :int = 1 , lowercase_ :str = "silu" , lowercase_ :int = 3 , lowercase_ :int = 32 , lowercase_ :int = 2_56 , lowercase_ :int = 32 , lowercase_ :Optional[int] = None , lowercase_ :float = 0.1_8_2_1_5 , lowercase_ :str = "group" , )-> Optional[int]: super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(lowercase_ , lowercase_ , 1 ) A__ = VectorQuantizer(lowercase_ , lowercase_ , beta=0.2_5 , remap=lowercase_ , sane_index_shape=lowercase_ ) A__ = nn.Convad(lowercase_ , lowercase_ , 1 ) # pass init params to Decoder A__ = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , ) @apply_forward_hook def UpperCAmelCase_ ( self :str , lowercase_ :torch.FloatTensor , lowercase_ :bool = True )-> VQEncoderOutput: A__ = self.encoder(lowercase_ ) A__ = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def UpperCAmelCase_ ( self :Dict , lowercase_ :torch.FloatTensor , lowercase_ :bool = False , lowercase_ :bool = True )-> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: A__, A__, A__ = self.quantize(lowercase_ ) else: A__ = h A__ = self.post_quant_conv(lowercase_ ) A__ = self.decoder(lowercase_ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def UpperCAmelCase_ ( self :str , lowercase_ :torch.FloatTensor , lowercase_ :bool = True )-> Union[DecoderOutput, torch.FloatTensor]: A__ = sample A__ = self.encode(lowercase_ ).latents A__ = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
440
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowerCamelCase (a__ ): def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : Union[str, Any] = 8 # DPR tok _snake_case : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _snake_case : List[Any] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) _snake_case : Union[str, Any] = os.path.join(lowercase__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _snake_case : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _snake_case : str = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _snake_case : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _snake_case : str = {'''unk_token''': '''<unk>'''} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) _snake_case : Dict = os.path.join(lowercase__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case : List[str] = os.path.join(lowercase__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def UpperCAmelCase_ ( self ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase_ ( self ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) _snake_case : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _snake_case : int = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowercase__ ) rag_tokenizer.save_pretrained(lowercase__ ) _snake_case : Optional[Any] = RagTokenizer.from_pretrained(lowercase__ , config=lowercase__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowercase__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowercase__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) _snake_case : int = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _snake_case : Optional[Any] = tokenizer(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Optional[Any] = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) _snake_case : str = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _snake_case : Any = tokenizer(lowercase__ ) self.assertIsNotNone(lowercase__ )
47
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( a ): __UpperCAmelCase : Tuple = ["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = True , snake_case_ = None , snake_case_ = True , snake_case_ = 1 / 2_5_5 , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = True , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) _a = size if size is not None else {"shortest_edge": 2_2_4} _a = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _a = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _a = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name="crop_size" ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ) -> np.ndarray: _a = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _a = get_resize_output_image_size(snake_case_ , size=size["shortest_edge"] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: _a = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(snake_case_ , size=(size["height"], size["width"]) , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> str: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(snake_case_ , param_name="size" , default_to_square=snake_case_ ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(snake_case_ , param_name="crop_size" , default_to_square=snake_case_ ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _a = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: _a = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _a = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _a = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _a = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
131
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : int = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A ( a ): __UpperCAmelCase : Dict = """transfo-xl""" __UpperCAmelCase : Any = ["""mems"""] __UpperCAmelCase : Any = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case_=2_6_7_7_3_5 , snake_case_=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , snake_case_=1_0_2_4 , snake_case_=1_0_2_4 , snake_case_=1_6 , snake_case_=6_4 , snake_case_=4_0_9_6 , snake_case_=4 , snake_case_=False , snake_case_=1_8 , snake_case_=1_6_0_0 , snake_case_=1_0_0_0 , snake_case_=True , snake_case_=True , snake_case_=0 , snake_case_=-1 , snake_case_=True , snake_case_=0.1 , snake_case_=0.0 , snake_case_=True , snake_case_="normal" , snake_case_=0.01 , snake_case_=0.01 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=0 , **snake_case_ , ) -> str: _a = vocab_size _a = [] self.cutoffs.extend(snake_case_ ) if proj_share_all_but_first: _a = [False] + [True] * len(self.cutoffs ) else: _a = [False] + [False] * len(self.cutoffs ) _a = d_model _a = d_embed _a = d_head _a = d_inner _a = div_val _a = pre_lnorm _a = n_layer _a = n_head _a = mem_len _a = same_length _a = attn_type _a = clamp_len _a = sample_softmax _a = adaptive _a = dropout _a = dropatt _a = untie_r _a = init _a = init_range _a = proj_init_std _a = init_std _a = layer_norm_epsilon super().__init__(eos_token_id=snake_case_ , **snake_case_ ) @property def __lowerCAmelCase ( self ) -> Tuple: # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __lowerCAmelCase ( self , snake_case_ ) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
131
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter A = True except ImportError: A = False A = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase ( UpperCamelCase : Namespace ) -> List[str]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase__ ( _UpperCAmelCase ): '''simple docstring''' @staticmethod def _snake_case ( snake_case__ : ArgumentParser ) -> int: _lowerCamelCase = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=lowercase_ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=lowercase_ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : Optional[int] , snake_case__ : bool , snake_case__ : str , snake_case__ : Union[str, Any]=None , *snake_case__ : Dict ) -> Dict: _lowerCamelCase = testing _lowerCamelCase = testing_file _lowerCamelCase = path def _snake_case ( self : Any ) -> List[str]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowerCamelCase = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:2_2]] if len(lowercase_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) _lowerCamelCase = ( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _lowerCamelCase = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: _lowerCamelCase = json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) _lowerCamelCase = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:2_2]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: _lowerCamelCase = json.load(lowercase_ ) _lowerCamelCase = configuration["""lowercase_modelname"""] _lowerCamelCase = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f"""{directory}/configuration.json""" ) _lowerCamelCase = """PyTorch""" in generate_tensorflow_pytorch_and_flax _lowerCamelCase = """TensorFlow""" in generate_tensorflow_pytorch_and_flax _lowerCamelCase = """Flax""" in generate_tensorflow_pytorch_and_flax _lowerCamelCase = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(snake_case__ : int ): with open(lowercase_ , 'r' ) as f: _lowerCamelCase = f.readlines() with open(lowercase_ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(snake_case__ : str , snake_case__ : str , snake_case__ : List[str] ): # Create temp file _lowerCamelCase = mkstemp() _lowerCamelCase = False with fdopen(lowercase_ , 'w' ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: _lowerCamelCase = True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(snake_case__ : str ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(snake_case__ : int ): with open(lowercase_ ) as datafile: _lowerCamelCase = [] _lowerCamelCase = False _lowerCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowerCamelCase = line.split('\"' )[1] _lowerCamelCase = skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: _lowerCamelCase = line.split('\"' )[1] _lowerCamelCase = skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) _lowerCamelCase = [] elif "# Replace with" in line and "##" not in line: _lowerCamelCase = [] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowercase_ )
708
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int]=10_24 ) -> int: _lowerCamelCase , _lowerCamelCase = [], [] _lowerCamelCase = list(zip(UpperCamelCase , UpperCamelCase ) ) _lowerCamelCase , _lowerCamelCase = sorted_examples[0] def is_too_big(UpperCamelCase : Union[str, Any] ): return tok(UpperCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _lowerCamelCase = new_src + ' ' + src _lowerCamelCase = new_tgt + ' ' + tgt if is_too_big(UpperCamelCase ) or is_too_big(UpperCamelCase ): # cant fit, finalize example finished_src.append(UpperCamelCase ) finished_tgt.append(UpperCamelCase ) _lowerCamelCase , _lowerCamelCase = src, tgt else: # can fit, keep adding _lowerCamelCase , _lowerCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase ) finished_tgt.append(UpperCamelCase ) return finished_src, finished_tgt def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Path , UpperCamelCase : int , UpperCamelCase : Optional[Any] ) -> List[Any]: _lowerCamelCase = Path(UpperCamelCase ) save_path.mkdir(exist_ok=UpperCamelCase ) for split in ["train"]: _lowerCamelCase , _lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" _lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase ).open().readlines()] _lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase ).open().readlines()] _lowerCamelCase , _lowerCamelCase = pack_examples(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) print(F"""packed {split} split from {len(UpperCamelCase )} examples -> {len(UpperCamelCase )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(UpperCamelCase ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(UpperCamelCase ) ) for split in ["val", "test"]: _lowerCamelCase , _lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCamelCase , save_path / F"""{split}.source""" ) shutil.copyfile(UpperCamelCase , save_path / F"""{split}.target""" ) def lowerCamelCase ( ) -> int: _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=UpperCamelCase , default=1_28 ) parser.add_argument('--data_dir' , type=UpperCamelCase ) parser.add_argument('--save_path' , type=UpperCamelCase ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
234
0
import unittest import numpy as np def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case , __snake_case = None , ) -> np.ndarray: _A = np.shape(__A ) _A = np.shape(__A ) _A = np.shape(__A ) if shape_a[0] != shape_b[0]: _A = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: _A = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__A ) _A = pseudo_inv if a_inv is None: try: _A = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class _snake_case ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> None: """simple docstring""" _A = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _A = np.array([[0, 3], [3, 0], [2, 3]] ) _A = np.array([[2, 1], [6, 3]] ) _A = schur_complement(a , a , a ) _A = np.block([[a, b], [b.T, c]] ) _A = np.linalg.det(a ) _A = np.linalg.det(a ) _A = np.linalg.det(a ) self.assertAlmostEqual(a , det_a * det_s ) def lowercase_ ( self ) -> None: """simple docstring""" _A = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _A = np.array([[0, 3], [3, 0], [2, 3]] ) _A = np.array([[2, 1], [6, 3]] ) with self.assertRaises(a ): schur_complement(a , a , a ) def lowercase_ ( self ) -> None: """simple docstring""" _A = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _A = np.array([[0, 3], [3, 0], [2, 3]] ) _A = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(a ): schur_complement(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
317
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
651
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _SCREAMING_SNAKE_CASE = "src/transformers" _SCREAMING_SNAKE_CASE = "docs/source/en" _SCREAMING_SNAKE_CASE = "." def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCAmelCase = f.readlines() # Find the start prompt. _lowerCAmelCase = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE_ ): start_index += 1 start_index += 1 _lowerCAmelCase = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _SCREAMING_SNAKE_CASE = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _SCREAMING_SNAKE_CASE = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _SCREAMING_SNAKE_CASE = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _SCREAMING_SNAKE_CASE = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , SCREAMING_SNAKE_CASE_ ) return [m.group(0 ) for m in matches] def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = 2 if text == "✅" or text == "❌" else len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = (width - text_length) // 2 _lowerCAmelCase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __a(): '''simple docstring''' _lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowerCAmelCase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _lowerCAmelCase = {name: config.replace("Config" , "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) # Let's lookup through all transformers object (once). for attr_name in dir(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = None if attr_name.endswith("Tokenizer" ): _lowerCAmelCase = slow_tokenizers _lowerCAmelCase = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _lowerCAmelCase = fast_tokenizers _lowerCAmelCase = attr_name[:-13] elif _re_tf_models.match(SCREAMING_SNAKE_CASE_ ) is not None: _lowerCAmelCase = tf_models _lowerCAmelCase = _re_tf_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE_ ) is not None: _lowerCAmelCase = flax_models _lowerCAmelCase = _re_flax_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE_ ) is not None: _lowerCAmelCase = pt_models _lowerCAmelCase = _re_pt_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE_ ) > 0: if attr_name in model_name_to_prefix.values(): _lowerCAmelCase = True break # Try again after removing the last word in the name _lowerCAmelCase = "".join(camel_case_split(SCREAMING_SNAKE_CASE_ )[:-1] ) # Let's build that table! _lowerCAmelCase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _lowerCAmelCase = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _lowerCAmelCase = [len(SCREAMING_SNAKE_CASE_ ) + 2 for c in columns] _lowerCAmelCase = max([len(SCREAMING_SNAKE_CASE_ ) for name in model_names] ) + 2 # Build the table per se _lowerCAmelCase = "|" + "|".join([_center_text(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _lowerCAmelCase = {True: "✅", False: "❌"} for name in model_names: _lowerCAmelCase = model_name_to_prefix[name] _lowerCAmelCase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for l, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ) + "|\n" return table def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE_ , "index.md" ) , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) _lowerCAmelCase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE_ , "index.md" ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE = parser.parse_args() check_model_table(args.fix_and_overwrite)
709
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __a(SCREAMING_SNAKE_CASE_ : float = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCAmelCase = 0 _lowerCAmelCase = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
489
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A__ : Optional[int] = logging.get_logger(__name__) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , A_=None , **A_ ) -> Tuple: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , A_ , ) super().__init__(args=A_ , **A_ )
353
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" stooge(_UpperCamelCase , 0 , len(_UpperCamelCase ) - 1 ) return arr def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowercase , _lowercase: Optional[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowercase: Tuple = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(_UpperCamelCase , i + t , (_UpperCamelCase) ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) if __name__ == "__main__": A__ : Dict = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
353
1
from __future__ import annotations from typing import TypedDict class __SCREAMING_SNAKE_CASE ( _A ): _UpperCAmelCase : List[str] = 4_2 _UpperCAmelCase : str = 4_2 def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" if not isinstance(A_ , A_ ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(A_ ) )] def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) lowerCamelCase__ : List[Any] = all_rotations(A_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowerCamelCase__ : Tuple = { '''bwt_string''': ''''''.join([word[-1] for word in rotations] ), '''idx_original_string''': rotations.index(A_ ), } return response def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: lowerCamelCase__ : int = int(A_ ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(A_ ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) lowerCamelCase__ : str = [''''''] * len(A_ ) for _ in range(len(A_ ) ): for i in range(len(A_ ) ): lowerCamelCase__ : List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _A : Tuple = 'Provide a string that I will generate its BWT transform: ' _A : List[Any] = input(entry_msg).strip() _A : List[Any] = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) _A : Optional[Any] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
710
from __future__ import annotations def _a ( UpperCAmelCase ) -> bool: """simple docstring""" lowerCamelCase__ : List[Any] = len(UpperCAmelCase ) # We need to create solution object to save path. lowerCamelCase__ : Any = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] lowerCamelCase__ : int = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: """simple docstring""" lowerCamelCase__ : Union[str, Any] = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): lowerCamelCase__ : str = 1 return True lowerCamelCase__ : str = (not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase__ : Optional[int] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase__ : List[str] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase__ : Any = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True lowerCamelCase__ : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
130
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Union[str, Any] = random.Random() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=1.0 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ) -> Optional[int]: if rng is None: lowerCamelCase : Dict = global_rng lowerCamelCase : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=400 , UpperCamelCase__=2000 , UpperCamelCase__=10 , UpperCamelCase__=160 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=4000 , UpperCamelCase__=False , UpperCamelCase__=True , ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Optional[Any] = min_seq_length lowerCamelCase : Optional[int] = max_seq_length lowerCamelCase : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase : int = padding_value lowerCamelCase : Optional[Any] = sampling_rate lowerCamelCase : List[str] = return_attention_mask lowerCamelCase : Tuple = do_normalize lowerCamelCase : Union[str, Any] = feature_size lowerCamelCase : List[str] = chunk_length lowerCamelCase : Any = hop_length def _lowercase ( self ) -> Any: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self , UpperCamelCase__=False , UpperCamelCase__=False ) -> Optional[int]: def _flatten(UpperCamelCase__ ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowerCamelCase : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase : str = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase : Tuple = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[Any] = WhisperFeatureExtractor if is_speech_available() else None def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : List[Any] = WhisperFeatureExtractionTester(self ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : Dict = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) lowerCamelCase : int = feat_extract_first.to_dict() lowerCamelCase : Tuple = feat_extract_second.to_dict() lowerCamelCase : str = feat_extract_first.mel_filters lowerCamelCase : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> int: lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : Optional[int] = os.path.join(UpperCamelCase__ , "feat_extract.json" ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowerCamelCase : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) lowerCamelCase : Tuple = feat_extract_first.to_dict() lowerCamelCase : Any = feat_extract_second.to_dict() lowerCamelCase : Tuple = feat_extract_first.mel_filters lowerCamelCase : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase : str = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase : Tuple = feature_extractor(UpperCamelCase__ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features lowerCamelCase : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched lowerCamelCase : Dict = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_features lowerCamelCase : str = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase : Union[str, Any] = np.asarray(UpperCamelCase__ ) lowerCamelCase : Optional[int] = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_features lowerCamelCase : int = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test truncation required lowerCamelCase : List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCamelCase : Union[str, Any] = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] lowerCamelCase : str = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCamelCase : Dict = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs_truncated] lowerCamelCase : Union[str, Any] = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_features lowerCamelCase : Optional[int] = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def _lowercase ( self ) -> Optional[int]: import torch lowerCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase : Dict = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCamelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase : Tuple = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase : List[str] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCamelCase : List[str] = ds.sort("id" ).select(range(UpperCamelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowercase ( self ) -> List[Any]: # fmt: off lowerCamelCase : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on lowerCamelCase : Optional[Any] = self._load_datasamples(1 ) lowerCamelCase : Optional[int] = WhisperFeatureExtractor() lowerCamelCase : List[str] = feature_extractor(UpperCamelCase__ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) ) def _lowercase ( self ) -> str: lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase : Optional[int] = self._load_datasamples(1 )[0] lowerCamelCase : Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue lowerCamelCase : Union[str, Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase__ )[0] self.assertTrue(np.all(np.mean(UpperCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ ) - 1 ) < 1e-3 ) )
311
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """vit""" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=224 , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=16 , **UpperCamelCase__ , ) -> Union[str, Any]: super().__init__(**UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : int = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[str] = initializer_range lowerCamelCase : Optional[int] = layer_norm_eps lowerCamelCase : List[Any] = image_size lowerCamelCase : Union[str, Any] = patch_size lowerCamelCase : Tuple = num_channels lowerCamelCase : Union[str, Any] = qkv_bias lowerCamelCase : Union[str, Any] = encoder_stride class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Any = version.parse("""1.11""" ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self ) -> float: return 1e-4
311
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCamelCase ( __lowerCamelCase : Optional[int] ) -> Dict: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _a = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _a = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) _a = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) _a = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) _a = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) _a = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) _a = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) _a = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) _a = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) _a = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) _a = key.replace("image_encoder.module" , "flava.image_model" ) _a = key.replace("text_encoder.module" , "flava.text_model" ) _a = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) _a = key.replace("mm_encoder.module" , "flava.multimodal_model" ) _a = key.replace("text_projection" , "flava.text_projection" ) _a = key.replace("image_projection" , "flava.image_projection" ) _a = value.float() for key, value in codebook_state_dict.items(): _a = value return upgrade @torch.no_grad() def __UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : int=None ) -> Any: '''simple docstring''' if config_path is not None: _a = FlavaConfig.from_pretrained(__lowerCamelCase ) else: _a = FlavaConfig() _a = FlavaForPreTraining(__lowerCamelCase ).eval() _a = convert_dalle_checkpoint(__lowerCamelCase , __lowerCamelCase , save_checkpoint=__lowerCamelCase ) if os.path.exists(__lowerCamelCase ): _a = torch.load(__lowerCamelCase , map_location="cpu" ) else: _a = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="cpu" ) _a = upgrade_state_dict(__lowerCamelCase , __lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) _a = hf_model.state_dict() _a = count_parameters(__lowerCamelCase ) _a = count_parameters(__lowerCamelCase ) + count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowercase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
700
