code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def _lowerCamelCase ( a_ : Tuple , a_ : Optional[int]): lowerCamelCase :str = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCamelCase ( a_ : Dict , a_ : Tuple , a_ : str): lowerCamelCase :Dict = 0 while b > 0: if b & 1: lowerCamelCase :str = ((res % c) + (a % c)) % c a += a b >>= 1 return res
166
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = IFImgaImgSuperResolutionPipeline _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'latents'} def snake_case ( self : List[str] ): return self._get_superresolution_dummy_components() def snake_case ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple=0 ): if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :Optional[int] = torch.manual_seed(__snake_case ) else: lowerCamelCase :Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :Union[str, Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case ( self : List[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case ( self : List[str] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case ( self : Optional[int] ): self._test_save_load_local() def snake_case ( self : List[str] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
166
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
707
'''simple docstring''' from __future__ import annotations import requests def snake_case_ (_a : str ): UpperCAmelCase = F"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(_a ).json() def snake_case_ (_a : int = 1_0 ): UpperCAmelCase = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' UpperCAmelCase = requests.get(_a ).json()[:max_stories] return [get_hackernews_story(_a ) for story_id in story_ids] def snake_case_ (_a : int = 1_0 ): UpperCAmelCase = hackernews_top_stories(_a ) return "\n".join('''* [{title}]({url})'''.format(**_a ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
358
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase :List[str] = """ Human: <<task>> Assistant: """ _lowerCAmelCase :int = """huggingface-tools/default-prompts""" _lowerCAmelCase :Union[str, Any] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __lowerCAmelCase ( a_ , a_ , a_="run" ) -> Any: '''simple docstring''' if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE : Dict = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , a_ ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE : List[str] = cached_file( a_ , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(a_ , 'r' , encoding='utf-8' ) as f: return f.read()
251
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase :Optional[int] = logging.getLogger(__name__) class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Any = "masked_bert" def __init__( self , lowercase__=30_522 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1E-12 , lowercase__=0 , lowercase__="topK" , lowercase__="constant" , lowercase__=0.0 , **lowercase__ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = pruning_method SCREAMING_SNAKE_CASE : Any = mask_init SCREAMING_SNAKE_CASE : List[str] = mask_scale
251
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __A : Optional[Any] = None __A : Tuple = logging.get_logger(__name__) __A : Any = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __A : Union[str, Any] = { """vocab_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""", }, """tokenizer_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""", }, } __A : Optional[Any] = { """google/fnet-base""": 5_1_2, """google/fnet-large""": 5_1_2, } __A : Optional[Any] = """▁""" class UpperCAmelCase_ ( A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''token_type_ids'''] a__ = FNetTokenizer def __init__( self : Optional[int] , a : str=None , a : Tuple=None , a : Tuple=False , a : Tuple=True , a : Optional[Any]=True , a : Optional[int]="<unk>" , a : Dict="[SEP]" , a : Optional[Any]="<pad>" , a : Union[str, Any]="[CLS]" , a : Optional[int]="[MASK]" , **a : Optional[Any] , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE = ( AddedToken(a , lstrip=a , rstrip=a , normalized=a ) if isinstance(a , a ) else mask_token ) super().__init__( a , tokenizer_file=a , do_lower_case=a , remove_space=a , keep_accents=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def _UpperCAmelCase ( self : int , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self : int , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Dict , a : str , a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
713
import os import sys import unittest __A : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A : List[Any] = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a , """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") SCREAMING_SNAKE_CASE = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a , """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") SCREAMING_SNAKE_CASE = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a , """torch_and_transformers_and_onnx""" ) def _UpperCAmelCase ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , a ) self.assertIn("""torch_and_transformers""" , a ) self.assertIn("""flax_and_transformers""" , a ) self.assertIn("""torch_and_transformers_and_onnx""" , a ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] ) def _UpperCAmelCase ( self : Any ) -> int: SCREAMING_SNAKE_CASE = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(a , """\nCONSTANT = None\n""" ) SCREAMING_SNAKE_CASE = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( a , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) SCREAMING_SNAKE_CASE = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ SCREAMING_SNAKE_CASE = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(a , a ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ SCREAMING_SNAKE_CASE = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , a )
450
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __a :List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __a :Union[str, Any] = [0, 25, 50] __a :Any = [25, 50, 75] __a :Tuple = fuzz.membership.trimf(X, abca) __a :List[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __a :Union[str, Any] = np.ones(75) __a :Tuple = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __a :Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __a :Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __a :List[str] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __a :List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __a :Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __a :Any = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __a :Any = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __a :Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
86
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__=0.01 , a__=10_00 ) -> List[Any]: '''simple docstring''' __snake_case :int = p_stop __snake_case :List[Any] = max_length def __iter__( self ) -> Optional[int]: '''simple docstring''' __snake_case :str = 0 __snake_case :Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 __snake_case :str = random.random() < self.p_stop class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self , a__ , a__ , a__=False , a__=True ) -> List[Any]: '''simple docstring''' __snake_case :Optional[Any] = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] __snake_case :Union[str, Any] = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. __snake_case :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :int = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :int = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case :List[str] = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __lowercase ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ) -> List[str]: '''simple docstring''' random.seed(a__ ) __snake_case :Optional[int] = list(a__ ) __snake_case :Union[str, Any] = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] __snake_case :Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) __snake_case :Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case :str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) __snake_case :int = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :int = 42 __snake_case :Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset __snake_case :Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :str = BatchSampler(range(16 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case :Dict = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowercase ( self ) -> Any: '''simple docstring''' Accelerator() __snake_case :Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
455
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCamelCase : str = logging.get_logger(__name__) class snake_case__ ( UpperCamelCase): def __init__( self : Any , *_A : int , **_A : Dict ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
216
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class snake_case__ : def __init__( self : List[str] ) -> Tuple: UpperCAmelCase_ : Dict = {} def A ( self : str , _A : str ) -> None: UpperCAmelCase_ : Union[str, Any] = {} def A ( self : Dict , _A : str , _A : str , _A : float ) -> None: if nodea not in self.connections: self.add_node(_A ) if nodea not in self.connections: self.add_node(_A ) UpperCAmelCase_ : Optional[Any] = probability def A ( self : Tuple ) -> list[str]: return list(self.connections ) def A ( self : Optional[int] , _A : str ) -> str: UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : str = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __UpperCAmelCase ( A : str , A : list[tuple[str, str, float]] , A : int ) -> dict[str, int]: UpperCAmelCase_ : int = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(A , A , A ) UpperCAmelCase_ : List[str] = Counter(graph.get_nodes() ) UpperCAmelCase_ : int = start for _ in range(A ): UpperCAmelCase_ : Union[str, Any] = graph.transition(A ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
216
1
def a__ ( A_ ): '''simple docstring''' if not head: return True # split the list to two parts __magic_name__ , __magic_name__ = head.next, head while fast and fast.next: __magic_name__ = fast.next.next __magic_name__ = slow.next __magic_name__ = slow.next __magic_name__ = None # Don't forget here! But forget still works! # reverse the second part __magic_name__ = None while second: __magic_name__ = second.next __magic_name__ = node __magic_name__ = second __magic_name__ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __magic_name__ = node.next __magic_name__ = head.next return True def a__ ( A_ ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) __magic_name__ = __magic_name__ = __magic_name__ = head while fast and fast.next: __magic_name__ , __magic_name__ = fast.next.next, slow.next # 2. Push the second half into the stack __magic_name__ = [slow.val] while slow.next: __magic_name__ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __magic_name__ = cur.next return True def a__ ( A_ ): '''simple docstring''' if not head or not head.next: return True __magic_name__ = {} __magic_name__ = 0 while head: if head.val in d: d[head.val].append(A_ ) else: __magic_name__ = [pos] __magic_name__ = head.next pos += 1 __magic_name__ = pos - 1 __magic_name__ = 0 for v in d.values(): if len(A_ ) % 2 != 0: middle += 1 else: __magic_name__ = 0 for i in range(0, len(A_ ) ): if v[i] + v[len(A_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
529
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = ["""image_processor""", """tokenizer"""] a__ = """BridgeTowerImageProcessor""" a__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : Dict , ) -> BatchEncoding: """simple docstring""" __magic_name__ = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask __magic_name__ = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def _lowercase ( self : Optional[Any] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : str ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Dict , *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowercase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
529
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = CTRLTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] lowerCamelCase_ = dict(zip(A__ , range(len(A__ ) ) ) ) lowerCamelCase_ = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] lowerCamelCase_ = {"""unk_token""": """<unk>"""} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A__ ) ) def SCREAMING_SNAKE_CASE_( self , **lowercase ) -> Tuple: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A__ ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: lowerCamelCase_ = """adapt react readapt apt""" lowerCamelCase_ = """adapt react readapt apt""" return input_text, output_text def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = """adapt react readapt apt""" lowerCamelCase_ = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() lowerCamelCase_ = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
720
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } lowerCamelCase_ = F'{src_lang}-{tgt_lang}' lowerCamelCase_ = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCamelCase_ = os.path.join(lowerCamelCase__ , "README.md" ) print(F'Generating {path}' ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __A =Path(__file__).resolve().parent.parent.parent __A =repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __A =model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
313
0
from ...processing_utils import ProcessorMixin class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """WhisperFeatureExtractor""" _UpperCAmelCase = """WhisperTokenizer""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : List[Any] = False def UpperCamelCase__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ , language=lowerCAmelCase__ , no_timestamps=lowerCAmelCase__ ) def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('audio' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('sampling_rate' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('text' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE_ : List[Any] = args[0] SCREAMING_SNAKE_CASE_ : List[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : Optional[int] = encodings['input_ids'] return inputs def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
101
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["ChineseCLIPFeatureExtractor"] _lowerCAmelCase : Any = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
193
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase =1_6 lowerCamelCase =3_2 def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 , UpperCamelCase__ = "bert-base-cased" ): UpperCamelCase__ : Any = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase__ : Tuple = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=UpperCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(UpperCamelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) UpperCamelCase__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): model.eval() UpperCamelCase__ : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ : str = model(**UpperCamelCase__ ) UpperCamelCase__ : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCamelCase__ ) - 1: UpperCamelCase__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ : Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) UpperCamelCase__ : int = metric.compute() return eval_metric["accuracy"] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): # Initialize accelerator UpperCamelCase__ : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ : Any = config['''lr'''] UpperCamelCase__ : Tuple = int(config['''num_epochs'''] ) UpperCamelCase__ : Optional[int] = int(config['''seed'''] ) UpperCamelCase__ : List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ : Any = args.model_name_or_path set_seed(UpperCamelCase__ ) UpperCamelCase__ ,UpperCamelCase__ : Dict = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ : Any = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , return_dict=UpperCamelCase__ ) # Instantiate optimizer UpperCamelCase__ : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ : Dict = optimizer_cls(params=model.parameters() , lr=UpperCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ : str = 1 UpperCamelCase__ : int = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=0 , num_training_steps=UpperCamelCase__ , ) else: UpperCamelCase__ : str = DummyScheduler(UpperCamelCase__ , total_num_steps=UpperCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ : int = 0 UpperCamelCase__ : int = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ : Dict = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ : Any = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ : Optional[Any] = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ : Optional[int] = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ : Union[str, Any] = int(UpperCamelCase__ ) + 1 UpperCamelCase__ : List[Any] = evaluation_loop(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.print('''resumed checkpoint performance:''' , UpperCamelCase__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ : Union[str, Any] = json.load(UpperCamelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ : Optional[Any] = {} for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): UpperCamelCase__ : Dict = model(**UpperCamelCase__ ) UpperCamelCase__ : List[Any] = outputs.loss UpperCamelCase__ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ : List[str] = f'''epoch_{epoch}''' UpperCamelCase__ : Optional[Any] = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) UpperCamelCase__ : Any = evaluation_loop(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Any = accuracy UpperCamelCase__ : Optional[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ : Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ : Any = epoch UpperCamelCase__ : str = overall_step accelerator.print(f'''epoch {epoch}:''' , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=UpperCamelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCamelCase__ , ) parser.add_argument( '''--output_dir''' , type=UpperCamelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=UpperCamelCase__ , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ : Optional[int] = parser.parse_args() UpperCamelCase__ : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
462
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # word like '180' or '身高' or '神' for char in word: UpperCamelCase__ : Optional[Any] = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Dict = set() for token in tokens: UpperCamelCase__ : Optional[int] = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) UpperCamelCase__ : List[Any] = list(UpperCamelCase__ ) return word_list def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if not chinese_word_set: return bert_tokens UpperCamelCase__ : str = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) UpperCamelCase__ : Optional[int] = bert_tokens UpperCamelCase__ ,UpperCamelCase__ : Tuple = 0, len(UpperCamelCase__ ) while start < end: UpperCamelCase__ : Any = True if is_chinese(bert_word[start] ): UpperCamelCase__ : Any = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): UpperCamelCase__ : List[Any] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase__ : Optional[Any] = '''##''' + bert_word[j] UpperCamelCase__ : Dict = start + i UpperCamelCase__ : List[str] = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): UpperCamelCase__ : Optional[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws UpperCamelCase__ : List[str] = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCamelCase__ : str = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): UpperCamelCase__ : Dict = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCamelCase__ : Any = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Union[str, Any] = [] for id in input_ids: UpperCamelCase__ : List[str] = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) UpperCamelCase__ : Optional[Any] = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": UpperCamelCase__ : Union[str, Any] = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : List[Any] = f.readlines() UpperCamelCase__ : Tuple = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase__ : int = LTP(args.ltp ) # faster in GPU device UpperCamelCase__ : int = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase__ : Dict = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Tuple = [json.dumps(UpperCamelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) lowerCamelCase =parser.parse_args() main(args)
462
1
SCREAMING_SNAKE_CASE__ : Optional[int] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
85
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = CustomTokenizer pass
59
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowerCamelCase = trt.Logger(trt.Logger.WARNING) _lowerCamelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowerCamelCase = logging.getLogger(__name__) _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) _lowerCamelCase = parser.parse_args() if args.tokenizer_name: _lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) _lowerCamelCase = args.per_device_eval_batch_size _lowerCamelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowerCamelCase = True _lowerCamelCase = '''temp_engine/bert-fp32.engine''' if args.fpaa: _lowerCamelCase = '''temp_engine/bert-fp16.engine''' if args.inta: _lowerCamelCase = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') _lowerCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowerCamelCase = [network.get_input(i) for i in range(network.num_inputs)] _lowerCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowerCamelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowerCamelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowerCamelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def lowerCAmelCase_ ( lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : Any = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : int = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _A ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _A ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _A ) # start time __SCREAMING_SNAKE_CASE : Optional[int] = time.time() # Run inference context.execute_async( bindings=[int(_A ) for d_inp in d_inputs] + [int(_A ), int(_A )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_A , _A , _A ) cuda.memcpy_dtoh_async(_A , _A , _A ) # Synchronize the stream and take time stream.synchronize() # end time __SCREAMING_SNAKE_CASE : List[str] = time.time() __SCREAMING_SNAKE_CASE : str = end_time - start_time __SCREAMING_SNAKE_CASE : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowerCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowerCamelCase = raw_datasets['''validation'''].column_names _lowerCamelCase = '''question''' if '''question''' in column_names else column_names[0] _lowerCamelCase = '''context''' if '''context''' in column_names else column_names[1] _lowerCamelCase = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowerCamelCase = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _lowerCamelCase = min(args.max_seq_length, tokenizer.model_max_length) def lowerCAmelCase_ ( lowercase_ : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __SCREAMING_SNAKE_CASE : Tuple = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=_A , stride=args.doc_stride , return_overflowing_tokens=_A , return_offsets_mapping=_A , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __SCREAMING_SNAKE_CASE : List[str] = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __SCREAMING_SNAKE_CASE : Optional[int] = tokenized_examples.sequence_ids(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __SCREAMING_SNAKE_CASE : str = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __SCREAMING_SNAKE_CASE : Union[str, Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples _lowerCamelCase = raw_datasets['''validation'''] # Validation Feature Creation _lowerCamelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) _lowerCamelCase = default_data_collator _lowerCamelCase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) _lowerCamelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCAmelCase_ ( lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Dict="eval" ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = postprocess_qa_predictions( examples=_A , features=_A , predictions=_A , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_A , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __SCREAMING_SNAKE_CASE : Dict = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: __SCREAMING_SNAKE_CASE : Dict = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] __SCREAMING_SNAKE_CASE : Optional[Any] = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_A , label_ids=_A ) _lowerCamelCase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCAmelCase_ ( lowercase_ : int ): '''simple docstring''' return trt.volume(engine.get_binding_shape(_A ) ) * engine.get_binding_dtype(_A ).itemsize # Allocate device memory for inputs and outputs. _lowerCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowerCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowerCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowerCamelCase = cuda.mem_alloc(h_outputa.nbytes) _lowerCamelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowerCamelCase = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') _lowerCamelCase = 0.0 _lowerCamelCase = 0 _lowerCamelCase = timeit.default_timer() _lowerCamelCase = None for step, batch in enumerate(eval_dataloader): _lowerCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowerCamelCase = outputs _lowerCamelCase = torch.tensor(start_logits) _lowerCamelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowerCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) _lowerCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) _lowerCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowerCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: _lowerCamelCase = nested_truncate(all_preds, len(eval_dataset)) _lowerCamelCase = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) _lowerCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds) _lowerCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
719
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase__ = '''nat''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , _lowerCamelCase :int=4 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[int]=6_4 , _lowerCamelCase :Optional[Any]=[3, 4, 6, 5] , _lowerCamelCase :Optional[int]=[2, 4, 8, 1_6] , _lowerCamelCase :str=7 , _lowerCamelCase :int=3.0 , _lowerCamelCase :Optional[Any]=True , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :str=0.0 , _lowerCamelCase :int=0.1 , _lowerCamelCase :int="gelu" , _lowerCamelCase :Dict=0.0_2 , _lowerCamelCase :str=1e-5 , _lowerCamelCase :List[Any]=0.0 , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Dict=None , **_lowerCamelCase :Union[str, Any] , ): super().__init__(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : List[str] = embed_dim __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : Any = kernel_size __SCREAMING_SNAKE_CASE : Tuple = mlp_ratio __SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : List[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) __SCREAMING_SNAKE_CASE : Any = layer_scale_init_value __SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
401
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') _lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) snake_case = field( default=__UpperCamelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) snake_case = field( default=__UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case = field( default=__UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) snake_case = field( default=__UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = field( default=__UpperCamelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Train language if it is different from the evaluation language.'} ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) snake_case = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case = field( default=__UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) snake_case = field( default=__UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , UpperCamelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) datasets.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = train_dataset.features['label'].names if training_args.do_eval: lowerCamelCase = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = eval_dataset.features['label'].names if training_args.do_predict: lowerCamelCase = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = predict_dataset.features['label'].names # Labels lowerCamelCase = len(UpperCamelCase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase_ , idalabel={str(UpperCamelCase_ ): label for i, label in enumerate(UpperCamelCase_ )} , labelaid={label: i for i, label in enumerate(UpperCamelCase_ )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase = False def preprocess_function(UpperCamelCase_ : List[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=UpperCamelCase_ , max_length=data_args.max_seq_length , truncation=UpperCamelCase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase = min(len(UpperCamelCase_ ) , data_args.max_train_samples ) lowerCamelCase = train_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCamelCase = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase_ ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase = min(len(UpperCamelCase_ ) , data_args.max_eval_samples ) lowerCamelCase = eval_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCamelCase = eval_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase = min(len(UpperCamelCase_ ) , data_args.max_predict_samples ) lowerCamelCase = predict_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): lowerCamelCase = predict_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function lowerCamelCase = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase_ : EvalPrediction ): lowerCamelCase = p.predictions[0] if isinstance(p.predictions , UpperCamelCase_ ) else p.predictions lowerCamelCase = np.argmax(UpperCamelCase_ , axis=1 ) return metric.compute(predictions=UpperCamelCase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase = default_data_collator elif training_args.fpaa: lowerCamelCase = DataCollatorWithPadding(UpperCamelCase_ , pad_to_multiple_of=8 ) else: lowerCamelCase = None # Initialize our Trainer lowerCamelCase = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: lowerCamelCase = None if training_args.resume_from_checkpoint is not None: lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase = last_checkpoint lowerCamelCase = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) lowerCamelCase = train_result.metrics lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ ) ) lowerCamelCase = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , UpperCamelCase_ ) trainer.save_metrics('train' , UpperCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase = trainer.evaluate(eval_dataset=UpperCamelCase_ ) lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase_ ) lowerCamelCase = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('eval' , UpperCamelCase_ ) trainer.save_metrics('eval' , UpperCamelCase_ ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) lowerCamelCase , lowerCamelCase , lowerCamelCase = trainer.predict(UpperCamelCase_ , metric_key_prefix='predict' ) lowerCamelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase_ ) ) lowerCamelCase = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('predict' , UpperCamelCase_ ) trainer.save_metrics('predict' , UpperCamelCase_ ) lowerCamelCase = np.argmax(UpperCamelCase_ , axis=1 ) lowerCamelCase = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(UpperCamelCase_ ): lowerCamelCase = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
246