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None , ) -> Tuple: '''simple docstring''' _a = {} if train_file is not None: _a = [train_file] if eval_file is not None: _a = [eval_file] if test_file is not None: _a = [test_file] _a = datasets.load_dataset("csv" , data_files=__lowerCamelCase ) _a = list(ds[list(files.keys() )[0]].features.keys() ) _a = features_name.pop(__lowerCamelCase ) _a = list(set(ds[list(files.keys() )[0]][label_name] ) ) _a = {label: i for i, label in enumerate(__lowerCamelCase )} _a = tokenizer.model_input_names _a = {} if len(__lowerCamelCase ) == 1: for k in files.keys(): _a = ds[k].map( lambda __lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) , batched=__lowerCamelCase , ) elif len(__lowerCamelCase ) == 2: for k in files.keys(): _a = ds[k].map( lambda __lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) , batched=__lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) _a = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _a = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _a = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowercase__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = field(metadata={'''help''': '''Which column contains the label'''} ) UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the training file'''} ) UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the development file'''} ) UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the test file'''} ) UpperCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase ( ) -> str: '''simple docstring''' _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _a , _a , _a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _a , _a , _a , _a = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__lowerCamelCase ) , labelaid=__lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _a = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__lowerCamelCase : EvalPrediction ) -> Dict: _a = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _a = TFTrainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _a = trainer.evaluate() _a = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(__lowerCamelCase ) return results if __name__ == "__main__": main()
276
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=lowerCAmelCase__ , backbone_config=lowerCAmelCase__ ) # set label attributes UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def a__ ( lowerCAmelCase__ ): # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(lowerCAmelCase__ ) # load original model from torch hub UpperCAmelCase_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f"""Converting model {model_name}...""" ) UpperCAmelCase_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=lowerCAmelCase__ ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCAmelCase__ ): if is_panoptic: UpperCAmelCase_ = "detr." + src rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ , is_panoptic=lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(lowerCAmelCase__ ) if is_panoptic else DetrForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify our conversion on an image UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = DetrImageProcessor(format=lowerCAmelCase__ ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = detr(lowerCAmelCase__ ) UpperCAmelCase_ = model(lowerCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
82
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Tuple = ['''image_processor''', '''tokenizer'''] _snake_case : Any = '''ViTImageProcessor''' _snake_case : str = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCamelCase , ) UpperCAmelCase_ : str = kwargs.pop('feature_extractor' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> Optional[Any]: if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: UpperCAmelCase_ : int = self.tokenizer(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if visual_prompt is not None: UpperCAmelCase_ : str = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if images is not None: UpperCAmelCase_ : Union[str, Any] = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase_ : Tuple = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase_ : Optional[Any] = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCamelCase , ) return self.image_processor_class @property def __UpperCAmelCase ( self ) -> int: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCamelCase , ) return self.image_processor
406
0
import math import random def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __lowerCamelCase = 0.02 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(UpperCAmelCase__ ): # Forward propagation A_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A_ = (expected / 1_00) - layer_a # Error delta A_ = layer_1_error * sigmoid_function(UpperCAmelCase__, UpperCAmelCase__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = int(input('''Expected value: ''')) __lowerCamelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''luke''' def __init__( self: Any , UpperCamelCase_: Optional[int]=50_267 , UpperCamelCase_: List[Any]=500_000 , UpperCamelCase_: Optional[int]=768 , UpperCamelCase_: Any=256 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: str=12 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Tuple=512 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Any=1E-1_2 , UpperCamelCase_: str=True , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: int=0 , UpperCamelCase_: Optional[Any]=2 , **UpperCamelCase_: int , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = entity_vocab_size lowercase__ = hidden_size lowercase__ = entity_emb_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = use_entity_aware_attention lowercase__ = classifier_dropout
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 200) -> int: '''simple docstring''' __UpperCamelCase : Any = [1, 2, 5, 10, 20, 50, 100, 200] __UpperCamelCase : Any = [0] * (pence + 1) __UpperCamelCase : Union[str, Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowerCamelCase , pence + 1 , 1): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
94
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Construct model if gpta_config_file == "": lowercase = GPTaConfig() else: lowercase = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model lowercase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) UpperCAmelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
84
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowercase ( UpperCamelCase__ ): _a = "informer" _a = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = None , _a = "mean" , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 64 , _a = 32 , _a = 32 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = True , _a = "gelu" , _a = 0.05 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a=True , _a = "prob" , _a = 5 , _a = True , **_a , ) -> Tuple: # time series specific configuration _A : Optional[int] = prediction_length _A : int = context_length or prediction_length _A : List[str] = distribution_output _A : Dict = loss _A : Optional[Any] = input_size _A : Dict = num_time_features _A : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A : Dict = scaling _A : List[Any] = num_dynamic_real_features _A : Union[str, Any] = num_static_real_features _A : Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _A : Any = cardinality else: _A : Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _A : Tuple = embedding_dimension else: _A : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _A : List[str] = num_parallel_samples # Transformer architecture configuration _A : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A : int = d_model _A : int = encoder_attention_heads _A : List[str] = decoder_attention_heads _A : Any = encoder_ffn_dim _A : Union[str, Any] = decoder_ffn_dim _A : Dict = encoder_layers _A : Dict = decoder_layers _A : Tuple = dropout _A : Any = attention_dropout _A : int = activation_dropout _A : Optional[int] = encoder_layerdrop _A : List[str] = decoder_layerdrop _A : Optional[int] = activation_function _A : Optional[Any] = init_std _A : Any = use_cache # Informer _A : str = attention_type _A : Any = sampling_factor _A : Union[str, Any] = distil super().__init__(is_encoder_decoder=_a , **_a ) @property def a__ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
307
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowerCamelCase ( UpperCAmelCase_ : int ) -> list[str]: """simple docstring""" A__ = [] A__ = 11 A__ = int("1" + "0" * digit_len ) for num in range(UpperCAmelCase_, UpperCAmelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCAmelCase_, UpperCAmelCase_ ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 A__ = 10 return solutions def _lowerCamelCase ( UpperCAmelCase_ : int = 2 ) -> int: """simple docstring""" A__ = 1.0 for fraction in fraction_list(UpperCAmelCase_ ): A__ = Fraction(UpperCAmelCase_ ) result *= frac.denominator / frac.numerator return int(UpperCAmelCase_ ) if __name__ == "__main__": print(solution())
562
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) UpperCamelCase = None UpperCamelCase = { """7B""": 1_1008, """13B""": 1_3824, """30B""": 1_7920, """65B""": 2_2016, """70B""": 2_8672, } UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[Any]=1, UpperCAmelCase_ : Union[str, Any]=256 ) -> Any: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" with open(UpperCAmelCase_, "r" ) as f: return json.load(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCAmelCase_, "w" ) as f: json.dump(UpperCAmelCase_, UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[int]=True ) -> List[Any]: """simple docstring""" os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = os.path.join(UpperCAmelCase_, "tmp" ) os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = read_json(os.path.join(UpperCAmelCase_, "params.json" ) ) A__ = NUM_SHARDS[model_size] A__ = params["n_layers"] A__ = params["n_heads"] A__ = n_heads // num_shards A__ = params["dim"] A__ = dim // n_heads A__ = 1_0000.0 A__ = 1.0 / (base ** (torch.arange(0, UpperCAmelCase_, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params["n_kv_heads"] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : List[str]=n_heads, UpperCAmelCase_ : List[str]=dim, UpperCAmelCase_ : str=dim ): return w.view(UpperCAmelCase_, dima // n_heads // 2, 2, UpperCAmelCase_ ).transpose(1, 2 ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(UpperCAmelCase_, "consolidated.00.pth" ), map_location="cpu" ) else: # Sharded A__ = [ torch.load(os.path.join(UpperCAmelCase_, F"""consolidated.{i:02d}.pth""" ), map_location="cpu" ) for i in range(UpperCAmelCase_ ) ] A__ = 0 A__ = {"weight_map": {}} for layer_i in range(UpperCAmelCase_ ): A__ = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } A__ = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ), UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, ) A__ = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(UpperCAmelCase_ )], dim=1 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(UpperCAmelCase_ )], dim=0 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(UpperCAmelCase_ )], dim=1 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(UpperCAmelCase_ )], dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: A__ = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(UpperCAmelCase_ )], dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(UpperCAmelCase_ )], dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) # Write configs A__ = {"total_size": param_count * 2} write_json(UpperCAmelCase_, os.path.join(UpperCAmelCase_, "pytorch_model.bin.index.json" ) ) A__ = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 A__ = params["multiple_of"] if "multiple_of" in params else 256 A__ = LlamaConfig( hidden_size=UpperCAmelCase_, intermediate_size=compute_intermediate_size(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=UpperCAmelCase_, ) config.save_pretrained(UpperCAmelCase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) A__ = LlamaForCausalLM.from_pretrained(UpperCAmelCase_, torch_dtype=torch.floataa, low_cpu_mem_usage=UpperCAmelCase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(UpperCAmelCase_, safe_serialization=UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) A__ = tokenizer_class(UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) def _lowerCamelCase ( ) -> int: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"], ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=UpperCAmelCase_, help="Whether or not to save using `safetensors`." ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) A__ = os.path.join(args.input_dir, "tokenizer.model" ) write_tokenizer(args.output_dir, UpperCAmelCase_ ) if __name__ == "__main__": main()
562
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : List[str] = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''resnet''' _lowerCamelCase = ['''basic''', '''bottleneck'''] def __init__( self , _lowercase=3 , _lowercase=6_4 , _lowercase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _lowercase=[3, 4, 6, 3] , _lowercase="bottleneck" , _lowercase="relu" , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) snake_case_ : Union[str, Any] = num_channels snake_case_ : str = embedding_size snake_case_ : List[Any] = hidden_sizes snake_case_ : Optional[Any] = depths snake_case_ : Optional[int] = layer_type snake_case_ : int = hidden_act snake_case_ : Any = downsample_in_first_stage snake_case_ : int = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : List[Any] = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-3
58
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "width_multiplier" ) ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=1_3 , SCREAMING_SNAKE_CASE : int=6_4 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : Dict="swish" , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : int=1_0 , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=0.2_5 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : int=0.0 , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = make_divisible(5_1_2 * width_multiplier , divisor=8 ) lowerCAmelCase = hidden_act lowerCAmelCase = conv_kernel_size lowerCAmelCase = output_stride lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = use_labels lowerCAmelCase = is_training lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = scope lowerCAmelCase = width_multiplier lowerCAmelCase = ffn_dropout lowerCAmelCase = attn_dropout def __A ( self : int ) -> List[Any]: """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : int ) -> Dict: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" lowerCAmelCase = MobileViTVaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self : Tuple ) -> Any: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __A ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase = MobileViTVaModelTester(self ) lowerCAmelCase = MobileViTVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def __A ( self : str ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def __A ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def __A ( self : Tuple ) -> Dict: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def __A ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def __A ( self : Any ) -> str: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __A ( self : List[Any] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase = 2 for i in range(len(SCREAMING_SNAKE_CASE ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> int: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __A ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE ) @slow def __A ( self : Any ) -> Dict: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __a ( ) -> List[Any]: lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : str ) -> Any: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def __A ( self : List[str] ) -> int: """simple docstring""" lowerCAmelCase = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def __A ( self : Any ) -> List[str]: """simple docstring""" lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = model.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def __A ( self : Any ) -> List[str]: """simple docstring""" lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = model.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits.detach().cpu() lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE , target_sizes=[(5_0, 6_0)] ) lowerCAmelCase = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE ) lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE )
649
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase__ : '''simple docstring''' pass
714
from math import sqrt def a ( _UpperCAmelCase : int ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" __UpperCAmelCase : Optional[int] = True # 0 and 1 are none primes. if number <= 1: __UpperCAmelCase : Union[str, Any] = False for divisor in range(2 , int(round(sqrt(_UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __UpperCAmelCase : Optional[Any] = False break # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'status' must been from type bool" return status def a ( _UpperCAmelCase : List[Any] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __UpperCAmelCase : List[str] = list(range(2 , n + 1 ) ) __UpperCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __UpperCAmelCase : Dict = 0 # filters actual prime numbers. __UpperCAmelCase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def a ( _UpperCAmelCase : Any ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" __UpperCAmelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCAmelCase ): ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def a ( _UpperCAmelCase : List[str] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" __UpperCAmelCase : List[str] = [] # this list will be returns of the function. # potential prime number factors. __UpperCAmelCase : Optional[int] = 2 __UpperCAmelCase : Any = number if number == 0 or number == 1: ans.append(_UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCAmelCase ): while quotient != 1: if is_prime(_UpperCAmelCase ) and (quotient % factor == 0): ans.append(_UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def a ( _UpperCAmelCase : int ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : List[str] = 0 # prime factorization of 'number' __UpperCAmelCase : int = prime_factorization(_UpperCAmelCase ) __UpperCAmelCase : int = max(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def a ( _UpperCAmelCase : int ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : Optional[Any] = 0 # prime factorization of 'number' __UpperCAmelCase : Optional[int] = prime_factorization(_UpperCAmelCase ) __UpperCAmelCase : int = min(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def a ( _UpperCAmelCase : Dict ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def a ( _UpperCAmelCase : List[str] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def a ( _UpperCAmelCase : str ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (number > 2) and is_even(_UpperCAmelCase ) ), "'number' must been an int, even and > 2" __UpperCAmelCase : Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __UpperCAmelCase : Optional[int] = get_prime_numbers(_UpperCAmelCase ) __UpperCAmelCase : List[str] = len(_UpperCAmelCase ) # run variable for while-loops. __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[Any] = None # exit variable. for break up the loops __UpperCAmelCase : List[Any] = True while i < len_pn and loop: __UpperCAmelCase : Union[str, Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __UpperCAmelCase : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (len(_UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : str = 0 while numbera != 0: __UpperCAmelCase : int = numbera % numbera __UpperCAmelCase : Union[str, Any] = numbera __UpperCAmelCase : str = rest # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : str ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __UpperCAmelCase : int = prime_factorization(_UpperCAmelCase ) __UpperCAmelCase : Tuple = prime_factorization(_UpperCAmelCase ) elif numbera == 1 or numbera == 1: __UpperCAmelCase : Dict = [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Union[str, Any] = max(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __UpperCAmelCase : int = prime_fac_a.count(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(max(_UpperCAmelCase , _UpperCAmelCase ) ): ans *= n else: __UpperCAmelCase : Any = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __UpperCAmelCase : List[str] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" __UpperCAmelCase : str = 0 __UpperCAmelCase : str = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCAmelCase ): ans += 1 # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and is_prime( _UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str ): '''simple docstring''' assert ( is_prime(_UpperCAmelCase ) and is_prime(_UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __UpperCAmelCase : Union[str, Any] = p_number_a + 1 # jump to the next number __UpperCAmelCase : Union[str, Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(_UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ans[0] != p_number_a and ans[len(_UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( _UpperCAmelCase : Optional[Any] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" __UpperCAmelCase : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( _UpperCAmelCase : Dict ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __UpperCAmelCase : Union[str, Any] = get_divisors(_UpperCAmelCase ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __UpperCAmelCase : Union[str, Any] = gcd(abs(_UpperCAmelCase ) , abs(_UpperCAmelCase ) ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( _UpperCAmelCase : Tuple ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" __UpperCAmelCase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( _UpperCAmelCase : Optional[Any] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : List[Any] = 1 # this will be return for _ in range(n - 1 ): __UpperCAmelCase : Optional[int] = ans ans += fiba __UpperCAmelCase : int = tmp return ans
241
0
from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCamelCase ( lowercase__ : str ) -> str: '''simple docstring''' return "".join(sorted(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(lowercase__ )] __UpperCAmelCase = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __UpperCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
600
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __a ( unittest.TestCase ): @require_torch def A ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) lowerCAmelCase_ : List[str] = load_dataset("""ashraq/esc50""" ) lowerCAmelCase_ : Tuple = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCAmelCase_ : int = audio_classifier(UpperCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A ( self : Union[str, Any] ): pass @slow @require_torch def A ( self : Optional[int] ): lowerCAmelCase_ : int = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog lowerCAmelCase_ : Dict = load_dataset("""ashraq/esc50""" ) lowerCAmelCase_ : Tuple = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCAmelCase_ : Union[str, Any] = audio_classifier(UpperCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) lowerCAmelCase_ : Optional[int] = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) lowerCAmelCase_ : Dict = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A ( self : Optional[int] ): pass
600
1
from manim import * class lowercase ( _UpperCAmelCase ): '''simple docstring''' def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE__ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ : List[Any] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE__ : Tuple = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Any = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : str = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Any = Text('''CPU''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : List[str] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE__ : int = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Tuple = Text('''GPU''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : List[str] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Dict = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : int = Text('''Model''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : Tuple = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [] for i, rect in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = fill.copy().set_fill(_lowercase , opacity=0.8 ) target.move_to(_lowercase ) model_arr.append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowercase ) self.add(*_lowercase , *_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : int = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[int] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = Text('''Disk''' , font_size=24 ) SCREAMING_SNAKE_CASE__ : Any = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ : Any = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Dict = Square(0.3 ) input.set_fill(_lowercase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowercase , buff=0.5 ) self.play(Write(_lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowercase , buff=0.02 ) self.play(MoveToTarget(_lowercase ) ) self.play(FadeOut(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Arrow(start=_lowercase , end=_lowercase , color=_lowercase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowercase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE__ : Any = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(_lowercase ) , Circumscribe(model_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_cpu_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE__ : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowercase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE__ : List[str] = AnimationGroup( FadeOut(_lowercase , run_time=0.5 ) , MoveToTarget(_lowercase , run_time=0.5 ) , FadeIn(_lowercase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE__ : Any = 0.7 self.play( Circumscribe(model_arr[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_arr[i + 1] , color=_lowercase , **_lowercase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowercase , **_lowercase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE__ : List[str] = a_c SCREAMING_SNAKE_CASE__ : int = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowercase ) , FadeOut(_lowercase , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE__ : str = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) , MoveToTarget(_lowercase ) ) self.wait()
717
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ :Tuple = logging.get_logger(__name__) def a ( A__ , A__=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def a ( A__ , A__ , A__=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ : str = '''''' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : str = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias[-config.hidden_size :] def a ( A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A__ , A__ ) def a ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = dct.pop(A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = val def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : List[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def a ( A__ , A__ , A__=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=A__ , ) SCREAMING_SNAKE_CASE__ : Dict = ViTHybridConfig(backbone_config=A__ , image_size=3_8_4 , num_labels=1_0_0_0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = False # load original model from timm SCREAMING_SNAKE_CASE__ : int = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) SCREAMING_SNAKE_CASE__ : Dict = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ : List[Any] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ : Tuple = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ : int = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = idalabel SCREAMING_SNAKE_CASE__ : int = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTHybridModel(A__ ).eval() else: SCREAMING_SNAKE_CASE__ : List[Any] = ViTHybridForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # create image processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_transform(**resolve_data_config({} , model=A__ ) ) SCREAMING_SNAKE_CASE__ : Tuple = transform.transforms SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE__ : List[Any] = ViTHybridImageProcessor( do_resize=A__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=A__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE__ : Dict = prepare_img() SCREAMING_SNAKE_CASE__ : Any = transform(A__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Dict = processor(A__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A__ , A__ ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(A__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: SCREAMING_SNAKE_CASE__ : str = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__ , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE__ : Dict = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(A__ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": a_ :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a_ :Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
250
0
"""simple docstring""" import math def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 ) ->list: """simple docstring""" lowerCAmelCase__ :List[str] = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = i lowerCAmelCase__ :Any = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCAmelCase__ :str = array[temp_index - 1] temp_index -= 1 lowerCAmelCase__ :Tuple = temp_index_value return array def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->None: # Max Heap """simple docstring""" lowerCAmelCase__ :Any = index lowerCAmelCase__ :Optional[int] = 2 * index + 1 # Left Node lowerCAmelCase__ :int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCAmelCase__ :Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCAmelCase__ :str = right_index if largest != index: lowerCAmelCase__ , lowerCAmelCase__ :Dict = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): lowerCAmelCase__ , lowerCAmelCase__ :int = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Optional[int] = low lowerCAmelCase__ :int = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCAmelCase__ , lowerCAmelCase__ :List[str] = array[j], array[i] i += 1 def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return array lowerCAmelCase__ :Dict = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ :Tuple = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 lowerCAmelCase__ :Any = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) lowerCAmelCase__ :Tuple = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A = input("""Enter numbers separated by a comma : """).strip() __A = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
93
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ): __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : str = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Any = features.copy() if features else default_expected_features __UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: __UpperCAmelCase : Dict = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): __UpperCAmelCase : Optional[int] = tmp_path / """cache""" __UpperCAmelCase : str = os.path.join(__lowerCamelCase , """tmp.sql""" ) __UpperCAmelCase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() __UpperCAmelCase : Optional[int] = iter_sql_file(__lowerCamelCase ) __UpperCAmelCase : Dict = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): __UpperCAmelCase : int = tmp_path / """cache""" __UpperCAmelCase : int = os.path.join(__lowerCamelCase , """tmp.sql""" ) __UpperCAmelCase : Any = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() __UpperCAmelCase : Union[str, Any] = iter_sql_file(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , """tmp.sql""" ) __UpperCAmelCase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCamelCase ).read() with pytest.raises(__lowerCamelCase ): SqlDatasetWriter(__lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
63
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''timesformer''' def __init__( self : Optional[Any] , A : str=2_24 , A : List[str]=16 , A : Any=3 , A : Optional[Any]=8 , A : Optional[Any]=7_68 , A : str=12 , A : int=12 , A : str=30_72 , A : Optional[Any]="gelu" , A : Tuple=0.0 , A : str=0.0 , A : Union[str, Any]=0.0_2 , A : List[Any]=1E-6 , A : Any=True , A : Tuple="divided_space_time" , A : Optional[int]=0 , **A : Tuple , ) -> str: """simple docstring""" super().__init__(**A) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = qkv_bias _UpperCAmelCase = attention_type _UpperCAmelCase = drop_path_rate
701
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' while second != 0: _UpperCAmelCase = first & second first ^= second _UpperCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter the first number: ").strip()) UpperCAmelCase__ = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
639
0
'''simple docstring''' from statistics import mean, stdev def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Dict = min(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , _SCREAMING_SNAKE_CASE ) for x in data] def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Tuple = mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = stdev(_SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , _SCREAMING_SNAKE_CASE ) for x in data]
71
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) class a__( snake_case__ ): def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
538
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int = 200 ): """simple docstring""" _lowerCAmelCase = [1, 2, 5, 10, 20, 50, 100, 200] _lowerCAmelCase = [0] * (pence + 1) _lowerCAmelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
491
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 6_4, 6_4) _snake_case = torch.rand(1) * 9_9_9 _snake_case = torch.randn(2, 7_7, 7_6_8) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_6_6 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
491
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( a_ ): """simple docstring""" __magic_name__ :int = ["""image_processor""", """tokenizer"""] __magic_name__ :Optional[int] = """Pix2StructImageProcessor""" __magic_name__ :Union[str, Any] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 2_0_4_8 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase__ :Tuple = self.tokenizer lowerCAmelCase__ :Any = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase__ :Optional[int] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , **lowerCAmelCase__ ) else: # add pixel_values and bbox lowerCAmelCase__ :Dict = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase__ :Union[str, Any] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if "attention_mask" in text_encoding: lowerCAmelCase__ :List[str] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: lowerCAmelCase__ :Optional[int] = text_encoding.pop('input_ids' ) else: lowerCAmelCase__ :List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.tokenizer.model_input_names lowerCAmelCase__ :List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
93
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : Dict = TypeVar('''KEY''') __lowerCamelCase : int = TypeVar('''VAL''') @dataclass(frozen=a_ , slots=a_ ) class A_ (Generic[KEY, VAL] ): """simple docstring""" a__ = 42 a__ = 42 class A_ (_Item ): """simple docstring""" def __init__( self :List[Any] ) -> None: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __bool__( self :Optional[int] ) -> bool: '''simple docstring''' return False __lowerCamelCase : Dict = _DeletedItem() class A_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :int = 8 , lowerCAmelCase__ :float = 0.7_5 ) -> None: '''simple docstring''' snake_case_ : Any = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : Tuple = capacity_factor snake_case_ : List[Any] = 0 def _A ( self :Tuple , lowerCAmelCase__ :KEY ) -> int: '''simple docstring''' return hash(lowerCAmelCase__ ) % len(self._buckets ) def _A ( self :Any , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : int = _Item(lowerCAmelCase__ , lowerCAmelCase__ ) self._len += 1 return True elif stored.key == key: snake_case_ : Optional[int] = _Item(lowerCAmelCase__ , lowerCAmelCase__ ) return True else: return False def _A ( self :int ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCAmelCase__ ) def _A ( self :Any ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _A ( self :Tuple , lowerCAmelCase__ :int ) -> None: '''simple docstring''' snake_case_ : Tuple = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _A ( self :Optional[int] ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _A ( self :str ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _A ( self :Optional[int] , lowerCAmelCase__ :KEY ) -> Iterator[int]: '''simple docstring''' snake_case_ : str = self._get_bucket_index(lowerCAmelCase__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : List[Any] = self._get_next_ind(lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> None: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): if self._try_set(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): break def __setitem__( self :Optional[int] , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCAmelCase__ , lowerCAmelCase__ ) def __delitem__( self :List[Any] , lowerCAmelCase__ :KEY ) -> None: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): snake_case_ : int = self._buckets[ind] if item is None: raise KeyError(lowerCAmelCase__ ) if item is _deleted: continue if item.key == key: snake_case_ : List[str] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self :List[str] , lowerCAmelCase__ :KEY ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCAmelCase__ ) def __len__( self :Optional[Any] ) -> int: '''simple docstring''' return self._len def __iter__( self :List[Any] ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self :Any ) -> str: '''simple docstring''' snake_case_ : Dict = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
653
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = "decision_transformer" _SCREAMING_SNAKE_CASE : Optional[Any] = ["past_key_values"] _SCREAMING_SNAKE_CASE : str = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _A=17 , _A=4 , _A=128 , _A=4096 , _A=True , _A=1 , _A=1024 , _A=3 , _A=1 , _A=None , _A="relu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=1e-5 , _A=0.02 , _A=True , _A=True , _A=50256 , _A=50256 , _A=False , _A=False , **_A , ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = state_dim _UpperCAmelCase : Optional[Any] = act_dim _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Any = max_ep_len _UpperCAmelCase : int = action_tanh _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Any = n_positions _UpperCAmelCase : Dict = n_layer _UpperCAmelCase : Union[str, Any] = n_head _UpperCAmelCase : str = n_inner _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : Optional[int] = resid_pdrop _UpperCAmelCase : int = embd_pdrop _UpperCAmelCase : Optional[Any] = attn_pdrop _UpperCAmelCase : Tuple = layer_norm_epsilon _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Dict = scale_attn_weights _UpperCAmelCase : Tuple = use_cache _UpperCAmelCase : str = scale_attn_by_inverse_layer_idx _UpperCAmelCase : Tuple = reorder_and_upcast_attn _UpperCAmelCase : Tuple = bos_token_id _UpperCAmelCase : List[Any] = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A)
186
import argparse import os import re SCREAMING_SNAKE_CASE = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict SCREAMING_SNAKE_CASE = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings SCREAMING_SNAKE_CASE = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _lowerCamelCase ( __A : Optional[int] , __A : bool = False ) -> int: with open(__A , '''r''' , encoding='''utf-8''' ) as f: _UpperCAmelCase : Union[str, Any] = f.read() _UpperCAmelCase : Any = content.split('''\n''' ) _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = 0 while line_idx < len(__A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCAmelCase : Union[str, Any] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCAmelCase : str = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCAmelCase : List[str] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCAmelCase : Tuple = sorted(__A , key=lambda __A : _re_identifier.search(__A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(__A ) ) elif "\n".join(__A ) != content: return True def _lowerCamelCase ( __A : bool = False ) -> List[str]: _UpperCAmelCase : List[str] = [os.path.join(__A , __A ) for f in os.listdir(__A ) if f.endswith('''.py''' )] _UpperCAmelCase : List[Any] = [sort_auto_mapping(__A , overwrite=__A ) for fname in fnames] if not overwrite and any(__A ): _UpperCAmelCase : Optional[int] = [f for f, d in zip(__A , __A ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(__A )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_all_auto_mappings(not args.check_only)
186
1
"""simple docstring""" import math def lowerCamelCase_( _lowerCamelCase ) -> list[int]: '''simple docstring''' _lowerCamelCase : Any = [] _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Tuple = int(math.sqrt(_lowerCamelCase ) ) # Size of every segment _lowerCamelCase : Tuple = [True] * (end + 1) _lowerCamelCase : Union[str, Any] = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCamelCase ) for i in range(start * start , end + 1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = False start += 1 prime += in_prime _lowerCamelCase : Optional[int] = end + 1 _lowerCamelCase : Tuple = min(2 * end , _lowerCamelCase ) while low <= n: _lowerCamelCase : List[Any] = [True] * (high - low + 1) for each in in_prime: _lowerCamelCase : List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCamelCase , high + 1 , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = False for j in range(len(_lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) _lowerCamelCase : Optional[int] = high + 1 _lowerCamelCase : Union[str, Any] = min(high + end , _lowerCamelCase ) return prime print(sieve(10**6))
46
import re def __UpperCamelCase ( _A ): lowerCAmelCase_ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(_A , _A ) ) if __name__ == "__main__": _A = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
431
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__) class _UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" __snake_case = 'upernet' def __init__( self , _lowercase=None , _lowercase=512 , _lowercase=0.02 , _lowercase=[1, 2, 3, 6] , _lowercase=True , _lowercase=0.4 , _lowercase=384 , _lowercase=256 , _lowercase=1 , _lowercase=False , _lowercase=255 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _lowerCamelCase : str = CONFIG_MAPPING['resnet'](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(_lowercase , _lowercase ): _lowerCamelCase : Any = backbone_config.get('''model_type''' ) _lowerCamelCase : List[str] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Tuple = config_class.from_dict(_lowercase ) _lowerCamelCase : int = backbone_config _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[Any] = pool_scales _lowerCamelCase : Union[str, Any] = use_auxiliary_head _lowerCamelCase : Dict = auxiliary_loss_weight _lowerCamelCase : List[str] = auxiliary_in_channels _lowerCamelCase : List[str] = auxiliary_channels _lowerCamelCase : Optional[Any] = auxiliary_num_convs _lowerCamelCase : Tuple = auxiliary_concat_input _lowerCamelCase : Any = loss_ignore_index def a__ ( self ) -> Optional[Any]: _lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) _lowerCamelCase : int = self.backbone_config.to_dict() _lowerCamelCase : Union[str, Any] = self.__class__.model_type return output
707
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ) -> List[Any]: _lowerCamelCase : Tuple = 1.0 if scale is None else scale _lowerCamelCase : int = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def a__ ( self ) -> Dict: return self.base_dist.mean * self.scale + self.loc @property def a__ ( self ) -> List[str]: return self.base_dist.variance * self.scale**2 @property def a__ ( self ) -> Union[str, Any]: return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> None: super().__init__(**_lowercase ) _lowerCamelCase : Union[str, Any] = args_dim _lowerCamelCase : Union[str, Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) _lowerCamelCase : str = domain_map def a__ ( self , _lowercase ) -> Tuple[torch.Tensor]: _lowerCamelCase : Any = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: super().__init__() _lowerCamelCase : Optional[Any] = function def a__ ( self , _lowercase , *_lowercase ) -> str: return self.function(_lowercase , *_lowercase ) class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 def __init__( self , _lowercase = 1 ) -> None: _lowerCamelCase : int = dim _lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self , _lowercase ) -> Dict: if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Distribution: _lowerCamelCase : Any = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def a__ ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def a__ ( self ) -> int: return len(self.event_shape ) @property def a__ ( self ) -> float: return 0.0 def a__ ( self , _lowercase ) -> nn.Module: return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self , *_lowercase ) -> int: raise NotImplementedError() @staticmethod def a__ ( _lowercase ) -> torch.Tensor: return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"df": 1, "loc": 1, "scale": 1} __snake_case = StudentT @classmethod def a__ ( cls , _lowercase , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowerCamelCase : List[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"loc": 1, "scale": 1} __snake_case = Normal @classmethod def a__ ( cls , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"total_count": 1, "logits": 1} __snake_case = NegativeBinomial @classmethod def a__ ( cls , _lowercase , _lowercase ) -> int: _lowerCamelCase : str = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self , _lowercase ) -> Distribution: _lowerCamelCase, _lowerCamelCase : int = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None ) -> Distribution: _lowerCamelCase, _lowerCamelCase : Optional[int] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
558
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = '▁' __lowerCAmelCase = {'vocab_file': 'spiece.model'} __lowerCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __lowerCAmelCase = { 'google/pegasus-xsum': 512, } __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , UpperCAmelCase , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=103 , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: _snake_case = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase )}, but is""" f""" {type(UpperCAmelCase )}""" ) _snake_case = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase ) , self.offset - 1 ) ] if len(set(UpperCAmelCase ) ) != len(UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _snake_case = additional_special_tokens_extended else: _snake_case = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , mask_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token_sent=UpperCAmelCase , offset=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _snake_case = mask_token_sent _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) # add special tokens to encoder dict _snake_case = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _snake_case = {v: k for k, v in self.encoder.items()} @property def lowercase (self ) -> int: return len(self.sp_model ) + self.offset def lowercase (self ) -> Dict[str, int]: _snake_case = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Any: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__(self , UpperCAmelCase ) -> str: _snake_case = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _snake_case = self.sp_model.piece_to_id(UpperCAmelCase ) return sp_id + self.offset def lowercase (self , UpperCAmelCase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _snake_case = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase (self , UpperCAmelCase ) -> List[Any]: _snake_case = [] _snake_case = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase ) + token _snake_case = [] else: current_sub_tokens.append(UpperCAmelCase ) out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def lowercase (self , UpperCAmelCase=False ) -> List[str]: return 1 def lowercase (self , UpperCAmelCase ) -> int: _snake_case = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , """wb""" ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
585
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> List[str]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[int]: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
717
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = '''https://openaipublic.azureedge.net/jukebox/models/''' lowercase_ = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def lowerCAmelCase ( UpperCAmelCase ) ->int: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ : Any = key.replace('''.model.1.bias''', '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ : Optional[int] = key.replace('''.model.1.weight''', '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ : Optional[int] = key.replace('''.model.3.bias''', '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ : List[Any] = key.replace('''.model.3.weight''', '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __magic_name__ : List[str] = key.replace('''conditioner_blocks.0''', '''conditioner_blocks''' ) if "prime_prior" in key: __magic_name__ : str = key.replace('''prime_prior''', '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __magic_name__ : Dict = key.replace('''.emb.''', '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''', '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''', '''metadata_embedding.''' ) if "x_emb.emb." in key: __magic_name__ : Optional[Any] = key.replace('''0.x_emb.emb''', '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''', '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''', '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''', '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''', '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''', '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''', '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''', '''embed_tokens''' ) return key def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ->int: """simple docstring""" __magic_name__ : str = {} import re __magic_name__ : Optional[int] = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ : Optional[int] = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ : Union[str, Any] = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ : Tuple = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ : Optional[Any] = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ : Optional[Any] = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ : Optional[int] = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __magic_name__ : str = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ : str = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCAmelCase ): __magic_name__ : int = re_encoder_block_conv_in.match(UpperCAmelCase ) __magic_name__ : Optional[int] = regex_match.groups() __magic_name__ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ : Optional[int] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' __magic_name__ : Tuple = re_encoder_block_conv_in.sub(UpperCAmelCase, UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(UpperCAmelCase ): __magic_name__ : List[str] = re_encoder_block_resnet.match(UpperCAmelCase ) __magic_name__ : Union[str, Any] = regex_match.groups() __magic_name__ : Any = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ : Dict = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ : List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' __magic_name__ : List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' __magic_name__ : Optional[Any] = prefix + resnet_block __magic_name__ : Optional[int] = re_encoder_block_resnet.sub(UpperCAmelCase, UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(UpperCAmelCase ): __magic_name__ : Dict = re_encoder_block_proj_out.match(UpperCAmelCase ) __magic_name__ : Optional[Any] = regex_match.groups() __magic_name__ : List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' __magic_name__ : Any = re_encoder_block_proj_out.sub(UpperCAmelCase, UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCAmelCase ): __magic_name__ : Union[str, Any] = re_decoder_block_conv_out.match(UpperCAmelCase ) __magic_name__ : Dict = regex_match.groups() __magic_name__ : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ : Optional[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' __magic_name__ : Union[str, Any] = re_decoder_block_conv_out.sub(UpperCAmelCase, UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(UpperCAmelCase ): __magic_name__ : Union[str, Any] = re_decoder_block_resnet.match(UpperCAmelCase ) __magic_name__ : Tuple = regex_match.groups() __magic_name__ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ : Optional[Any] = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ : Optional[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' __magic_name__ : Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' __magic_name__ : int = prefix + resnet_block __magic_name__ : List[Any] = re_decoder_block_resnet.sub(UpperCAmelCase, UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(UpperCAmelCase ): __magic_name__ : Optional[Any] = re_decoder_block_proj_in.match(UpperCAmelCase ) __magic_name__ : Any = regex_match.groups() __magic_name__ : List[str] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' __magic_name__ : Optional[Any] = re_decoder_block_proj_in.sub(UpperCAmelCase, UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCAmelCase ): __magic_name__ : Union[str, Any] = re_prior_cond_conv_out.match(UpperCAmelCase ) __magic_name__ : int = regex_match.groups() __magic_name__ : int = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ : int = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' __magic_name__ : str = re_prior_cond_conv_out.sub(UpperCAmelCase, UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(UpperCAmelCase ): __magic_name__ : Union[str, Any] = re_prior_cond_resnet.match(UpperCAmelCase ) __magic_name__ : str = regex_match.groups() __magic_name__ : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ : Optional[Any] = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ : List[str] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' __magic_name__ : str = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' __magic_name__ : Any = prefix + resnet_block __magic_name__ : Dict = re_prior_cond_resnet.sub(UpperCAmelCase, UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(UpperCAmelCase ): __magic_name__ : Tuple = re_prior_cond_proj_in.match(UpperCAmelCase ) __magic_name__ : str = regex_match.groups() __magic_name__ : Optional[int] = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' __magic_name__ : Optional[Any] = re_prior_cond_proj_in.sub(UpperCAmelCase, UpperCAmelCase ) # keep original key else: __magic_name__ : Optional[int] = original_key __magic_name__ : List[Any] = replace_key(UpperCAmelCase ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: __magic_name__ : Any = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) __magic_name__ : List[Any] = original_key __magic_name__ : Optional[Any] = original_key __magic_name__ : List[Any] = value return new_dict @torch.no_grad() def lowerCAmelCase ( UpperCAmelCase=None, UpperCAmelCase=None ) ->List[Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): __magic_name__ : Union[str, Any] = requests.get(F'''{PREFIX}{file}''', allow_redirects=UpperCAmelCase ) os.makedirs(F'''{pytorch_dump_folder_path}/''', exist_ok=UpperCAmelCase ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''', '''wb''' ).write(r.content ) __magic_name__ : str = MODEL_MAPPING[model_name.split('''/''' )[-1]] __magic_name__ : Tuple = JukeboxConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : Dict = JukeboxModel(UpperCAmelCase ) __magic_name__ : List[Any] = [] __magic_name__ : int = {} for i, dict_name in enumerate(UpperCAmelCase ): __magic_name__ : List[Any] = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] __magic_name__ : Optional[int] = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __magic_name__ : str = old_dic[k] elif k.endswith('''.w''' ): __magic_name__ : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __magic_name__ : Union[str, Any] = old_dic[k] else: __magic_name__ : Optional[Any] = old_dic[k] __magic_name__ : Union[str, Any] = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' __magic_name__ : List[Any] = fix_jukebox_keys(UpperCAmelCase, model.state_dict(), UpperCAmelCase, UpperCAmelCase ) weight_dict.append(UpperCAmelCase ) __magic_name__ : Union[str, Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) with open(F'''{pytorch_dump_folder_path}/mapping.json''', '''w''' ) as txtfile: json.dump(UpperCAmelCase, UpperCAmelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) return weight_dict if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowercase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