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def a_ ( UpperCamelCase_ : List[Any] ) -> str: """simple docstring""" lowerCamelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase = 1_2_8 elif "12-12" in model_name: lowerCamelCase = 1_2 lowerCamelCase = 1_2 elif "14-14" in model_name: lowerCamelCase = 1_4 lowerCamelCase = 1_4 elif "16-16" in model_name: lowerCamelCase = 1_6 lowerCamelCase = 1_6 else: raise ValueError('Model not supported' ) lowerCamelCase = 'huggingface/label-files' if "speech-commands" in model_name: lowerCamelCase = 3_5 lowerCamelCase = 'speech-commands-v2-id2label.json' else: lowerCamelCase = 5_2_7 lowerCamelCase = 'audioset-id2label.json' lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCamelCase = idalabel lowerCamelCase = {v: k for k, v in idalabel.items()} return config def a_ ( UpperCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" if "module.v" in name: lowerCamelCase = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowerCamelCase = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowerCamelCase = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowerCamelCase = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowerCamelCase = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowerCamelCase = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: lowerCamelCase = key.split('.' ) lowerCamelCase = int(key_split[3] ) lowerCamelCase = config.hidden_size if "weight" in key: lowerCamelCase = val[:dim, :] lowerCamelCase = val[dim : dim * 2, :] lowerCamelCase = val[-dim:, :] else: lowerCamelCase = val[:dim] lowerCamelCase = val[dim : dim * 2] lowerCamelCase = val[-dim:] else: lowerCamelCase = val return orig_state_dict def a_ ( UpperCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) @torch.no_grad() def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : int=False ) -> Optional[Any]: """simple docstring""" lowerCamelCase = get_audio_spectrogram_transformer_config(UpperCamelCase_ ) lowerCamelCase = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowerCamelCase = model_name_to_url[model_name] lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location='cpu' ) # remove some keys remove_keys(UpperCamelCase_ ) # rename some keys lowerCamelCase = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) # load 🤗 model lowerCamelCase = ASTForAudioClassification(UpperCamelCase_ ) model.eval() model.load_state_dict(UpperCamelCase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase = -4.2_677_393 if 'speech-commands' not in model_name else -6.845_978 lowerCamelCase = 4.5_689_974 if 'speech-commands' not in model_name else 5.5_654_526 lowerCamelCase = 1_0_2_4 if 'speech-commands' not in model_name else 1_2_8 lowerCamelCase = ASTFeatureExtractor(mean=UpperCamelCase_ , std=UpperCamelCase_ , max_length=UpperCamelCase_ ) if "speech-commands" in model_name: lowerCamelCase = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowerCamelCase = dataset[0]['audio']['array'] else: lowerCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowerCamelCase , lowerCamelCase = torchaudio.load(UpperCamelCase_ ) lowerCamelCase = waveform.squeeze().numpy() lowerCamelCase = feature_extractor(UpperCamelCase_ , sampling_rate=1_6_0_0_0 , return_tensors='pt' ) # forward pass lowerCamelCase = model(**UpperCamelCase_ ) lowerCamelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
246
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a_ ( ): UpperCAmelCase__ = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCAmelCase__ = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('RGB' ) return image def a_ ( lowerCamelCase ): UpperCAmelCase__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = dct.pop(lowerCamelCase ) UpperCAmelCase__ = val def a_ ( lowerCamelCase , lowerCamelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase__ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase__ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase__ = torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) UpperCAmelCase__ = qkv_bias def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 3_6_4 if 'coco' in model_name else 2_2_4 UpperCAmelCase__ = BlipaVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase__ = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase__ = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowerCamelCase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCAmelCase__ = BlipaConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase ) return config, image_size @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ): UpperCAmelCase__ = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCAmelCase__ = tokenizer('\n' , add_special_tokens=lowerCamelCase ).input_ids[0] UpperCAmelCase__ , UpperCAmelCase__ = get_blipa_config(lowerCamelCase , eos_token_id=lowerCamelCase ) UpperCAmelCase__ = BlipaForConditionalGeneration(lowerCamelCase ).eval() UpperCAmelCase__ = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCAmelCase__ , UpperCAmelCase__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print('Done!' ) # update state dict keys UpperCAmelCase__ = original_model.state_dict() UpperCAmelCase__ = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase__ = state_dict.pop(lowerCamelCase ) if key.startswith('Qformer.bert' ): UpperCAmelCase__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCAmelCase__ = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCAmelCase__ = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCAmelCase__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCAmelCase__ = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCAmelCase__ = key.replace('t5' , 'language' ) UpperCAmelCase__ = val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert len(lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase__ = load_demo_image() UpperCAmelCase__ = vis_processors['eval'](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) UpperCAmelCase__ = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowerCamelCase ) # create processor UpperCAmelCase__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) UpperCAmelCase__ = BlipaProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCAmelCase__ = processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values.to(lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase__ = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCAmelCase__ = hf_model(lowerCamelCase , lowerCamelCase ).logits else: UpperCAmelCase__ = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCAmelCase__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase__ = hf_model(lowerCamelCase , lowerCamelCase , labels=lowerCamelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase__ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase__ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowerCamelCase ) else: # cast to same type UpperCAmelCase__ = logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase ) , lowerCamelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCAmelCase__ = '' UpperCAmelCase__ = tokenizer(lowerCamelCase , return_tensors='pt' ).input_ids.to(lowerCamelCase ) UpperCAmelCase__ = original_model.generate({'image': original_pixel_values} ) UpperCAmelCase__ = hf_model.generate( lowerCamelCase , lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowerCamelCase ) UpperCAmelCase__ = input_ids.shape[1] UpperCAmelCase__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase ) UpperCAmelCase__ = [text.strip() for text in output_text] print('HF generation:' , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() lowerCAmelCase__ : List[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowerCAmelCase__ : List[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
704
"""simple docstring""" import socket def a_ ( ): UpperCAmelCase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase__ = socket.gethostname() UpperCAmelCase__ = 1_2_3_1_2 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: UpperCAmelCase__ = sock.recv(1_0_2_4 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
632
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Any = 16 A_ : List[str] = 32 def A ( snake_case__ , snake_case__ = 16 , snake_case__ = "bert-base-cased" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(lowercase_ ) SCREAMING_SNAKE_CASE__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(lowercase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config["""lr"""] SCREAMING_SNAKE_CASE__ = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ = args.model_name_or_path set_seed(lowercase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(lowercase_ , lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE__ = optimizer_cls(params=model.parameters() , lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , ) else: SCREAMING_SNAKE_CASE__ = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE__ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE__ = 0 # Now we train the model SCREAMING_SNAKE_CASE__ = evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = {} for epoch in range(lowercase_ , lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): SCREAMING_SNAKE_CASE__ = model(**lowercase_ ) SCREAMING_SNAKE_CASE__ = outputs.loss SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**lowercase_ ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase_ ) - 1: SCREAMING_SNAKE_CASE__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) SCREAMING_SNAKE_CASE__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) SCREAMING_SNAKE_CASE__ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: SCREAMING_SNAKE_CASE__ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--output_dir""" , type=lowercase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase_ , default=lowercase_ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase_ , default=3 , help="""Number of train epochs.""" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
196
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """hf-internal-testing/tiny-random-t5""" lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) lowercase = tokenizer("""This is me""" , return_tensors="""pt""" ) lowercase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase = model.generate(**_lowerCAmelCase ) lowercase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self ) -> str: '''simple docstring''' lowercase = """hf-internal-testing/tiny-random-t5""" lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) lowercase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) lowercase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
588
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase (UpperCAmelCase__ : int ): if hor == 1_2_8: SCREAMING_SNAKE_CASE = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") SCREAMING_SNAKE_CASE = (3_2, 1_2_8, 2_5_6) SCREAMING_SNAKE_CASE = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 3_2: SCREAMING_SNAKE_CASE = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") SCREAMING_SNAKE_CASE = (3_2, 6_4, 1_2_8, 2_5_6) SCREAMING_SNAKE_CASE = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") SCREAMING_SNAKE_CASE = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 1_4, "out_channels": 1_4, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_5_5_3_6, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } SCREAMING_SNAKE_CASE = UNetaDModel(**UpperCAmelCase__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) hf_value_function.load_state_dict(UpperCAmelCase__ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = { "in_channels": 1_4, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (3_2, 6_4, 1_2_8, 2_5_6), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_5_5_3_6, "out_channels": 1_4, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } SCREAMING_SNAKE_CASE = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = UNetaDModel(**UpperCAmelCase__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) hf_value_function.load_state_dict(UpperCAmelCase__ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
647
import functools def __lowerCamelCase (UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] ): # Validation if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(UpperCAmelCase__ ) != 3 or not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(UpperCAmelCase__ ) == 0: return 0 if min(UpperCAmelCase__ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(UpperCAmelCase__ ) >= 3_6_6: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE = set(UpperCAmelCase__ ) @functools.cache def dynamic_programming(UpperCAmelCase__ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
647
1
from __future__ import annotations import math def a ( lowerCamelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = str(lowerCamelCase_ ) lowercase__ = [n] for i in range(1 , len(lowerCamelCase_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a ( lowerCamelCase_ ): '''simple docstring''' if len(str(lowerCamelCase_ ) ) > 3: if not is_prime(int(str(lowerCamelCase_ )[-3:] ) ) or not is_prime(int(str(lowerCamelCase_ )[:3] ) ): return False return True def a ( lowerCamelCase_ = 11 ): '''simple docstring''' lowercase__ = [] lowercase__ = 13 while len(lowerCamelCase_ ) != count: if validate(lowerCamelCase_ ): lowercase__ = list_truncated_nums(lowerCamelCase_ ) if all(is_prime(lowerCamelCase_ ) for i in list_nums ): list_truncated_primes.append(lowerCamelCase_ ) num += 2 return list_truncated_primes def a ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"{sum(compute_truncated_primes(11)) = }")
183
from jiwer import compute_measures import datasets A__ : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' A__ : Optional[int] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' A__ : Dict = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/jitsi/jiwer/'''], reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ], ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : str=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : List[str]=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowerCamelCase, lowerCamelCase )["wer"] else: lowercase__ = 0 lowercase__ = 0 for prediction, reference in zip(lowerCamelCase, lowerCamelCase ): lowercase__ = compute_measures(lowerCamelCase, lowerCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
183
1
"""simple docstring""" from __future__ import annotations from typing import Any def lowerCamelCase_ ( _lowerCamelCase ): create_state_space_tree(_lowerCamelCase , [] , 0 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase_ =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase, scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self, lowerCAmelCase = 1, lowerCAmelCase = None, lowerCAmelCase = 0.0, lowerCAmelCase = 50, lowerCAmelCase = None, lowerCAmelCase = "pil", lowerCAmelCase = True, ): """simple docstring""" if isinstance(self.unet.config.sample_size, lowerCAmelCase ): lowerCamelCase_ =( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCamelCase_ =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase_ =randn_tensor(lowerCAmelCase, generator=lowerCAmelCase, device=self.device, dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ =self.unet(lowerCAmelCase, lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, eta=lowerCAmelCase, use_clipped_model_output=lowerCAmelCase, generator=lowerCAmelCase ).prev_sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
676
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[int] = LongformerTokenizer a_ : Union[str, Any] = True a_ : Tuple = LongformerTokenizerFast a_ : Any = True def _UpperCamelCase ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowerCamelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase__ = {'unk_token': '<unk>'} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int , **SCREAMING_SNAKE_CASE__ : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = 'lower newer' lowerCamelCase__ = 'lower newer' return input_text, output_text def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = 'lower newer' lowerCamelCase__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) lowerCamelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode( 'sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = 'Encode this sequence.' lowerCamelCase__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing spaces after special tokens lowerCamelCase__ = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ )} ) # mask token has a left space lowerCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'Encode <mask> sequence' lowerCamelCase__ = 'Encode <mask>sequence' lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): pass def _UpperCamelCase ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'A, <mask> AllenNLP sentence.' lowerCamelCase__ = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _UpperCamelCase ( self : Optional[Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(post_processor_state['add_prefix_space'] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(post_processor_state['trim_offsets'] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__ = F'{text_of_1_token} {text_of_1_token}' lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ) + 1, len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ) + 1, len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ) + 1, 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ), 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ), 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , )
659
"""simple docstring""" def snake_case ( _a: list[list[float]] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for data in source_data: for i, el in enumerate(_a ): if len(_a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_a ) ) return data_lists def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for dlist, weight in zip(_a , _a ): lowerCamelCase__ = min(_a ) lowerCamelCase__ = max(_a ) lowerCamelCase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCamelCase__ = F'Invalid weight of {weight:f} provided' raise ValueError(_a ) score_lists.append(_a ) return score_lists def snake_case ( _a: list[list[float]] )-> list[float]: '''simple docstring''' lowerCamelCase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_a ): lowerCamelCase__ = final_scores[j] + ele return final_scores def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = get_data(_a ) lowerCamelCase__ = calculate_each_score(_a , _a ) lowerCamelCase__ = generate_final_scores(_a ) # append scores to source data for i, ele in enumerate(_a ): source_data[i].append(_a ) return source_data
659
1
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase = """""" UpperCAmelCase = """""" UpperCAmelCase = """""" UpperCAmelCase = """""" def __magic_name__ ( _lowerCamelCase: str ) -> None: '''simple docstring''' lowerCAmelCase = tweepy.OAuthHandler(_lowerCamelCase, _lowerCamelCase ) auth.set_access_token(_lowerCamelCase, _lowerCamelCase ) lowerCAmelCase = tweepy.API(_lowerCamelCase ) # initialize a list to hold all the tweepy Tweets lowerCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCAmelCase = api.user_timeline(screen_name=_lowerCamelCase, count=200 ) # save most recent tweets alltweets.extend(_lowerCamelCase ) # save the id of the oldest tweet less one lowerCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_lowerCamelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates lowerCAmelCase = api.user_timeline( screen_name=_lowerCamelCase, count=200, max_id=_lowerCamelCase ) # save most recent tweets alltweets.extend(_lowerCamelCase ) # update the id of the oldest tweet less one lowerCAmelCase = alltweets[-1].id - 1 print(F"""...{len(_lowerCamelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""", '''w''' ) as f: lowerCAmelCase = csv.writer(_lowerCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_lowerCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
535
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase ( lowercase__ ): def __get__(self : str ,SCREAMING_SNAKE_CASE_ : List[Any] ,SCREAMING_SNAKE_CASE_ : Optional[Any]=None ) -> int: """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCAmelCase = '''__cached_''' + self.fget.__name__ lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if cached is None: lowerCAmelCase = self.fget(SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return cached def __magic_name__ ( _lowerCamelCase: Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def __magic_name__ ( _lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase, torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase, tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase, (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase, np.ndarray ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' return isinstance(_lowerCamelCase, np.ndarray ) def __magic_name__ ( _lowerCamelCase: str ) -> List[Any]: '''simple docstring''' return _is_numpy(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Dict ) -> Optional[int]: '''simple docstring''' import torch return isinstance(_lowerCamelCase, torch.Tensor ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> List[Any]: '''simple docstring''' import torch return isinstance(_lowerCamelCase, torch.device ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> int: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: str ) -> Dict: '''simple docstring''' import torch if isinstance(_lowerCamelCase, _lowerCamelCase ): if hasattr(_lowerCamelCase, _lowerCamelCase ): lowerCAmelCase = getattr(_lowerCamelCase, _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase, torch.dtype ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Tuple ) -> Tuple: '''simple docstring''' import tensorflow as tf return isinstance(_lowerCamelCase, tf.Tensor ) def __magic_name__ ( _lowerCamelCase: int ) -> Tuple: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase, '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def __magic_name__ ( _lowerCamelCase: Union[str, Any] ) -> str: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: List[Any] ) -> List[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase, jnp.ndarray ) def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Optional[int]: '''simple docstring''' return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: List[str] ) -> Any: '''simple docstring''' if isinstance(_lowerCamelCase, (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase, (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase, (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __magic_name__ ( _lowerCamelCase: Optional[int] ) -> Any: '''simple docstring''' if isinstance(_lowerCamelCase, (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase, (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class lowercase ( lowercase__ ): def UpperCAmelCase (self : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase = fields(self ) # Safety and consistency checks if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) lowerCAmelCase = getattr(self ,class_fields[0].name ) lowerCAmelCase = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = first_field.items() lowerCAmelCase = True else: try: lowerCAmelCase = iter(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = True except TypeError: lowerCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(SCREAMING_SNAKE_CASE_ ): if ( not isinstance(SCREAMING_SNAKE_CASE_ ,(list, tuple) ) or not len(SCREAMING_SNAKE_CASE_ ) == 2 or not isinstance(element[0] ,SCREAMING_SNAKE_CASE_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: lowerCAmelCase = element[1] elif first_field is not None: lowerCAmelCase = first_field else: for field in class_fields: lowerCAmelCase = getattr(self ,field.name ) if v is not None: lowerCAmelCase = v def __delitem__(self : Optional[Any] ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def UpperCAmelCase (self : List[Any] ,*SCREAMING_SNAKE_CASE_ : Any ,**SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: """simple docstring""" raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def UpperCAmelCase (self : Union[str, Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: """simple docstring""" raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def UpperCAmelCase (self : Any ,*SCREAMING_SNAKE_CASE_ : Optional[Any] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> Any: """simple docstring""" raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__(self : int ,SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self : int ,SCREAMING_SNAKE_CASE_ : Any ,SCREAMING_SNAKE_CASE_ : int ) -> List[str]: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) super().__setattr__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def __setitem__(self : List[str] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]: """simple docstring""" super().__setitem__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[str] ) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys() ) class lowercase ( lowercase__ ,lowercase__ ): @classmethod def UpperCAmelCase (cls : int ,SCREAMING_SNAKE_CASE_ : Any ) -> Dict: """simple docstring""" raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowercase ( lowercase__ ): lowercase = '''longest''' lowercase = '''max_length''' lowercase = '''do_not_pad''' class lowercase ( lowercase__ ): lowercase = '''pt''' lowercase = '''tf''' lowercase = '''np''' lowercase = '''jax''' class lowercase : def __init__(self : Optional[Any] ,SCREAMING_SNAKE_CASE_ : List[ContextManager] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = context_managers lowerCAmelCase = ExitStack() def __enter__(self : int ) -> Dict: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(SCREAMING_SNAKE_CASE_ ) def __exit__(self : Tuple ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" self.stack.__exit__(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( _lowerCamelCase: str ) -> List[Any]: '''simple docstring''' lowerCAmelCase = infer_framework(_lowerCamelCase ) if framework == "tf": lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __magic_name__ ( _lowerCamelCase: Any ) -> List[str]: '''simple docstring''' lowerCAmelCase = model_class.__name__ lowerCAmelCase = infer_framework(_lowerCamelCase ) if framework == "tf": lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __magic_name__ ( _lowerCamelCase: MutableMapping, _lowerCamelCase: str = "", _lowerCamelCase: str = "." ) -> Optional[int]: '''simple docstring''' def _flatten_dict(_lowerCamelCase: Any, _lowerCamelCase: Optional[int]="", _lowerCamelCase: Union[str, Any]="." ): for k, v in d.items(): lowerCAmelCase = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase, _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase, _lowerCamelCase, delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ) @contextmanager def __magic_name__ ( _lowerCamelCase: Union[str, Any], _lowerCamelCase: bool = False ) -> Tuple: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __magic_name__ ( _lowerCamelCase: Optional[int], _lowerCamelCase: int=None ) -> List[Any]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase, axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase, perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase, axes=_lowerCamelCase ) else: raise ValueError(F"""Type not supported for transpose: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: List[Any], _lowerCamelCase: Any ) -> List[str]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase, _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase, _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase, _lowerCamelCase ) else: raise ValueError(F"""Type not supported for reshape: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: int, _lowerCamelCase: Tuple=None ) -> List[str]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase, axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase, axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase, axis=_lowerCamelCase ) else: raise ValueError(F"""Type not supported for squeeze: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: List[str], _lowerCamelCase: int ) -> List[Any]: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase, _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase, axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase, axis=_lowerCamelCase ) else: raise ValueError(F"""Type not supported for expand_dims: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: Any ) -> Dict: '''simple docstring''' if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(_lowerCamelCase )}.""" ) def __magic_name__ ( _lowerCamelCase: Optional[Any], _lowerCamelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(_lowerCamelCase, (tuple, list) ): lowerCAmelCase = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCAmelCase = F"""{repo_id}--{value}""" return auto_map def __magic_name__ ( _lowerCamelCase: str ) -> Any: '''simple docstring''' for base_class in inspect.getmro(_lowerCamelCase ): lowerCAmelCase = base_class.__module__ lowerCAmelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
535
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } A : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_ = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE_ = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue SCREAMING_SNAKE_CASE_ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ = name.split(__UpperCamelCase )[0].split("." )[-2] SCREAMING_SNAKE_CASE_ = mapped_key.replace("*" , __UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_ = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE_ = "weight" else: SCREAMING_SNAKE_CASE_ = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_ = name.split("." ) SCREAMING_SNAKE_CASE_ = int(items[0] ) SCREAMING_SNAKE_CASE_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ): if config_path is not None: SCREAMING_SNAKE_CASE_ = UniSpeechSatConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = UniSpeechSatConfig() SCREAMING_SNAKE_CASE_ = "" if is_finetuned: SCREAMING_SNAKE_CASE_ = UniSpeechSatForCTC(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = UniSpeechSatForPreTraining(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) SCREAMING_SNAKE_CASE_ = model[0].eval() recursively_load_weights(__UpperCamelCase , __UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A : Optional[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
356
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE_ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__magic_name__ )["last_hidden_state"].detach() self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1e-3 ) ) @slow def __A ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE_ = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE_ = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__magic_name__ )["last_hidden_state"].detach() self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1e-3 ) )
356
1
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(__snake_case ) * abs(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
108
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = "mgp-str" def __init__( self , A_=[32, 128] , A_=4 , A_=3 , A_=27 , A_=38 , A_=5_0257 , A_=3_0522 , A_=768 , A_=12 , A_=12 , A_=4.0 , A_=True , A_=False , A_=1e-5 , A_=0.0 , A_=0.0 , A_=0.0 , A_=False , A_=0.0_2 , **A_ , ) -> List[str]: super().__init__(**A_ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = max_token_length lowerCAmelCase = num_character_labels lowerCAmelCase = num_bpe_labels lowerCAmelCase = num_wordpiece_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = mlp_ratio lowerCAmelCase = distilled lowerCAmelCase = layer_norm_eps lowerCAmelCase = drop_rate lowerCAmelCase = qkv_bias lowerCAmelCase = attn_drop_rate lowerCAmelCase = drop_path_rate lowerCAmelCase = output_aa_attentions lowerCAmelCase = initializer_range
433
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase__ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if args.student_type == "roberta": __a = False elif args.student_type == "gpt2": __a = False def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if args.student_type == "roberta": __a = False def lowerCAmelCase__ ( ): """simple docstring""" __a = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=_SCREAMING_SNAKE_CASE , choices=["""distilbert""", """roberta""", """gpt2"""] , required=_SCREAMING_SNAKE_CASE , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=_SCREAMING_SNAKE_CASE , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=_SCREAMING_SNAKE_CASE , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=_SCREAMING_SNAKE_CASE , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=_SCREAMING_SNAKE_CASE , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=_SCREAMING_SNAKE_CASE , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=_SCREAMING_SNAKE_CASE , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=_SCREAMING_SNAKE_CASE , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=_SCREAMING_SNAKE_CASE , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=_SCREAMING_SNAKE_CASE , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=_SCREAMING_SNAKE_CASE , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=_SCREAMING_SNAKE_CASE , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=_SCREAMING_SNAKE_CASE , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=_SCREAMING_SNAKE_CASE , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=_SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=_SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=_SCREAMING_SNAKE_CASE , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=_SCREAMING_SNAKE_CASE , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_SCREAMING_SNAKE_CASE , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=_SCREAMING_SNAKE_CASE , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=_SCREAMING_SNAKE_CASE , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=_SCREAMING_SNAKE_CASE , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=_SCREAMING_SNAKE_CASE , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=_SCREAMING_SNAKE_CASE , default=4000 , help="""Checkpoint interval.""" ) __a = parser.parse_args() sanity_checks(_SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(_SCREAMING_SNAKE_CASE ) set_seed(_SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) __a , __a , __a = MODEL_CLASSES[args.student_type] __a , __a , __a = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __a = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __a = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __a = tokenizer.all_special_tokens.index(_SCREAMING_SNAKE_CASE ) __a = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) __a = special_tok_ids __a = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , """rb""" ) as fp: __a = pickle.load(_SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , """rb""" ) as fp: __a = pickle.load(_SCREAMING_SNAKE_CASE ) __a = np.maximum(_SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __a = 0.0 # do not predict special tokens __a = torch.from_numpy(_SCREAMING_SNAKE_CASE ) else: __a = None __a = LmSeqsDataset(params=_SCREAMING_SNAKE_CASE , data=_SCREAMING_SNAKE_CASE ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) __a = student_config_class.from_pretrained(args.student_config ) __a = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) __a = student_model_class.from_pretrained(args.student_pretrained_weights , config=_SCREAMING_SNAKE_CASE ) else: __a = student_model_class(_SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info("""Student loaded.""" ) # TEACHER # __a = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __a = Distiller( params=_SCREAMING_SNAKE_CASE , dataset=_SCREAMING_SNAKE_CASE , token_probs=_SCREAMING_SNAKE_CASE , student=_SCREAMING_SNAKE_CASE , teacher=_SCREAMING_SNAKE_CASE ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