154
from math import isqrt def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2, isqrt(UpperCAmelCase ) + 1 ) ) def lowerCAmelCase ( UpperCAmelCase = 10**6 ) ->int: """simple docstring""" __magic_name__ : Any = 0 __magic_name__ : Union[str, Any] = 1 __magic_name__ : Any = 7 while prime_candidate < max_prime: primes_count += is_prime(UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"{solution() = }")
154
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCAmelCase = """true""" def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=1_6 ): '''simple docstring''' set_seed(4_2 ) A_ : List[Any] = RegressionModel() A_ : int = deepcopy(_lowerCAmelCase ) A_ : List[str] = RegressionDataset(length=_lowerCAmelCase ) A_ : str = DataLoader(_lowerCAmelCase ,batch_size=_lowerCAmelCase ) model.to(accelerator.device ) A_ , A_ : str = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return model, ddp_model, dataloader def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) A_ : List[str] = load_dataset("""glue""" ,"""mrpc""" ,split="""validation""" ) def tokenize_function(_lowerCAmelCase ): A_ : Tuple = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ) return outputs with accelerator.main_process_first(): A_ : List[Any] = dataset.map( _lowerCAmelCase ,batched=_lowerCAmelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) A_ : int = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_lowerCAmelCase ): if use_longest: return tokenizer.pad(_lowerCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ) return tokenizer.pad(_lowerCAmelCase ,padding="""max_length""" ,max_length=1_2_8 ,return_tensors="""pt""" ) return DataLoader(_lowerCAmelCase ,shuffle=_lowerCAmelCase ,collate_fn=_lowerCAmelCase ,batch_size=1_6 ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[int] = Accelerator(dispatch_batches=_lowerCAmelCase ,split_batches=_lowerCAmelCase ) A_ : Union[str, Any] = get_dataloader(_lowerCAmelCase ,not dispatch_batches ) A_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" ,return_dict=_lowerCAmelCase ) A_ , A_ : Dict = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Union[str, Any] = [] for batch in dataloader: A_ , A_ : Optional[Any] = batch.values() with torch.no_grad(): A_ : Optional[int] = model(_lowerCAmelCase ) A_ , A_ : Optional[int] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A_ , A_ : str = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCAmelCase ) targs.append(_lowerCAmelCase ) A_ , A_ : List[Any] = torch.cat(_lowerCAmelCase ), torch.cat(_lowerCAmelCase ) return logits, targs def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=1_6 ): '''simple docstring''' A_ , A_ , A_ : Any = get_basic_setup(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) A_ , A_ : int = generate_predictions(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) assert ( len(_lowerCAmelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCAmelCase )}""" def _lowerCAmelCase ( _lowerCAmelCase = False ,_lowerCAmelCase = False ): '''simple docstring''' A_ : Tuple = evaluate.load("""glue""" ,"""mrpc""" ) A_ , A_ : Tuple = get_mrpc_setup(_lowerCAmelCase ,_lowerCAmelCase ) # First do baseline A_ , A_ , A_ : int = setup["""no"""] model.to(_lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(_lowerCAmelCase ) with torch.inference_mode(): A_ : Optional[int] = model(**_lowerCAmelCase ) A_ : List[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCAmelCase ,references=batch["""labels"""] ) A_ : Optional[int] = metric.compute() # Then do distributed A_ , A_ , A_ : List[Any] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): A_ : Optional[int] = model(**_lowerCAmelCase ) A_ : int = outputs.logits.argmax(dim=-1 ) A_ : List[str] = batch["""labels"""] A_ , A_ : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCAmelCase ,references=_lowerCAmelCase ) A_ : int = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _lowerCAmelCase ( ): '''simple docstring''' A_ : str = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_lowerCAmelCase ,_lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A_ : Optional[int] = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_lowerCAmelCase ,9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) A_ : Any = Accelerator() test_torch_metrics(_lowerCAmelCase ,5_1_2 ) accelerator.state._reset_state() def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
481
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = StableDiffusionInstructPixaPixPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a = IMAGE_TO_IMAGE_IMAGE_PARAMS a = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : int = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) A_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : List[Any] = CLIPTextModel(a__ ) A_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCamelCase ( self , a__ , a__=0 ): A_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) A_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Union[str, Any] = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ) if str(a__ ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(a__ ) else: A_ : List[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): A_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() A_ : List[Any] = StableDiffusionInstructPixaPixPipeline(**a__ ) A_ : List[Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : List[str] = self.get_dummy_inputs(a__ ) A_ : str = sd_pipe(**a__ ).images A_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : List[str] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self ): A_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() A_ : Tuple = StableDiffusionInstructPixaPixPipeline(**a__ ) A_ : Tuple = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[int] = self.get_dummy_inputs(a__ ) A_ : Union[str, Any] = """french fries""" A_ : str = sd_pipe(**a__ , negative_prompt=a__ ) A_ : Any = output.images A_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : List[str] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self ): A_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Dict = self.get_dummy_components() A_ : Dict = StableDiffusionInstructPixaPixPipeline(**a__ ) A_ : str = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : Dict = self.get_dummy_inputs(a__ ) A_ : int = [inputs["""prompt"""]] * 2 A_ : Any = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A_ : List[Any] = torch.from_numpy(a__ ).unsqueeze(0 ).to(a__ ) A_ : List[str] = image / 2 + 0.5 A_ : int = image.permute(0 , 3 , 1 , 2 ) A_ : Optional[Any] = image.repeat(2 , 1 , 1 , 1 ) A_ : Optional[int] = sd_pipe(**a__ ).images A_ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A_ : Union[str, Any] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self ): A_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() A_ : Dict = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A_ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**a__ ) A_ : Union[str, Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[int] = self.get_dummy_inputs(a__ ) A_ : Union[str, Any] = sd_pipe(**a__ ).images A_ : Dict = image[0, -3:, -3:, -1] A_ : Any = [round(a__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(a__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A_ : Tuple = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowerCamelCase ( self ): A_ : Optional[int] = self.get_dummy_components() A_ : List[Any] = StableDiffusionInstructPixaPixPipeline(**a__ ) A_ : str = VaeImageProcessor(do_resize=a__ , do_normalize=a__ ) A_ : Union[str, Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(a__ , input_image_type="""pt""" ) )[0] A_ : Any = components["""vae"""] A_ : Any = self.get_dummy_inputs_by_type(a__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A_ : int = vae.encode(inputs[image_param] ).latent_dist.mode() A_ : List[Any] = pipe(**a__ )[0] A_ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(a__ , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , a__=0 ): A_ : str = torch.manual_seed(a__ ) A_ : Dict = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A_ : List[Any] = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): A_ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : Optional[int] = self.get_inputs() A_ : List[str] = pipe(**a__ ).images A_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ : Optional[Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _lowerCamelCase ( self ): A_ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=a__ ) A_ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : int = self.get_inputs() A_ : List[Any] = pipe(**a__ ).images A_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ : Any = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _lowerCamelCase ( self ): A_ : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=a__ ) A_ : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : str = self.get_inputs() A_ : List[str] = pipe(**a__ ).images A_ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ : Optional[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _lowerCamelCase ( self ): A_ : int = 0 def callback_fn(a__ , a__ , a__ ) -> None: A_ : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A_ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ : str = latents[0, -3:, -3:, -1] A_ : int = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: A_ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ : List[str] = latents[0, -3:, -3:, -1] A_ : Union[str, Any] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 A_ : Tuple = False A_ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=a__ , torch_dtype=torch.floataa ) A_ : Optional[int] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : Dict = self.get_inputs() pipe(**a__ , callback=a__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowerCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=a__ , torch_dtype=torch.floataa ) A_ : Optional[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : List[Any] = self.get_inputs() A_ : int = pipe(**a__ ) A_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _lowerCamelCase ( self ): A_ : List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A_ : Dict = inputs["""image"""].resize((504, 504) ) A_ : int = """timbrooks/instruct-pix2pix""" A_ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( a__ , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : Optional[int] = pipe(**a__ ) A_ : Optional[Any] = output.images[0] A_ : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A_ : Optional[Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
481
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def __UpperCAmelCase ( *__lowerCamelCase : Tuple , **__lowerCamelCase : str ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase ( unittest.TestCase ): A__ : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): """simple docstring""" _snake_case = ObjectDetectionPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): """simple docstring""" _snake_case = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __lowerCamelCase , { '''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase ), '''box''': {'''xmin''': ANY(__lowerCamelCase ), '''ymin''': ANY(__lowerCamelCase ), '''xmax''': ANY(__lowerCamelCase ), '''ymax''': ANY(__lowerCamelCase )}, } , ) import datasets _snake_case = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _snake_case = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] _snake_case = object_detector(__lowerCamelCase , threshold=0.0 ) self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __lowerCamelCase , { '''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase ), '''box''': {'''xmin''': ANY(__lowerCamelCase ), '''ymin''': ANY(__lowerCamelCase ), '''xmax''': ANY(__lowerCamelCase ), '''ymax''': ANY(__lowerCamelCase )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" pass @require_torch def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = '''hf-internal-testing/tiny-detr-mobilenetsv3''' _snake_case = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase ) _snake_case = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) _snake_case = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) _snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) _snake_case = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = '''facebook/detr-resnet-50''' _snake_case = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase ) _snake_case = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) _snake_case = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) _snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) _snake_case = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = '''facebook/detr-resnet-50''' _snake_case = pipeline('''object-detection''' , model=__lowerCamelCase ) _snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) _snake_case = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = 0.9_9_8_5 _snake_case = '''facebook/detr-resnet-50''' _snake_case = pipeline('''object-detection''' , model=__lowerCamelCase ) _snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = '''Narsil/layoutlmv3-finetuned-funsd''' _snake_case = 0.9_9_9_3 _snake_case = pipeline('''object-detection''' , model=__lowerCamelCase , threshold=__lowerCamelCase ) _snake_case = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
103
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCamelCase__ ) if number < 1: UpperCAmelCase__ : Optional[Any] = f'''Input value of [number={number}] must be > 0''' raise ValueError(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
407
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = [False] * len(lowerCAmelCase_ ) _snake_case : Tuple = [] queue.append(lowerCAmelCase_ ) _snake_case : Any = True while queue: _snake_case : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase_ ) _snake_case : Optional[Any] = True _snake_case : List[str] = u return visited[t] def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = [-1] * (len(lowerCAmelCase_ )) _snake_case : List[str] = 0 while bfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[Any] = float('''Inf''' ) _snake_case : List[str] = sink while s != source: # Find the minimum value in select path _snake_case : Optional[int] = min(lowerCAmelCase_ , graph[parent[s]][s] ) _snake_case : Union[str, Any] = parent[s] max_flow += path_flow _snake_case : Optional[int] = sink while v != source: _snake_case : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case : List[Any] = parent[v] return max_flow UpperCAmelCase : str = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCAmelCase, UpperCAmelCase : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
47
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = RobertaTokenizer _UpperCAmelCase = RobertaTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = {"""cls_token""": """<s>"""} def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE_ : str = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'lower newer' SCREAMING_SNAKE_CASE_ : Any = 'lower newer' return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCAmelCase__ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCAmelCase__ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer_class.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = 'Encode this sequence.' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE_ : Any = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )} ) # mask token has a left space SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE_ : List[Any] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE_ : str = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase__ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'''{text_of_1_token} {text_of_1_token}''' SCREAMING_SNAKE_CASE_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE_ : Any = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE_ : int = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE_ : int = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE_ : Dict = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
101
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """gptj""" _a = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase=50_400 , lowerCAmelCase=2_048 , lowerCAmelCase=4_096 , lowerCAmelCase=28 , lowerCAmelCase=16 , lowerCAmelCase=64 , lowerCAmelCase=None , lowerCAmelCase="gelu_new" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=1e-5 , lowerCAmelCase=0.02 , lowerCAmelCase=True , lowerCAmelCase=50_256 , lowerCAmelCase=50_256 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Optional[Any]: '''simple docstring''' _lowercase =vocab_size _lowercase =n_positions _lowercase =n_embd _lowercase =n_layer _lowercase =n_head _lowercase =n_inner _lowercase =rotary_dim _lowercase =activation_function _lowercase =resid_pdrop _lowercase =embd_pdrop _lowercase =attn_pdrop _lowercase =layer_norm_epsilon _lowercase =initializer_range _lowercase =use_cache _lowercase =bos_token_id _lowercase =eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase = "default" , lowerCAmelCase = None , lowerCAmelCase = False , ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase ): # TODO: how to do that better? _lowercase =0 @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) _lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: _lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def A__ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def A__ ( self ) -> int: '''simple docstring''' return self._config.n_head def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase =super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowercase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase =seqlen + 2 _lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowercase =common_inputs['attention_mask'] if self.use_past: _lowercase =ordered_inputs['attention_mask'].dtype _lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def A__ ( self ) -> int: '''simple docstring''' return 13
291
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'nat' _SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , lowercase=4 , lowercase=3 , lowercase=64 , lowercase=[3, 4, 6, 5] , lowercase=[2, 4, 8, 16] , lowercase=7 , lowercase=3.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=0.02 , lowercase=1e-5 , lowercase=0.0 , lowercase=None , lowercase=None , **lowercase , ) -> Union[str, Any]: super().__init__(**lowercase ) lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(lowercase ) lowerCAmelCase = num_heads lowerCAmelCase = kernel_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(lowercase ) - 1) ) lowerCAmelCase = layer_scale_init_value lowerCAmelCase = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(lowercase ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
393
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("""Input value must be an 'int' type""" ) lowerCAmelCase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
393
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : List[str] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
390
from math import factorial def __a ( lowerCAmelCase_ : int = 1_00 ) -> int: '''simple docstring''' return sum(int(lowerCAmelCase_ ) for x in str(factorial(lowerCAmelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
593
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
from copy import deepcopy class A__ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : list[int] | None = None , lowerCamelCase__ : int | None = None ): if arr is None and size is not None: a__ : Union[str, Any] = size a__ : Optional[Any] = [0] * size elif arr is not None: self.init(lowerCamelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : list[int] ): a__ : Any = len(lowerCamelCase__ ) a__ : List[Any] = deepcopy(lowerCamelCase__ ) for i in range(1 , self.size ): a__ : Union[str, Any] = self.next_(lowerCamelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _UpperCamelCase( self : Tuple ): a__ : List[str] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): a__ : Optional[Any] = self.next_(lowerCamelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index + (index & (-index)) @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index - (index & (-index)) def _UpperCamelCase( self : str , lowerCamelCase__ : int , lowerCamelCase__ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value a__ : Optional[int] = self.next_(lowerCamelCase__ ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int ): self.add(lowerCamelCase__ , value - self.get(lowerCamelCase__ ) ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): if right == 0: return 0 a__ : Tuple = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] a__ : List[Any] = self.prev(lowerCamelCase__ ) return result def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ): return self.prefix(lowerCamelCase__ ) - self.prefix(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): return self.query(lowerCamelCase__ , index + 1 ) def _UpperCamelCase( self : int , lowerCamelCase__ : int ): value -= self.tree[0] if value < 0: return -1 a__ : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 a__ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
151
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: assert column_title.isupper() _lowercase : Optional[Any] = 0 _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 _lowercase : Optional[int] = 0 while index >= 0: _lowercase : Union[str, Any] = (ord(column_title[index] ) - 64) * pow(26 , SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
66
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( UpperCamelCase_ ): UpperCamelCase__ : List[str] =['pixel_values'] def __init__( self : Any , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : str , ) -> None: """simple docstring""" super().__init__(**lowercase_ ) _lowerCamelCase : Optional[int] =size if size is not None else {'shortest_edge': 224} _lowerCamelCase : List[Any] =get_size_dict(lowercase_ , default_to_square=lowercase_ ) _lowerCamelCase : str =crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : str =get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size' ) _lowerCamelCase : Dict =do_resize _lowerCamelCase : int =size _lowerCamelCase : Optional[Any] =resample _lowerCamelCase : Optional[int] =do_center_crop _lowerCamelCase : Tuple =crop_size _lowerCamelCase : Optional[int] =do_rescale _lowerCamelCase : Optional[Any] =rescale_factor _lowerCamelCase : Union[str, Any] =do_normalize _lowerCamelCase : Optional[int] =image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCamelCase : Any =image_std if image_std is not None else OPENAI_CLIP_STD _lowerCamelCase : Any =do_convert_rgb def lowerCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> np.ndarray: """simple docstring""" _lowerCamelCase : int =get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCamelCase : Union[str, Any] =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] =get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> str: """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" _lowerCamelCase : Union[str, Any] =do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] =size if size is not None else self.size _lowerCamelCase : Any =get_size_dict(lowercase_ , param_name='size' , default_to_square=lowercase_ ) _lowerCamelCase : str =resample if resample is not None else self.resample _lowerCamelCase : List[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] =crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict =get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_ ) _lowerCamelCase : str =do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : List[str] =do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Tuple =image_mean if image_mean is not None else self.image_mean _lowerCamelCase : int =image_std if image_std is not None else self.image_std _lowerCamelCase : Tuple =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase : Any =make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase : Tuple =[convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase : Optional[Any] =[to_numpy_array(lowercase_ ) for image in images] if do_resize: _lowerCamelCase : Optional[Any] =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: _lowerCamelCase : Optional[int] =[self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: _lowerCamelCase : Optional[Any] =[self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: _lowerCamelCase : List[Any] =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] _lowerCamelCase : List[str] =[to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _lowerCamelCase : Tuple ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
464
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
420
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __snake_case ( lowercase : int = 1_000_000 , lowercase : int = 10 ): snake_case_ = defaultdict(lowercase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: snake_case_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: snake_case_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
420
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Any = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
257
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class a ( lowerCAmelCase_ ): _snake_case : Union[PIL.Image.Image, np.ndarray] class a ( lowerCAmelCase_ ): def __init__( self : Dict , __lowerCAmelCase : PriorTransformer , __lowerCAmelCase : CLIPVisionModel , __lowerCAmelCase : CLIPImageProcessor , __lowerCAmelCase : HeunDiscreteScheduler , __lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=__lowerCAmelCase , image_encoder=__lowerCAmelCase , image_processor=__lowerCAmelCase , scheduler=__lowerCAmelCase , renderer=__lowerCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): if latents is None: _UpperCAmelCase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCAmelCase = latents.to(__lowerCAmelCase ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[str] ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Any , ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(__lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(__lowerCAmelCase , axis=0 ) if not isinstance(__lowerCAmelCase , torch.Tensor ): _UpperCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__lowerCAmelCase ) _UpperCAmelCase = self.image_encoder(__lowerCAmelCase )["""last_hidden_state"""] _UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Union[str, Any] , __lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 25 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 64 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ): if isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(__lowerCAmelCase , torch.Tensor ): _UpperCAmelCase = image.shape[0] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase = len(__lowerCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCAmelCase )}''' ) _UpperCAmelCase = self._execution_device _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # prior self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.prior.config.num_embeddings _UpperCAmelCase = self.prior.config.embedding_dim _UpperCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase = latents.reshape(latents.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = self.prior( __lowerCAmelCase , timestep=__lowerCAmelCase , proj_embedding=__lowerCAmelCase , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase = self.scheduler.step( __lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCAmelCase ) _UpperCAmelCase = [] for i, latent in enumerate(__lowerCAmelCase ): print() _UpperCAmelCase = self.renderer.decode( latent[None, :] , __lowerCAmelCase , size=__lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__lowerCAmelCase ) _UpperCAmelCase = torch.stack(__lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _UpperCAmelCase = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase = [self.numpy_to_pil(__lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCAmelCase )
277
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1000 ) -> int: '''simple docstring''' UpperCAmelCase : Dict = 1 UpperCAmelCase : Union[str, Any] = 0 for divide_by_number in range(_lowerCAmelCase , digit + 1 ): UpperCAmelCase : list[int] = [] UpperCAmelCase : Optional[int] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowerCAmelCase ): UpperCAmelCase : List[str] = len(_lowerCAmelCase ) UpperCAmelCase : str = divide_by_number else: has_been_divided.append(_lowerCAmelCase ) UpperCAmelCase : Tuple = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' UpperCamelCase__: dict[tuple[int, int, int], int] = {} def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase : int = _calculate(days - 1 , _lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase : Optional[Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase : Tuple = _calculate(days - 1 , _lowerCAmelCase , 0 ) UpperCAmelCase : str = state_late + state_absent + state_ontime UpperCAmelCase : List[Any] = prizestrings return prizestrings def snake_case_ ( _lowerCAmelCase : int = 30 ) -> int: return _calculate(_lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
528
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[int]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Any=4_00 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int=None , ) -> List[str]: UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size def UpperCamelCase ( self : Optional[Any] ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__ ( __snake_case , unittest.TestCase ): '''simple docstring''' __A = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase_ = MobileNetVaImageProcessingTester(self ) @property def UpperCamelCase ( self : List[str] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : List[str] ) -> List[str]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''crop_size''' ) ) def UpperCamelCase ( self : List[Any] ) -> Dict: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase ( self : Optional[int] ) -> Any: pass def UpperCamelCase ( self : str ) -> int: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self : List[str] ) -> List[str]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self : Any ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
121
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[Any] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ['MobileViTFeatureExtractor'] _lowerCamelCase : Union[str, Any] = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor SCREAMING_SNAKE_CASE_:Union[str, Any] = random.Random() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: """simple docstring""" if rng is None: A : str = global_rng A : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=7, lowerCamelCase__=400, lowerCamelCase__=2000, lowerCamelCase__=24, lowerCamelCase__=24, lowerCamelCase__=0.0, lowerCamelCase__=1_6000, lowerCamelCase__=True, lowerCamelCase__=True, ): A : Optional[int] = parent A : List[Any] = batch_size A : str = min_seq_length A : str = max_seq_length A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A : Dict = feature_size A : Any = num_mel_bins A : int = padding_value A : Optional[int] = sampling_rate A : str = return_attention_mask A : int = do_normalize def _lowerCAmelCase ( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCAmelCase ( self, lowerCamelCase__=False, lowerCamelCase__=False ): def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: A : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: A : Tuple = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = SpeechaTextFeatureExtractor if is_speech_available() else None def _lowerCAmelCase ( self ): A : Tuple = SpeechaTextFeatureExtractionTester(self ) def _lowerCAmelCase ( self, lowerCamelCase__ ): self.assertTrue(np.all(np.mean(lowerCamelCase__, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__, axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCAmelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A : List[str] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[Any] = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size A : Any = feature_extractor(lowerCamelCase__, padding=lowerCamelCase__, return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A : List[str] = feature_extractor(speech_inputs[0], return_tensors="""np""" ).input_features A : Tuple = feature_extractor(np_speech_inputs[0], return_tensors="""np""" ).input_features self.assertTrue(np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) # Test batched A : List[Any] = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features A : int = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__, lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A : Optional[Any] = np.asarray(lowerCamelCase__ ) A : List[Any] = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features A : str = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__, lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : Any = ["""longest""", """max_length""", """do_not_pad"""] A : int = [None, 16, None] for max_length, padding in zip(lowerCamelCase__, lowerCamelCase__ ): A : Tuple = feature_extractor( lowerCamelCase__, padding=lowerCamelCase__, max_length=lowerCamelCase__, return_attention_mask=lowerCamelCase__ ) A : Tuple = inputs.input_features A : Union[str, Any] = inputs.attention_mask A : Optional[Any] = [np.sum(lowerCamelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[str] = ["""longest""", """max_length""", """do_not_pad"""] A : Tuple = [None, 16, None] for max_length, padding in zip(lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = feature_extractor( lowerCamelCase__, max_length=lowerCamelCase__, padding=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__ ) A : Optional[int] = inputs.input_features A : List[Any] = inputs.attention_mask A : str = [np.sum(lowerCamelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowerCAmelCase ( self ): A : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : Optional[Any] = feature_extractor( lowerCamelCase__, padding="""max_length""", max_length=4, truncation=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__, ) A : Union[str, Any] = inputs.input_features A : Optional[Any] = inputs.attention_mask A : Dict = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _lowerCAmelCase ( self ): A : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[Any] = feature_extractor( lowerCamelCase__, padding="""longest""", max_length=4, truncation=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__, ) A : List[Any] = inputs.input_features A : Optional[Any] = inputs.attention_mask A : List[str] = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) A : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[str] = feature_extractor( lowerCamelCase__, padding="""longest""", max_length=16, truncation=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__, ) A : List[Any] = inputs.input_features A : List[str] = inputs.attention_mask A : List[str] = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def _lowerCAmelCase ( self ): import torch A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Dict = np.random.rand(100, 32 ).astype(np.floataa ) A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}], return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A : str = feature_extractor.pad([{"""input_features""": inputs}], return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCAmelCase ( self, lowerCamelCase__ ): from datasets import load_dataset A : List[str] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""", """clean""", split="""validation""" ) # automatic decoding with librispeech A : int = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowerCAmelCase ( self ): # fmt: off A : Optional[Any] = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on A : Optional[Any] = self._load_datasamples(1 ) A : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Optional[Any] = feature_extractor(lowerCamelCase__, return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], lowerCamelCase__, atol=1e-4 ) )
711
import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE_:int = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ SCREAMING_SNAKE_CASE_:Union[str, Any] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ SCREAMING_SNAKE_CASE_:Union[str, Any] = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Value("""string""", id="""sequence""" ), """references""": datasets.Value("""string""", id="""sequence""" ), } ), reference_urls=[], ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=False, ): if regexes_to_ignore is not None: for s in regexes_to_ignore: A : Optional[Any] = np.array([re.sub(lowerCamelCase__, """""", lowerCamelCase__ ) for x in predictions] ) A : str = np.array([re.sub(lowerCamelCase__, """""", lowerCamelCase__ ) for x in references] ) else: A : Dict = np.asarray(lowerCamelCase__ ) A : List[Any] = np.asarray(lowerCamelCase__ ) if ignore_case: A : int = np.char.lower(lowerCamelCase__ ) A : Dict = np.char.lower(lowerCamelCase__ ) if ignore_punctuation: A : str = string.punctuation.maketrans("""""", """""", string.punctuation ) A : List[str] = np.char.translate(lowerCamelCase__, table=lowerCamelCase__ ) A : Dict = np.char.translate(lowerCamelCase__, table=lowerCamelCase__ ) if ignore_numbers: A : str = string.digits.maketrans("""""", """""", string.digits ) A : Dict = np.char.translate(lowerCamelCase__, table=lowerCamelCase__ ) A : Tuple = np.char.translate(lowerCamelCase__, table=lowerCamelCase__ ) A : Any = predictions == references return {"exact_match": np.mean(lowerCamelCase__ ) * 100}
520
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } UpperCAmelCase_ : List[str] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } UpperCAmelCase_ : List[Any] = "▁" class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = AlbertTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<unk>" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<pad>" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ) -> List[Any]: _a : Union[str, Any] = ( AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token ) super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) _a : List[Any] = do_lower_case _a : List[str] = remove_space _a : List[Any] = keep_accents _a : str = vocab_file _a : Tuple = False if not self.vocab_file else True def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : List[Any] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _a : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
120
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowercase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase_ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCamelCase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCamelCase = unet.half() _UpperCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="np" , ).images _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase ( self ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type="np" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
147
0
"""simple docstring""" def lowercase (snake_case__ : str ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
529
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py a = 'src/transformers' a = 'docs/source/en' a = '.' def lowercase (snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Tuple ) -> Any: '''simple docstring''' with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase = f.readlines() # Find the start prompt. lowerCAmelCase = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 lowerCAmelCase = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | a = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. a = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') a = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. a = direct_transformers_import(TRANSFORMERS_PATH) def lowercase (snake_case__ : int ) -> Any: '''simple docstring''' lowerCAmelCase = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , snake_case__ ) return [m.group(0 ) for m in matches] def lowercase (snake_case__ : str , snake_case__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase = 2 if text == """✅""" or text == """❌""" else len(snake_case__ ) lowerCAmelCase = (width - text_length) // 2 lowerCAmelCase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase () -> str: '''simple docstring''' lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCAmelCase = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) lowerCAmelCase = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case__ ): lowerCAmelCase = None if attr_name.endswith("""Tokenizer""" ): lowerCAmelCase = slow_tokenizers lowerCAmelCase = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowerCAmelCase = fast_tokenizers lowerCAmelCase = attr_name[:-13] elif _re_tf_models.match(snake_case__ ) is not None: lowerCAmelCase = tf_models lowerCAmelCase = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: lowerCAmelCase = flax_models lowerCAmelCase = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: lowerCAmelCase = pt_models lowerCAmelCase = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_name_to_prefix.values(): lowerCAmelCase = True break # Try again after removing the last word in the name lowerCAmelCase = """""".join(camel_case_split(snake_case__ )[:-1] ) # Let's build that table! lowerCAmelCase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowerCAmelCase = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCAmelCase = [len(snake_case__ ) + 2 for c in columns] lowerCAmelCase = max([len(snake_case__ ) for name in model_names] ) + 2 # Build the table per se lowerCAmelCase = """|""" + """|""".join([_center_text(snake_case__ , snake_case__ ) for c, w in zip(snake_case__ , snake_case__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowerCAmelCase = {True: """✅""", False: """❌"""} for name in model_names: lowerCAmelCase = model_name_to_prefix[name] lowerCAmelCase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case__ , snake_case__ ) for l, w in zip(snake_case__ , snake_case__ )] ) + "|\n" return table def lowercase (snake_case__ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = _find_text_in_file( filename=os.path.join(snake_case__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowerCAmelCase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a = parser.parse_args() check_model_table(args.fix_and_overwrite)
529
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __SCREAMING_SNAKE_CASE = { 'google/pegasus-xsum': 512, } class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PegasusTokenizer UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :Any , _lowerCamelCase :Union[str, Any]=None , _lowerCamelCase :Optional[int]=None , _lowerCamelCase :Optional[Any]="<pad>" , _lowerCamelCase :Dict="</s>" , _lowerCamelCase :List[str]="<unk>" , _lowerCamelCase :Any="<mask_2>" , _lowerCamelCase :Optional[Any]="<mask_1>" , _lowerCamelCase :str=None , _lowerCamelCase :List[Any]=103 , **_lowerCamelCase :List[str] , ): '''simple docstring''' UpperCamelCase_ : str =offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_lowerCamelCase )}, but is''' f''' {type(_lowerCamelCase )}''' ) UpperCamelCase_ : List[Any] =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ : Any =additional_special_tokens_extended else: UpperCamelCase_ : List[str] =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , pad_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_ : Dict =vocab_file UpperCamelCase_ : List[Any] =False if not self.vocab_file else True def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :Optional[int] ): '''simple docstring''' UpperCamelCase_ : List[Any] =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase_ ( self :Dict , _lowerCamelCase :List , _lowerCamelCase :Optional[List] = None , _lowerCamelCase :bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :Dict , _lowerCamelCase :Tuple=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ : Optional[Any] =os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
357
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A_ ( __lowercase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def A_ ( __lowercase ): # word like '180' or '身高' or '神' for char in word: UpperCamelCase_ : Union[str, Any] =ord(__lowercase ) if not _is_chinese_char(__lowercase ): return 0 return 1 def A_ ( __lowercase ): UpperCamelCase_ : List[str] =set() for token in tokens: UpperCamelCase_ : Optional[int] =len(__lowercase ) > 1 and is_chinese(__lowercase ) if chinese_word: word_set.add(__lowercase ) UpperCamelCase_ : Tuple =list(__lowercase ) return word_list def A_ ( __lowercase , __lowercase ): if not chinese_word_set: return bert_tokens UpperCamelCase_ : List[str] =max([len(__lowercase ) for w in chinese_word_set] ) UpperCamelCase_ : Optional[Any] =bert_tokens UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =0, len(__lowercase ) while start < end: UpperCamelCase_ : str =True if is_chinese(bert_word[start] ): UpperCamelCase_ : Optional[int] =min(end - start , __lowercase ) for i in range(__lowercase , 1 , -1 ): UpperCamelCase_ : Tuple =''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase_ : Tuple ='##' + bert_word[j] UpperCamelCase_ : int =start + i UpperCamelCase_ : Dict =False break if single_word: start += 1 return bert_word def A_ ( __lowercase , __lowercase , __lowercase ): UpperCamelCase_ : Tuple =[] for i in range(0 , len(__lowercase ) , 1_00 ): UpperCamelCase_ : Union[str, Any] =ltp_tokenizer.seg(lines[i : i + 1_00] )[0] UpperCamelCase_ : int =[get_chinese_word(__lowercase ) for r in res] ltp_res.extend(__lowercase ) assert len(__lowercase ) == len(__lowercase ) UpperCamelCase_ : Dict =[] for i in range(0 , len(__lowercase ) , 1_00 ): UpperCamelCase_ : int =bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowercase , truncation=__lowercase , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(__lowercase ) == len(__lowercase ) UpperCamelCase_ : Dict =[] for input_ids, chinese_word in zip(__lowercase , __lowercase ): UpperCamelCase_ : List[str] =[] for id in input_ids: UpperCamelCase_ : Union[str, Any] =bert_tokenizer._convert_id_to_token(__lowercase ) input_tokens.append(__lowercase ) UpperCamelCase_ : Optional[int] =add_sub_symbol(__lowercase , __lowercase ) UpperCamelCase_ : Dict =[] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowercase ): if token[:2] == "##": UpperCamelCase_ : Optional[int] =token[2:] # save chinese tokens' pos if len(__lowercase ) == 1 and _is_chinese_char(ord(__lowercase ) ): ref_id.append(__lowercase ) ref_ids.append(__lowercase ) assert len(__lowercase ) == len(__lowercase ) return ref_ids def A_ ( __lowercase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCamelCase_ : Tuple =f.readlines() UpperCamelCase_ : Optional[int] =[line.strip() for line in data if len(__lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase_ : Optional[Any] =LTP(args.ltp ) # faster in GPU device UpperCamelCase_ : Dict =BertTokenizer.from_pretrained(args.bert ) UpperCamelCase_ : int =prepare_ref(__lowercase , __lowercase , __lowercase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCamelCase_ : Tuple =[json.dumps(__lowercase ) + '\n' for ref in ref_ids] f.writelines(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
357
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase__ ( unittest.TestCase , _UpperCAmelCase ): def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = load_tool('text-to-speech' ) self.tool.setup() def A_ ( self : Tuple ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.tool('hey' ) SCREAMING_SNAKE_CASE__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def A_ ( self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.tool('hey' ) SCREAMING_SNAKE_CASE__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
400
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=8 ): __lowercase : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowercase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase_ ( snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowercase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if latents is None: __lowercase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowercase : Optional[Any] = latents.to(UpperCamelCase_ ) __lowercase : Optional[Any] = latents * scheduler.init_noise_sigma return latents def _lowerCamelCase ( self , UpperCamelCase_=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowercase : Tuple = torch.device(F"""cuda:{gpu_id}""" ) __lowercase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_=0 ) -> Any: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __lowercase : str = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: __lowercase ,__lowercase : Any = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowercase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self ) -> List[Any]: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 5_12 , UpperCamelCase_ = 5_12 , UpperCamelCase_ = 1_00 , UpperCamelCase_ = 4.0 , UpperCamelCase_ = 1 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "pil" , UpperCamelCase_ = True , ) -> Union[str, Any]: __lowercase : Optional[int] = self._execution_device __lowercase : int = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Tuple = torch.cat(UpperCamelCase_ , dim=0 ) __lowercase : List[str] = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Any = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: __lowercase : Any = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowercase : List[str] = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowercase : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowercase : Dict = self.scheduler.timesteps __lowercase : List[Any] = self.unet.config.in_channels __lowercase ,__lowercase : Any = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowercase : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowercase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase : List[Any] = {'''image_embeds''': image_embeds} __lowercase : Dict = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowercase ,__lowercase : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase ,__lowercase : Optional[int] = noise_pred.chunk(2 ) __lowercase ,__lowercase : int = variance_pred.chunk(2 ) __lowercase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase ,__lowercase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase : int = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowercase : Dict = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __lowercase : int = image * 0.5 + 0.5 __lowercase : int = image.clamp(0 , 1 ) __lowercase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase : Optional[Any] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
76
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''albert''' def __init__( self , __lowerCAmelCase=30000 , __lowerCAmelCase=128 , __lowerCAmelCase=4096 , __lowerCAmelCase=12 , __lowerCAmelCase=1 , __lowerCAmelCase=64 , __lowerCAmelCase=16384 , __lowerCAmelCase=1 , __lowerCAmelCase="gelu_new" , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-1_2 , __lowerCAmelCase=0.1 , __lowerCAmelCase="absolute" , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = vocab_size lowerCAmelCase = embedding_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_hidden_groups lowerCAmelCase = num_attention_heads lowerCAmelCase = inner_group_num lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = position_embedding_type class a__( lowerCAmelCase__ ): '''simple docstring''' @property def a_ ( self): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
370
0
import math import flax.linen as nn import jax.numpy as jnp def A ( snake_case :str , snake_case :Optional[Any] , snake_case :Optional[int] = 1 , snake_case :Union[str, Any] = 1 , snake_case :Union[str, Any] = 1.0e4 , snake_case :List[str] = False , snake_case :int = 1.0 , ) -> Tuple: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even' __UpperCamelCase = float(embedding_dim // 2 ) __UpperCamelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __UpperCamelCase = min_timescale * jnp.exp(jnp.arange(A_ , dtype=jnp.floataa ) * -log_timescale_increment ) __UpperCamelCase = jnp.expand_dims(A_ , 1 ) * jnp.expand_dims(A_ , 0 ) # scale embeddings __UpperCamelCase = scale * emb if flip_sin_to_cos: __UpperCamelCase = jnp.concatenate([jnp.cos(A_ ), jnp.sin(A_ )] , axis=1 ) else: __UpperCamelCase = jnp.concatenate([jnp.sin(A_ ), jnp.cos(A_ )] , axis=1 ) __UpperCamelCase = jnp.reshape(A_ , [jnp.shape(A_ )[0], embedding_dim] ) return signal class __lowerCAmelCase ( nn.Module ): lowercase = 32 lowercase = jnp.floataa @nn.compact def __call__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(UpperCamelCase__ ) __UpperCamelCase = nn.silu(UpperCamelCase__ ) __UpperCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(UpperCamelCase__ ) return temb class __lowerCAmelCase ( nn.Module ): lowercase = 32 lowercase = False lowercase = 1 @nn.compact def __call__( self , __UpperCAmelCase ): '''simple docstring''' return get_sinusoidal_embeddings( UpperCamelCase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : List[Any] = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
0
from __future__ import annotations def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = list(range(len(lowercase__ ) ) ) __lowerCAmelCase : int = [v / w for v, w in zip(lowercase__ , lowercase__ )] index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ ) __lowerCAmelCase : float = 0 __lowerCAmelCase : list[float] = [0] * len(lowercase__ ) for i in index: if weight[i] <= capacity: __lowerCAmelCase : str = 1 max_value += value[i] capacity -= weight[i] else: __lowerCAmelCase : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
492