547
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict ='mgp-str' def __init__( self : Optional[Any] , __lowercase : Dict=[32, 128] , __lowercase : Tuple=4 , __lowercase : Optional[Any]=3 , __lowercase : str=27 , __lowercase : Any=38 , __lowercase : str=50257 , __lowercase : List[str]=30522 , __lowercase : Tuple=768 , __lowercase : str=12 , __lowercase : Optional[Any]=12 , __lowercase : str=4.0 , __lowercase : Union[str, Any]=True , __lowercase : List[Any]=False , __lowercase : Union[str, Any]=1E-5 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : List[str]=False , __lowercase : List[Any]=0.02 , **__lowercase : List[Any] , ): '''simple docstring''' super().__init__(**__lowercase ) __a = image_size __a = patch_size __a = num_channels __a = max_token_length __a = num_character_labels __a = num_bpe_labels __a = num_wordpiece_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = mlp_ratio __a = distilled __a = layer_norm_eps __a = drop_rate __a = qkv_bias __a = attn_drop_rate __a = drop_path_rate __a = output_aa_attentions __a = initializer_range
547
1
"""simple docstring""" from collections.abc import Callable class __lowercase : def __init__( self : Tuple ,A : Callable | None = None ): '''simple docstring''' # Stores actual heap items. UpperCAmelCase__ : list = [] # Stores indexes of each item for supporting updates and deletion. UpperCAmelCase__ : dict = {} # Stores current size of heap. UpperCAmelCase__ : Any = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCAmelCase__ : int = key or (lambda A : x) def __lowercase ( self : Union[str, Any] ,A : int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self : Tuple ,A : int ): '''simple docstring''' UpperCAmelCase__ : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self : Any ,A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self : List[Any] ,A : int ,A : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.arr[j], self.arr[i] def __lowercase ( self : Optional[int] ,A : int ,A : int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowercase ( self : Optional[int] ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = self._left(A ) UpperCAmelCase__ : Dict = self._right(A ) UpperCAmelCase__ : Optional[int] = i if left is not None and not self._cmp(A ,A ): UpperCAmelCase__ : List[Any] = left if right is not None and not self._cmp(A ,A ): UpperCAmelCase__ : List[Any] = right return valid_parent def __lowercase ( self : int ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = self._parent(A ) while parent is not None and not self._cmp(A ,A ): self._swap(A ,A ) UpperCAmelCase__ , UpperCAmelCase__ : int = parent, self._parent(A ) def __lowercase ( self : str ,A : int ): '''simple docstring''' UpperCAmelCase__ : Any = self._get_valid_parent(A ) while valid_parent != index: self._swap(A ,A ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = valid_parent, self._get_valid_parent(A ) def __lowercase ( self : Optional[Any] ,A : int ,A : int ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase__ : Tuple = self.pos_map[item] UpperCAmelCase__ : Dict = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def __lowercase ( self : List[Any] ,A : int ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase__ : Any = self.pos_map[item] del self.pos_map[item] UpperCAmelCase__ : Dict = self.arr[self.size - 1] UpperCAmelCase__ : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def __lowercase ( self : str ,A : int ,A : int ): '''simple docstring''' UpperCAmelCase__ : Dict = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: UpperCAmelCase__ : List[str] = [item, self.key(A )] UpperCAmelCase__ : Union[str, Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self : str ): '''simple docstring''' return self.arr[0] if self.size else None def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowercase : snake_case_ = PegasusConfig snake_case_ = {} snake_case_ = """gelu""" def __init__( self : List[Any] ,A : int ,A : Optional[Any]=13 ,A : Dict=7 ,A : Dict=True ,A : Any=False ,A : Dict=99 ,A : int=32 ,A : Optional[int]=5 ,A : Union[str, Any]=4 ,A : Union[str, Any]=37 ,A : str=0.1 ,A : int=0.1 ,A : Optional[int]=20 ,A : Tuple=2 ,A : str=1 ,A : Optional[Any]=0 ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = eos_token_id UpperCAmelCase__ : Union[str, Any] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) UpperCAmelCase__ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase__ : Any = np.concatenate([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase__ : Optional[Any] = prepare_pegasus_inputs_dict(A ,A ,A ) return config, inputs_dict def __lowercase ( self : Any ,A : Optional[int] ,A : str ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : Dict = model_class_name(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, -1:] ,A ,decoder_attention_mask=A ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=A ,) UpperCAmelCase__ : Dict = model.decode(A ,A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def __lowercase ( self : Optional[int] ,A : str ,A : Dict ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : str = model_class_name(A ) UpperCAmelCase__ : Any = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] ,A ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Union[str, Any] = model.decode(A ,A ,decoder_attention_mask=A ) UpperCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.not_equal(__UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxPegasusModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=A ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A ,A ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A ,A ,A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ) UpperCAmelCase__ : int = model_class(A ) @jax.jit def encode_jitted(A : Optional[int] ,A : Union[str, Any]=None ,**A : Optional[Any] ): return model.encode(input_ids=A ,attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : int = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : Dict = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = model_class(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) UpperCAmelCase__ : Dict = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A : List[Any] ,A : Any ,A : List[Any] ): return model.decode( decoder_input_ids=A ,decoder_attention_mask=A ,encoder_outputs=A ,) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : str = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=A ) UpperCAmelCase__ : Any = np.ones((1, 1) ) UpperCAmelCase__ : Optional[Any] = model(A ) self.assertIsNotNone(A ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase__ : str = tokenizer(A ,return_tensors="""np""" ,truncation=A ,max_length=512 ,padding=A ) UpperCAmelCase__ : Union[str, Any] = model.generate(**A ,num_beams=2 ).sequences UpperCAmelCase__ : int = tokenizer.batch_decode(A ,skip_special_tokens=A ) assert tgt_text == decoded
65
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 a_ = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = 1 @register_to_config def __init__( self : Any , __A : int = 2_0_0_0 , __A : float = 0.1_5 , __A : float = 0.0_1 , __A : float = 1_3_4_8.0 , __A : float = 1e-5 , __A : int = 1 , ): # standard deviation of the initial noise distribution snake_case__ : Tuple = sigma_max # setable values snake_case__ : Union[str, Any] = None self.set_sigmas(__A , __A , __A , __A ) def _lowercase ( self : Any , __A : torch.FloatTensor , __A : Optional[int] = None ): return sample def _lowercase ( self : str , __A : int , __A : float = None , __A : Union[str, torch.device] = None ): snake_case__ : List[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps snake_case__ : Union[str, Any] = torch.linspace(1 , __A , __A , device=__A ) def _lowercase ( self : str , __A : int , __A : float = None , __A : float = None , __A : float = None ): snake_case__ : List[Any] = sigma_min if sigma_min is not None else self.config.sigma_min snake_case__ : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max snake_case__ : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__A , __A ) snake_case__ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) snake_case__ : List[str] = torch.exp(torch.linspace(math.log(__A ) , math.log(__A ) , __A ) ) snake_case__ : Union[str, Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowercase ( self : Tuple , __A : int , __A : str ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _lowercase ( self : Union[str, Any] , __A : torch.FloatTensor , __A : int , __A : torch.FloatTensor , __A : Optional[torch.Generator] = None , __A : bool = True , ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) snake_case__ : Dict = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) snake_case__ : str = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda snake_case__ : Optional[int] = timesteps.to(self.discrete_sigmas.device ) snake_case__ : Dict = self.discrete_sigmas[timesteps].to(sample.device ) snake_case__ : List[Any] = self.get_adjacent_sigma(__A , __A ).to(sample.device ) snake_case__ : Any = torch.zeros_like(__A ) snake_case__ : int = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods snake_case__ : Any = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): snake_case__ : Optional[int] = diffusion.unsqueeze(-1 ) snake_case__ : List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of snake_case__ : List[str] = randn_tensor( sample.shape , layout=sample.layout , generator=__A , device=sample.device , dtype=sample.dtype ) snake_case__ : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? snake_case__ : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__A , prev_sample_mean=__A ) def _lowercase ( self : Optional[int] , __A : torch.FloatTensor , __A : torch.FloatTensor , __A : Optional[torch.Generator] = None , __A : bool = True , ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction snake_case__ : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=__A ).to(sample.device ) # compute step size from the model_output, the noise, and the snr snake_case__ : Dict = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() snake_case__ : Any = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() snake_case__ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 snake_case__ : Optional[int] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term snake_case__ : Optional[int] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): snake_case__ : List[Any] = step_size.unsqueeze(-1 ) snake_case__ : List[str] = sample + step_size * model_output snake_case__ : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def _lowercase ( self : Any , __A : torch.FloatTensor , __A : torch.FloatTensor , __A : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ : Tuple = timesteps.to(original_samples.device ) snake_case__ : Union[str, Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] snake_case__ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__A ) * sigmas[:, None, None, None] ) snake_case__ : str = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): return self.config.num_train_timesteps
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case = logging.get_logger(__name__) class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ['''pixel_values'''] def __init__( self : Union[str, Any] ,__A : bool = True ,__A : Dict[str, int] = None ,__A : PILImageResampling = PILImageResampling.BICUBIC ,__A : bool = True ,__A : Dict[str, int] = None ,__A : bool = True ,__A : Union[int, float] = 1 / 255 ,__A : bool = True ,__A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,__A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**__A : Optional[int] ,) -> None: super().__init__(**__A ) _lowercase = size if size is not None else {'shortest_edge': 224} _lowercase = get_size_dict(__A ,default_to_square=__A ) _lowercase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowercase = get_size_dict(__A ,param_name='crop_size' ) _lowercase = do_resize _lowercase = size _lowercase = resample _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_rescale _lowercase = rescale_factor _lowercase = do_normalize _lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase ( self : int ,__A : np.ndarray ,__A : Dict[str, int] ,__A : PILImageResampling = PILImageResampling.BICUBIC ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : List[str] ,) -> np.ndarray: _lowercase = get_size_dict(__A ,default_to_square=__A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowercase = int((256 / 224) * size['shortest_edge'] ) _lowercase = get_resize_output_image_size(__A ,size=__A ,default_to_square=__A ) _lowercase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __A ,size=(size_dict['height'], size_dict['width']) ,resample=__A ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : int ,__A : np.ndarray ,__A : Dict[str, int] ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : Optional[int] ,) -> np.ndarray: _lowercase = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__A ,size=(size['height'], size['width']) ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : Optional[int] ,__A : np.ndarray ,__A : Union[int, float] ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : List[str] ,) -> np.ndarray: return rescale(__A ,scale=__A ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : str ,__A : np.ndarray ,__A : Union[float, List[float]] ,__A : Union[float, List[float]] ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : int ,) -> np.ndarray: return normalize(__A ,mean=__A ,std=__A ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : Dict ,__A : ImageInput ,__A : Optional[bool] = None ,__A : Optional[Dict[str, int]] = None ,__A : PILImageResampling = None ,__A : Optional[bool] = None ,__A : Optional[Dict[str, int]] = None ,__A : Optional[bool] = None ,__A : Optional[float] = None ,__A : Optional[bool] = None ,__A : Optional[Union[float, Iterable[float]]] = None ,__A : Optional[Union[float, Iterable[float]]] = None ,__A : Optional[TensorType] = None ,__A : ChannelDimension = ChannelDimension.FIRST ,**__A : Optional[Any] ,) -> BatchFeature: _lowercase = do_resize if do_resize is not None else self.do_resize _lowercase = resample if resample is not None else self.resample _lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase = do_rescale if do_rescale is not None else self.do_rescale _lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase = do_normalize if do_normalize is not None else self.do_normalize _lowercase = image_mean if image_mean is not None else self.image_mean _lowercase = image_std if image_std is not None else self.image_std _lowercase = size if size is not None else self.size _lowercase = get_size_dict(__A ,default_to_square=__A ) _lowercase = crop_size if crop_size is not None else self.crop_size _lowercase = get_size_dict(__A ,param_name='crop_size' ) _lowercase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowercase = [to_numpy_array(__A ) for image in images] if do_resize: _lowercase = [self.resize(__A ,__A ,__A ) for image in images] if do_center_crop: _lowercase = [self.center_crop(__A ,__A ) for image in images] if do_rescale: _lowercase = [self.rescale(__A ,__A ) for image in images] if do_normalize: _lowercase = [self.normalize(__A ,__A ,__A ) for image in images] _lowercase = [to_channel_dimension_format(__A ,__A ) for image in images] _lowercase = {'pixel_values': images} return BatchFeature(data=__A ,tensor_type=__A )
67
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = '''big_bird''' def __init__( self : str ,__A : Union[str, Any]=5_0358 ,__A : Any=768 ,__A : List[str]=12 ,__A : Union[str, Any]=12 ,__A : int=3072 ,__A : Tuple="gelu_new" ,__A : Any=0.1 ,__A : Optional[Any]=0.1 ,__A : Tuple=4096 ,__A : int=2 ,__A : Union[str, Any]=0.02 ,__A : Optional[int]=1e-12 ,__A : List[str]=True ,__A : List[Any]=0 ,__A : Optional[Any]=1 ,__A : Optional[int]=2 ,__A : Optional[int]=66 ,__A : Tuple="block_sparse" ,__A : Optional[int]=True ,__A : Optional[int]=False ,__A : Tuple=64 ,__A : str=3 ,__A : Optional[int]=None ,**__A : Dict ,) -> Union[str, Any]: super().__init__( pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,sep_token_id=__A ,**__A ,) _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = type_vocab_size _lowercase = layer_norm_eps _lowercase = use_cache _lowercase = rescale_embeddings _lowercase = attention_type _lowercase = use_bias _lowercase = block_size _lowercase = num_random_blocks _lowercase = classifier_dropout class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
67
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE_ = '''CompVis/stable-diffusion-v1-1''' SCREAMING_SNAKE_CASE_ = '''CompVis/stable-diffusion-v1-2''' SCREAMING_SNAKE_CASE_ = '''CompVis/stable-diffusion-v1-3''' SCREAMING_SNAKE_CASE_ = '''CompVis/stable-diffusion-v1-4''' class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Any: super()._init_() _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(snake_case_ ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(snake_case_ ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(snake_case_ ) _UpperCAmelCase = StableDiffusionPipeline( vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , unet=snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , requires_safety_checker=snake_case_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __A ( self ) -> Dict[str, Any]: return {k: getattr(self , snake_case_ ) for k in self.config.keys() if not k.startswith("_" )} def __A ( self , snake_case_ = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case_ ) def __A ( self ) -> Tuple: self.enable_attention_slicing(snake_case_ ) @torch.no_grad() def __A ( self , snake_case_ , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 50 , snake_case_ = 7.5 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = None , snake_case_ = 1 , **snake_case_ , ) -> Union[str, Any]: return self.pipea( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) @torch.no_grad() def __A ( self , snake_case_ , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 50 , snake_case_ = 7.5 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = None , snake_case_ = 1 , **snake_case_ , ) -> Union[str, Any]: return self.pipea( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) @torch.no_grad() def __A ( self , snake_case_ , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 50 , snake_case_ = 7.5 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = None , snake_case_ = 1 , **snake_case_ , ) -> List[str]: return self.pipea( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) @torch.no_grad() def __A ( self , snake_case_ , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 50 , snake_case_ = 7.5 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = None , snake_case_ = 1 , **snake_case_ , ) -> Dict: return self.pipea( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) @torch.no_grad() def __A ( self , snake_case_ , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 50 , snake_case_ = 7.5 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = None , snake_case_ = 1 , **snake_case_ , ) -> Union[str, Any]: _UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" self.to(snake_case_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 _UpperCAmelCase = self.textaimg_sda_a( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 _UpperCAmelCase = self.textaimg_sda_a( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 _UpperCAmelCase = self.textaimg_sda_a( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 _UpperCAmelCase = self.textaimg_sda_a( prompt=snake_case_ , height=snake_case_ , width=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , output_type=snake_case_ , return_dict=snake_case_ , callback=snake_case_ , callback_steps=snake_case_ , **snake_case_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
579
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def A__ ( A__ , A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def A__ ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = str(A__ ) dataset_info.write_to_directory(A__ ) _UpperCAmelCase = DatasetInfo.from_directory(A__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A__ , "dataset_info.json" ) ) def A__ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _UpperCAmelCase = yaml.safe_dump(A__ ) _UpperCAmelCase = yaml.safe_load(A__ ) assert dataset_info_yaml_dict == reloaded def A__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = DatasetInfo() _UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] , ) def A__ ( A__ , A__ ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(A__ ) dataset_infos_dict.write_to_directory(A__ ) _UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A__ , "README.md" ) )
579
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : Dict = logging.get_logger(__name__) _A : int = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = """instructblip_vision_model""" def __init__( self , A_=14_08 , A_=61_44 , A_=39 , A_=16 , A_=2_24 , A_=14 , A_="gelu" , A_=1E-6 , A_=0.0 , A_=1E-10 , A_=True , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = qkv_bias @classmethod def lowercase_ ( cls , A_ , **A_ ): '''simple docstring''' cls._set_token_in_kwargs(A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": SCREAMING_SNAKE_CASE__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A_ , **A_ ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : List[Any] = """instructblip_qformer""" def __init__( self , A_=3_05_22 , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=0.02 , A_=1E-12 , A_=0 , A_="absolute" , A_=2 , A_=14_08 , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , **A_ ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = cross_attention_frequency SCREAMING_SNAKE_CASE__ = encoder_hidden_size @classmethod def lowercase_ ( cls , A_ , **A_ ): '''simple docstring''' cls._set_token_in_kwargs(A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": SCREAMING_SNAKE_CASE__ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A_ , **A_ ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = """instructblip""" lowerCamelCase__ : List[Any] = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ): '''simple docstring''' super().__init__(**A_ ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) SCREAMING_SNAKE_CASE__ = InstructBlipVisionConfig(**A_ ) SCREAMING_SNAKE_CASE__ = InstructBlipQFormerConfig(**A_ ) SCREAMING_SNAKE_CASE__ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[text_model_type](**A_ ) SCREAMING_SNAKE_CASE__ = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE__ = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE__ = num_query_tokens SCREAMING_SNAKE_CASE__ = self.vision_config.hidden_size SCREAMING_SNAKE_CASE__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE__ = 1.0 SCREAMING_SNAKE_CASE__ = 0.02 @classmethod def lowercase_ ( cls , A_ , A_ , A_ , **A_ , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
100
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = {} class a__ ( __SCREAMING_SNAKE_CASE ): _A = "llama" _A = ["past_key_values"] def __init__( self : Optional[int] , A_ : Optional[int]=3_20_00 , A_ : Union[str, Any]=40_96 , A_ : Optional[int]=1_10_08 , A_ : int=32 , A_ : int=32 , A_ : Tuple=None , A_ : str="silu" , A_ : Union[str, Any]=20_48 , A_ : List[str]=0.02 , A_ : Union[str, Any]=1e-6 , A_ : Dict=True , A_ : Union[str, Any]=0 , A_ : str=1 , A_ : Tuple=2 , A_ : List[str]=1 , A_ : Dict=False , A_ : List[str]=None , **A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_: List[str] = vocab_size lowerCamelCase_: List[str] = max_position_embeddings lowerCamelCase_: Union[str, Any] = hidden_size lowerCamelCase_: Optional[Any] = intermediate_size lowerCamelCase_: Any = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCamelCase_: str = num_attention_heads lowerCamelCase_: str = num_key_value_heads lowerCamelCase_: str = hidden_act lowerCamelCase_: List[str] = initializer_range lowerCamelCase_: Any = rms_norm_eps lowerCamelCase_: int = pretraining_tp lowerCamelCase_: Optional[Any] = use_cache lowerCamelCase_: Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ , ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCamelCase_: str = self.rope_scaling.get("""type""" , A_ ) lowerCamelCase_: Optional[int] = self.rope_scaling.get("""factor""" , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
423
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase__ = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) UpperCAmelCase__ = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids UpperCAmelCase__ = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids UpperCAmelCase__ = shift_tokens_right(__lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase__ = model(__lowercase , decoder_input_ids=__lowercase ).logits UpperCAmelCase__ = optax.softmax_cross_entropy(__lowercase , onehot(__lowercase , logits.shape[-1] ) ).mean() UpperCAmelCase__ = -(labels.shape[-1] * loss.item()) UpperCAmelCase__ = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
422
"""simple docstring""" class _UpperCamelCase : '''simple docstring''' def __init__( self , __lowercase = "" , __lowercase = False ): # Mapping from the first character of the prefix of the node UpperCAmelCase__ = {} # A node will be a leaf if the tree contains its word UpperCAmelCase__ = is_leaf UpperCAmelCase__ = prefix def A__ ( self , __lowercase ): UpperCAmelCase__ = 0 for q, w in zip(self.prefix , __lowercase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A__ ( self , __lowercase ): for word in words: self.insert(__lowercase ) def A__ ( self , __lowercase ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCAmelCase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCAmelCase__ = RadixNode(prefix=__lowercase , is_leaf=__lowercase ) else: UpperCAmelCase__ = self.nodes[word[0]] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = incoming_node.match( __lowercase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__lowercase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCAmelCase__ = remaining_prefix UpperCAmelCase__ = self.nodes[matching_string[0]] UpperCAmelCase__ = RadixNode(__lowercase , __lowercase ) UpperCAmelCase__ = aux_node if remaining_word == "": UpperCAmelCase__ = True else: self.nodes[matching_string[0]].insert(__lowercase ) def A__ ( self , __lowercase ): UpperCAmelCase__ = self.nodes.get(word[0] , __lowercase ) if not incoming_node: return False else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = incoming_node.match( __lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__lowercase ) def A__ ( self , __lowercase ): UpperCAmelCase__ = self.nodes.get(word[0] , __lowercase ) if not incoming_node: return False else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = incoming_node.match( __lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__lowercase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCAmelCase__ = list(self.nodes.values() )[0] UpperCAmelCase__ = merging_node.is_leaf self.prefix += merging_node.prefix UpperCAmelCase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCAmelCase__ = False # If there is 1 edge, we merge it with its child else: UpperCAmelCase__ = list(incoming_node.nodes.values() )[0] UpperCAmelCase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCAmelCase__ = merging_node.nodes return True def A__ ( self , __lowercase = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def snake_case__ ( ) ->bool: UpperCAmelCase__ = """banana bananas bandana band apple all beast""".split() UpperCAmelCase__ = RadixNode() root.insert_many(_SCREAMING_SNAKE_CASE ) assert all(root.find(_SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def snake_case__ ( ) ->None: assert test_trie() def snake_case__ ( ) ->None: UpperCAmelCase__ = RadixNode() UpperCAmelCase__ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(_SCREAMING_SNAKE_CASE ) print("""Words:""" , _SCREAMING_SNAKE_CASE ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
422
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_=None, A_=None, A_=0 ) -> str: UpperCAmelCase__ =1.0 if scale is None else scale UpperCAmelCase__ =0.0 if loc is None else loc super().__init__(A_, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=A_ )] ) @property def __UpperCAmelCase ( self ) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self ) -> Any: return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self ) -> List[Any]: return self.variance.sqrt() class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self, A_, A_, A_, **A_ ) -> None: super().__init__(**A_ ) UpperCAmelCase__ =args_dim UpperCAmelCase__ =nn.ModuleList([nn.Linear(A_, A_ ) for dim in args_dim.values()] ) UpperCAmelCase__ =domain_map def __UpperCAmelCase ( self, A_ ) -> Tuple[torch.Tensor]: UpperCAmelCase__ =[proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self, A_ ) -> int: super().__init__() UpperCAmelCase__ =function def __UpperCAmelCase ( self, A_, *A_ ) -> Any: return self.function(A_, *A_ ) class snake_case_ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self, A_ = 1 ) -> None: UpperCAmelCase__ =dim UpperCAmelCase__ ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self, A_ ) -> Tuple: if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ), 1 ) def __UpperCAmelCase ( self, A_, A_ = None, A_ = None, ) -> Distribution: UpperCAmelCase__ =self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_, loc=A_, scale=A_, event_dim=self.event_dim ) @property def __UpperCAmelCase ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self ) -> int: return len(self.event_shape ) @property def __UpperCAmelCase ( self ) -> float: return 0.0 def __UpperCAmelCase ( self, A_ ) -> nn.Module: return ParameterProjection( in_features=A_, args_dim=self.args_dim, domain_map=LambdaLayer(self.domain_map ), ) def __UpperCAmelCase ( self, *A_ ) -> Optional[Any]: raise NotImplementedError() @staticmethod def __UpperCAmelCase ( A_ ) -> torch.Tensor: return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase = StudentT @classmethod def __UpperCAmelCase ( cls, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase__ =2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = {"loc": 1, "scale": 1} __UpperCamelCase = Normal @classmethod def __UpperCAmelCase ( cls, A_, A_ ) -> int: UpperCAmelCase__ =cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = {"total_count": 1, "logits": 1} __UpperCamelCase = NegativeBinomial @classmethod def __UpperCAmelCase ( cls, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self, A_ ) -> Distribution: UpperCAmelCase__ , UpperCAmelCase__ =distr_args if self.dim == 1: return self.distribution_class(total_count=A_, logits=A_ ) else: return Independent(self.distribution_class(total_count=A_, logits=A_ ), 1 ) def __UpperCAmelCase ( self, A_, A_ = None, A_ = None ) -> Distribution: UpperCAmelCase__ , UpperCAmelCase__ =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
625
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _UpperCAmelCase ( A ): '''simple docstring''' if isinstance(A , collections.abc.Iterable ): return x return (x, x) @require_flax class snake_case_ : '''simple docstring''' def __UpperCAmelCase ( self, A_, A_ ) -> Dict: pass def __UpperCAmelCase ( self ) -> List[str]: pass def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self, A_, A_, A_ ) -> Optional[int]: UpperCAmelCase__ =np.abs((a - b) ).max() self.assertLessEqual(A_, A_, f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_=None, **A_ ) -> List[str]: UpperCAmelCase__ =VisionTextDualEncoderConfig.from_vision_text_configs(A_, A_ ) UpperCAmelCase__ =FlaxVisionTextDualEncoderModel(A_ ) UpperCAmelCase__ =model(input_ids=A_, pixel_values=A_, attention_mask=A_ ) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_=None, **A_ ) -> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ =self.get_vision_text_model(A_, A_ ) UpperCAmelCase__ ={"vision_model": vision_model, "text_model": text_model} UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ ) UpperCAmelCase__ =model(input_ids=A_, pixel_values=A_, attention_mask=A_ ) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_=None, **A_ ) -> Any: UpperCAmelCase__ , UpperCAmelCase__ =self.get_vision_text_model(A_, A_ ) UpperCAmelCase__ ={"vision_model": vision_model, "text_model": text_model} UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ ) UpperCAmelCase__ =model(input_ids=A_, pixel_values=A_, attention_mask=A_ ) UpperCAmelCase__ =output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_pretrained(A_ ) UpperCAmelCase__ =model(input_ids=A_, pixel_values=A_, attention_mask=A_ ) UpperCAmelCase__ =after_output[0] UpperCAmelCase__ =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_, 1E-3 ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_=None, **A_ ) -> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ =self.get_vision_text_model(A_, A_ ) UpperCAmelCase__ ={"vision_model": vision_model, "text_model": text_model} UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**A_ ) UpperCAmelCase__ =model( input_ids=A_, pixel_values=A_, attention_mask=A_, output_attentions=A_ ) UpperCAmelCase__ =output.vision_model_output.attentions self.assertEqual(len(A_ ), vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ =to_atuple(vision_model.config.image_size ) UpperCAmelCase__ =to_atuple(vision_model.config.patch_size ) UpperCAmelCase__ =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase__ =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase__ =output.text_model_output.attentions self.assertEqual(len(A_ ), text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Union[str, Any]: pt_model.to(A_ ) pt_model.eval() # prepare inputs UpperCAmelCase__ =inputs_dict UpperCAmelCase__ ={k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase__ =pt_model(**A_ ).to_tuple() UpperCAmelCase__ =fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ), len(A_ ), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4] ): self.assert_almost_equals(A_, pt_output.numpy(), 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(A_ ) UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_pretrained(A_, from_pt=A_ ) UpperCAmelCase__ =fx_model_loaded(**A_ ).to_tuple() self.assertEqual(len(A_ ), len(A_ ), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4] ): self.assert_almost_equals(A_, pt_output.numpy(), 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(A_ ) UpperCAmelCase__ =VisionTextDualEncoderModel.from_pretrained(A_, from_flax=A_ ) pt_model_loaded.to(A_ ) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase__ =pt_model_loaded(**A_ ).to_tuple() self.assertEqual(len(A_ ), len(A_ ), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4] ): self.assert_almost_equals(A_, pt_output_loaded.numpy(), 4E-2 ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Tuple: UpperCAmelCase__ =VisionTextDualEncoderConfig.from_vision_text_configs(A_, A_ ) UpperCAmelCase__ =VisionTextDualEncoderModel(A_ ) UpperCAmelCase__ =FlaxVisionTextDualEncoderModel(A_ ) UpperCAmelCase__ =convert_pytorch_state_dict_to_flax(pt_model.state_dict(), A_ ) UpperCAmelCase__ =fx_state self.check_pt_flax_equivalence(A_, A_, A_ ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Dict: UpperCAmelCase__ =VisionTextDualEncoderConfig.from_vision_text_configs(A_, A_ ) UpperCAmelCase__ =VisionTextDualEncoderModel(A_ ) UpperCAmelCase__ =FlaxVisionTextDualEncoderModel(A_ ) UpperCAmelCase__ =load_flax_weights_in_pytorch_model(A_, fx_model.params ) self.check_pt_flax_equivalence(A_, A_, A_ ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**A_ ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**A_ ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =self.prepare_config_and_inputs() self.check_save_load(**A_ ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**A_ ) @is_pt_flax_cross_test def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =self.prepare_config_and_inputs() UpperCAmelCase__ =config_inputs_dict.pop("vision_config" ) UpperCAmelCase__ =config_inputs_dict.pop("text_config" ) UpperCAmelCase__ =config_inputs_dict self.check_equivalence_pt_to_flax(A_, A_, A_ ) self.check_equivalence_flax_to_pt(A_, A_, A_ ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ =self.get_pretrained_model_and_inputs() UpperCAmelCase__ =model_a(**A_ ) UpperCAmelCase__ =outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(A_ ) UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_pretrained(A_ ) UpperCAmelCase__ =model_a(**A_ ) UpperCAmelCase__ =after_outputs[0] UpperCAmelCase__ =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_, 1E-5 ) @require_flax class snake_case_ ( a, unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert", vision_from_pt=A_, text_from_pt=A_, ) UpperCAmelCase__ =13 UpperCAmelCase__ =floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase__ =ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) UpperCAmelCase__ =random_attention_mask([batch_size, 4] ) UpperCAmelCase__ ={"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __UpperCAmelCase ( self, A_, A_ ) -> Optional[int]: UpperCAmelCase__ =FlaxViTModel(A_ ) UpperCAmelCase__ =FlaxBertModel(A_ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =FlaxViTModelTester(self ) UpperCAmelCase__ =FlaxBertModelTester(self ) UpperCAmelCase__ =vit_model_tester.prepare_config_and_inputs() UpperCAmelCase__ =bert_model_tester.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ =vision_config_and_inputs UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class snake_case_ ( a, unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert", vision_from_pt=A_, text_from_pt=A_, ) UpperCAmelCase__ =13 UpperCAmelCase__ =floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase__ =ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) UpperCAmelCase__ =random_attention_mask([batch_size, 4] ) UpperCAmelCase__ ={"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __UpperCAmelCase ( self, A_, A_ ) -> Tuple: UpperCAmelCase__ =FlaxCLIPVisionModel(A_ ) UpperCAmelCase__ =FlaxBertModel(A_ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =FlaxCLIPVisionModelTester(self ) UpperCAmelCase__ =FlaxBertModelTester(self ) UpperCAmelCase__ =clip_model_tester.prepare_config_and_inputs() UpperCAmelCase__ =bert_model_tester.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ =vision_config_and_inputs UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0 ) UpperCAmelCase__ =VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCAmelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ =processor( text=["una foto di un gatto", "una foto di un cane"], images=A_, padding=A_, return_tensors="np" ) UpperCAmelCase__ =model(**A_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) UpperCAmelCase__ =np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image, A_, atol=1E-3 ) )
625
1
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a__ : str = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Tuple , *UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Tuple ) -> int: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = eval_examples __SCREAMING_SNAKE_CASE = post_process_function __SCREAMING_SNAKE_CASE = quant_trainer_args __SCREAMING_SNAKE_CASE = 1_2_8 # default number of calibration samples def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple=None ) -> Optional[int]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) __SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset __SCREAMING_SNAKE_CASE = self._remove_unused_columns(UpperCAmelCase__ , description="Calibration" ) return DataLoader( UpperCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple=None ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset __SCREAMING_SNAKE_CASE = self.get_calib_dataloader(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(UpperCAmelCase__ , self.quant_trainer_args , calib=UpperCAmelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCAmelCase__ ) logger.info("***** Running calibration *****" ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCAmelCase__ ): # Prediction step __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prediction_step(UpperCAmelCase__ , UpperCAmelCase__ , prediction_loss_only=UpperCAmelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCAmelCase__ , self.quant_trainer_args ) __SCREAMING_SNAKE_CASE = model def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str = "eval" ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset __SCREAMING_SNAKE_CASE = self.get_eval_dataloader(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __SCREAMING_SNAKE_CASE = self.compute_metrics __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __SCREAMING_SNAKE_CASE = eval_loop( UpperCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , ) finally: __SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __SCREAMING_SNAKE_CASE = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions ) __SCREAMING_SNAKE_CASE = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __SCREAMING_SNAKE_CASE = metrics.pop(UpperCAmelCase__ ) self.log(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__ ) return metrics def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : str = "test" ) -> Tuple: __SCREAMING_SNAKE_CASE = self.get_test_dataloader(UpperCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __SCREAMING_SNAKE_CASE = self.compute_metrics __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __SCREAMING_SNAKE_CASE = eval_loop( UpperCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , ) finally: __SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __SCREAMING_SNAKE_CASE = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions , "predict" ) __SCREAMING_SNAKE_CASE = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __SCREAMING_SNAKE_CASE = metrics.pop(UpperCAmelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : int="./" ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.eval_dataset __SCREAMING_SNAKE_CASE = self.get_eval_dataloader(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = next(iter(UpperCAmelCase__ ) ) # saving device - to make it consistent __SCREAMING_SNAKE_CASE = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple __SCREAMING_SNAKE_CASE = tuple(v.to(UpperCAmelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.model.to(UpperCAmelCase__ ) model.eval() model.float() __SCREAMING_SNAKE_CASE = model.module if hasattr(UpperCAmelCase__ , "module" ) else model quant_trainer.configure_model(UpperCAmelCase__ , self.quant_trainer_args ) __SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , "model.onnx" ) logger.info(F"""exporting model to {output_model_file}""" ) __SCREAMING_SNAKE_CASE = {0: "batch_size", 1: "seq_len"} torch.onnx.export( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , export_params=UpperCAmelCase__ , opset_version=1_3 , do_constant_folding=UpperCAmelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=UpperCAmelCase__ , ) logger.info("onnx export finished" )
553
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ : Dict = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' def constraint_to_multiple_of(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=0 , lowerCAmelCase_=None ): __SCREAMING_SNAKE_CASE = round(val / multiple ) * multiple if max_val is not None and x > max_val: __SCREAMING_SNAKE_CASE = math.floor(val / multiple ) * multiple if x < min_val: __SCREAMING_SNAKE_CASE = math.ceil(val / multiple ) * multiple return x __SCREAMING_SNAKE_CASE = (output_size, output_size) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else output_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_image_size(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output_size # determine new height and width __SCREAMING_SNAKE_CASE = output_height / input_height __SCREAMING_SNAKE_CASE = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __SCREAMING_SNAKE_CASE = scale_width else: # fit height __SCREAMING_SNAKE_CASE = scale_height __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase_ ) return (new_height, new_width) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = ["pixel_values"] def __init__( self : int , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 3_8_4, "width": 3_8_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Dict , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size( UpperCAmelCase__ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=UpperCAmelCase__ , multiple=UpperCAmelCase__ , ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> Any: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Tuple] = None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
553
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case = logging.getLogger(__name__) snake_case = 50 # max width of layer names snake_case = 70 # max width of quantizer names def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : int = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__lowercase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__lowercase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__lowercase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__lowercase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__lowercase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__lowercase , type=__lowercase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__lowercase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if args.calibrator == "max": lowerCAmelCase__ : Union[str, Any] = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) lowerCAmelCase__ : Optional[int] = "histogram" elif args.calibrator == "mse": lowerCAmelCase__ : List[str] = "histogram" else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) lowerCAmelCase__ : str = QuantDescriptor(num_bits=args.aprec , calib_method=__lowercase ) lowerCAmelCase__ : Union[str, Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowercase ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False ): """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowercase , ["embeddings"] , which="weight" , _disabled=__lowercase ) if args.quant_disable: set_quantizer_by_name(__lowercase , [""] , _disabled=__lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowercase , args.quant_disable_keyword , _disabled=__lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowercase , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=__lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowercase , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=__lowercase ) if args.recalibrate_weights: recalibrate_weights(__lowercase ) if args.fuse_qkv: fuse_qkv(__lowercase , __lowercase ) if args.clip_gelu: clip_gelu(__lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowercase ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowercase ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" def fusea(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): for mod in [qq, qk, qv]: if not hasattr(__lowercase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return lowerCAmelCase__ : List[Any] = qq._amax.detach().item() lowerCAmelCase__ : List[Any] = qk._amax.detach().item() lowerCAmelCase__ : Optional[int] = qv._amax.detach().item() lowerCAmelCase__ : List[str] = max(__lowercase , __lowercase , __lowercase ) qq._amax.fill_(__lowercase ) qk._amax.fill_(__lowercase ) qv._amax.fill_(__lowercase ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): lowerCAmelCase__ : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowercase ) lowerCAmelCase__ : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: lowerCAmelCase__ : Optional[Any] = mod.weight.shape[0] lowerCAmelCase__ : Tuple = mod._weight_quantizer._amax.detach() lowerCAmelCase__ : Dict = torch.ones(__lowercase , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase__ : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase__ : str = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase__ : str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowercase , keepdims=__lowercase ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) lowerCAmelCase__ : Optional[int] = amax def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=2_5 , lowerCamelCase_=1_8_0 , lowerCamelCase_=None ): """simple docstring""" if ignore is None: lowerCAmelCase__ : Any = [] elif not isinstance(__lowercase , __lowercase ): lowerCAmelCase__ : Any = [ignore] lowerCAmelCase__ : str = 0 for name, mod in model.named_modules(): if not hasattr(__lowercase , "weight" ): continue lowerCAmelCase__ : Any = max(__lowercase , len(__lowercase ) ) for name, mod in model.named_modules(): lowerCAmelCase__ : Any = getattr(__lowercase , "_input_quantizer" , __lowercase ) lowerCAmelCase__ : int = getattr(__lowercase , "_weight_quantizer" , __lowercase ) if not hasattr(__lowercase , "weight" ): continue if type(__lowercase ) in ignore: continue if [True for s in ignore if type(__lowercase ) is str and s in name]: continue lowerCAmelCase__ : List[Any] = f'''Act:{input_q.extra_repr()}''' lowerCAmelCase__ : Tuple = f'''Wgt:{weight_q.extra_repr()}''' lowerCAmelCase__ : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowercase ) <= line_width: logger.info(__lowercase ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[str] = 0 for name, mod in model.named_modules(): if isinstance(__lowercase , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[int] = getattr(__lowercase , __lowercase , __lowercase ) if quantizer_mod is not None: assert hasattr(__lowercase , __lowercase ) setattr(__lowercase , __lowercase , __lowercase ) else: logger.warning(f'''{name} has no {quantizer}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="both" , **lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Any = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowercase , __lowercase , "_input_quantizer" , __lowercase , __lowercase ) if which in ["weight", "both"]: set_quantizer(__lowercase , __lowercase , "_weight_quantizer" , __lowercase , __lowercase ) logger.info(__lowercase ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowercase , "_input_quantizer" ) or hasattr(__lowercase , "_weight_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): set_quantizers(__lowercase , __lowercase , **__lowercase ) elif name.endswith("_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): lowerCAmelCase__ : Optional[Any] = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(__lowercase , __lowercase , __lowercase ) logger.info(__lowercase )
378
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Dict = """dandelin/vilt-b32-finetuned-vqa""" _lowerCamelCase : List[Any] = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) _lowerCamelCase : str = """image_qa""" _lowerCamelCase : List[str] = AutoProcessor _lowerCamelCase : Optional[int] = AutoModelForVisualQuestionAnswering _lowerCamelCase : Tuple = ["""image""", """text"""] _lowerCamelCase : Optional[int] = ["""text"""] def __init__( self : int , *snake_case_ : Tuple , **snake_case_ : Optional[int] ): requires_backends(self , ["vision"] ) super().__init__(*snake_case_ , **snake_case_ ) def lowercase ( self : List[Any] , snake_case_ : "Image" , snake_case_ : str ): return self.pre_processor(snake_case_ , snake_case_ , return_tensors="pt" ) def lowercase ( self : List[Any] , snake_case_ : Dict ): with torch.no_grad(): return self.model(**snake_case_ ).logits def lowercase ( self : int , snake_case_ : Any ): _UpperCAmelCase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
236
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def snake_case ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : list[int] , a_ : int , ) -> list[float]: """simple docstring""" UpperCamelCase_ : Optional[int] = coefficient_matrix.shape UpperCamelCase_ : Optional[Any] = constant_matrix.shape if rowsa != colsa: UpperCamelCase_ : List[Any] = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(a_ ) if colsa != 1: UpperCamelCase_ : Dict = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(a_ ) if rowsa != rowsa: UpperCamelCase_ : Dict = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(a_ ) if len(a_ ) != rowsa: UpperCamelCase_ : Dict = ( """Number of initial values must be equal to number of rows in coefficient """ f"matrix but received {len(a_ )} and {rowsa}" ) raise ValueError(a_ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) UpperCamelCase_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase_ : Any = table.shape strictly_diagonally_dominant(a_ ) # Iterates the whole matrix for given number of times for _ in range(a_ ): UpperCamelCase_ : Dict = [] for row in range(a_ ): UpperCamelCase_ : int = 0 for col in range(a_ ): if col == row: UpperCamelCase_ : Any = table[row][col] elif col == cols - 1: UpperCamelCase_ : int = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase_ : Optional[int] = (temp + val) / denom new_val.append(a_ ) UpperCamelCase_ : Dict = new_val return [float(a_ ) for i in new_val] def snake_case ( a_ : NDArray[floataa] ) -> bool: """simple docstring""" UpperCamelCase_ : List[Any] = table.shape UpperCamelCase_ : Dict = True for i in range(0 , a_ ): UpperCamelCase_ : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase ={ "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase =[ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCamelCase =[ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCamelCase =[ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCamelCase =[ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
543
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = (DPMSolverSinglestepScheduler,) _SCREAMING_SNAKE_CASE : Dict = (('''num_inference_steps''', 25),) def _lowerCAmelCase ( self : Union[str, Any] , **_SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _lowerCAmelCase ( self : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=0 , **_SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE : Dict = 0.1 * sample SCREAMING_SNAKE_CASE : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = sample, sample for t in range(_SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE : str = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , **_SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE : Dict = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self : Optional[int] , _SCREAMING_SNAKE_CASE : str=None , **_SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" if scheduler is None: SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = 10 SCREAMING_SNAKE_CASE : str = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Optional[int] = 50 SCREAMING_SNAKE_CASE : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE : Any = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Tuple = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 SCREAMING_SNAKE_CASE : List[Any] = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : int = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Any = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , algorithm_type='dpmsolver++' , solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , algorithm_type=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : Any = self.full_loop( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , algorithm_type=_SCREAMING_SNAKE_CASE , ) assert not torch.isnan(_SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) self.check_over_configs(variance_type='learned_range' ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE , time_step=0 ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.full_loop() SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop(use_karras_sigmas=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.full_loop(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config(thresholding=_SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = 10 SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
265
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A_ : List[Any] = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') A_ : Tuple = parser.parse_args() A_ : Optional[int] = 'cpu' A_ : Dict = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' A_ : List[str] = 'path-to-your-trained-model' A_ : Any = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A_ : Tuple = pipe.to(device) # to channels last A_ : List[str] = pipe.unet.to(memory_format=torch.channels_last) A_ : List[str] = pipe.vae.to(memory_format=torch.channels_last) A_ : Optional[int] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A_ : Union[str, Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A_ : List[Any] = torch.randn(2, 4, 64, 64) A_ : int = torch.rand(1) * 999 A_ : int = torch.randn(2, 77, 768) A_ : Tuple = (sample, timestep, encoder_hidden_status) try: A_ : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A_ : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A_ : str = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A_ : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A_ : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A_ : Union[str, Any] = 666 A_ : Optional[Any] = torch.Generator(device).manual_seed(seed) A_ : Union[str, Any] = {'generator': generator} if args.steps is not None: A_ : int = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A_ : int = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
265
1
import logging from transformers import PretrainedConfig __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """bertabs""" def __init__( self ,lowercase=30522 ,lowercase=512 ,lowercase=6 ,lowercase=512 ,lowercase=8 ,lowercase=512 ,lowercase=0.2 ,lowercase=6 ,lowercase=768 ,lowercase=8 ,lowercase=2048 ,lowercase=0.2 ,**lowercase ,): """simple docstring""" super().__init__(**lowercase) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = max_pos UpperCAmelCase_ : List[str] = enc_layers UpperCAmelCase_ : List[str] = enc_hidden_size UpperCAmelCase_ : Any = enc_heads UpperCAmelCase_ : Any = enc_ff_size UpperCAmelCase_ : Optional[int] = enc_dropout UpperCAmelCase_ : List[str] = dec_layers UpperCAmelCase_ : List[Any] = dec_hidden_size UpperCAmelCase_ : List[str] = dec_heads UpperCAmelCase_ : List[Any] = dec_ff_size UpperCAmelCase_ : List[str] = dec_dropout
708
import operator def _snake_case ( __snake_case , __snake_case = False , __snake_case = None ) -> list: '''simple docstring''' UpperCAmelCase_ : Optional[int] = operator.lt if reverse else operator.gt UpperCAmelCase_ : int = solution or [] if not arr: return solution UpperCAmelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(__snake_case ): if _operator(__snake_case , sublist[-1] ): sublist.append(__snake_case ) arr.pop(__snake_case ) # merging sublist into solution list if not solution: solution.extend(__snake_case ) else: while sublist: UpperCAmelCase_ : Optional[int] = sublist.pop(0 ) for i, xx in enumerate(__snake_case ): if not _operator(__snake_case , __snake_case ): solution.insert(__snake_case , __snake_case ) break else: solution.append(__snake_case ) strand_sort(__snake_case , __snake_case , __snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
455
0
import math def snake_case_ (__A : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ (__A : float = 0.1 ) -> int: __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
651
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : Distribution , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=0 ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = 1.0 if scale is None else scale __lowerCAmelCase : Union[str, Any] = 0.0 if loc is None else loc super().__init__(lowerCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCAmelCase )] ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" return self.variance.sqrt() class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Callable[..., Tuple[torch.Tensor]] , **lowerCAmelCase : Union[str, Any] ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase ) __lowerCAmelCase : List[Any] = args_dim __lowerCAmelCase : Dict = nn.ModuleList([nn.Linear(lowerCAmelCase , lowerCAmelCase ) for dim in args_dim.values()] ) __lowerCAmelCase : int = domain_map def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : torch.Tensor ) -> Tuple[torch.Tensor]: """simple docstring""" __lowerCAmelCase : List[str] = [proj(lowerCAmelCase ) for proj in self.proj] return self.domain_map(*lowerCAmelCase ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase : str ) -> Any: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[Any] = function def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : str , *lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" return self.function(lowerCAmelCase , *lowerCAmelCase ) class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : type lowerCamelCase : int lowerCamelCase : Dict[str, int] def __init__( self : Optional[int] , lowerCAmelCase : int = 1 ) -> None: """simple docstring""" __lowerCAmelCase : Tuple = dim __lowerCAmelCase : List[str] = {k: dim * self.args_dim[k] for k in self.args_dim} def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Dict ) -> Any: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCAmelCase ) else: return Independent(self.distribution_class(*lowerCAmelCase ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , ) -> Distribution: """simple docstring""" __lowerCAmelCase : int = self._base_distribution(lowerCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCAmelCase , loc=lowerCAmelCase , scale=lowerCAmelCase , event_dim=self.event_dim ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" return len(self.event_shape ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float: """simple docstring""" return 0.0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : int ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def SCREAMING_SNAKE_CASE ( self : int , *lowerCAmelCase : torch.Tensor ) -> Tuple: """simple docstring""" raise NotImplementedError() @staticmethod def SCREAMING_SNAKE_CASE ( lowerCAmelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCAmelCase ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict[str, int] ={"df": 1, "loc": 1, "scale": 1} lowerCamelCase : type =StudentT @classmethod def SCREAMING_SNAKE_CASE ( cls : int , lowerCAmelCase : torch.Tensor , lowerCAmelCase : torch.Tensor , lowerCAmelCase : torch.Tensor ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = cls.squareplus(lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase : Tuple = 2.0 + cls.squareplus(lowerCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict[str, int] ={"loc": 1, "scale": 1} lowerCamelCase : type =Normal @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , lowerCAmelCase : torch.Tensor , lowerCAmelCase : torch.Tensor ) -> Any: """simple docstring""" __lowerCAmelCase : str = cls.squareplus(lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict[str, int] ={"total_count": 1, "logits": 1} lowerCamelCase : type =NegativeBinomial @classmethod def SCREAMING_SNAKE_CASE ( cls : int , lowerCAmelCase : torch.Tensor , lowerCAmelCase : torch.Tensor ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = cls.squareplus(lowerCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] ) -> Distribution: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Union[str, Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCAmelCase , logits=lowerCAmelCase ) else: return Independent(self.distribution_class(total_count=lowerCAmelCase , logits=lowerCAmelCase ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None ) -> Distribution: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
651
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} _snake_case : int = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } _snake_case : Optional[int] = { 'camembert-base': 512, } _snake_case : int = '▁' class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Optional[int]="</s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : Any="<s>" , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Optional[int]="<pad>" , lowerCAmelCase_ : Union[str, Any]="<mask>" , lowerCAmelCase_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : int , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) __lowerCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowerCAmelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} __lowerCAmelCase = len(self.fairseq_tokens_to_ids ) __lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self : Optional[int] ) -> Optional[int]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : str , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Union[str, Any] ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowerCAmelCase_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowerCAmelCase_ ) def lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = [] __lowerCAmelCase = '' __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) __lowerCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __getstate__( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : Tuple , lowerCAmelCase_ : List[str] ) -> List[Any]: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