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( lowercase__ , lowercase__ , lowercase__=0 ): # Format the message. if name is None: __lowerCAmelCase : Any = None else: __lowerCAmelCase : Union[str, Any] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(5_0 - spaces ) + '''s}''' __lowerCAmelCase : Dict = fmt.format(lowercase__ ) # Print and recurse (if needed). if isinstance(lowercase__ , lowercase__ ): if msg is not None: print(lowercase__ ) for k in val.keys(): recursive_print(lowercase__ , val[k] , spaces + 2 ) elif isinstance(lowercase__ , torch.Tensor ): print(lowercase__ , ''':''' , val.size() ) else: print(lowercase__ , ''':''' , lowercase__ ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. __lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __lowerCAmelCase : Tuple = (num_heads, hidden_size, num_splits) + input_shape[1:] __lowerCAmelCase : int = param.view(*lowercase__ ) __lowerCAmelCase : int = param.transpose(0 , 2 ) __lowerCAmelCase : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __lowerCAmelCase : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] __lowerCAmelCase : str = param.view(*lowercase__ ) __lowerCAmelCase : List[str] = param.transpose(0 , 1 ).contiguous() __lowerCAmelCase : List[str] = param.view(*lowercase__ ) return param def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): # The converted output model. __lowerCAmelCase : Any = {} # old versions did not store training args __lowerCAmelCase : Optional[int] = input_state_dict.get('''args''' , lowercase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __lowerCAmelCase : List[str] = ds_args.padded_vocab_size __lowerCAmelCase : List[str] = ds_args.max_position_embeddings __lowerCAmelCase : Optional[int] = ds_args.hidden_size __lowerCAmelCase : Tuple = ds_args.num_layers __lowerCAmelCase : int = ds_args.num_attention_heads __lowerCAmelCase : Union[str, Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __lowerCAmelCase : Union[str, Any] = config.n_head # The hidden_size per head. __lowerCAmelCase : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __lowerCAmelCase : Union[str, Any] = input_state_dict['''checkpoint_version'''] else: __lowerCAmelCase : Optional[Any] = 0.0 # The model. __lowerCAmelCase : int = input_state_dict['''model'''] # The language model. __lowerCAmelCase : str = model['''language_model'''] # The embeddings. __lowerCAmelCase : Optional[Any] = lm['''embedding'''] # The word embeddings. __lowerCAmelCase : Tuple = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. __lowerCAmelCase : Dict = word_embeddings[: config.vocab_size, :] __lowerCAmelCase : int = word_embeddings # The position embeddings. __lowerCAmelCase : Optional[Any] = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __lowerCAmelCase : Dict = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. __lowerCAmelCase : Any = pos_embeddings # The transformer. __lowerCAmelCase : Dict = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. __lowerCAmelCase : Any = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. __lowerCAmelCase : Optional[Any] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. __lowerCAmelCase : str = layer_re.match(lowercase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. __lowerCAmelCase : Tuple = int(m.group(1 ) ) # The name of the operation. __lowerCAmelCase : Dict = m.group(2 ) # Is it a weight or a bias? __lowerCAmelCase : Optional[Any] = m.group(3 ) # The name of the layer. __lowerCAmelCase : Dict = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): __lowerCAmelCase : List[Any] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' __lowerCAmelCase : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __lowerCAmelCase : List[str] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowercase__ , lowercase__ ) __lowerCAmelCase : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. __lowerCAmelCase : str = torch.tensor(-1E4 , dtype=torch.floataa ) __lowerCAmelCase : str = masked_bias __lowerCAmelCase : Tuple = fix_query_key_value_ordering(lowercase__ , lowercase__ , 3 , lowercase__ , lowercase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __lowerCAmelCase : int = out_val.transpose(0 , 1 ).contiguous() # Store. __lowerCAmelCase : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __lowerCAmelCase : List[str] = fix_query_key_value_ordering(lowercase__ , lowercase__ , 3 , lowercase__ , lowercase__ ) # Store. No change of shape. __lowerCAmelCase : int = out_val # Transpose the weights. elif weight_or_bias == "weight": __lowerCAmelCase : List[Any] = megatron_to_transformers[op_name] __lowerCAmelCase : Optional[int] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __lowerCAmelCase : Optional[int] = megatron_to_transformers[op_name] __lowerCAmelCase : Any = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __lowerCAmelCase : str = transformer['''final_layernorm.weight'''] __lowerCAmelCase : List[Any] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. __lowerCAmelCase : List[Any] = word_embeddings # It should be done! return output_state_dict def _lowercase ( ): # Create the argument parser. __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=lowercase__ , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=lowercase__ , help='''An optional config json file describing the pre-trained model.''' , ) __lowerCAmelCase : Optional[int] = parser.parse_args() # Extract the basename. __lowerCAmelCase : Union[str, Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: __lowerCAmelCase : Union[str, Any] = torch.load(lowercase__ , map_location='''cpu''' ) else: __lowerCAmelCase : Optional[int] = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) __lowerCAmelCase : int = input_state_dict.get('''args''' , lowercase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __lowerCAmelCase : List[Any] = '''gelu_fast''' elif ds_args.openai_gelu: __lowerCAmelCase : Union[str, Any] = '''gelu_new''' else: __lowerCAmelCase : str = '''gelu''' else: # in the very early days this used to be "gelu_new" __lowerCAmelCase : int = '''gelu_new''' # Spell out all parameters in case the defaults change. __lowerCAmelCase : str = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=lowercase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type='''cls_index''' , summary_use_proj=lowercase__ , summary_activation=lowercase__ , summary_proj_to_labels=lowercase__ , summary_first_dropout=0.1 , scale_attn_weights=lowercase__ , use_cache=lowercase__ , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: __lowerCAmelCase : List[str] = GPTaConfig.from_json_file(args.config_file ) __lowerCAmelCase : List[str] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) __lowerCAmelCase : List[Any] = convert_megatron_checkpoint(lowercase__ , lowercase__ , lowercase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowercase__ , lowercase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __lowerCAmelCase : Any = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __lowerCAmelCase : Any = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": __lowerCAmelCase : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: __lowerCAmelCase : str = '''gpt2''' __lowerCAmelCase : int = AutoTokenizer.from_pretrained(lowercase__ ) __lowerCAmelCase : Tuple = type(lowercase__ ).__name__ __lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(lowercase__ ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(lowercase__ ) # Store the state_dict to file. __lowerCAmelCase : List[str] = os.path.join(lowercase__ , '''pytorch_model.bin''' ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(lowercase__ , lowercase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
492
1
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } lowerCAmelCase__ : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } lowerCAmelCase__ : Dict = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def a_ ( lowerCamelCase ): UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char UpperCAmelCase__ = set(lowerCamelCase ) return pairs class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str]="<s>" ,lowerCamelCase__ : Optional[int]="</s>" ,lowerCamelCase__ : Any="</s>" ,lowerCamelCase__ : str="<s>" ,lowerCamelCase__ : List[str]="<unk>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,**lowerCamelCase__ : List[Any] ,): super().__init__( bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = merges_file UpperCAmelCase__ = {} UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 self.add_from_file(lowerCamelCase__ ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ ,encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[:-1] UpperCAmelCase__ = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) UpperCAmelCase__ = {} def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : List[str] ): return len(self.encoder ) def __lowerCAmelCase ( self : Any ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Any ): if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(lowerCamelCase__ ) UpperCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase__ = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: UpperCAmelCase__ = min(lowerCamelCase__ ,key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(lowerCamelCase__ ): try: UpperCAmelCase__ = word.index(lowerCamelCase__ ,lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(lowerCamelCase__ ) UpperCAmelCase__ = new_word if len(lowerCamelCase__ ) == 1: break else: UpperCAmelCase__ = get_pairs(lowerCamelCase__ ) UpperCAmelCase__ = '@@ '.join(lowerCamelCase__ ) UpperCAmelCase__ = word[:-4] UpperCAmelCase__ = word return word def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : List[str] ): UpperCAmelCase__ = [] UpperCAmelCase__ = re.findall(R'\S+\n?' ,lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(' ' ) ) ) return split_tokens def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): return self.encoder.get(lowerCamelCase__ ,self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[Any] ): return self.decoder.get(lowerCamelCase__ ,self.unk_token ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = ' '.join(lowerCamelCase__ ).replace('@@ ' ,'' ).strip() return out_string def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.merges_file ,lowerCamelCase__ ) return out_vocab_file, out_merge_file def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Dict ): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): try: with open(lowerCamelCase__ ,'r' ,encoding='utf-8' ) as fd: self.add_from_file(lowerCamelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCAmelCase__ = f.readlines() for lineTmp in lines: UpperCAmelCase__ = lineTmp.strip() UpperCAmelCase__ = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) UpperCAmelCase__ = line[:idx] UpperCAmelCase__ = len(self.encoder )
632
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase__ : Dict = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def a_ ( ): UpperCAmelCase__ = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase__ = get_sagemaker_input() else: UpperCAmelCase__ = get_cluster_input() return config def a_ ( lowerCamelCase=None ): if subparsers is not None: UpperCAmelCase__ = subparsers.add_parser('config' , description=lowerCamelCase ) else: UpperCAmelCase__ = argparse.ArgumentParser('Accelerate config command' , description=lowerCamelCase ) parser.add_argument( '--config_file' , default=lowerCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase ) return parser def a_ ( lowerCamelCase ): UpperCAmelCase__ = get_user_input() if args.config_file is not None: UpperCAmelCase__ = args.config_file else: if not os.path.isdir(lowerCamelCase ): os.makedirs(lowerCamelCase ) UpperCAmelCase__ = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCamelCase ) else: config.to_yaml_file(lowerCamelCase ) print(f'''accelerate configuration saved at {config_file}''' ) def a_ ( ): UpperCAmelCase__ = config_command_parser() UpperCAmelCase__ = parser.parse_args() config_command(lowerCamelCase ) if __name__ == "__main__": main()
632
1
lowerCamelCase_ : Tuple = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) lowerCamelCase_ : Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: UpperCamelCase_: Any = from_type.lower().strip("""s""" ) UpperCamelCase_: int = to_type.lower().strip("""s""" ) UpperCamelCase_: Any = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: str = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase_: Optional[int] = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase_: Dict = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = METRIC_CONVERSION[from_sanitized] UpperCamelCase_: str = METRIC_CONVERSION[to_sanitized] UpperCamelCase_: Tuple = 1 if from_exponent > to_exponent: UpperCamelCase_: Union[str, Any] = from_exponent - to_exponent else: UpperCamelCase_: Dict = -(to_exponent - from_exponent) return value * pow(10 , lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
548
from __future__ import annotations import time lowerCamelCase_ : Union[str, Any] = list[tuple[int, int]] lowerCamelCase_ : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase_ : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : Node | None ): UpperCamelCase_: str = pos_x UpperCamelCase_: List[str] = pos_y UpperCamelCase_: str = (pos_y, pos_x) UpperCamelCase_: Any = goal_x UpperCamelCase_: Optional[int] = goal_y UpperCamelCase_: Union[str, Any] = parent class _UpperCamelCase : '''simple docstring''' def __init__( self : str , snake_case_ : tuple[int, int] , snake_case_ : tuple[int, int] ): UpperCamelCase_: Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , snake_case_ ) UpperCamelCase_: List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , snake_case_ ) UpperCamelCase_: Any = [self.start] UpperCamelCase_: Dict = False def lowerCAmelCase__ ( self : str ): while self.node_queue: UpperCamelCase_: int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase_: List[str] = True return self.retrace_path(snake_case_ ) UpperCamelCase_: List[str] = self.get_successors(snake_case_ ) for node in successors: self.node_queue.append(snake_case_ ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase__ ( self : Dict , snake_case_ : Node ): UpperCamelCase_: int = [] for action in delta: UpperCamelCase_: Union[str, Any] = parent.pos_x + action[1] UpperCamelCase_: str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , snake_case_ ) ) return successors def lowerCAmelCase__ ( self : int , snake_case_ : Node | None ): UpperCamelCase_: int = node UpperCamelCase_: Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase_: List[Any] = current_node.parent path.reverse() return path class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Tuple = BreadthFirstSearch(snake_case_ , snake_case_ ) UpperCamelCase_: Dict = BreadthFirstSearch(snake_case_ , snake_case_ ) UpperCamelCase_: int = False def lowerCAmelCase__ ( self : int ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase_: List[Any] = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase_: Optional[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase_: List[Any] = True return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) UpperCamelCase_: Optional[Any] = current_bwd_node UpperCamelCase_: List[Any] = current_fwd_node UpperCamelCase_: List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(snake_case_ ), self.bwd_bfs: self.bwd_bfs.get_successors(snake_case_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(snake_case_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase__ ( self : List[str] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: List[str] = self.fwd_bfs.retrace_path(snake_case_ ) UpperCamelCase_: Tuple = self.bwd_bfs.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase_: List[str] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase_ : Tuple = (0, 0) lowerCamelCase_ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase_ : Optional[int] = time.time() lowerCamelCase_ : Tuple = BreadthFirstSearch(init, goal) lowerCamelCase_ : List[str] = bfs.search() lowerCamelCase_ : Optional[int] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowerCamelCase_ : Optional[int] = time.time() lowerCamelCase_ : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase_ : str = bd_bfs.search() lowerCamelCase_ : Tuple = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
548
1
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BarthezTokenizer SCREAMING_SNAKE_CASE = BarthezTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" super().setUp() __lowerCAmelCase : List[Any] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = tokenizer def _SCREAMING_SNAKE_CASE ( self: str) -> Tuple: """simple docstring""" __lowerCAmelCase : int = "<pad>" __lowerCAmelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(vocab_keys[-1] , "<mask>") self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 10_1122) def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_1122) @require_torch def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" __lowerCAmelCase : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] __lowerCAmelCase : Optional[Any] = [0, 57, 3018, 7_0307, 91, 2] __lowerCAmelCase : List[Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE) , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) __lowerCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = self.get_rust_tokenizer() __lowerCAmelCase : List[str] = "I was born in 92000, and this is falsé." __lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.get_rust_tokenizer() __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = {"input_ids": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowerCAmelCase : Any = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=_SCREAMING_SNAKE_CASE , )
615
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowercase ( __snake_case ,__snake_case ) -> Dict: assert isinstance(__snake_case ,__snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: __lowerCAmelCase : Dict = tmp_path / "cache" __lowerCAmelCase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase : Optional[Any] = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ,keep_in_memory=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> str: __lowerCAmelCase : Tuple = tmp_path / "cache" __lowerCAmelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : List[Any] = features.copy() if features else default_expected_features __lowerCAmelCase : Dict = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase : Optional[int] = ParquetDatasetReader(__snake_case ,features=__snake_case ,cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: __lowerCAmelCase : List[str] = tmp_path / "cache" __lowerCAmelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : List[Any] = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ,split=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" ,[str, list] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: if issubclass(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = parquet_path elif issubclass(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = [parquet_path] __lowerCAmelCase : str = tmp_path / "cache" __lowerCAmelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : Tuple = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) def _lowercase ( __snake_case ,__snake_case ,__snake_case=("train",) ) -> int: assert isinstance(__snake_case ,__snake_case ) for split in splits: __lowerCAmelCase : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> str: __lowerCAmelCase : Any = tmp_path / "cache" __lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase : str = ParquetDatasetReader( {"train": parquet_path} ,cache_dir=__snake_case ,keep_in_memory=__snake_case ).read() _check_parquet_datasetdict(__snake_case ,__snake_case ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: __lowerCAmelCase : List[Any] = tmp_path / "cache" __lowerCAmelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : str = features.copy() if features else default_expected_features __lowerCAmelCase : str = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase : str = ParquetDatasetReader({"train": parquet_path} ,features=__snake_case ,cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case ,__snake_case ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> str: if split: __lowerCAmelCase : Optional[int] = {split: parquet_path} else: __lowerCAmelCase : str = "train" __lowerCAmelCase : Optional[Any] = {"train": parquet_path, "test": parquet_path} __lowerCAmelCase : Tuple = tmp_path / "cache" __lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : Union[str, Any] = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case ,__snake_case ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowercase ( __snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : int = ParquetDatasetWriter(__snake_case ,tmp_path / "foo.parquet" ) assert writer.write() > 0 __lowerCAmelCase : str = pq.ParquetFile(tmp_path / "foo.parquet" ) __lowerCAmelCase : int = pf.read() assert dataset.data.table == output_table def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : int = str(shared_datadir / "test_image_rgb.jpg" ) __lowerCAmelCase : Any = {"image": [image_path]} __lowerCAmelCase : List[Any] = Features({"image": Image()} ) __lowerCAmelCase : Tuple = Dataset.from_dict(__snake_case ,features=__snake_case ) __lowerCAmelCase : Dict = ParquetDatasetWriter(__snake_case ,tmp_path / "foo.parquet" ) assert writer.write() > 0 __lowerCAmelCase : List[Any] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features __lowerCAmelCase : List[Any] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) ,streaming=__snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" ,[ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def _lowercase ( __snake_case ,__snake_case ) -> List[Any]: assert get_writer_batch_size(__snake_case ) == expected
615
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger("""transformers.models.speecht5""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): hf_model.apply_weight_norm() UpperCAmelCase_ = checkpoint['''input_conv.weight_g'''] UpperCAmelCase_ = checkpoint['''input_conv.weight_v'''] UpperCAmelCase_ = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): UpperCAmelCase_ = checkpoint[f"""upsamples.{i}.1.weight_g"""] UpperCAmelCase_ = checkpoint[f"""upsamples.{i}.1.weight_v"""] UpperCAmelCase_ = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase_ = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase_ = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase_ = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase_ = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase_ = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase_ = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase_ = checkpoint['''output_conv.1.weight_g'''] UpperCAmelCase_ = checkpoint['''output_conv.1.weight_v'''] UpperCAmelCase_ = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , ): if config_path is not None: UpperCAmelCase_ = SpeechTaHifiGanConfig.from_pretrained(_A ) else: UpperCAmelCase_ = SpeechTaHifiGanConfig() UpperCAmelCase_ = SpeechTaHifiGan(_A ) UpperCAmelCase_ = torch.load(_A ) load_weights(orig_checkpoint["model"]["generator"] , _A , _A ) UpperCAmelCase_ = np.load(_A ) UpperCAmelCase_ = stats[0].reshape(-1 ) UpperCAmelCase_ = stats[1].reshape(-1 ) UpperCAmelCase_ = torch.from_numpy(_A ).float() UpperCAmelCase_ = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_A ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
82
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : str = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
614
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers SCREAMING_SNAKE_CASE__ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def lowercase__ ( )-> Union[str, Any]: UpperCamelCase = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) UpperCamelCase = os.path.join(__UpperCamelCase , """words.txt""" ) UpperCamelCase = "" with open(__UpperCamelCase ) as f: UpperCamelCase = f.readline() UpperCamelCase = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCamelCase = [ word for word in [sum(ord(__UpperCamelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCamelCase ) if __name__ == "__main__": print(solution())
718
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) UpperCamelCase = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : str =MvpTokenizer __A : Optional[Any] =MvpTokenizerFast __A : Optional[int] =True __A : int =filter_roberta_detectors def UpperCamelCase__ ( self ): super().setUp() UpperCAmelCase_ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ : Tuple = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) UpperCAmelCase_ : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ : Tuple = {"unk_token": "<unk>"} UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(_snake_case ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(_snake_case ) ) def UpperCamelCase__ ( self ,**_snake_case ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self ): return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def UpperCamelCase__ ( self ): return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ : Union[str, Any] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Optional[int] = tokenizer(_snake_case ,max_length=len(_snake_case ) ,padding=_snake_case ,return_tensors="pt" ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) UpperCAmelCase_ : int = batch.input_ids.tolist()[0] self.assertListEqual(_snake_case ,_snake_case ) # Test that special tokens are reset @require_torch def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : int = tokenizer(_snake_case ,padding=_snake_case ,return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" ,_snake_case ) self.assertIn("attention_mask" ,_snake_case ) self.assertNotIn("labels" ,_snake_case ) self.assertNotIn("decoder_attention_mask" ,_snake_case ) @require_torch def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Optional[Any] = tokenizer(text_target=_snake_case ,max_length=32 ,padding="max_length" ,return_tensors="pt" ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) @require_torch def UpperCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Tuple = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] ,padding=_snake_case ,truncation=_snake_case ,return_tensors="pt" ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(batch.input_ids.shape ,(2, 10_24) ) @require_torch def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = ["A long paragraph for summarization."] UpperCAmelCase_ : Union[str, Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Union[str, Any] = tokenizer(_snake_case ,text_target=_snake_case ,return_tensors="pt" ) UpperCAmelCase_ : Tuple = inputs["input_ids"] UpperCAmelCase_ : Any = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) UpperCAmelCase_ : int = self.tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) UpperCAmelCase_ : str = "A, <mask> AllenNLP sentence." UpperCAmelCase_ : List[str] = tokenizer_r.encode_plus(_snake_case ,add_special_tokens=_snake_case ,return_token_type_ids=_snake_case ) UpperCAmelCase_ : Union[str, Any] = tokenizer_p.encode_plus(_snake_case ,add_special_tokens=_snake_case ,return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) ,sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) ,sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) ,) UpperCAmelCase_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase_ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _snake_case ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _snake_case ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
71
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCamelCase = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor A__ : List[str] = logging.get_logger(__name__) class lowercase__ ( lowerCamelCase__ ): def __init__( self : Dict , *snake_case__ : str , **snake_case__ : str ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
702
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A__ : str = logging.get_logger(__name__) class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[Any] = "AutoTokenizer" _UpperCAmelCase :Any = ["tokenizer"] _UpperCAmelCase :Optional[Any] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=None ): super().__init__(snake_case__ ) lowerCamelCase_ : List[Any] =speaker_embeddings @classmethod def UpperCAmelCase__ ( cls : Optional[int] , snake_case__ : Any , snake_case__ : str="speaker_embeddings_path.json" , **snake_case__ : Union[str, Any] ): if speaker_embeddings_dict_path is not None: lowerCamelCase_ : str =get_file_from_repo( snake_case__ , snake_case__ , subfolder=kwargs.pop("subfolder" , snake_case__ ) , cache_dir=kwargs.pop("cache_dir" , snake_case__ ) , force_download=kwargs.pop("force_download" , snake_case__ ) , proxies=kwargs.pop("proxies" , snake_case__ ) , resume_download=kwargs.pop("resume_download" , snake_case__ ) , local_files_only=kwargs.pop("local_files_only" , snake_case__ ) , use_auth_token=kwargs.pop("use_auth_token" , snake_case__ ) , revision=kwargs.pop("revision" , snake_case__ ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(snake_case__ , snake_case__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) lowerCamelCase_ : Any =None else: with open(snake_case__ ) as speaker_embeddings_json: lowerCamelCase_ : List[str] =json.load(snake_case__ ) else: lowerCamelCase_ : List[Any] =None lowerCamelCase_ : Optional[Any] =AutoTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(tokenizer=snake_case__ , speaker_embeddings=snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]="speaker_embeddings_path.json" , snake_case__ : Tuple="speaker_embeddings" , snake_case__ : bool = False , **snake_case__ : str , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(snake_case__ , snake_case__ , "v2" ) , exist_ok=snake_case__ ) lowerCamelCase_ : Tuple ={} lowerCamelCase_ : Dict =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCamelCase_ : List[str] =self._load_voice_preset(snake_case__ ) lowerCamelCase_ : Union[str, Any] ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , snake_case__ , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=snake_case__ , ) lowerCamelCase_ : List[str] =os.path.join(snake_case__ , F"""{prompt_key}_{key}.npy""" ) lowerCamelCase_ : Tuple =tmp_dict with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as fp: json.dump(snake_case__ , snake_case__ ) super().save_pretrained(snake_case__ , snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : str = None , **snake_case__ : Dict ): lowerCamelCase_ : int =self.speaker_embeddings[voice_preset] lowerCamelCase_ : Any ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) lowerCamelCase_ : Dict =get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , snake_case__ ) , cache_dir=kwargs.pop("cache_dir" , snake_case__ ) , force_download=kwargs.pop("force_download" , snake_case__ ) , proxies=kwargs.pop("proxies" , snake_case__ ) , resume_download=kwargs.pop("resume_download" , snake_case__ ) , local_files_only=kwargs.pop("local_files_only" , snake_case__ ) , use_auth_token=kwargs.pop("use_auth_token" , snake_case__ ) , revision=kwargs.pop("revision" , snake_case__ ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) lowerCamelCase_ : str =np.load(snake_case__ ) return voice_preset_dict def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : int , snake_case__ : List[str]=None , snake_case__ : int=None , snake_case__ : int="pt" , snake_case__ : Optional[Any]=256 , snake_case__ : int=False , snake_case__ : List[str]=True , snake_case__ : List[Any]=False , **snake_case__ : Any , ): if voice_preset is not None and not isinstance(snake_case__ , snake_case__ ): if ( isinstance(snake_case__ , snake_case__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCamelCase_ : Union[str, Any] =self._load_voice_preset(snake_case__ ) else: if isinstance(snake_case__ , snake_case__ ) and not voice_preset.endswith(".npz" ): lowerCamelCase_ : str =voice_preset + ".npz" lowerCamelCase_ : Optional[int] =np.load(snake_case__ ) if voice_preset is not None: self._validate_voice_preset_dict(snake_case__ , **snake_case__ ) lowerCamelCase_ : List[Any] =BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) lowerCamelCase_ : List[str] =self.tokenizer( snake_case__ , return_tensors=snake_case__ , padding="max_length" , max_length=snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) if voice_preset is not None: lowerCamelCase_ : Optional[Any] =voice_preset return encoded_text