421
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase_ ): requests.request('GET', 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET', 'https://huggingface.co', timeout=1.0 ) @pytest.mark.integration def a_ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET', 'https://huggingface.co' ) def a_ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase_ ): http_head('https://huggingface.co' )
421
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class snake_case ( UpperCamelCase_ ): def __init__( self : Dict , a_ : str , a_ : Optional[int]=None , a_ : str=True , a_ : Optional[Any]=None , **a_ : Optional[int] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : str = config_class SCREAMING_SNAKE_CASE__ : Union[str, Any] = has_text_modality SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs SCREAMING_SNAKE_CASE__ : str = common_properties def __lowercase( self : List[str] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE__ : int = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(a_ , a_ ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(a_ ): try: setattr(a_ , a_ , a_ ) self.parent.assertEqual( getattr(a_ , a_ ) , a_ , msg=F'''`{name} value {idx} expected, but was {getattr(a_ , a_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(a_ ): try: SCREAMING_SNAKE_CASE__ : Tuple = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(a_ , a_ ) , a_ , msg=F'''`{name} value {idx} expected, but was {getattr(a_ , a_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE__ : Tuple = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , a_ ) def __lowercase( self : int )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a_ , 'config.json' ) config_first.to_json_file(a_ ) SCREAMING_SNAKE_CASE__ : int = self.config_class.from_json_file(a_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowercase( self : int )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.config_class.from_pretrained(a_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowercase( self : Any )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'test' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(a_ , a_ ) config_first.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.config_class.from_pretrained(a_ , subfolder=a_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowercase( self : Union[str, Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) SCREAMING_SNAKE_CASE__ : int = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowercase( self : Any )-> Dict: """simple docstring""" if self.config_class.is_composition: return SCREAMING_SNAKE_CASE__ : Any = self.config_class() self.parent.assertIsNotNone(a_ ) def __lowercase( self : int )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = copy.deepcopy(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.config_class(**a_ ) SCREAMING_SNAKE_CASE__ : Any = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(a_ , a_ ) != value: wrong_values.append((key, getattr(a_ , a_ ), value) ) if len(a_ ) > 0: SCREAMING_SNAKE_CASE__ : str = '\n'.join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def __lowercase( self : Tuple )-> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
85
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a (_lowerCAmelCase ): """simple docstring""" def __snake_case ( self : str ) -> str: __snake_case : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "num_attention_heads" ) ) class a : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Tuple=13 , lowerCamelCase : str=32 , lowerCamelCase : Dict=2 , lowerCamelCase : List[str]=3 , lowerCamelCase : Any=640 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Tuple="silu" , lowerCamelCase : int=3 , lowerCamelCase : Dict=32 , lowerCamelCase : str=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : int=None , ) -> str: __snake_case : Optional[Any] = parent __snake_case : Optional[Any] = batch_size __snake_case : Any = image_size __snake_case : List[Any] = patch_size __snake_case : Any = num_channels __snake_case : Union[str, Any] = last_hidden_size __snake_case : Any = num_attention_heads __snake_case : Any = hidden_act __snake_case : Tuple = conv_kernel_size __snake_case : Any = output_stride __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = classifier_dropout_prob __snake_case : Union[str, Any] = use_labels __snake_case : Optional[int] = is_training __snake_case : Dict = num_labels __snake_case : Any = initializer_range __snake_case : Optional[int] = scope def __snake_case ( self : str ) -> Union[str, Any]: __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case ( self : Any ) -> Union[str, Any]: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __snake_case ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ) -> Dict: __snake_case : List[Any] = MobileViTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ) -> List[str]: __snake_case : str = self.num_labels __snake_case : List[Any] = MobileViTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ) -> Dict: __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = MobileViTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Tuple = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self : Optional[int] ) -> List[Any]: __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Optional[Any] = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def __snake_case ( self : Optional[int] ) -> Dict: __snake_case : Tuple = MobileViTModelTester(self ) __snake_case : Any = MobileViTConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def __snake_case ( self : Dict ) -> Any: pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def __snake_case ( self : Dict ) -> List[Any]: pass @unittest.skip(reason="MobileViT does not output attentions" ) def __snake_case ( self : int ) -> Dict: pass def __snake_case ( self : int ) -> Union[str, Any]: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(lowerCamelCase ) __snake_case : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case ( self : int ) -> Tuple: pass def __snake_case ( self : Any ) -> Tuple: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : Any ) -> str: def check_hidden_states_output(lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any ): __snake_case : int = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : int = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : Union[str, Any] = outputs.hidden_states __snake_case : int = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : List[Any] = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __snake_case ( self : List[str] ) -> List[str]: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def __snake_case ( self : List[str] ) -> Any: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = MobileViTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( ): __snake_case : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : str ) -> Dict: return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : Tuple = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCamelCase ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Dict = model(**lowerCamelCase ) # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def __snake_case ( self : str ) -> Optional[int]: __snake_case : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : str = model.to(lowerCamelCase ) __snake_case : int = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : Optional[int] = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(**lowerCamelCase ) __snake_case : Union[str, Any] = outputs.logits # verify the logits __snake_case : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __snake_case : Union[str, Any] = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def __snake_case ( self : Union[str, Any] ) -> Optional[int]: __snake_case : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : Tuple = model.to(lowerCamelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __snake_case : List[Any] = prepare_img() __snake_case : List[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(**lowerCamelCase ) __snake_case : Dict = outputs.logits.detach().cpu() __snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __snake_case : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __snake_case : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
81
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE ( lowercase_): """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =relative_attention _lowerCAmelCase =position_biased_input _lowerCAmelCase =pos_att_type _lowerCAmelCase =scope def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self , __A ) -> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: _lowerCAmelCase =DebertaVaModel(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A )[0] _lowerCAmelCase =model(__A , token_type_ids=__A )[0] _lowerCAmelCase =model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: _lowerCAmelCase =DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Tuple: _lowerCAmelCase =DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowercase : List[Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowercase : Union[str, Any] = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = True lowercase : List[Any] = False lowercase : Optional[int] = False lowercase : Dict = False lowercase : Optional[Any] = False def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =DebertaVaModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def UpperCamelCase__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def UpperCamelCase__ ( self ) -> int: pass @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _lowerCAmelCase =torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _lowerCAmelCase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase =model(__A , attention_mask=__A )[0] # compare the actual values for a slice. _lowerCAmelCase =torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: snake_case_ : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Dict = 0 snake_case_ : Optional[Any] = 2 while digits < n: index += 1 snake_case_ : Any = len(str(fibonacci(__UpperCamelCase ) ) ) return index def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Tuple = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : int = model_type_to_module_name(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = importlib.import_module(f""".{module_name}""" , "transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , "__name__" , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : Optional[Any] = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def a__ ( SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def lowercase__ ( cls , snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = kwargs.pop("config" , snake_case__ ) lowerCAmelCase : Optional[Any] = kwargs.pop("trust_remote_code" , snake_case__ ) lowerCAmelCase : Dict = True lowerCAmelCase , lowerCAmelCase : Optional[Any] = FeatureExtractionMixin.get_feature_extractor_dict(snake_case__ , **snake_case__ ) lowerCAmelCase : Any = config_dict.get("feature_extractor_type" , snake_case__ ) lowerCAmelCase : Tuple = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowerCAmelCase : Tuple = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase : Optional[Any] = getattr(snake_case__ , "feature_extractor_type" , snake_case__ ) if hasattr(snake_case__ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase : Optional[Any] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: lowerCAmelCase : Dict = feature_extractor_class_from_name(snake_case__ ) lowerCAmelCase : Tuple = feature_extractor_auto_map is not None lowerCAmelCase : Optional[int] = feature_extractor_class is not None or type(snake_case__ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase : Dict = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: lowerCAmelCase : Any = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) lowerCAmelCase : str = kwargs.pop("code_revision" , snake_case__ ) if os.path.isdir(snake_case__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(snake_case__ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(snake_case__ )] return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(snake_case__ , snake_case__ )
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = image.size __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __UpperCAmelCase : Optional[int] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __UpperCAmelCase : Optional[Any] = np.array(lowercase_ ).astype(np.floataa ) / 2_5_5.0 __UpperCAmelCase : Dict = image[None].transpose(0 , 3 , 1 , 2 ) __UpperCAmelCase : Any = torch.from_numpy(lowercase_ ) return 2.0 * image - 1.0 class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules(vqvae=lowercase__ , unet=lowercase__ , scheduler=lowercase__) @torch.no_grad() def __call__( self , lowercase__ = None , lowercase__ = 1 , lowercase__ = 1_0_0 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): if isinstance(lowercase__ , PIL.Image.Image): __UpperCAmelCase : Optional[int] = 1 elif isinstance(lowercase__ , torch.Tensor): __UpperCAmelCase : Tuple = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase__)}") if isinstance(lowercase__ , PIL.Image.Image): __UpperCAmelCase : List[str] = preprocess(lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __UpperCAmelCase : Any = (batch_size, self.unet.config.in_channels // 2, height, width) __UpperCAmelCase : Union[str, Any] = next(self.unet.parameters()).dtype __UpperCAmelCase : Dict = randn_tensor(lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__) __UpperCAmelCase : int = image.to(device=self.device , dtype=lowercase__) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowercase__ , device=self.device) __UpperCAmelCase : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase : Optional[Any] = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) __UpperCAmelCase : Optional[Any] = {} if accepts_eta: __UpperCAmelCase : List[str] = eta for t in self.progress_bar(lowercase__): # concat latents and low resolution image in the channel dimension. __UpperCAmelCase : Optional[Any] = torch.cat([latents, image] , dim=1) __UpperCAmelCase : int = self.scheduler.scale_model_input(lowercase__ , lowercase__) # predict the noise residual __UpperCAmelCase : Optional[int] = self.unet(lowercase__ , lowercase__).sample # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : int = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample # decode the image latents with the VQVAE __UpperCAmelCase : Dict = self.vqvae.decode(lowercase__).sample __UpperCAmelCase : Optional[Any] = torch.clamp(lowercase__ , -1.0 , 1.0) __UpperCAmelCase : Optional[int] = image / 2 + 0.5 __UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
462
import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Optional[Any] = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __UpperCAmelCase : str = [2, 4, 6, 8, 1_0, 1_2] __UpperCAmelCase : List[Any] = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ , lowercase__ , lowercase__) , 2_1_0) def A( self): self.assertRaisesRegex(lowercase__ , '''max_weight must greater than zero.''') def A( self): self.assertRaisesRegex(lowercase__ , '''Weight can not be negative.''') def A( self): self.assertRaisesRegex(lowercase__ , '''Profit can not be negative.''') def A( self): self.assertRaisesRegex(lowercase__ , '''max_weight must greater than zero.''') def A( self): self.assertRaisesRegex( lowercase__ , '''The length of profit and weight must be same.''') if __name__ == "__main__": unittest.main()
462
1
"""simple docstring""" import os from pathlib import Path def lowercase ( ) -> Union[str, Any]: from torch.utils.cpp_extension import load __magic_name__ = Path(__UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __magic_name__ = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCamelCase , with_cuda=__UpperCamelCase , extra_include_paths=[str(__UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
190
"""simple docstring""" def lowercase ( ) -> int: return 1 def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__UpperCamelCase ) def lowercase ( __UpperCamelCase = 200 ) -> int: return two_pound(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
190
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : List[Any]=4_0_0 , _UpperCamelCase : Optional[Any]=2_0_0_0 , _UpperCamelCase : Dict=1 , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Tuple=1_6_0_0_0 , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Union[str, Any]=8_0 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=6_4 , _UpperCamelCase : Tuple="hann_window" , _UpperCamelCase : Dict=8_0 , _UpperCamelCase : int=7_6_0_0 , _UpperCamelCase : Union[str, Any]=1e-10 , _UpperCamelCase : str=True , ) ->Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = do_normalize snake_case_ = num_mel_bins snake_case_ = hop_length snake_case_ = win_length snake_case_ = win_function snake_case_ = fmin snake_case_ = fmax snake_case_ = mel_floor snake_case_ = return_attention_mask def snake_case__( self : Union[str, Any] ) ->str: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def snake_case__( self : Dict , _UpperCamelCase : str=False , _UpperCamelCase : Any=False ) ->Tuple: def _flatten(_UpperCamelCase : int ): return list(itertools.chain(*_UpperCamelCase ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(_UpperCamelCase ) for x in speech_inputs] return speech_inputs def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]=False ) ->Union[str, Any]: if equal_length: snake_case_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(_UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaFeatureExtractor def snake_case__( self : List[Any] ) ->int: snake_case_ = SpeechTaFeatureExtractionTester(self ) def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: self.assertTrue(np.all(np.mean(_UpperCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def snake_case__( self : List[str] ) ->List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = [np.asarray(_UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) # Test batched snake_case_ = feat_extract(_UpperCamelCase , return_tensors='''np''' ).input_values snake_case_ = feat_extract(_UpperCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case_ = [None, 1_6_0_0, None] for max_length, padding in zip(_UpperCamelCase , _UpperCamelCase ): snake_case_ = feat_extract(_UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def snake_case__( self : Any ) ->Tuple: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = range(8_0_0 , 1_4_0_0 , 2_0_0 ) snake_case_ = [floats_list((1, x) )[0] for x in lengths] snake_case_ = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case_ = [None, 1_6_0_0, None] for max_length, padding in zip(_UpperCamelCase , _UpperCamelCase ): snake_case_ = feat_extract(_UpperCamelCase , max_length=_UpperCamelCase , padding=_UpperCamelCase ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def snake_case__( self : Optional[int] ) ->Any: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = feat_extract( _UpperCamelCase , truncation=_UpperCamelCase , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = feat_extract( _UpperCamelCase , truncation=_UpperCamelCase , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = feat_extract( _UpperCamelCase , truncation=_UpperCamelCase , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def snake_case__( self : Dict ) ->str: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_0_0 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case__( self : List[Any] ) ->List[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = [np.asarray(_UpperCamelCase ) for speech_input in speech_inputs] # Test feature size snake_case_ = feature_extractor(audio_target=_UpperCamelCase , padding=_UpperCamelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input snake_case_ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case_ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) # Test batched snake_case_ = feature_extractor(_UpperCamelCase , return_tensors='''np''' ).input_values snake_case_ = feature_extractor(_UpperCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case_ = np.asarray(_UpperCamelCase ) snake_case_ = feature_extractor(_UpperCamelCase , return_tensors='''np''' ).input_values snake_case_ = feature_extractor(_UpperCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Any ) ->Tuple: snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCamelCase ) == len(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , processed_features[input_name] ) ) ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCamelCase ) snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCamelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.num_mel_bins # hack! snake_case_ = feat_extract.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case__( self : Optional[Any] ) ->str: snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCamelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = [len(_UpperCamelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.num_mel_bins # hack! snake_case_ = feat_extract.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCamelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = [len(_UpperCamelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = min(_UpperCamelCase ) snake_case_ = feat_extract.num_mel_bins # hack! snake_case_ = feat_extract.pad( _UpperCamelCase , padding='''max_length''' , max_length=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def snake_case__( self : List[Any] , _UpperCamelCase : Union[str, Any] ) ->Any: from datasets import load_dataset snake_case_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ = ds.sort('''id''' ).select(range(_UpperCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__( self : List[Any] ) ->List[Any]: # fmt: off snake_case_ = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = feature_extractor(_UpperCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _UpperCamelCase , atol=1e-6 ) ) def snake_case__( self : Optional[int] ) ->List[str]: # fmt: off snake_case_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = feature_extractor(audio_target=_UpperCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _UpperCamelCase , atol=1e-4 ) )
39
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow SCREAMING_SNAKE_CASE__ = False class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : str , UpperCAmelCase : Dict=32): set_seed(0) SCREAMING_SNAKE_CASE_ :Dict = UNetaDModel(sample_size=UpperCAmelCase , in_channels=3 , out_channels=3) SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def _snake_case ( self : str): SCREAMING_SNAKE_CASE_ :List[str] = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE_ :Any = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ :str = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) SCREAMING_SNAKE_CASE_ :Any = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(UpperCAmelCase) for _ in range(4)] SCREAMING_SNAKE_CASE_ :str = [torch.randn((4, 3, 32, 32)).to(UpperCAmelCase) for _ in range(4)] SCREAMING_SNAKE_CASE_ :List[Any] = [torch.randint(0 , 10_00 , (4,)).long().to(UpperCAmelCase) for _ in range(4)] # train with a DDPM scheduler SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = self.get_model_optimizer(resolution=32) model.train().to(UpperCAmelCase) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_ :List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_ :Optional[Any] = model(UpperCAmelCase , timesteps[i]).sample SCREAMING_SNAKE_CASE_ :List[Any] = torch.nn.functional.mse_loss(UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_model_optimizer(resolution=32) model.train().to(UpperCAmelCase) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_ :List[str] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_ :Tuple = model(UpperCAmelCase , timesteps[i]).sample SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.nn.functional.mse_loss(UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5)) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5))
631
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a : int = logging.get_logger(__name__) # pylint: disable=invalid-name a : Optional[int] = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : Optional[int]=8 ) ->List[str]: '''simple docstring''' a : str = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Tuple: super().__init__() self.register_modules( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , ) a : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: if latents is None: a : List[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a : str = latents.to(lowerCAmelCase__ ) a : List[Any] = latents * scheduler.init_noise_sigma return latents def __a ( self , lowerCAmelCase__=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) a : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) a : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__=0 ) -> Tuple: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) a : Union[str, Any] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: a, a : Any = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__ ) # We'll offload the last model manually. a : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self ) -> Optional[int]: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> List[str]: a : Any = self._execution_device a : List[str] = guidance_scale > 1.0 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : str = torch.cat(lowerCAmelCase__ , dim=0 ) a : List[Any] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : List[str] = torch.cat(lowerCAmelCase__ , dim=0 ) if do_classifier_free_guidance: a : Optional[int] = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) a : Any = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) a : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ ) a : Any = self.scheduler.timesteps a : Any = self.unet.config.in_channels a, a : Dict = downscale_height_and_width(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor ) # create initial latent a : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance a : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a : Any = {"image_embeds": image_embeds} a : List[Any] = self.unet( sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] if do_classifier_free_guidance: a, a : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) a, a : str = noise_pred.chunk(2 ) a, a : str = variance_pred.chunk(2 ) a : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a, a : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a : Tuple = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , )[0] # post-processing a : Union[str, Any] = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a : Tuple = image * 0.5 + 0.5 a : int = image.clamp(0 , 1 ) a : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a : Optional[int] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
31
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 200 ) ->int: '''simple docstring''' a : Dict = [1, 2, 5, 10, 20, 50, 100, 200] a : Optional[Any] = [0] * (pence + 1) a : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
31
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase : Optional[int] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class snake_case__ ( unittest.TestCase ): _lowerCAmelCase =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCAmelCase ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCAmelCase ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase__ ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): snake_case__ : List[str] = ZeroShotClassificationPipeline( model=_lowerCamelCase , tokenizer=_lowerCamelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase__ ( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ): snake_case__ : Any = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) # No kwarg snake_case__ : Any = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) snake_case__ : str = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) snake_case__ : Any = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( _lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) snake_case__ : Optional[int] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( _lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) snake_case__ : Optional[Any] = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case__ : List[str] = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( _lowerCamelCase , [ {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(1 ) ] , ) snake_case__ : int = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( _lowerCamelCase , [ {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_lowerCamelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(_lowerCamelCase ): classifier(_lowerCamelCase , candidate_labels='politics' ) with self.assertRaises(_lowerCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(_lowerCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(_lowerCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_lowerCamelCase , ) self.run_entailment_id(_lowerCamelCase ) def UpperCAmelCase__ ( self : Any , _lowerCamelCase : Pipeline ): snake_case__ : List[str] = zero_shot_classifier.model.config snake_case__ : Union[str, Any] = config.labelaid snake_case__ : Dict = zero_shot_classifier.entailment_id snake_case__ : List[str] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case__ : List[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case__ : Dict = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case__ : List[str] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case__ : Optional[int] = original_labelaid self.assertEqual(_lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCAmelCase__ ( self : int ): snake_case__ : List[str] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 1_0_0 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): snake_case__ : List[Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) snake_case__ : Optional[Any] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCAmelCase__ ( self : Optional[Any] ): snake_case__ : str = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) snake_case__ : str = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCAmelCase__ ( self : int ): snake_case__ : Optional[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) snake_case__ : int = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) snake_case__ : Union[str, Any] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : List[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) snake_case__ : int = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) snake_case__ : List[str] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
170
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __a = logging.get_logger(__name__) class lowerCamelCase : '''simple docstring''' _A : Union[str, Any] = None @experimental def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) return _map_with_joblib(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = num_proc if num_proc <= len(_lowercase ) else len(_lowercase ) snake_case_ :int = [] # We organize the splits ourselve (contiguous splits) for index in range(_lowercase ): snake_case_ :List[str] = len(_lowercase ) // num_proc snake_case_ :Any = len(_lowercase ) % num_proc snake_case_ :Optional[int] = div * index + min(_lowercase, _lowercase ) snake_case_ :Union[str, Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(_lowercase )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(_lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) snake_case_, snake_case_ :Optional[int] = None, None if not disable_tqdm: snake_case_, snake_case_ :List[str] = (RLock(),), tqdm.set_lock with Pool(_lowercase, initargs=_lowercase, initializer=_lowercase ) as pool: snake_case_ :Optional[Any] = pool.map(_lowercase, _lowercase ) logger.info(f"""Finished {num_proc} processes""" ) snake_case_ :Optional[int] = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(_lowercase )} objects""" ) return mapped def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=_lowercase ): return joblib.Parallel()( joblib.delayed(_lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Dict = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: snake_case_ :Optional[int] = None
310
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionDiffEditPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} UpperCamelCase : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase : List[Any] = frozenset([] ) def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) UpperCAmelCase__ : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) UpperCAmelCase__ : List[Any] = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) UpperCAmelCase__ : str = CLIPTextModel(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : Tuple = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Tuple = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : str = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __snake_case ( self ): if not hasattr(self.pipeline_class , '_optional_components' ): return UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : List[Any] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = pipe(**UpperCamelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : str = self.pipeline_class.from_pretrained(UpperCamelCase_ ) pipe_loaded.to(UpperCamelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = pipe_loaded(**UpperCamelCase_ )[0] UpperCAmelCase__ : Tuple = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase_ , 1E-4 ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = 'cpu' UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.get_dummy_mask_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = pipe.generate_mask(**UpperCamelCase_ ) UpperCAmelCase__ : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase__ : str = np.array([0] * 9 ) UpperCAmelCase__ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __snake_case ( self ): UpperCAmelCase__ : Tuple = 'cpu' UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.get_dummy_inversion_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = pipe.invert(**UpperCamelCase_ ).images UpperCAmelCase__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase__ : Optional[int] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase__ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def __snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = 'cpu' UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : List[Any] = {'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} UpperCAmelCase__ : List[str] = DPMSolverMultistepScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_inversion_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = pipe.invert(**UpperCamelCase_ ).images UpperCAmelCase__ : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase__ : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase__ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __snake_case ( cls ): UpperCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) UpperCAmelCase__ : List[Any] = raw_image.convert('RGB' ).resize((768, 768) ) UpperCAmelCase__ : List[Any] = raw_image def __snake_case ( self ): UpperCAmelCase__ : int = torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[str] = 'a bowl of fruit' UpperCAmelCase__ : Optional[Any] = 'a bowl of pears' UpperCAmelCase__ : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) UpperCAmelCase__ : str = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents UpperCAmelCase__ : Any = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type='numpy' , ).images[0] UpperCAmelCase__ : List[str] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __snake_case ( self ): UpperCAmelCase__ : str = torch.manual_seed(0 ) UpperCAmelCase__ : Any = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase__ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : List[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[str] = 'a bowl of fruit' UpperCAmelCase__ : Tuple = 'a bowl of pears' UpperCAmelCase__ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) UpperCAmelCase__ : Tuple = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents UpperCAmelCase__ : Any = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] UpperCAmelCase__ : Union[str, Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
110
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE_ (__lowercase ): '''simple docstring''' _a = "funnel" _a = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : Optional[int] , __a : List[Any]=30_522 , __a : Dict=[4, 4, 4] , __a : List[Any]=None , __a : Tuple=2 , __a : int=768 , __a : Dict=12 , __a : List[str]=64 , __a : Optional[int]=3_072 , __a : List[Any]="gelu_new" , __a : List[str]=0.1 , __a : str=0.1 , __a : Any=0.0 , __a : List[str]=0.1 , __a : Optional[Any]=None , __a : Optional[Any]=1e-9 , __a : Optional[Any]="mean" , __a : List[str]="relative_shift" , __a : Optional[Any]=True , __a : Optional[int]=True , __a : Optional[int]=True , **__a : str , ) ->Tuple: lowerCamelCase_ : List[Any] = vocab_size lowerCamelCase_ : Any = block_sizes lowerCamelCase_ : Any = [1] * len(_A ) if block_repeats is None else block_repeats assert len(_A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowerCamelCase_ : Any = num_decoder_layers lowerCamelCase_ : Dict = d_model lowerCamelCase_ : Union[str, Any] = n_head lowerCamelCase_ : List[str] = d_head lowerCamelCase_ : Optional[Any] = d_inner lowerCamelCase_ : Optional[int] = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout lowerCamelCase_ : int = attention_dropout lowerCamelCase_ : Union[str, Any] = activation_dropout lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Optional[int] = initializer_std lowerCamelCase_ : Optional[int] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' lowerCamelCase_ : Optional[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' lowerCamelCase_ : List[Any] = attention_type lowerCamelCase_ : List[str] = separate_cls lowerCamelCase_ : List[str] = truncate_seq lowerCamelCase_ : List[Any] = pool_q_only super().__init__(**_A ) @property def _lowerCAmelCase ( self : int ) ->List[str]: return sum(self.block_sizes ) @num_hidden_layers.setter def _lowerCAmelCase ( self : List[Any] , __a : Optional[int] ) ->str: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def _lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: return len(self.block_sizes ) @num_blocks.setter def _lowerCAmelCase ( self : List[Any] , __a : Optional[int] ) ->Optional[Any]: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
705
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCamelCase ( A__ : int , A__ : Dict , A__ : int=0 ) -> Union[str, Any]: # Format the message. if name is None: lowerCamelCase_ : Optional[Any] = None else: lowerCamelCase_ : int = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" lowerCamelCase_ : Tuple = fmt.format(A__ ) # Print and recurse (if needed). if isinstance(A__ , A__ ): if msg is not None: print(A__ ) for k in val.keys(): recursive_print(A__ , val[k] , spaces + 2 ) elif isinstance(A__ , torch.Tensor ): print(A__ , """:""" , val.size() ) else: print(A__ , """:""" , A__ ) def __lowerCamelCase ( A__ : Tuple , A__ : Dict , A__ : str , A__ : Any , A__ : List[str] ) -> List[str]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCamelCase_ : int = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCamelCase_ : int = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCamelCase_ : Union[str, Any] = param.view(*A__ ) lowerCamelCase_ : List[Any] = param.transpose(0 , 2 ) lowerCamelCase_ : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCamelCase_ : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCamelCase_ : List[str] = param.view(*A__ ) lowerCamelCase_ : Any = param.transpose(0 , 1 ).contiguous() lowerCamelCase_ : Optional[Any] = param.view(*A__ ) return param def __lowerCamelCase ( A__ : Union[str, Any] , A__ : Tuple , A__ : str ) -> Dict: # The converted output model. lowerCamelCase_ : Tuple = {} # old versions did not store training args lowerCamelCase_ : Any = input_state_dict.get("""args""" , A__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCamelCase_ : Union[str, Any] = ds_args.padded_vocab_size lowerCamelCase_ : List[str] = ds_args.max_position_embeddings lowerCamelCase_ : Tuple = ds_args.hidden_size lowerCamelCase_ : List[Any] = ds_args.num_layers lowerCamelCase_ : Optional[int] = ds_args.num_attention_heads lowerCamelCase_ : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCamelCase_ : List[Any] = config.n_head # The hidden_size per head. lowerCamelCase_ : str = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCamelCase_ : Tuple = input_state_dict["""checkpoint_version"""] else: lowerCamelCase_ : Union[str, Any] = 0.0 # The model. lowerCamelCase_ : Optional[Any] = input_state_dict["""model"""] # The language model. lowerCamelCase_ : str = model["""language_model"""] # The embeddings. lowerCamelCase_ : Any = lm["""embedding"""] # The word embeddings. lowerCamelCase_ : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. lowerCamelCase_ : Tuple = word_embeddings[: config.vocab_size, :] lowerCamelCase_ : str = word_embeddings # The position embeddings. lowerCamelCase_ : Any = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCamelCase_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCamelCase_ : List[str] = pos_embeddings # The transformer. lowerCamelCase_ : List[str] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. lowerCamelCase_ : Any = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. lowerCamelCase_ : int = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCamelCase_ : Any = layer_re.match(A__ ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCamelCase_ : Dict = int(m.group(1 ) ) # The name of the operation. lowerCamelCase_ : List[str] = m.group(2 ) # Is it a weight or a bias? lowerCamelCase_ : Any = m.group(3 ) # The name of the layer. lowerCamelCase_ : List[str] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): lowerCamelCase_ : Any = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" lowerCamelCase_ : Union[str, Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCamelCase_ : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , A__ , A__ ) lowerCamelCase_ : int = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCamelCase_ : Any = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCamelCase_ : Tuple = masked_bias lowerCamelCase_ : Optional[Any] = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCamelCase_ : Optional[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCamelCase_ : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCamelCase_ : List[Any] = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Store. No change of shape. lowerCamelCase_ : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCamelCase_ : Union[str, Any] = megatron_to_transformers[op_name] lowerCamelCase_ : Any = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCamelCase_ : List[str] = megatron_to_transformers[op_name] lowerCamelCase_ : str = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCamelCase_ : List[str] = transformer["""final_layernorm.weight"""] lowerCamelCase_ : Union[str, Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. lowerCamelCase_ : int = word_embeddings # It should be done! return output_state_dict def __lowerCamelCase ( ) -> Optional[Any]: # Create the argument parser. lowerCamelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=A__ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=A__ , help="""An optional config json file describing the pre-trained model.""" , ) lowerCamelCase_ : Optional[int] = parser.parse_args() # Extract the basename. lowerCamelCase_ : List[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: lowerCamelCase_ : str = torch.load(A__ , map_location="""cpu""" ) else: lowerCamelCase_ : Optional[int] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) lowerCamelCase_ : Optional[int] = input_state_dict.get("""args""" , A__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCamelCase_ : int = """gelu_fast""" elif ds_args.openai_gelu: lowerCamelCase_ : Optional[Any] = """gelu_new""" else: lowerCamelCase_ : Union[str, Any] = """gelu""" else: # in the very early days this used to be "gelu_new" lowerCamelCase_ : List[Any] = """gelu_new""" # Spell out all parameters in case the defaults change. lowerCamelCase_ : Any = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=A__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=A__ , summary_activation=A__ , summary_proj_to_labels=A__ , summary_first_dropout=0.1 , scale_attn_weights=A__ , use_cache=A__ , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: lowerCamelCase_ : Any = GPTaConfig.from_json_file(args.config_file ) lowerCamelCase_ : Optional[int] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) lowerCamelCase_ : Dict = convert_megatron_checkpoint(A__ , A__ , A__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(A__ , A__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCamelCase_ : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCamelCase_ : List[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": lowerCamelCase_ : Tuple = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCamelCase_ : Any = """gpt2""" lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(A__ ) lowerCamelCase_ : str = type(A__ ).__name__ lowerCamelCase_ : List[str] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(A__ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(A__ ) # Store the state_dict to file. lowerCamelCase_ : Union[str, Any] = os.path.join(A__ , """pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(A__ , A__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
171
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : str = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mra""" def __init__( self , A_=50265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=1 , A_=0.02 , A_=1e-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , )-> Dict: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = block_per_row UpperCamelCase = approx_mode UpperCamelCase = initial_prior_first_n_blocks UpperCamelCase = initial_prior_diagonal_n_blocks
3
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : List[str] = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
263
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __lowercase( lowercase__ ): '''simple docstring''' __a : List[str] = 'Speech2TextFeatureExtractor' __a : Optional[int] = 'Speech2TextTokenizer' def __init__( self , __a , __a ): super().__init__(__a , __a ) __lowerCamelCase : Union[str, Any] = self.feature_extractor __lowerCamelCase : List[str] = False def __call__( self , *__a , **__a ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __lowerCamelCase : str = kwargs.pop('raw_speech' ) else: __lowerCamelCase : Optional[Any] = kwargs.pop('audio' , __a ) __lowerCamelCase : Optional[Any] = kwargs.pop('sampling_rate' , __a ) __lowerCamelCase : Optional[int] = kwargs.pop('text' , __a ) if len(__a ) > 0: __lowerCamelCase : Optional[int] = args[0] __lowerCamelCase : str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __lowerCamelCase : Dict = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: __lowerCamelCase : Optional[int] = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: __lowerCamelCase : Any = encodings['input_ids'] return inputs def snake_case_ ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def snake_case_ ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __lowerCamelCase : int = True __lowerCamelCase : Union[str, Any] = self.tokenizer yield __lowerCamelCase : Tuple = self.feature_extractor __lowerCamelCase : List[str] = False
263
1
from typing import TYPE_CHECKING from ..utils import _LazyModule _snake_case = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
382
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : int = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
219
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __A : Any = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
701
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="pt" ): '''simple docstring''' SCREAMING_SNAKE_CASE = {"""add_prefix_space""": True} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not line.startswith(""" """ ) else {} SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE = input_ids.ne(SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase_ ( A ): '''simple docstring''' def __init__( self : Any , a : int , a : List[str] , a : Dict , a : List[Any] , a : Optional[Any]="train" , a : Tuple=None , a : List[str]=None , a : Optional[int]=None , a : List[str]="" , ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE = Path(a ).joinpath(type_path + """.source""" ) SCREAMING_SNAKE_CASE = Path(a ).joinpath(type_path + """.target""" ) SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE = max_source_length SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = prefix if n_obs is not None: SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang def __len__( self : Union[str, Any] ) -> Dict: return len(self.src_lens ) def __getitem__( self : Any , a : Optional[int] ) -> Dict[str, torch.Tensor]: SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) , a ).rstrip("""\n""" ) SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) , a ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , a ) else self.tokenizer ) SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer , a ) else self.tokenizer SCREAMING_SNAKE_CASE = encode_line(a , a , self.max_source_length , """right""" ) SCREAMING_SNAKE_CASE = encode_line(a , a , self.max_target_length , """right""" ) SCREAMING_SNAKE_CASE = source_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = target_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( a : Optional[int] ) -> List[Any]: return [len(a ) for x in Path(a ).open().readlines()] def _UpperCAmelCase ( self : Optional[int] , a : List[Any] ) -> Dict[str, torch.Tensor]: SCREAMING_SNAKE_CASE = torch.stack([x["""input_ids"""] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x["""attention_mask"""] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x["""decoder_input_ids"""] for x in batch] ) SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = trim_batch(a , a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = trim_batch(a , a , attention_mask=a ) SCREAMING_SNAKE_CASE = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : Tuple = getLogger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = get_git_info() save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , """git_log.json""" ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=4 , **SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE ) as f: return json.load(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = { """repo_id""": str(SCREAMING_SNAKE_CASE ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return list(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , """wb""" ) as f: return pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def remove_articles(SCREAMING_SNAKE_CASE ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = normalize_answer(SCREAMING_SNAKE_CASE ).split() SCREAMING_SNAKE_CASE = normalize_answer(SCREAMING_SNAKE_CASE ).split() SCREAMING_SNAKE_CASE = Counter(SCREAMING_SNAKE_CASE ) & Counter(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): em += exact_match_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: em /= len(SCREAMING_SNAKE_CASE ) return {"em": em} def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE = """dropout_rate""" for p in extra_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not hasattr(SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue SCREAMING_SNAKE_CASE = p if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return hparams, config
450
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[Any] = None __magic_name__ :Union[str, Any] = None @property def snake_case ( self ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'sampling_rate' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'padding_value' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :List[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) for x, y in zip(__UpperCAmelCase , processed_features[input_name] ) ) ) lowerCAmelCase__ :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowerCAmelCase__ :Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ :Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :Tuple = feat_extract.model_input_names[0] lowerCAmelCase__ :int = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowerCAmelCase__ :List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ :Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :List[Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :str = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) lowerCAmelCase__ :Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ :Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self , __UpperCAmelCase=False ): '''simple docstring''' def _inputs_have_equal_length(__UpperCAmelCase ): lowerCAmelCase__ :int = len(input[0] ) for input_slice in input[1:]: if len(__UpperCAmelCase ) != length: return False return True def _inputs_are_equal(__UpperCAmelCase , __UpperCAmelCase ): if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(__UpperCAmelCase , __UpperCAmelCase ): if not np.allclose(np.asarray(__UpperCAmelCase ) , np.asarray(__UpperCAmelCase ) , atol=1E-3 ): return False return True lowerCAmelCase__ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :int = self.feat_extract_tester.prepare_inputs_for_common(numpify=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :List[Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ :List[Any] = self.feat_extract_tester.seq_length_diff lowerCAmelCase__ :List[str] = self.feat_extract_tester.max_seq_length + pad_diff lowerCAmelCase__ :Tuple = self.feat_extract_tester.min_seq_length lowerCAmelCase__ :Optional[Any] = self.feat_extract_tester.batch_size lowerCAmelCase__ :List[str] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCAmelCase__ :Tuple = feat_extract.pad(__UpperCAmelCase , padding=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = input_a[input_name] lowerCAmelCase__ :List[str] = feat_extract.pad(__UpperCAmelCase , padding='longest' ) lowerCAmelCase__ :Dict = input_a[input_name] lowerCAmelCase__ :Optional[int] = feat_extract.pad(__UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1] ) ) lowerCAmelCase__ :Union[str, Any] = input_a[input_name] lowerCAmelCase__ :Any = feat_extract.pad(__UpperCAmelCase , padding='longest' , return_tensors='np' ) lowerCAmelCase__ :Dict = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__UpperCAmelCase ): feat_extract.pad(__UpperCAmelCase , padding='max_length' )[input_name] lowerCAmelCase__ :Any = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=__UpperCAmelCase , return_tensors='np' ) lowerCAmelCase__ :str = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase__ :Any = feat_extract.pad(__UpperCAmelCase , pad_to_multiple_of=1_0 ) lowerCAmelCase__ :List[str] = input_a[input_name] lowerCAmelCase__ :str = feat_extract.pad(__UpperCAmelCase , padding='longest' , pad_to_multiple_of=1_0 ) lowerCAmelCase__ :Tuple = input_a[input_name] lowerCAmelCase__ :List[str] = feat_extract.pad( __UpperCAmelCase , padding='max_length' , pad_to_multiple_of=1_0 , max_length=__UpperCAmelCase ) lowerCAmelCase__ :Any = input_a[input_name] lowerCAmelCase__ :Union[str, Any] = feat_extract.pad( __UpperCAmelCase , padding='max_length' , pad_to_multiple_of=1_0 , max_length=__UpperCAmelCase , return_tensors='np' , ) lowerCAmelCase__ :Union[str, Any] = input_a[input_name] self.assertTrue(all(len(__UpperCAmelCase ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :Any = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(__UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCAmelCase__ :List[Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def snake_case ( self , __UpperCAmelCase=False ): '''simple docstring''' def _inputs_have_equal_length(__UpperCAmelCase ): lowerCAmelCase__ :List[str] = len(input[0] ) for input_slice in input[1:]: if len(__UpperCAmelCase ) != length: return False return True def _inputs_are_equal(__UpperCAmelCase , __UpperCAmelCase ): if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(__UpperCAmelCase , __UpperCAmelCase ): if not np.allclose(np.asarray(__UpperCAmelCase ) , np.asarray(__UpperCAmelCase ) , atol=1E-3 ): return False return True lowerCAmelCase__ :Any = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :str = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCAmelCase__ :Union[str, Any] = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = input_a[input_name] lowerCAmelCase__ :Optional[Any] = feat_extract.pad(__UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) ) lowerCAmelCase__ :Any = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(__UpperCAmelCase ) ) # truncate to smallest with np lowerCAmelCase__ :Any = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=__UpperCAmelCase , ) lowerCAmelCase__ :List[Any] = input_a[input_name] lowerCAmelCase__ :Any = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) lowerCAmelCase__ :Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__UpperCAmelCase ) ) # truncate to middle lowerCAmelCase__ :Union[str, Any] = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=__UpperCAmelCase , return_tensors='np' , ) lowerCAmelCase__ :str = input_a[input_name] lowerCAmelCase__ :Dict = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = input_a[input_name] lowerCAmelCase__ :Union[str, Any] = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) lowerCAmelCase__ :Union[str, Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(__UpperCAmelCase , __UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__UpperCAmelCase ): feat_extract.pad(__UpperCAmelCase , truncation=__UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__UpperCAmelCase ): feat_extract.pad(__UpperCAmelCase , padding='longest' , truncation=__UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__UpperCAmelCase ): feat_extract.pad(__UpperCAmelCase , padding='longest' , truncation=__UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__UpperCAmelCase ): feat_extract.pad(__UpperCAmelCase , padding='max_length' , truncation=__UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase__ :Dict = 1_2 lowerCAmelCase__ :Any = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__UpperCAmelCase , truncation=__UpperCAmelCase , ) lowerCAmelCase__ :Dict = input_a[input_name] lowerCAmelCase__ :Dict = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__UpperCAmelCase , ) lowerCAmelCase__ :List[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCAmelCase__ :Optional[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCAmelCase__ :Optional[int] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' self._check_padding(numpify=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self._check_padding(numpify=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self._check_truncation(numpify=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self._check_truncation(numpify=__UpperCAmelCase ) @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ :Optional[int] = feat_extract.model_input_names[0] lowerCAmelCase__ :Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ :int = feat_extract.pad(__UpperCAmelCase , padding='longest' , return_tensors='np' )[input_name] lowerCAmelCase__ :Tuple = feat_extract.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ :Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :int = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ :Optional[int] = feat_extract.pad(__UpperCAmelCase , padding='longest' , return_tensors='np' )[input_name] lowerCAmelCase__ :Tuple = feat_extract.pad(__UpperCAmelCase , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.feat_extract_dict lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :List[str] = self.feature_extraction_class(**__UpperCAmelCase ) lowerCAmelCase__ :Dict = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ :int = [len(__UpperCAmelCase ) for x in speech_inputs] lowerCAmelCase__ :List[Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :Optional[int] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ :Dict = feat_extract.pad(__UpperCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , __UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.feat_extract_dict lowerCAmelCase__ :int = True lowerCAmelCase__ :Any = self.feature_extraction_class(**__UpperCAmelCase ) lowerCAmelCase__ :Any = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase__ :List[str] = [len(__UpperCAmelCase ) for x in speech_inputs] lowerCAmelCase__ :List[Any] = feat_extract.model_input_names[0] lowerCAmelCase__ :int = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ :int = min(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = feat_extract.pad( __UpperCAmelCase , padding='max_length' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , __UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
93
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) A_ : int = number_of_bytes // partitions A_ : Union[str, Any] = [] for i in range(lowerCamelCase__ ): A_ : Dict = i * bytes_per_partition + 1 A_ : Tuple = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
667
0
import os def __lowerCAmelCase ( ): __lowerCAmelCase = os.path.join(os.path.dirname(__snake_case ) , "num.txt" ) with open(__snake_case ) as file_hand: return str(sum(int(__snake_case ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
290
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Any = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _UpperCamelCase (a_ ): snake_case_ = """instructblip_vision_model""" def __init__( self , __UpperCamelCase=1_4_0_8 , __UpperCamelCase=6_1_4_4 , __UpperCamelCase=3_9 , __UpperCamelCase=1_6 , __UpperCamelCase=2_2_4 , __UpperCamelCase=1_4 , __UpperCamelCase="gelu" , __UpperCamelCase=1e-6 , __UpperCamelCase=0.0 , __UpperCamelCase=1e-10 , __UpperCamelCase=True , **__UpperCamelCase , )-> Union[str, Any]: super().__init__(**__UpperCamelCase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = patch_size __lowerCAmelCase = image_size __lowerCAmelCase = initializer_range __lowerCAmelCase = attention_dropout __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = hidden_act __lowerCAmelCase = qkv_bias @classmethod def __UpperCAmelCase ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": __lowerCAmelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _UpperCamelCase (a_ ): snake_case_ = """instructblip_qformer""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=2 , __UpperCamelCase=1_4_0_8 , **__UpperCamelCase , )-> Any: super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = cross_attention_frequency __lowerCAmelCase = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": __lowerCAmelCase = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _UpperCamelCase (a_ ): snake_case_ = """instructblip""" snake_case_ = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=3_2 , **__UpperCamelCase )-> Tuple: super().__init__(**__UpperCamelCase ) if vision_config is None: __lowerCAmelCase = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: __lowerCAmelCase = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: __lowerCAmelCase = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) __lowerCAmelCase = InstructBlipVisionConfig(**__UpperCamelCase ) __lowerCAmelCase = InstructBlipQFormerConfig(**__UpperCamelCase ) __lowerCAmelCase = text_config["model_type"] if "model_type" in text_config else "opt" __lowerCAmelCase = CONFIG_MAPPING[text_model_type](**__UpperCamelCase ) __lowerCAmelCase = self.text_config.tie_word_embeddings __lowerCAmelCase = self.text_config.is_encoder_decoder __lowerCAmelCase = num_query_tokens __lowerCAmelCase = self.vision_config.hidden_size __lowerCAmelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowerCAmelCase = 1.0 __lowerCAmelCase = 0.0_2 @classmethod def __UpperCAmelCase ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , )-> int: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__UpperCamelCase , ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.vision_config.to_dict() __lowerCAmelCase = self.qformer_config.to_dict() __lowerCAmelCase = self.text_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
290
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 class lowercase_ : """simple docstring""" def __init__( self : Optional[int], UpperCamelCase__ : int ) -> Any: _A = [[] for _ in range(UpperCamelCase__ )] _A = size def __getitem__( self : Dict, UpperCamelCase__ : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __UpperCAmelCase ( self : List[str] ) -> List[Any]: return self._size def __UpperCAmelCase ( self : str, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ) -> List[Any]: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCamelCase__, UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : int, UpperCamelCase__ : int ) -> int | None: _A = deque([start_vertex] ) _A = [None] * self.size _A = 0 while queue: _A = queue.popleft() _A = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _A = current_distance + edge.weight _A = distances[edge.destination_vertex] if ( isinstance(UpperCamelCase__, UpperCamelCase__ ) and new_distance >= dest_vertex_distance ): continue _A = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
107
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
'''simple docstring''' def _lowerCAmelCase ( _lowerCAmelCase )-> list: __UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __UpperCAmelCase = True for i in range(0 , len(_lowerCAmelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __UpperCAmelCase , __UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __UpperCAmelCase = False for i in range(1 , len(_lowerCAmelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __UpperCAmelCase , __UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __UpperCAmelCase = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _A: Dict = [int(x) for x in input().split()] # inputing elements of the list in one line _A: str = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