244
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """BridgeTowerImageProcessor""" __a = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : str ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Tuple = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel_values + pixel_mask __UpperCAmelCase : Dict = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , do_normalize=UpperCamelCase , do_center_crop=UpperCamelCase , **UpperCamelCase ) encoding.update(UpperCamelCase ) return encoding def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : int ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : str ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer.model_input_names __UpperCAmelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
139
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase__ ( A , A ): """simple docstring""" __a = 1 @register_to_config def __init__( self : Dict , UpperCamelCase : int = 1_000 , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(UpperCamelCase ) # standard deviation of the initial noise distribution __UpperCAmelCase : str = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCAmelCase : int = 4 # running values __UpperCAmelCase : Union[str, Any] = [] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = num_inference_steps __UpperCAmelCase : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCAmelCase : Union[str, Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCAmelCase : Dict = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCAmelCase : int = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCAmelCase : Union[str, Any] = (1.0 - self.betas**2) ** 0.5 __UpperCAmelCase : Optional[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCAmelCase : Any = timesteps.to(UpperCamelCase ) __UpperCAmelCase : List[Any] = [] def lowerCamelCase__ ( self : Dict , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __UpperCAmelCase : List[Any] = (self.timesteps == timestep).nonzero().item() __UpperCAmelCase : List[str] = timestep_index + 1 __UpperCAmelCase : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase ) if len(self.ets ) == 1: __UpperCAmelCase : List[Any] = self.ets[-1] elif len(self.ets ) == 2: __UpperCAmelCase : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCAmelCase : Tuple = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCAmelCase : int = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCAmelCase : int = self._get_prev_sample(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : torch.FloatTensor , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): '''simple docstring''' return sample def lowerCamelCase__ ( self : Dict , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.alphas[timestep_index] __UpperCAmelCase : List[str] = self.betas[timestep_index] __UpperCAmelCase : List[str] = self.alphas[prev_timestep_index] __UpperCAmelCase : Tuple = self.betas[prev_timestep_index] __UpperCAmelCase : Dict = (sample - sigma * ets) / max(UpperCamelCase , 1e-8 ) __UpperCAmelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ): '''simple docstring''' return self.config.num_train_timesteps
139
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : str = ["""pixel_values"""] def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: super().__init__(**__lowerCAmelCase ) lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(__lowerCAmelCase ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = do_rescale lowerCamelCase_ = do_normalize lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = rescale_factor lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> np.ndarray: lowerCamelCase_ = get_size_dict(__lowerCAmelCase ) if "shortest_edge" in size: lowerCamelCase_ = get_resize_output_image_size(__lowerCAmelCase , size=size['shortest_edge'] , default_to_square=__lowerCAmelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowerCamelCase_ = (size['height'], size['width']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> np.ndarray: lowerCamelCase_ = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__lowerCAmelCase , size=(size['height'], size['width']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : int ) -> np.ndarray: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> np.ndarray: return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(__lowerCAmelCase , param_name='crop_size' , default_to_square=__lowerCAmelCase ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(__lowerCAmelCase ) if not is_batched(__lowerCAmelCase ): lowerCamelCase_ = [images] if not valid_images(__lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
710
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: while a != 0: lowerCamelCase_ , lowerCamelCase_ = b % a, a return b def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: if gcd(_lowerCamelCase , _lowerCamelCase ) != 1: lowerCamelCase_ = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1, 0, a lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0, 1, m while va != 0: lowerCamelCase_ = ua // va lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
137
0
"""simple docstring""" def _a ( _snake_case = 100_0000 ): """simple docstring""" UpperCAmelCase = set(range(3 , _snake_case , 2 ) ) primes.add(2 ) for p in range(3 , _snake_case , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _snake_case , _snake_case ) ) ) UpperCAmelCase = [float(_snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(_snake_case , limit + 1 , _snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
341
"""simple docstring""" import operator as op def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = lambda _snake_case , _snake_case : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_snake_case )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_snake_case ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_snake_case ) , sep=""" | """ ) else: UpperCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_snake_case ) , sep=""" | """ ) UpperCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_snake_case ) , sep=""" | """ ) stack.append( str(opr[x](int(_snake_case ) , int(_snake_case ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_snake_case ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": _UpperCamelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
341
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : int = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __lowerCAmelCase : int = parser.parse_args() __lowerCAmelCase : Dict = "cpu" __lowerCAmelCase : Any = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __lowerCAmelCase : List[str] = "path-to-your-trained-model" __lowerCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Union[str, Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : str = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : List[Any] = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : int = torch.randn(2, 77, 768) __lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : int = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : Optional[Any] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : Optional[Any] = {"generator": generator} if args.steps is not None: __lowerCAmelCase : int = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
284
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): __lowercase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowercase : Any = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_snake_case ) , torch_builtin(_snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(_snake_case ) , gelu_new(_snake_case ) ) ) def snake_case_ ( self : Dict ): __lowercase : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowercase : List[str] = get_activation('''gelu''' ) __lowercase : Optional[Any] = get_activation('''gelu_10''' ) __lowercase : Tuple = torch_builtin(_snake_case ) __lowercase : List[Any] = geluaa(_snake_case ) __lowercase : Tuple = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case_ ( self : Any ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_snake_case ): get_activation('''bogus''' ) with self.assertRaises(_snake_case ): get_activation(_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = get_activation('''gelu''' ) __lowercase : List[str] = 1 __lowercase : Union[str, Any] = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_snake_case ): __lowercase : Tuple = acta.a
284
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = XGLMTokenizer UpperCamelCase = XGLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ : Optional[Any] =XGLMTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple ="""<pad>""" __magic_name__ : Tuple =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : List[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__snake_case ) , 10_08 ) def A__ ( self :Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Dict =XGLMTokenizer(__snake_case , keep_accents=__snake_case ) __magic_name__ : Any =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __magic_name__ : List[Any] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __magic_name__ : Optional[Any] =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __magic_name__ : Tuple =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def A__ ( self :str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def A__ ( self :int ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__snake_case , f.name ) __magic_name__ : Tuple =XGLMTokenizer(f.name , keep_accents=__snake_case ) __magic_name__ : Optional[Any] =pickle.dumps(__snake_case ) pickle.loads(__snake_case ) def A__ ( self :Dict ): '''simple docstring''' if not self.test_rust_tokenizer: return __magic_name__ : List[str] =self.get_tokenizer() __magic_name__ : Dict =self.get_rust_tokenizer() __magic_name__ : Tuple ="""I was born in 92000, and this is falsé.""" __magic_name__ : List[str] =tokenizer.tokenize(__snake_case ) __magic_name__ : Tuple =rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__ : List[str] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __magic_name__ : Optional[Any] =rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__ : Dict =self.get_rust_tokenizer() __magic_name__ : Dict =tokenizer.encode(__snake_case ) __magic_name__ : List[str] =rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Any ="""Hello World!""" __magic_name__ : List[Any] =[2, 3_12_27, 44_47, 35] self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def A__ ( self :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __magic_name__ : Tuple =[2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def A__ ( self :int ): '''simple docstring''' __magic_name__ : int ={ """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""facebook/xglm-564M""" , padding=__snake_case , )
21
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : Any = 1_6 _lowerCAmelCase : Optional[int] = 3_2 def _A ( snake_case__ : Accelerator , snake_case__ : int = 16 ): snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Tuple = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Tuple = 16 elif accelerator.mixed_precision != "no": snake_case__ : int = 8 else: snake_case__ : List[Any] = None return tokenizer.pad( snake_case__ , padding='''longest''' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case__ : int = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) snake_case__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : Tuple = mocked_dataloaders # noqa: F811 def _A ( snake_case__ : Optional[Any] , snake_case__ : int ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case__ ) == "1": snake_case__ : Any = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case__ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: snake_case__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[str] = config['''lr'''] snake_case__ : List[Any] = int(config['''num_epochs'''] ) snake_case__ : List[Any] = int(config['''seed'''] ) snake_case__ : Union[str, Any] = int(config['''batch_size'''] ) set_seed(snake_case__ ) snake_case__ ,snake_case__ : Tuple = get_dataloaders(snake_case__ , snake_case__ ) snake_case__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case__ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Dict = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : int = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Dict = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler snake_case__ : Dict = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : List[str] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case__ : Union[str, Any] = os.path.split(snake_case__ )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case__ : Tuple = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Optional[Any] = model(**snake_case__ ) snake_case__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case__ : str = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : int = model(**snake_case__ ) snake_case__ : str = outputs.logits.argmax(dim=-1 ) snake_case__ ,snake_case__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) snake_case__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , snake_case__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case__ ), '''epoch''': epoch, } , step=snake_case__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A ( ): snake_case__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
261
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : Dict = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
448
def A__ ( _a : list ): '''simple docstring''' if len(_a ) <= 1: return [tuple(_a )] snake_case__ : Optional[int] =[] def generate(_a : int , _a : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _a ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case__ , snake_case__ : Dict =arr[k - 1], arr[i] else: # k is odd snake_case__ , snake_case__ : int =arr[k - 1], arr[0] generate(k - 1 , _a ) generate(len(_a ) , _a ) return res if __name__ == "__main__": __lowerCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Any = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
448
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase_ ( _lowercase , _lowercase="shi-labs/oneformer_demo" ) -> List[str]: '''simple docstring''' with open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) as f: lowerCamelCase_ : Optional[Any] = json.load(_lowercase ) lowerCamelCase_ : Any = {} lowerCamelCase_ : int = [] lowerCamelCase_ : Union[str, Any] = [] for key, info in class_info.items(): lowerCamelCase_ : List[Any] = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(_lowercase ) ) lowerCamelCase_ : List[Any] = thing_ids lowerCamelCase_ : Any = class_names return metadata class __lowercase ( unittest.TestCase ): def __init__(self , A , A=7 , A=3 , A=3_0 , A=4_0_0 , A=None , A=True , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=1_0 , A=False , A=2_5_5 , A="shi-labs/oneformer_demo" , A="ade20k_panoptic.json" , A=1_0 , ): lowerCamelCase_ : Union[str, Any] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : List[Any] = num_channels lowerCamelCase_ : Tuple = min_resolution lowerCamelCase_ : Tuple = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Tuple = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size lowerCamelCase_ : Union[str, Any] = do_normalize lowerCamelCase_ : Optional[Any] = image_mean lowerCamelCase_ : str = image_std lowerCamelCase_ : int = class_info_file lowerCamelCase_ : Any = prepare_metadata(A , A ) lowerCamelCase_ : List[Any] = num_text lowerCamelCase_ : Tuple = repo_path # for the post_process_functions lowerCamelCase_ : Dict = 2 lowerCamelCase_ : Union[str, Any] = 1_0 lowerCamelCase_ : Optional[Any] = 1_0 lowerCamelCase_ : Optional[Any] = 3 lowerCamelCase_ : List[str] = 4 lowerCamelCase_ : List[Any] = num_labels lowerCamelCase_ : Dict = do_reduce_labels lowerCamelCase_ : Tuple = ignore_index def UpperCAmelCase__ (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase__ (self , A , A=False ): if not batched: lowerCamelCase_ : Any = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase_, lowerCamelCase_ : Tuple = image.size else: lowerCamelCase_, lowerCamelCase_ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase_ : Tuple = self.size['''shortest_edge'''] elif w > h: lowerCamelCase_ : Optional[int] = self.size['''shortest_edge'''] lowerCamelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase_ : Union[str, Any] = self.size['''shortest_edge'''] lowerCamelCase_ : Optional[int] = self.size['''shortest_edge'''] else: lowerCamelCase_ : str = [] for image in image_inputs: lowerCamelCase_, lowerCamelCase_ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Any = max(A , key=lambda A : item[0] )[0] lowerCamelCase_ : Tuple = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width def UpperCAmelCase__ (self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Optional[Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCamelCase : int = image_processing_class def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase__ (self ): return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''ignore_index''' ) ) self.assertTrue(hasattr(A , '''class_info_file''' ) ) self.assertTrue(hasattr(A , '''num_text''' ) ) self.assertTrue(hasattr(A , '''repo_path''' ) ) self.assertTrue(hasattr(A , '''metadata''' ) ) self.assertTrue(hasattr(A , '''do_reduce_labels''' ) ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): # Initialize image_processor lowerCamelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.image_processing_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processing_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Union[str, Any] = image_processor( A , ['''semantic'''] * len(A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processor lowerCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : List[Any] = self.image_processing_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processing_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Any = image_processor( A , ['''semantic'''] * len(A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processor lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : List[Any] = self.image_processing_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.image_processing_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Union[str, Any] = image_processor( A , ['''semantic'''] * len(A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self , A=False , A=False , A="np" ): lowerCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowerCamelCase_ : Union[str, Any] = self.image_processing_tester.num_labels lowerCamelCase_ : List[str] = None lowerCamelCase_ : Tuple = None lowerCamelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=A ) if with_segmentation_maps: lowerCamelCase_ : Union[str, Any] = num_labels if is_instance_map: lowerCamelCase_ : Dict = list(range(A ) ) * 2 lowerCamelCase_ : Tuple = dict(enumerate(A ) ) lowerCamelCase_ : int = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowerCamelCase_ : List[Any] = [Image.fromarray(A ) for annotation in annotations] lowerCamelCase_ : Any = image_processor( A , ['''semantic'''] * len(A ) , A , return_tensors='''pt''' , instance_id_to_semantic_id=A , pad_and_return_pixel_mask=A , ) return inputs def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): def common(A=False , A=None ): lowerCamelCase_ : Optional[Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=A , is_instance_map=A , segmentation_type=A ) lowerCamelCase_ : Tuple = inputs['''mask_labels'''] lowerCamelCase_ : List[str] = inputs['''class_labels'''] lowerCamelCase_ : str = inputs['''pixel_values'''] lowerCamelCase_ : Optional[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(A , A , A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=A ) common(is_instance_map=A , segmentation_type='''pil''' ) common(is_instance_map=A , segmentation_type='''pil''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = np.zeros((2_0, 5_0) ) lowerCamelCase_ : List[str] = 1 lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : List[str] = 1 lowerCamelCase_ : Tuple = binary_mask_to_rle(A ) self.assertEqual(len(A ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowerCamelCase_ : str = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ : List[Any] = fature_extractor.post_process_semantic_segmentation(A ) self.assertEqual(len(A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowerCamelCase_ : List[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowerCamelCase_ : Dict = fature_extractor.post_process_semantic_segmentation(A , target_sizes=A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowerCamelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ : Dict = image_processor.post_process_instance_segmentation(A , threshold=0 ) self.assertTrue(len(A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowerCamelCase_ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ : Tuple = image_processor.post_process_panoptic_segmentation(A , threshold=0 ) self.assertTrue(len(A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
422
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Optional[int] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : List[str] = "luke" def __init__(self , A=5_0_2_6_7 , A=5_0_0_0_0_0 , A=7_6_8 , A=2_5_6 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : List[str] = entity_vocab_size lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : str = entity_emb_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : int = hidden_act lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : Union[str, Any] = use_entity_aware_attention lowerCamelCase_ : Optional[Any] = classifier_dropout
422
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a ( unittest.TestCase ): def __init__( self , a__ ): _lowerCamelCase = parent def snake_case_ ( self ): return {} def SCREAMING_SNAKE_CASE_ ( )-> str: _lowerCamelCase = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _lowerCamelCase = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case_ ( self ): _lowerCamelCase = MarkupLMFeatureExtractionTester(self ) @property def snake_case_ ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case_ ( self ): # Initialize feature_extractor _lowerCamelCase = self.feature_extraction_class() # Test not batched input _lowerCamelCase = get_html_strings()[0] _lowerCamelCase = feature_extractor(a__ ) # fmt: off _lowerCamelCase = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _lowerCamelCase = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , a__ ) self.assertEqual(encoding.xpaths , a__ ) # Test batched _lowerCamelCase = get_html_strings() _lowerCamelCase = feature_extractor(a__ ) # fmt: off _lowerCamelCase = expected_nodes + [['My First Heading', 'My first paragraph.']] _lowerCamelCase = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , a__ ) self.assertEqual(encoding.xpaths , a__ )
222
"""simple docstring""" from manim import * class __a ( lowerCAmelCase__ ): def snake_case_ ( self ): _lowerCamelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCamelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('CPU' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCamelCase = [mem.copy() for i in range(4 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('GPU' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('Model' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCamelCase = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCamelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('Loaded Checkpoint' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCamelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCamelCase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCamelCase = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCamelCase = [] _lowerCamelCase = [] for i, rect in enumerate(a__ ): _lowerCamelCase = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _lowerCamelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
222
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : Tuple = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } lowerCamelCase : str = {"facebook/blenderbot_small-90M": 512} def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char lowerCamelCase_ = set(lowercase ) return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , A_ : Dict , A_ : List[Any] , A_ : List[Any]="__start__" , A_ : Any="__end__" , A_ : Tuple="__unk__" , A_ : str="__null__" , **A_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} @property def a__ ( self : str ) -> int: """simple docstring""" return len(self.encoder ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : str , A_ : str ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = re.sub('([.,!?()])' , r' \1' , A_ ) lowerCamelCase_ = re.sub('(\')' , r' \1 ' , A_ ) lowerCamelCase_ = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: lowerCamelCase_ = token.replace('\n' , ' __newln__' ) lowerCamelCase_ = token.split(' ' ) lowerCamelCase_ = [] for token in tokens: if not len(A_ ): continue lowerCamelCase_ = token.lower() lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) new_word.extend(word[i:j] ) lowerCamelCase_ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = '@@ '.join(A_ ) lowerCamelCase_ = word[:-4] lowerCamelCase_ = word words.append(A_ ) return " ".join(A_ ) def a__ ( self : Tuple , A_ : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def a__ ( self : Tuple , A_ : str ) -> int: """simple docstring""" lowerCamelCase_ = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : int ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def a__ ( self : Optional[Any] , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
70
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : int = "xglm" A__ : List[Any] = ["past_key_values"] A__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self , snake_case_=256008 , snake_case_=2048 , snake_case_=1024 , snake_case_=4096 , snake_case_=24 , snake_case_=16 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> List[str]: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = ffn_dim _UpperCAmelCase = num_layers _UpperCAmelCase = attention_heads _UpperCAmelCase = activation_function _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = init_std _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_cache super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