617
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _lowerCAmelCase ( _lowerCAmelCase = 3 )-> qiskit.result.counts.Counts: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_lowerCAmelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __UpperCAmelCase = QuantumRegister(_lowerCAmelCase , 'qr' ) __UpperCAmelCase = ClassicalRegister(_lowerCAmelCase , 'cr' ) __UpperCAmelCase = QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = number_of_qubits for i in range(_lowerCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCAmelCase , _lowerCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCAmelCase , _lowerCAmelCase ) # simulate with 10000 shots __UpperCAmelCase = Aer.get_backend('qasm_simulator' ) __UpperCAmelCase = execute(_lowerCAmelCase , _lowerCAmelCase , shots=1_00_00 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
617
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCamelCase__ = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
75
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( __a ): def __init__( self : Dict , _A : List[str] , _A : int ): '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[Any] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): '''simple docstring''' if audio_length_in_s is None: UpperCAmelCase__ : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate UpperCAmelCase__ : Union[str, Any] = audio_length_in_s * self.unet.config.sample_rate UpperCAmelCase__ : List[Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) UpperCAmelCase__ : List[Any] = int(_A ) if sample_size % down_scale_factor != 0: UpperCAmelCase__ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ''' process.''' ) UpperCAmelCase__ : Dict = int(_A ) UpperCAmelCase__ : Optional[Any] = next(iter(self.unet.parameters() ) ).dtype UpperCAmelCase__ : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase__ : Optional[int] = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) UpperCAmelCase__ : List[str] = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase__ : Optional[int] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 UpperCAmelCase__ : List[Any] = self.scheduler.step(_A , _A , _A ).prev_sample UpperCAmelCase__ : Any = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCAmelCase__ : Any = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
75
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __SCREAMING_SNAKE_CASE : Optional[int] ='''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' __SCREAMING_SNAKE_CASE : List[str] ='''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' __SCREAMING_SNAKE_CASE : Tuple =''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Optional[int]=None , snake_case__ : Tuple=True , snake_case__ : Optional[int]=False ): if rouge_types is None: lowercase = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] lowercase = rouge_scorer.RougeScorer(rouge_types=snake_case__ , use_stemmer=snake_case__ ) if use_aggregator: lowercase = scoring.BootstrapAggregator() else: lowercase = [] for ref, pred in zip(snake_case__ , snake_case__ ): lowercase = scorer.score(snake_case__ , snake_case__ ) if use_aggregator: aggregator.add_scores(snake_case__ ) else: scores.append(snake_case__ ) if use_aggregator: lowercase = aggregator.aggregate() else: lowercase = {} for key in scores[0]: lowercase = [score[key] for score in scores] return result
715
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __SCREAMING_SNAKE_CASE : Tuple =get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures/vocab.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures''') class A_ ( unittest.TestCase ): _A :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = 0 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write("""{}""" ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) lowercase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): class A_ ( __a ): _A :List[str] = False class A_ ( __a ): _A :Dict = False class A_ ( __a ): _A :Union[str, Any] = '''AutoFeatureExtractor''' _A :Tuple = '''AutoTokenizer''' _A :Optional[Any] = False try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class A_ ( unittest.TestCase ): _A :Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] ): lowercase = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor""" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor-org""" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="""valid_org""" , ) lowercase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase = Repository(snake_case__ , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , """tokenizer_config.json""" ) ) as f: lowercase = json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
72
0
"""simple docstring""" from __future__ import annotations def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = str(_lowercase ) return n == n[::-1] def __snake_case ( _lowercase = 100_0000 ): """simple docstring""" UpperCamelCase = 0 for i in range(1 ,_lowercase ): if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
34
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple ="""unispeech-sat""" def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=128 , lowerCAmelCase__=16 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__=320 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=100 , lowerCAmelCase__=256 , lowerCAmelCase__=256 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=256 , lowerCAmelCase__=(512, 512, 512, 512, 1500) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=512 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=504 , **lowerCAmelCase__ , ) -> List[str]: super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) a : Any = hidden_size a : Tuple = feat_extract_norm a : Tuple = feat_extract_activation a : Dict = list(lowerCAmelCase__ ) a : int = list(lowerCAmelCase__ ) a : Optional[Any] = list(lowerCAmelCase__ ) a : int = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[int] = len(self.conv_dim ) a : int = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : List[Any] = num_attention_heads a : Any = hidden_dropout a : Union[str, Any] = attention_dropout a : Tuple = activation_dropout a : Dict = feat_proj_dropout a : Optional[Any] = final_dropout a : Union[str, Any] = layerdrop a : str = layer_norm_eps a : Optional[int] = initializer_range a : Optional[int] = vocab_size a : str = num_clusters a : Any = do_stable_layer_norm a : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[Any] = apply_spec_augment a : int = mask_time_prob a : Optional[int] = mask_time_length a : Dict = mask_time_min_masks a : Optional[int] = mask_feature_prob a : List[str] = mask_feature_length a : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a : List[str] = num_codevectors_per_group a : List[Any] = num_codevector_groups a : Tuple = contrastive_logits_temperature a : int = feat_quantizer_dropout a : Optional[Any] = num_negatives a : Optional[int] = codevector_dim a : Tuple = proj_codevector_dim a : Optional[int] = diversity_loss_weight # ctc loss a : Dict = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : Union[str, Any] = list(lowerCAmelCase__ ) a : List[str] = list(lowerCAmelCase__ ) a : Tuple = list(lowerCAmelCase__ ) a : Optional[int] = xvector_output_dim @property def __a ( self ) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1 )
633
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCamelCase_ (__A ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = None class UpperCamelCase_ (__A , __A ): __magic_name__ = 2 @register_to_config def __init__( self : Any , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : float = 100 , lowerCAmelCase_ : float = 1.0_0_7 , lowerCAmelCase_ : float = 80 , lowerCAmelCase_ : float = 0.0_5 , lowerCAmelCase_ : float = 50 , ) -> Union[str, Any]: # standard deviation of the initial noise distribution UpperCAmelCase_ : Any = sigma_max # setable values UpperCAmelCase_ : int = None UpperCAmelCase_ : np.IntTensor = None UpperCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[int] = None ) -> torch.FloatTensor: return sample def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None ) -> int: UpperCAmelCase_ : Union[str, Any] = num_inference_steps UpperCAmelCase_ : Optional[Any] = np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCAmelCase_ : List[str] = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa , device=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase_ ).to(sample.device ) UpperCAmelCase_ : Optional[Any] = sigma + gamma * sigma UpperCAmelCase_ : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: UpperCAmelCase_ : int = sample_hat + sigma_hat * model_output UpperCAmelCase_ : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: UpperCAmelCase_ : Optional[Any] = sample_prev + sigma_prev * model_output UpperCAmelCase_ : Dict = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ : List[str] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> Tuple: raise NotImplementedError()
704
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def snake_case ( A__ ,A__ ,A__=[] ): UpperCAmelCase_ : int = size[0] - overlap_pixels * 2 UpperCAmelCase_ : Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase_ : Union[str, Any] = np.ones((size_y, size_x) ,dtype=np.uinta ) * 2_55 UpperCAmelCase_ : Optional[int] = np.pad(A__ ,mode="linear_ramp" ,pad_width=A__ ,end_values=0 ) if "l" in remove_borders: UpperCAmelCase_ : List[str] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase_ : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase_ : Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase_ : Any = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def snake_case ( A__ ,A__ ,A__ ): return max(A__ ,min(A__ ,A__ ) ) def snake_case ( A__ ,A__ ,A__ ): return ( clamp(rect[0] ,min[0] ,max[0] ), clamp(rect[1] ,min[1] ,max[1] ), clamp(rect[2] ,min[0] ,max[0] ), clamp(rect[3] ,min[1] ,max[1] ), ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = list(A__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase_ : Optional[Any] = clamp_rect(A__ ,[0, 0] ,[image_size[0], image_size[1]] ) return rect def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : Dict = Image.new("RGB" ,(tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) ,Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) ,(0, 0) ,) result.paste(A__ ,(original_slice, 0) ) return result def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase_ : Optional[int] = tile.crop(A__ ) return tile def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[str] = n % d return n - divisor class UpperCamelCase_ (__A ): def __init__( self : List[str] , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : int = 350 , ) -> Optional[Any]: super().__init__( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , max_noise_level=lowerCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase_ : Dict = add_overlap_rect(lowerCAmelCase_ , lowerCAmelCase_ , image.size ) UpperCAmelCase_ : Tuple = image.crop(lowerCAmelCase_ ) UpperCAmelCase_ : Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase_ : int = translated_slice_x - (original_image_slice / 2) UpperCAmelCase_ : Any = max(0 , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = squeeze_tile(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = to_input.size UpperCAmelCase_ : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase_ : Optional[Any] = super(lowerCAmelCase_ , self ).__call__(image=lowerCAmelCase_ , **lowerCAmelCase_ ).images[0] UpperCAmelCase_ : Union[str, Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase_ : List[Any] = unsqueeze_tile(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase_ : List[Any] = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) UpperCAmelCase_ : str = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCAmelCase_ ) , mode="L" , ) final_image.paste( lowerCAmelCase_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCAmelCase_ ) @torch.no_grad() def __call__( self : int , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCAmelCase_ : int = 75 , lowerCAmelCase_ : float = 9.0 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 128 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 32 , ) -> int: UpperCAmelCase_ : List[Any] = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase_ : Any = math.ceil(image.size[0] / tile_size ) UpperCAmelCase_ : str = math.ceil(image.size[1] / tile_size ) UpperCAmelCase_ : Any = tcx * tcy UpperCAmelCase_ : List[Any] = 0 for y in range(lowerCAmelCase_ ): for x in range(lowerCAmelCase_ ): self._process_tile( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prompt=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , noise_level=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def snake_case ( ): # Run a demo UpperCAmelCase_ : List[str] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ : Optional[Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(A__ ,revision="fp16" ,torch_dtype=torch.floataa ) UpperCAmelCase_ : Optional[int] = pipe.to("cuda" ) UpperCAmelCase_ : Tuple = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(A__ ): print(F"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) UpperCAmelCase_ : Union[str, Any] = pipe(image=A__ ,prompt="Black font, white background, vector" ,noise_level=40 ,callback=A__ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
463
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = 42 # setable values _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): return cls(common=_lowerCAmelCase ,init_noise_sigma=_lowerCAmelCase ,timesteps=_lowerCAmelCase ) @dataclass class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 class UpperCamelCase__ (a ,a ): '''simple docstring''' _UpperCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _UpperCamelCase = 42 @property def UpperCamelCase_ ( self ): return True @register_to_config def __init__( self ,_lowerCAmelCase = 10_00 ,_lowerCAmelCase = 0.0001 ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = "linear" ,_lowerCAmelCase = None ,_lowerCAmelCase = "fixed_small" ,_lowerCAmelCase = True ,_lowerCAmelCase = "epsilon" ,_lowerCAmelCase = jnp.floataa ,): lowerCamelCase__ = dtype def UpperCamelCase_ ( self ,_lowerCAmelCase = None ): if common is None: lowerCamelCase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase__ = jnp.array(1.0 ,dtype=self.dtype ) lowerCamelCase__ = jnp.arange(0 ,self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_lowerCAmelCase ,init_noise_sigma=_lowerCAmelCase ,timesteps=_lowerCAmelCase ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ): return sample def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = () ): lowerCamelCase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase__ = (jnp.arange(0 ,_lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_lowerCAmelCase ,timesteps=_lowerCAmelCase ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ): lowerCamelCase__ = state.common.alphas_cumprod[t] lowerCamelCase__ = jnp.where(t > 0 ,state.common.alphas_cumprod[t - 1] ,jnp.array(1.0 ,dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase__ = jnp.clip(_lowerCAmelCase ,a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase__ = jnp.log(jnp.clip(_lowerCAmelCase ,a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCamelCase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase__ = variance lowerCamelCase__ = state.common.betas[t] lowerCamelCase__ = (predicted_variance + 1) / 2 lowerCamelCase__ = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,): lowerCamelCase__ = timestep if key is None: lowerCamelCase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ = jnp.split(_lowerCAmelCase ,sample.shape[1] ,axis=1 ) else: lowerCamelCase__ = None # 1. compute alphas, betas lowerCamelCase__ = state.common.alphas_cumprod[t] lowerCamelCase__ = jnp.where(t > 0 ,state.common.alphas_cumprod[t - 1] ,jnp.array(1.0 ,dtype=self.dtype ) ) lowerCamelCase__ = 1 - alpha_prod_t lowerCamelCase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase__ = model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase__ = jnp.clip(_lowerCAmelCase ,-1 ,1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase__ = jax.random.split(_lowerCAmelCase ,num=1 ) lowerCamelCase__ = jax.random.normal(_lowerCAmelCase ,shape=model_output.shape ,dtype=self.dtype ) return (self._get_variance(_lowerCAmelCase ,_lowerCAmelCase ,predicted_variance=_lowerCAmelCase ) ** 0.5) * noise lowerCamelCase__ = jnp.where(t > 0 ,random_variance() ,jnp.zeros(model_output.shape ,dtype=self.dtype ) ) lowerCamelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_lowerCAmelCase ,state=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): return add_noise_common(state.common ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): return get_velocity_common(state.common ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
50
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class __a : __UpperCamelCase : List[str] = list_field( default=[], metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) }, ) __UpperCamelCase : List[int] = list_field( default=[8], metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) __UpperCamelCase : List[int] = list_field( default=[8, 32, 128, 512], metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Use FP16 to accelerate inference.'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Benchmark training of model'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Verbose memory tracing'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' }, ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Trace memory line by line'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Save result to a CSV file'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Save all print statements in a log file'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Whether to print environment information'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) }, ) __UpperCamelCase : str = field( default=F'inference_time_{round(time() )}.csv', metadata={'help': 'CSV filename used if saving time results to csv.'}, ) __UpperCamelCase : str = field( default=F'inference_memory_{round(time() )}.csv', metadata={'help': 'CSV filename used if saving memory results to csv.'}, ) __UpperCamelCase : str = field( default=F'train_time_{round(time() )}.csv', metadata={'help': 'CSV filename used if saving time results to csv for training.'}, ) __UpperCamelCase : str = field( default=F'train_memory_{round(time() )}.csv', metadata={'help': 'CSV filename used if saving memory results to csv for training.'}, ) __UpperCamelCase : str = field( default=F'env_info_{round(time() )}.csv', metadata={'help': 'CSV filename used if saving environment information.'}, ) __UpperCamelCase : str = field( default=F'log_{round(time() )}.csv', metadata={'help': 'Log filename used if print statements are saved in log.'}, ) __UpperCamelCase : int = field(default=3, metadata={'help': 'Times an experiment will be run.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) }, ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,lowerCamelCase ,) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
109
0
"""simple docstring""" import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: _lowerCamelCase : List[str] = create_tensor(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[Any] = gather(SCREAMING_SNAKE_CASE_ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Tuple: _lowerCamelCase : Union[str, Any] = [state.process_index] _lowerCamelCase : Optional[int] = gather_object(SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == state.num_processes, F'''{gathered_obj}, {len(SCREAMING_SNAKE_CASE_ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: _lowerCamelCase : List[str] = create_tensor(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = broadcast(SCREAMING_SNAKE_CASE_ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: _lowerCamelCase : Optional[int] = torch.arange(state.num_processes + 1 ).to(state.device ) else: _lowerCamelCase : Dict = torch.arange(state.num_processes ).to(state.device ) _lowerCamelCase : Dict = pad_across_processes(SCREAMING_SNAKE_CASE_ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->List[str]: # For now runs on only two processes if state.num_processes != 2: return _lowerCamelCase : str = create_tensor(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[int] = reduce(SCREAMING_SNAKE_CASE_ , '''sum''' ) _lowerCamelCase : List[str] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->List[str]: # For now runs on only two processes if state.num_processes != 2: return _lowerCamelCase : str = create_tensor(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Union[str, Any] = reduce(SCREAMING_SNAKE_CASE_ , '''mean''' ) _lowerCamelCase : Union[str, Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''{reduced_tensor} != {truth_tensor}''' def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Any: # For xla_spawn (TPUs) main() def UpperCamelCase ( ) ->Any: _lowerCamelCase : Any = PartialState() state.print(F'''State: {state}''' ) state.print('''testing gather''' ) test_gather(SCREAMING_SNAKE_CASE_ ) state.print('''testing gather_object''' ) test_gather_object(SCREAMING_SNAKE_CASE_ ) state.print('''testing broadcast''' ) test_broadcast(SCREAMING_SNAKE_CASE_ ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(SCREAMING_SNAKE_CASE_ ) state.print('''testing reduce_sum''' ) test_reduce_sum(SCREAMING_SNAKE_CASE_ ) state.print('''testing reduce_mean''' ) test_reduce_mean(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
701
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
558
0
'''simple docstring''' from math import isqrt def _snake_case ( A ) -> list[int]: lowerCAmelCase__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , A , A ): lowerCAmelCase__ = False return [i for i in range(2 , A ) if is_prime[i]] def _snake_case ( A = 10**8 ) -> int: lowerCAmelCase__ = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = len(A ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
90
class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : str = n lowerCamelCase : str = [None] * self.n lowerCamelCase : Union[str, Any] = 0 # index of the first element lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Any = 0 def __len__( self ) -> int: return self.size def _lowercase ( self ) -> bool: return self.size == 0 def _lowercase ( self ) -> Any: return False if self.is_empty() else self.array[self.front] def _lowercase ( self , UpperCamelCase__ ) -> List[Any]: if self.size >= self.n: raise Exception("QUEUE IS FULL" ) lowerCamelCase : Any = data lowerCamelCase : int = (self.rear + 1) % self.n self.size += 1 return self def _lowercase ( self ) -> int: if self.size == 0: raise Exception("UNDERFLOW" ) lowerCamelCase : Any = self.array[self.front] lowerCamelCase : List[Any] = None lowerCamelCase : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
311
0
'''simple docstring''' def snake_case__ ( _A: int , _A: bool = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCAmelCase = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] lowerCAmelCase = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_A , 1 ): if n < _p: # then we have our last prime to check lowerCAmelCase = primes[:idx] break lowerCAmelCase , lowerCAmelCase = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCAmelCase = False for r in range(_A ): lowerCAmelCase = pow(_A , d * 2**r , _A ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCAmelCase = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def snake_case__ ( ) -> None: '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
605
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowercase = threading.Lock() __lowercase = None __lowercase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __lowercase = logging.WARNING __lowercase = True def snake_case__ ( ) -> int: '''simple docstring''' lowerCAmelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , _A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def snake_case__ ( ) -> str: '''simple docstring''' return __name__.split(""".""" )[0] def snake_case__ ( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def snake_case__ ( ) -> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream. lowerCAmelCase = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCAmelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowerCAmelCase = False def snake_case__ ( ) -> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowerCAmelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowerCAmelCase = None def snake_case__ ( ) -> Dict: '''simple docstring''' return log_levels def snake_case__ ( _A: Optional[str] = None ) -> logging.Logger: '''simple docstring''' if name is None: lowerCAmelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(_A ) def snake_case__ ( ) -> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def snake_case__ ( _A: int ) -> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(_A ) def snake_case__ ( ) -> int: '''simple docstring''' return set_verbosity(_A ) def snake_case__ ( ) -> List[str]: '''simple docstring''' return set_verbosity(_A ) def snake_case__ ( ) -> Optional[int]: '''simple docstring''' return set_verbosity(_A ) def snake_case__ ( ) -> List[str]: '''simple docstring''' return set_verbosity(_A ) def snake_case__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def snake_case__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def snake_case__ ( _A: logging.Handler ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_A ) def snake_case__ ( _A: logging.Handler ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_A ) def snake_case__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() lowerCAmelCase = False def snake_case__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() lowerCAmelCase = True def snake_case__ ( ) -> None: '''simple docstring''' lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: lowerCAmelCase = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(_A ) def snake_case__ ( ) -> None: '''simple docstring''' lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_A ) def snake_case__ ( self: str , *_A: Optional[int] , **_A: Dict ) -> str: '''simple docstring''' lowerCAmelCase = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , _A ) if no_advisory_warnings: return self.warning(*_A , **_A ) __lowercase = warning_advice @functools.lru_cache(_A ) def snake_case__ ( self: List[str] , *_A: List[Any] , **_A: str ) -> List[str]: '''simple docstring''' self.warning(*_A , **_A ) __lowercase = warning_once class a__: '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase = args[0] if args else None def __iter__( self): """simple docstring""" return iter(self._iterator) def __getattr__( self , __lowerCAmelCase): """simple docstring""" def empty_fn(*__lowerCAmelCase , **__lowerCAmelCase): # pylint: disable=unused-argument return return empty_fn def __enter__( self): """simple docstring""" return self def __exit__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" return class a__: '''simple docstring''' def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*__lowerCAmelCase , **__lowerCAmelCase) else: return EmptyTqdm(*__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowercase = _tqdm_cls() def snake_case__ ( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def snake_case__ ( ) -> Dict: '''simple docstring''' global _tqdm_active lowerCAmelCase = True hf_hub_utils.enable_progress_bars() def snake_case__ ( ) -> Any: '''simple docstring''' global _tqdm_active lowerCAmelCase = False hf_hub_utils.disable_progress_bars()
605
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase_ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") UpperCamelCase_ = F'''https://www.google.com/search?q={query}&num=100''' UpperCamelCase_ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: UpperCamelCase_ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: UpperCamelCase_ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
256
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = (CMStochasticIterativeScheduler,) lowerCamelCase_ = 1_0 def _UpperCAmelCase ( self : Any , **snake_case_ : Tuple ): """simple docstring""" A : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } config.update(**snake_case_ ) return config def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : List[str] = 10 A : Dict = self.get_scheduler_config() A : Optional[int] = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) A : List[str] = scheduler.timesteps[0] A : Any = scheduler.timesteps[1] A : int = self.dummy_sample A : str = 0.1 * sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config() A : List[str] = scheduler_class(**snake_case_ ) A : str = 1 scheduler.set_timesteps(snake_case_ ) A : Optional[int] = scheduler.timesteps A : int = torch.manual_seed(0 ) A : Optional[Any] = self.dummy_model() A : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input A : Dict = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : List[Any] = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : Union[str, Any] = pred_prev_sample A : List[str] = torch.sum(torch.abs(snake_case_ ) ) A : int = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Tuple = self.scheduler_classes[0] A : Tuple = self.get_scheduler_config() A : str = scheduler_class(**snake_case_ ) A : Optional[int] = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) A : Optional[int] = scheduler.timesteps A : Any = torch.manual_seed(0 ) A : Tuple = self.dummy_model() A : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A : Tuple = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : str = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : str = pred_prev_sample A : str = torch.sum(torch.abs(snake_case_ ) ) A : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def _UpperCAmelCase ( self : int ): """simple docstring""" A : Optional[int] = self.scheduler_classes[0] A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**snake_case_ ) A : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=snake_case_ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : List[str] = self.scheduler_classes[0] A : Dict = self.get_scheduler_config() A : Tuple = scheduler_class(**snake_case_ ) A : Any = [39, 30, 12, 1, 0] A : List[Any] = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : str = self.get_scheduler_config() A : List[Any] = scheduler_class(**snake_case_ ) A : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=snake_case_ )
256
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
534