426
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case_ = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase__ ( snake_case_ : Optional[int] ) -> int: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Union[str, Any]: from transformers.testing_utils import pytest_terminal_summary_main __snake_case = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
388
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : str = 'segformer' def __init__(self : List[Any] , a__ : int=3 , a__ : Optional[Any]=4 , a__ : Any=[2, 2, 2, 2] , a__ : Union[str, Any]=[8, 4, 2, 1] , a__ : str=[32, 64, 160, 256] , a__ : Optional[Any]=[7, 3, 3, 3] , a__ : Tuple=[4, 2, 2, 2] , a__ : Tuple=[1, 2, 5, 8] , a__ : List[Any]=[4, 4, 4, 4] , a__ : Dict="gelu" , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Dict=0.1 , a__ : Any=0.0_2 , a__ : Optional[int]=0.1 , a__ : Tuple=1E-6 , a__ : Any=256 , a__ : Optional[Any]=255 , **a__ : Optional[Any] , ): """simple docstring""" super().__init__(**a__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , a__ , ) __snake_case = num_channels __snake_case = num_encoder_blocks __snake_case = depths __snake_case = sr_ratios __snake_case = hidden_sizes __snake_case = patch_sizes __snake_case = strides __snake_case = mlp_ratios __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = drop_path_rate __snake_case = layer_norm_eps __snake_case = decoder_hidden_size __snake_case = kwargs.get('''reshape_last_stage''' , a__ ) __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = version.parse('1.11' ) @property def a (self : List[str] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a (self : Tuple ): """simple docstring""" return 1E-4 @property def a (self : int ): """simple docstring""" return 12
388
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) UpperCamelCase_: Union[str, Any] = str(bin(__a ) ) binary_number += "0" * shift_amount return binary_number def A__ ( lowerCamelCase , lowerCamelCase ) -> List[str]: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) UpperCamelCase_: int = str(bin(__a ) )[2:] if shift_amount >= len(__a ): return "0b0" UpperCamelCase_: Optional[int] = binary_number[: len(__a ) - shift_amount] return "0b" + shifted_binary_number def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[Any]: if number >= 0: # Get binary representation of positive number UpperCamelCase_: Any = '0' + str(bin(__a ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number UpperCamelCase_: int = len(bin(__a )[3:] ) # Find 2's complement of number UpperCamelCase_: int = bin(abs(__a ) - (1 << binary_number_length) )[3:] UpperCamelCase_: str = ( '1' + '0' * (binary_number_length - len(__a )) + binary_number ) if shift_amount >= len(__a ): return "0b" + binary_number[0] * len(__a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
548
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def UpperCAmelCase_ ( __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = DPTConfig() if "large" in checkpoint_url: _lowerCamelCase : Optional[Any] = 10_24 _lowerCamelCase : List[str] = 40_96 _lowerCamelCase : Union[str, Any] = 24 _lowerCamelCase : Any = 16 _lowerCamelCase : Union[str, Any] = [5, 11, 17, 23] _lowerCamelCase : Optional[int] = [2_56, 5_12, 10_24, 10_24] _lowerCamelCase : List[str] = (1, 3_84, 3_84) if "ade" in checkpoint_url: _lowerCamelCase : Any = True _lowerCamelCase : List[str] = 1_50 _lowerCamelCase : int = 'huggingface/label-files' _lowerCamelCase : Union[str, Any] = 'ade20k-id2label.json' _lowerCamelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type='dataset' ) ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(__a ): v for k, v in idalabel.items()} _lowerCamelCase : int = idalabel _lowerCamelCase : Any = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCAmelCase_ ( __a : Tuple ): '''simple docstring''' _lowerCamelCase : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def UpperCAmelCase_ ( __a : Dict ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : Optional[Any] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCamelCase : Any = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: _lowerCamelCase : str = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCamelCase : int = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCamelCase : Tuple = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCamelCase : Optional[int] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCamelCase : Optional[int] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCamelCase : Dict = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCamelCase : Tuple = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCamelCase : Tuple = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCamelCase : Tuple = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCamelCase : List[Any] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : Union[str, Any] = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: _lowerCamelCase : Optional[Any] = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCamelCase : str = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCamelCase : List[str] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCamelCase : List[Any] = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCamelCase : Optional[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : str = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCamelCase : Any = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCamelCase : Tuple = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCamelCase : str = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCamelCase : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def UpperCAmelCase_ ( __a : Tuple , __a : Any ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) _lowerCamelCase : Dict = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : str = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __a : Optional[int] , __a : int , __a : str , __a : List[str] ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[str] = get_dpt_config(__a ) # load original state_dict from URL _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(__a , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__a ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : str = state_dict.pop(__a ) _lowerCamelCase : str = val # read in qkv matrices read_in_q_k_v(__a , __a ) # load HuggingFace model _lowerCamelCase : List[str] = DPTForSemanticSegmentation(__a ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__a ) model.load_state_dict(__a ) model.eval() # Check outputs on an image _lowerCamelCase : str = 4_80 if 'ade' in checkpoint_url else 3_84 _lowerCamelCase : Optional[Any] = DPTImageProcessor(size=__a ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : str = image_processor(__a , return_tensors='pt' ) # forward pass _lowerCamelCase : Tuple = model(**__a ).logits if 'ade' in checkpoint_url else model(**__a ).predicted_depth # Assert logits _lowerCamelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _lowerCamelCase : List[Any] = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__a ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __a , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __a ) ) Path(__a ).mkdir(exist_ok=__a ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__a , ) image_processor.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__a , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) a_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
437
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase): '''simple docstring''' @property def _A ( self: Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _A ( self: int ): SCREAMING_SNAKE_CASE_ = self.dummy_uncond_unet SCREAMING_SNAKE_CASE_ = ScoreSdeVeScheduler() SCREAMING_SNAKE_CASE_ = ScoreSdeVePipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) sde_ve.to(_lowerCamelCase ) sde_ve.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_lowerCamelCase ).images SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_lowerCamelCase , return_dict=_lowerCamelCase )[ 0 ] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: int ): SCREAMING_SNAKE_CASE_ = '''google/ncsnpp-church-256''' SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = ScoreSdeVeScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = ScoreSdeVePipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) sde_ve.to(_lowerCamelCase ) sde_ve.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_lowerCamelCase ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) SCREAMING_SNAKE_CASE_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
89
def a (_lowerCAmelCase ): if number > 0: raise ValueError('''input must be a negative integer''' ) SCREAMING_SNAKE_CASE_ = len(bin(_lowerCAmelCase )[3:] ) SCREAMING_SNAKE_CASE_ = bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE_ = ( ( '''1''' + '''0''' * (binary_number_length - len(_lowerCAmelCase )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
89
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __snake_case = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __snake_case = { '''allenai/longformer-base-4096''': 4_0_9_6, '''allenai/longformer-large-4096''': 4_0_9_6, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_0_9_6, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_0_9_6, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _A ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __UpperCamelCase = bs[:] __UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 __UpperCamelCase = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = set() __UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase = char return pairs class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: str,A_: List[Any],A_: List[str],A_: List[Any]="replace",A_: Optional[int]="<s>",A_: Union[str, Any]="</s>",A_: List[Any]="</s>",A_: int="<s>",A_: List[Any]="<unk>",A_: List[str]="<pad>",A_: str="<mask>",A_: Dict=False,**A_: Tuple,): '''simple docstring''' __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else bos_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else eos_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else sep_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else cls_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else unk_token __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token super().__init__( errors=A_,bos_token=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,add_prefix_space=A_,**A_,) with open(A_,encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(A_ ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} __UpperCamelCase = errors # how to handle errors in decoding __UpperCamelCase = bytes_to_unicode() __UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(A_,encoding='utf-8' ) as merges_handle: __UpperCamelCase = merges_handle.read().split('\n' )[1:-1] __UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = {} __UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def snake_case_ ( self: Tuple ): '''simple docstring''' return len(self.encoder ) def snake_case_ ( self: Any ): '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def snake_case_ ( self: Dict,A_: List[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCamelCase = tuple(A_ ) __UpperCamelCase = get_pairs(A_ ) if not pairs: return token while True: __UpperCamelCase = min(A_,key=lambda A_ : self.bpe_ranks.get(A_,float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase, __UpperCamelCase = bigram __UpperCamelCase = [] __UpperCamelCase = 0 while i < len(A_ ): try: __UpperCamelCase = word.index(A_,A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase = tuple(A_ ) __UpperCamelCase = new_word if len(A_ ) == 1: break else: __UpperCamelCase = get_pairs(A_ ) __UpperCamelCase = ' '.join(A_ ) __UpperCamelCase = word return word def snake_case_ ( self: Tuple,A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] for token in re.findall(self.pat,A_ ): __UpperCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def snake_case_ ( self: Dict,A_: Union[str, Any] ): '''simple docstring''' return self.encoder.get(A_,self.encoder.get(self.unk_token ) ) def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' return self.decoder.get(A_ ) def snake_case_ ( self: Tuple,A_: List[str] ): '''simple docstring''' __UpperCamelCase = ''.join(A_ ) __UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8',errors=self.errors ) return text def snake_case_ ( self: List[str],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_,'w',encoding='utf-8' ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=A_,ensure_ascii=A_ ) + '\n' ) __UpperCamelCase = 0 with open(A_,'w',encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self: str,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: Optional[Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self: List[str],A_: Optional[int],A_: Optional[int]=False,**A_: int ): '''simple docstring''' __UpperCamelCase = kwargs.pop('add_prefix_space',self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): __UpperCamelCase = ' ' + text return (text, kwargs)
1
'''simple docstring''' import random from typing import Any def __lowercase ( __lowercase ) -> list[Any]: '''simple docstring''' for _ in range(len(__lowercase ) ): _A = random.randint(0 , len(__lowercase ) - 1 ) _A = random.randint(0 , len(__lowercase ) - 1 ) _A , _A = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
330
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return 1 if input_a == input_a else 0 def __UpperCAmelCase ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
717
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(__lowerCamelCase , '''_dynamo''' ): return False return isinstance(__lowerCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = True ) -> Optional[Any]: lowercase__ : List[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ : str = is_compiled_module(__lowerCamelCase ) if is_compiled: lowercase__ : int = model lowercase__ : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Union[str, Any] = model.module if not keep_fpaa_wrapper: lowercase__ : List[Any] = getattr(__lowerCamelCase , '''forward''' ) lowercase__ : Any = model.__dict__.pop('''_original_forward''' , __lowerCamelCase ) if original_forward is not None: while hasattr(__lowerCamelCase , '''__wrapped__''' ): lowercase__ : Optional[int] = forward.__wrapped__ if forward == original_forward: break lowercase__ : Dict = forward if getattr(__lowerCamelCase , '''_converted_to_transformer_engine''' , __lowerCamelCase ): convert_model(__lowerCamelCase , to_transformer_engine=__lowerCamelCase ) if is_compiled: lowercase__ : Optional[Any] = model lowercase__ : Tuple = compiled_model return model def __UpperCAmelCase ( ) -> int: PartialState().wait_for_everyone() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCamelCase , __lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCamelCase , __lowerCamelCase ) @contextmanager def __UpperCAmelCase ( **__lowerCamelCase ) -> Optional[int]: for key, value in kwargs.items(): lowercase__ : Optional[int] = str(__lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: if not hasattr(__lowerCamelCase , '''__qualname__''' ) and not hasattr(__lowerCamelCase , '''__name__''' ): lowercase__ : Tuple = getattr(__lowerCamelCase , '''__class__''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''__qualname__''' ): return obj.__qualname__ if hasattr(__lowerCamelCase , '''__name__''' ): return obj.__name__ return str(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: for key, value in source.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : int = destination.setdefault(__lowerCamelCase , {} ) merge_dicts(__lowerCamelCase , __lowerCamelCase ) else: lowercase__ : Optional[int] = value return destination def __UpperCAmelCase ( __lowerCamelCase = None ) -> bool: if port is None: lowercase__ : List[Any] = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
122
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def _A ( _a : str , _a : Any , _a : Optional[int] ): """simple docstring""" A = state_dict.pop(lowerCamelCase_ ) A = val def _A ( _a : List[Any] ): """simple docstring""" A = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A = value else: A = value return new_state_dict def _A ( _a : Any , _a : List[str]=False ): """simple docstring""" A = """""" if is_panoptic: A = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:2_5_6, :] A = in_proj_bias[:2_5_6] A = in_proj_weight[2_5_6:5_1_2, :] A = in_proj_bias[2_5_6:5_1_2] A = in_proj_weight[-2_5_6:, :] A = in_proj_bias[-2_5_6:] def _A ( ): """simple docstring""" A = """http://images.cocodataset.org/val2017/000000039769.jpg""" A = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def _A ( _a : Any , _a : Union[str, Any] ): """simple docstring""" A = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A = """resnet101""" if "dc5" in model_name: A = True A = """panoptic""" in model_name if is_panoptic: A = 2_5_0 else: A = 9_1 A = """huggingface/label-files""" A = """coco-detection-id2label.json""" A = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) A = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} # load image processor A = """coco_panoptic""" if is_panoptic else """coco_detection""" A = ConditionalDetrImageProcessor(format=lowerCamelCase_ ) # prepare image A = prepare_img() A = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ) A = encoding["""pixel_values"""] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub A = torch.hub.load("""DeppMeng/ConditionalDETR""" , lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() A = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A = """conditional_detr.""" + src rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A = rename_backbone_keys(lowerCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase_ , is_panoptic=lowerCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A = state_dict.pop(lowerCamelCase_ ) A = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A = state_dict.pop(lowerCamelCase_ ) A = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A = state_dict.pop(lowerCamelCase_ ) A = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A = state_dict.pop(lowerCamelCase_ ) A = val # finally, create HuggingFace model and load state dict A = ConditionalDetrForSegmentation(lowerCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() model.push_to_hub(repo_id=lowerCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A = conditional_detr(lowerCamelCase_ ) A = model(lowerCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCAmelCase =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
617
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase_(lowerCamelCase_ ) -> Tuple: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __magic_name__ ( nn.Module ): def __init__( self : List[Any] , UpperCamelCase__ : nn.Module , UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase = module UpperCAmelCase = nn.Sequential( nn.Linear(module.in_features , UpperCamelCase__ , bias=UpperCamelCase__ ) , nn.Linear(UpperCamelCase__ , module.out_features , bias=UpperCamelCase__ ) , ) UpperCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=UpperCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : Dict , *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.module(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) + self.adapter(UpperCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowercase : str ='''bigscience/bloom-1b7''' # Constant values lowercase : Optional[Any] =2.109_659_552_692_574 lowercase : int ='''Hello my name is''' lowercase : Union[str, Any] =set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) lowercase : int =10 def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class __magic_name__ ( A__ ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() # Models and tokenizer UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.model_abit.config self.assertTrue(hasattr(UpperCamelCase__ , "quantization_config" ) ) UpperCAmelCase = config.to_dict() UpperCAmelCase = config.to_diff_dict() UpperCAmelCase = config.to_json_string() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: '''simple docstring''' from bitsandbytes.nn import Paramsabit UpperCAmelCase = self.model_fpaa.get_memory_footprint() UpperCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(UpperCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase__ ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase = BitsAndBytesConfig() UpperCAmelCase = True UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCamelCase__ , device_map="auto" ) UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase__ ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: '''simple docstring''' with self.assertRaises(UpperCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: '''simple docstring''' UpperCAmelCase = BitsAndBytesConfig() with self.assertRaises(UpperCamelCase__ ): UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCamelCase__ , load_in_abit=UpperCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(UpperCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(UpperCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(UpperCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(UpperCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase = self.model_fpaa.to(torch.floataa ) UpperCAmelCase = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCAmelCase = self.model_fpaa.to("cpu" ) # Check this does not throw an error UpperCAmelCase = self.model_fpaa.half() # Check this does not throw an error UpperCAmelCase = self.model_fpaa.float() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=UpperCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = "t5-small" UpperCAmelCase = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense UpperCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) UpperCAmelCase = "Translate in German: Hello, my dog is cute" def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Any: '''simple docstring''' from transformers import TaForConditionalGeneration UpperCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules UpperCAmelCase = None # test with `t5-small` UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase = model.generate(**UpperCamelCase__ ) # test with `flan-t5-small` UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase = model.generate(**UpperCamelCase__ ) UpperCAmelCase = modules def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase = model.generate(**UpperCamelCase__ ) # test with `flan-t5-small` UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase = model.generate(**UpperCamelCase__ ) class __magic_name__ ( A__ ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' super().setUp() # model_name UpperCAmelCase = "bigscience/bloom-560m" UpperCAmelCase = "t5-small" # Different types of model UpperCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) # Sequence classification model UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) # CausalLM model UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) # Seq2seq model UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=UpperCamelCase__ , device_map="auto" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union[str, Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __magic_name__ ( A__ ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' super().setUp() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __magic_name__ ( A__ ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: '''simple docstring''' super().setUp() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=UpperCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch UpperCAmelCase = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCamelCase__ ) , self.EXPECTED_OUTPUTS ) class __magic_name__ ( A__ ): def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = "facebook/opt-350m" super().setUp() def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: '''simple docstring''' if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(UpperCamelCase__ ) ): UpperCAmelCase = LoRALayer(module.q_proj , rank=16 ) UpperCAmelCase = LoRALayer(module.k_proj , rank=16 ) UpperCAmelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCAmelCase = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCAmelCase = model.forward(**UpperCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(UpperCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __magic_name__ ( A__ ): lowercase : str ='''gpt2-xl''' lowercase : int =3.3_191_854_854_152_187
323
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _a : '''simple docstring''' A :nn.Module A :List[nn.Module] = field(default_factory=SCREAMING_SNAKE_CASE ) A :list = field(default_factory=SCREAMING_SNAKE_CASE ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCAmelCase , nn.Convad ) or isinstance(__UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def _A ( self ): """simple docstring""" return list(filter(lambda __UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : '''simple docstring''' A :nn.Module A :nn.Module A :int = 0 A :List = field(default_factory=SCREAMING_SNAKE_CASE ) A :List = field(default_factory=SCREAMING_SNAKE_CASE ) def __call__( self , __UpperCAmelCase ): """simple docstring""" a__ : str = Tracker(self.dest )(__UpperCAmelCase ).parametrized a__ : str = Tracker(self.src )(__UpperCAmelCase ).parametrized a__ : str = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.src_skip , __UpperCAmelCase ) ) a__ : Optional[int] = list(filter(lambda __UpperCAmelCase : type(__UpperCAmelCase ) not in self.dest_skip , __UpperCAmelCase ) ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise Exception( f'Numbers of operations are different. Source module has {len(__UpperCAmelCase )} operations while' f' destination module has {len(__UpperCAmelCase )}.' ) for dest_m, src_m in zip(__UpperCAmelCase , __UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True ) -> Any: print(F'Converting {name}...' ) with torch.no_grad(): a__ : List[str] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ).eval() a__ : List[str] = ResNetForImageClassification(__UpperCamelCase ).eval() a__ : int = ModuleTransfer(src=__UpperCamelCase , dest=__UpperCamelCase ) a__ : Optional[int] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__UpperCamelCase ) assert torch.allclose(from_model(__UpperCamelCase ) , our_model(__UpperCamelCase ).logits ), "The model logits don't match the original one." a__ : Union[str, Any] = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=__UpperCamelCase , ) # we can use the convnext one a__ : str = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=__UpperCamelCase , ) print(F'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True ) -> Optional[Any]: a__ : Dict = "imagenet-1k-id2label.json" a__ : Optional[int] = 10_00 a__ : Tuple = (1, num_labels) a__ : Optional[int] = "huggingface/label-files" a__ : Union[str, Any] = num_labels a__ : Optional[int] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) a__ : Optional[int] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} a__ : Union[str, Any] = idalabel a__ : Tuple = {v: k for k, v in idalabel.items()} a__ : Optional[int] = partial(__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) a__ : Tuple = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__UpperCamelCase , names_to_config[model_name] , __UpperCamelCase , __UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
207
from collections.abc import Callable def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: a__ : float = a a__ : float = b if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCamelCase ) == 0: return b elif ( function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: a__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__UpperCamelCase ) == 0: return mid elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0: a__ : int = mid else: a__ : List[Any] = mid a__ : Optional[Any] = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
207
1