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Union[str, Any] = MODEL_FOR_MASKED_LM_MAPPING __magic_name__: Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase_ ( self : str ) -> str: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) snake_case_ : Optional[Any] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1E-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) snake_case_ : int = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) snake_case_ : Any = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Tuple = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) snake_case_ : Tuple = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) snake_case_ : int = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) snake_case_ : Any = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) snake_case_ : List[Any] = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=6 ) , [ [ { 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" snake_case_ : Union[str, Any] = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() snake_case_ : Tuple = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_A , _A ) @slow @require_torch def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" snake_case_ : Optional[Any] = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_A ) @slow @require_tf def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ : Dict = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_A ) def UpperCAmelCase_ ( self : Dict , _A : List[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_A ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) snake_case_ : List[Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_A ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) snake_case_ : Tuple = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_A ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def UpperCAmelCase_ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) snake_case_ : Tuple = None snake_case_ : str = None self.run_pipeline_test(_A , [] ) @require_tf def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" snake_case_ : List[Any] = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) snake_case_ : List[str] = None snake_case_ : List[str] = None self.run_pipeline_test(_A , [] ) def UpperCAmelCase_ ( self : List[str] , _A : List[Any] , _A : Tuple , _A : Optional[int] ) -> Optional[Any]: """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) snake_case_ : Dict = FillMaskPipeline(model=_A , tokenizer=_A ) snake_case_ : Optional[Any] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def UpperCAmelCase_ ( self : Optional[Any] , _A : str , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Optional[int] = fill_masker.tokenizer snake_case_ : List[Any] = fill_masker.model snake_case_ : int = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _A , [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] , ) snake_case_ : Dict = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _A , [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] , ) snake_case_ : Optional[int] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _A , [ [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], ] , ) with self.assertRaises(_A ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_A ): fill_masker('This is' ) self.run_test_top_k(_A , _A ) self.run_test_targets(_A , _A ) self.run_test_top_k_targets(_A , _A ) self.fill_mask_with_duplicate_targets_and_top_k(_A , _A ) self.fill_mask_with_multiple_masks(_A , _A ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Any , _A : Optional[int] ) -> Any: """simple docstring""" snake_case_ : Dict = tokenizer.get_vocab() snake_case_ : List[Any] = sorted(vocab.keys() )[:2] # Pipeline argument snake_case_ : Dict = FillMaskPipeline(model=_A , tokenizer=_A , targets=_A ) snake_case_ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _A , [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] , ) snake_case_ : List[str] = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _A ) snake_case_ : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_A ) ) # Call argument snake_case_ : Dict = FillMaskPipeline(model=_A , tokenizer=_A ) snake_case_ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=_A ) self.assertEqual( _A , [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] , ) snake_case_ : Any = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _A ) snake_case_ : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_A ) ) # Score equivalence snake_case_ : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=_A ) snake_case_ : Any = [top_mask['token_str'] for top_mask in outputs] snake_case_ : Optional[Any] = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_A ) == set(_A ): snake_case_ : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=_A ) snake_case_ : Union[str, Any] = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_A ) , nested_simplify(_A ) ) # Raises with invalid with self.assertRaises(_A ): snake_case_ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_A ): snake_case_ : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_A ): snake_case_ : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='' ) def UpperCAmelCase_ ( self : Tuple , _A : Any , _A : Optional[Any] ) -> Any: """simple docstring""" snake_case_ : str = FillMaskPipeline(model=_A , tokenizer=_A , top_k=2 ) snake_case_ : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _A , [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] , ) snake_case_ : Any = FillMaskPipeline(model=_A , tokenizer=_A ) snake_case_ : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _A , [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] , ) self.assertEqual(nested_simplify(_A ) , nested_simplify(_A ) ) def UpperCAmelCase_ ( self : Tuple , _A : Any , _A : Dict ) -> str: """simple docstring""" snake_case_ : str = tokenizer.get_vocab() snake_case_ : Tuple = FillMaskPipeline(model=_A , tokenizer=_A ) # top_k=2, ntargets=3 snake_case_ : str = sorted(vocab.keys() )[:3] snake_case_ : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_A ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case_ : Any = [el['token_str'] for el in sorted(_A , key=lambda _A : x["score"] , reverse=_A )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_A ).issubset(_A ): snake_case_ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_A ) # They should yield exactly the same result self.assertEqual(nested_simplify(_A ) , nested_simplify(_A ) ) def UpperCAmelCase_ ( self : str , _A : Dict , _A : Tuple ) -> Dict: """simple docstring""" snake_case_ : Tuple = FillMaskPipeline(model=_A , tokenizer=_A ) snake_case_ : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates snake_case_ : str = sorted(vocab.keys() )[:3] snake_case_ : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case_ : str = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=_A , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_A ) , 3 ) def UpperCAmelCase_ ( self : List[str] , _A : str , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = FillMaskPipeline(model=_A , tokenizer=_A ) snake_case_ : List[str] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _A , [ [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], ] , )
534
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowercase : Tuple = logging.get_logger('''transformers.models.speecht5''') def lowercase ( __A : Dict , __A : Union[str, Any] , __A : int ) -> Any: '''simple docstring''' hf_model.apply_weight_norm() snake_case : Any = checkpoint["""input_conv.weight_g"""] snake_case : Any = checkpoint["""input_conv.weight_v"""] snake_case : Optional[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): snake_case : Optional[Any] = checkpoint[f"""upsamples.{i}.1.weight_g"""] snake_case : List[str] = checkpoint[f"""upsamples.{i}.1.weight_v"""] snake_case : Any = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case : Any = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] snake_case : Union[str, Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] snake_case : str = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] snake_case : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] snake_case : List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] snake_case : str = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] snake_case : Union[str, Any] = checkpoint["""output_conv.1.weight_g"""] snake_case : Tuple = checkpoint["""output_conv.1.weight_v"""] snake_case : Dict = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def lowercase ( __A : List[Any] , __A : Optional[Any] , __A : List[str] , __A : Optional[Any]=None , __A : List[str]=None , ) -> str: '''simple docstring''' if config_path is not None: snake_case : str = SpeechTaHifiGanConfig.from_pretrained(__A ) else: snake_case : Tuple = SpeechTaHifiGanConfig() snake_case : Optional[Any] = SpeechTaHifiGan(__A ) snake_case : str = torch.load(__A ) load_weights(orig_checkpoint["""model"""]["""generator"""] , __A , __A ) snake_case : List[Any] = np.load(__A ) snake_case : Tuple = stats[0].reshape(-1 ) snake_case : str = stats[1].reshape(-1 ) snake_case : Optional[int] = torch.from_numpy(__A ).float() snake_case : Tuple = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(__A ) if __name__ == "__main__": __lowercase : str = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __lowercase : List[str] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _A ( ) -> int: """simple docstring""" __UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' ) return image def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) ) __UpperCamelCase = qkv_bias def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = 3_64 if 'coco' in model_name else 2_24 __UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict() elif "opt-6.7b" in model_name: __UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict() elif "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase ) return config, image_size @torch.no_grad() def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0] __UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase ) __UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval() __UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess( name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(_lowercase ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: __UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(_lowercase , _lowercase ) __UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase ) assert len(_lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCamelCase = load_demo_image() __UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase ) __UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase ) # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase ) __UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase ) __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowercase , _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "opt" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __UpperCamelCase = hf_model(_lowercase , _lowercase ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCamelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCamelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase ) else: # cast to same type __UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __UpperCamelCase = '' __UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase ) __UpperCamelCase = original_model.generate({'image': original_pixel_values} ) __UpperCamelCase = hf_model.generate( _lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _lowercase ) __UpperCamelCase = input_ids.shape[1] __UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
1
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Any = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = "swin" lowercase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=2_2_4 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Optional[int]=9_6 , lowerCAmelCase_ : List[str]=[2, 2, 6, 2] , lowerCAmelCase_ : Dict=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Union[str, Any]=4.0 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : List[str]=1E-5 , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(lowerCAmelCase_) lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(lowerCAmelCase_) - 1)) lowercase_ = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase_) + 1)] lowercase_ , lowercase_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = version.parse("1.11" ) @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" return 1E-4
100
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: '''simple docstring''' lowercase_ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowercase_ = xgb.predict(__lowerCAmelCase ) lowercase_ = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' lowercase_ = fetch_california_housing() lowercase_ , lowercase_ = data_handling(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) lowercase_ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
100
1
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Dict = tau * frequency / samplerate _lowerCAmelCase : Any = sin(_lowerCamelCase ) _lowerCAmelCase : Any = cos(_lowerCamelCase ) _lowerCAmelCase : Tuple = _sin / (2 * q_factor) _lowerCAmelCase : Dict = (1 - _cos) / 2 _lowerCAmelCase : Optional[int] = 1 - _cos _lowerCAmelCase : int = 1 + alpha _lowerCAmelCase : Dict = -2 * _cos _lowerCAmelCase : Optional[int] = 1 - alpha _lowerCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Tuple = tau * frequency / samplerate _lowerCAmelCase : Optional[Any] = sin(_lowerCamelCase ) _lowerCAmelCase : List[Any] = cos(_lowerCamelCase ) _lowerCAmelCase : int = _sin / (2 * q_factor) _lowerCAmelCase : Tuple = (1 + _cos) / 2 _lowerCAmelCase : Dict = -1 - _cos _lowerCAmelCase : Union[str, Any] = 1 + alpha _lowerCAmelCase : int = -2 * _cos _lowerCAmelCase : Tuple = 1 - alpha _lowerCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Tuple = tau * frequency / samplerate _lowerCAmelCase : List[Any] = sin(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = cos(_lowerCamelCase ) _lowerCAmelCase : int = _sin / (2 * q_factor) _lowerCAmelCase : Optional[int] = _sin / 2 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = -ba _lowerCAmelCase : str = 1 + alpha _lowerCAmelCase : Tuple = -2 * _cos _lowerCAmelCase : List[Any] = 1 - alpha _lowerCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase : Dict = tau * frequency / samplerate _lowerCAmelCase : List[Any] = sin(_lowerCamelCase ) _lowerCAmelCase : Tuple = cos(_lowerCamelCase ) _lowerCAmelCase : str = _sin / (2 * q_factor) _lowerCAmelCase : Dict = 1 - alpha _lowerCAmelCase : str = -2 * _cos _lowerCAmelCase : Optional[int] = 1 + alpha _lowerCAmelCase : List[str] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = tau * frequency / samplerate _lowerCAmelCase : Any = sin(_lowerCamelCase ) _lowerCAmelCase : str = cos(_lowerCamelCase ) _lowerCAmelCase : Dict = _sin / (2 * q_factor) _lowerCAmelCase : List[str] = 10 ** (gain_db / 40) _lowerCAmelCase : List[str] = 1 + alpha * big_a _lowerCAmelCase : Optional[Any] = -2 * _cos _lowerCAmelCase : List[str] = 1 - alpha * big_a _lowerCAmelCase : Optional[Any] = 1 + alpha / big_a _lowerCAmelCase : Any = -2 * _cos _lowerCAmelCase : List[str] = 1 - alpha / big_a _lowerCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase : int = tau * frequency / samplerate _lowerCAmelCase : Union[str, Any] = sin(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = cos(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = _sin / (2 * q_factor) _lowerCAmelCase : List[Any] = 10 ** (gain_db / 40) _lowerCAmelCase : List[Any] = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase : List[str] = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase : Dict = 2 * sqrt(_lowerCamelCase ) * alpha _lowerCAmelCase : Union[str, Any] = big_a * (pmc + aaa) _lowerCAmelCase : Tuple = 2 * big_a * mpc _lowerCAmelCase : Optional[Any] = big_a * (pmc - aaa) _lowerCAmelCase : List[Any] = ppmc + aaa _lowerCAmelCase : Dict = -2 * pmpc _lowerCAmelCase : List[str] = ppmc - aaa _lowerCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase : List[Any] = tau * frequency / samplerate _lowerCAmelCase : List[str] = sin(_lowerCamelCase ) _lowerCAmelCase : List[str] = cos(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = _sin / (2 * q_factor) _lowerCAmelCase : List[Any] = 10 ** (gain_db / 40) _lowerCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase : Optional[int] = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase : int = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase : int = 2 * sqrt(_lowerCamelCase ) * alpha _lowerCAmelCase : Optional[int] = big_a * (ppmc + aaa) _lowerCAmelCase : Tuple = -2 * big_a * pmpc _lowerCAmelCase : List[Any] = big_a * (ppmc - aaa) _lowerCAmelCase : Union[str, Any] = pmc + aaa _lowerCAmelCase : Any = 2 * mpc _lowerCAmelCase : Any = pmc - aaa _lowerCAmelCase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
259
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "swin" _UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,_A=224 ,_A=4 ,_A=3 ,_A=96 ,_A=[2, 2, 6, 2] ,_A=[3, 6, 12, 24] ,_A=7 ,_A=4.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=32 ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Union[str, Any] = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : Any = len(_A ) _lowerCAmelCase : Optional[Any] = num_heads _lowerCAmelCase : List[Any] = window_size _lowerCAmelCase : str = mlp_ratio _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : List[Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) _lowerCAmelCase : List[str] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
259
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase__ ( a__="" ) ->str: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() return os.path.join(a__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCamelCase = torch.rand(12 , dtype=torch.floataa) - 0.5 _UpperCamelCase = AgentAudio(lowercase_) _UpperCamelCase = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1e-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_)) # Ensure that the file contains the same value as the original tensor _UpperCamelCase , _UpperCamelCase = sf.read(lowercase_) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_) , atol=1e-4)) def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = torch.rand(12 , dtype=torch.floataa) - 0.5 _UpperCamelCase = get_new_path(suffix=".wav") sf.write(lowercase_ , lowercase_ , 16000) _UpperCamelCase = AgentAudio(lowercase_) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1e-4)) self.assertEqual(agent_type.to_string() , lowercase_) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" _UpperCamelCase = torch.randint(0 , 256 , (64, 64, 3)) _UpperCamelCase = AgentImage(lowercase_) _UpperCamelCase = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1e-4)) self.assertIsInstance(agent_type.to_raw() , Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) def __UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCamelCase = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _UpperCamelCase = Image.open(lowercase_) _UpperCamelCase = AgentImage(lowercase_) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _UpperCamelCase = Image.open(lowercase_) _UpperCamelCase = AgentImage(lowercase_) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Any) -> Any: """simple docstring""" _UpperCamelCase = "Hey!" _UpperCamelCase = AgentText(lowercase_) self.assertEqual(lowercase_ , agent_type.to_string()) self.assertEqual(lowercase_ , agent_type.to_raw()) self.assertEqual(lowercase_ , lowercase_)
82
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase__ = 5_0000 lowerCamelCase__ = 5000 lowerCamelCase__,lowerCamelCase__ = os.path.split(__file__) lowerCamelCase__ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def lowerCAmelCase__ ( a__ , a__ ) ->int: '''simple docstring''' for i in range(a__ ): _UpperCamelCase = dataset[i] @get_duration def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' for i in range(0 , len(a__ ) , a__ ): _UpperCamelCase = dataset[i : i + batch_size] @get_duration def lowerCAmelCase__ ( a__ , a__ , a__ ) ->Union[str, Any]: '''simple docstring''' with dataset.formatted_as(type=a__ ): for i in range(a__ ): _UpperCamelCase = dataset[i] @get_duration def lowerCAmelCase__ ( a__ , a__ , a__ , a__ ) ->Dict: '''simple docstring''' with dataset.formatted_as(type=a__ ): for i in range(0 , a__ , a__ ): _UpperCamelCase = dataset[i : i + batch_size] def lowerCAmelCase__ ( ) ->Dict: '''simple docstring''' _UpperCamelCase = {"num examples": SPEED_TEST_N_EXAMPLES} _UpperCamelCase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] _UpperCamelCase = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) _UpperCamelCase = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) _UpperCamelCase = generate_example_dataset( os.path.join(a__ , "dataset.arrow" ) , a__ , num_examples=a__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(a__ ) ) _UpperCamelCase = func(a__ , **a__ ) print("shuffling dataset" ) _UpperCamelCase = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(a__ ) ) _UpperCamelCase = func( a__ , **a__ ) with open(a__ , "wb" ) as f: f.write(json.dumps(a__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
82
1
def UpperCamelCase_ ( __a , __a , __a=False ) -> Optional[int]: if isinstance(__a , __a ) and isinstance(__a , __a ): a__ : Union[str, Any] = len(set_a.intersection(__a ) ) if alternative_union: a__ : List[Any] = len(__a ) + len(__a ) else: a__ : List[str] = len(set_a.union(__a ) ) return intersection / union if isinstance(__a , (list, tuple) ) and isinstance(__a , (list, tuple) ): a__ : Tuple = [element for element in set_a if element in set_b] if alternative_union: a__ : Tuple = len(__a ) + len(__a ) return len(__a ) / union else: a__ : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(__a ) / len(__a ) return len(__a ) / len(__a ) return None if __name__ == "__main__": UpperCamelCase : int = {"""a""", """b""", """c""", """d""", """e"""} UpperCamelCase : Union[str, Any] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
37
def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__ , UpperCAmelCase__: int = [], [] while len(SCREAMING_SNAKE_CASE ) > 1: UpperCAmelCase__ , UpperCAmelCase__: str = min(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) start.append(SCREAMING_SNAKE_CASE ) end.append(SCREAMING_SNAKE_CASE ) collection.remove(SCREAMING_SNAKE_CASE ) collection.remove(SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] =input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Dict =[int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
113
0
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: lowercase__: Optional[Any] = SwinConfig(image_size=1_9_2 ) if "base" in model_name: lowercase__: str = 6 lowercase__: Tuple = 1_2_8 lowercase__: Any = (2, 2, 1_8, 2) lowercase__: Tuple = (4, 8, 1_6, 3_2) elif "large" in model_name: lowercase__: Dict = 1_2 lowercase__: int = 1_9_2 lowercase__: Any = (2, 2, 1_8, 2) lowercase__: Union[str, Any] = (6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowercase__: Any = window_size lowercase__: Tuple = embed_dim lowercase__: Any = depths lowercase__: List[str] = num_heads return config def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: if "encoder.mask_token" in name: lowercase__: Tuple = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowercase__: int = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowercase__: Union[str, Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowercase__: Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__: Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__: int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__: Optional[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__: Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__: Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase__: List[Any] = '''layernorm.weight''' if name == "encoder.norm.bias": lowercase__: Tuple = '''layernorm.bias''' if "decoder" in name: pass else: lowercase__: str = '''swin.''' + name return name def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: for key in orig_state_dict.copy().keys(): lowercase__: Optional[Any] = orig_state_dict.pop(__UpperCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__: Optional[Any] = key.split('''.''' ) lowercase__: Dict = int(key_split[2] ) lowercase__: List[str] = int(key_split[4] ) lowercase__: Dict = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__: Any = val[:dim, :] lowercase__: Any = val[ dim : dim * 2, : ] lowercase__: str = val[-dim:, :] else: lowercase__: Any = val[ :dim ] lowercase__: Union[str, Any] = val[ dim : dim * 2 ] lowercase__: Dict = val[ -dim: ] else: lowercase__: str = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: str = torch.load(__UpperCAmelCase , map_location='''cpu''' )['''model'''] lowercase__: List[str] = get_swin_config(__UpperCAmelCase ) lowercase__: List[Any] = SwinForMaskedImageModeling(__UpperCAmelCase ) model.eval() lowercase__: Any = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) lowercase__: Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: List[Any] = ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) lowercase__: int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) lowercase__: List[str] = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): lowercase__: Optional[Any] = model(**__UpperCAmelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
586
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "swin2sr" _UpperCAmelCase :Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _UpperCAmelCase=64 , _UpperCAmelCase=1 , _UpperCAmelCase=3 , _UpperCAmelCase=180 , _UpperCAmelCase=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase=8 , _UpperCAmelCase=2.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=2 , _UpperCAmelCase=1.0 , _UpperCAmelCase="1conv" , _UpperCAmelCase="pixelshuffle" , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = image_size lowercase__: List[Any] = patch_size lowercase__: Union[str, Any] = num_channels lowercase__: List[str] = embed_dim lowercase__: Optional[int] = depths lowercase__: Union[str, Any] = len(_UpperCAmelCase ) lowercase__: Union[str, Any] = num_heads lowercase__: str = window_size lowercase__: List[Any] = mlp_ratio lowercase__: List[Any] = qkv_bias lowercase__: List[str] = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: Any = drop_path_rate lowercase__: str = hidden_act lowercase__: List[str] = use_absolute_embeddings lowercase__: Tuple = layer_norm_eps lowercase__: Optional[int] = initializer_range lowercase__: Tuple = upscale lowercase__: Optional[int] = img_range lowercase__: List[Any] = resi_connection lowercase__: Union[str, Any] = upsampler
586
1
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: return round(float(moles / volume ) * nfactor ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
45
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16_000 ) -> Union[str, Any]: A__ = int(round(sample_rate * max_length ) ) if len(__UpperCamelCase ) <= sample_length: return wav A__ = randint(0 , len(__UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __lowerCAmelCase : """simple docstring""" A__ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"help": "Name of a dataset from the datasets package"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "A file containing the training audio paths and labels."} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "A file containing the validation audio paths and labels."} ) A__ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) A__ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) A__ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) A__ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) A__ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A__ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) A__ : float = field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) A__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) A__ : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _a ( self : Dict ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , _snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def A ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A__ = feature_extractor.model_input_names[0] def train_transforms(__UpperCamelCase ): A__ = [] for audio in batch[data_args.audio_column_name]: A__ = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__UpperCamelCase ) A__ = feature_extractor(__UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) A__ = {model_input_name: inputs.get(__UpperCamelCase )} A__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__UpperCamelCase ): A__ = [audio['array'] for audio in batch[data_args.audio_column_name]] A__ = feature_extractor(__UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) A__ = {model_input_name: inputs.get(__UpperCamelCase )} A__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A__ = raw_datasets['train'].features[data_args.label_column_name].names A__ , A__ = {}, {} for i, label in enumerate(__UpperCamelCase ): A__ = str(__UpperCamelCase ) A__ = label # Load the accuracy metric from the datasets package A__ = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase ): A__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__UpperCamelCase , references=eval_pred.label_ids ) A__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel=__UpperCamelCase , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A__ = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__UpperCamelCase , output_all_columns=__UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__UpperCamelCase , output_all_columns=__UpperCamelCase ) # Initialize our trainer A__ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=__UpperCamelCase , tokenizer=__UpperCamelCase , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ = trainer.evaluate() trainer.log_metrics('eval' , __UpperCamelCase ) trainer.save_metrics('eval' , __UpperCamelCase ) # Write model card and (optionally) push to hub A__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
9
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __a : Optional[int] = pytest.mark.integration __a : List[str] = {'''comet'''} __a : Union[str, Any] = importlib.util.find_spec('''fairseq''') is not None __a : Tuple = {'''code_eval'''} __a : Any = os.name == '''nt''' __a : Dict = {'''bertscore''', '''frugalscore''', '''perplexity'''} __a : Optional[int] = importlib.util.find_spec('''transformers''') is not None def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self ,SCREAMING_SNAKE_CASE_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self ,SCREAMING_SNAKE_CASE_ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self ,SCREAMING_SNAKE_CASE_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self ,SCREAMING_SNAKE_CASE_ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self ,SCREAMING_SNAKE_CASE_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self ,SCREAMING_SNAKE_CASE_ ) return wrapper def snake_case_ ( ) -> str: lowercase__ : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ , snake_case_ , snake_case_ ) @local class UpperCAmelCase( parameterized.TestCase ): """simple docstring""" a : List[str] = {} a : List[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __a ( self , lowerCamelCase ) -> Any: """simple docstring""" lowercase__ : int = "[...]" lowercase__ : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCamelCase ) ).module_path ) lowercase__ : List[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase ) # check parameters lowercase__ : int = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase__ : str = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __a ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = "[...]" lowercase__ : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase__ : List[str] = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __a ( self , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase ): yield else: yield @contextmanager def __a ( self ) -> int: """simple docstring""" def load_local_metric(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): return load_metric(os.path.join("metrics" , lowerCamelCase ) , *lowerCamelCase , **lowerCamelCase ) with patch("datasets.load_metric" ) as mock_load_metric: lowercase__ : Any = load_local_metric yield @classmethod def __a ( cls , lowerCamelCase ) -> Optional[int]: """simple docstring""" def wrapper(lowerCamelCase ): lowercase__ : Dict = contextmanager(lowerCamelCase ) lowercase__ : Tuple = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags class UpperCAmelCase( snake_case_ ): """simple docstring""" def __a ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowercase__ : Tuple = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowercase__ : Tuple = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: def load_from_checkpoint(SCREAMING_SNAKE_CASE_ ): class UpperCAmelCase: """simple docstring""" def __a ( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" assert len(lowerCamelCase ) == 2 lowercase__ : List[Any] = [0.19, 0.92] return scores, sum(lowerCamelCase ) / len(lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowercase__ : int = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowercase__ : Optional[int] = load_from_checkpoint yield def snake_case_ ( ) -> Tuple: lowercase__ : Dict = load_metric(os.path.join("metrics" ,"seqeval" ) ) lowercase__ : str = "ERROR" lowercase__ : Union[str, Any] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(SCREAMING_SNAKE_CASE_ ,match=re.escape(SCREAMING_SNAKE_CASE_ ) ): metric.compute(predictions=[] ,references=[] ,scheme=SCREAMING_SNAKE_CASE_ )
397
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase : Optional[int] = datasets.logging.get_logger(__name__) lowercase : List[Any] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ lowercase : List[str] = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ lowercase : Union[str, Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def A_ ( A__ , A__ , A__=False , A__=False , A__=True , A__=False , A__="dummy_doc" ) -> Tuple: a__ : int = {doc: key_lines} a__ : Optional[int] = {doc: sys_lines} a__ : int = {} a__ : Union[str, Any] = 0 a__ : Union[str, Any] = 0 a__ : Any = 0 a__ : List[Any] = 0 a__ : Union[str, Any] = 0 a__ : int = 0 a__ : Optional[int] = reader.get_doc_mentions(A__ , key_doc_lines[doc] , A__ ) key_singletons_num += singletons_num if NP_only or min_span: a__ : Dict = reader.set_annotated_parse_trees(A__ , key_doc_lines[doc] , A__ , A__ ) a__ : Optional[int] = reader.get_doc_mentions(A__ , sys_doc_lines[doc] , A__ ) sys_singletons_num += singletons_num if NP_only or min_span: a__ : Dict = reader.set_annotated_parse_trees(A__ , key_doc_lines[doc] , A__ , A__ ) if remove_nested: a__ : Union[str, Any] = reader.remove_nested_coref_mentions(A__ , A__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters a__ : Tuple = reader.remove_nested_coref_mentions(A__ , A__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters a__ : int = reader.get_mention_assignments(A__ , A__ ) a__ : int = reader.get_mention_assignments(A__ , A__ ) a__ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def A_ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: a__ : Dict = get_coref_infos(A__ , A__ , A__ , A__ , A__ , A__ ) a__ : int = {} a__ : int = 0 a__ : List[Any] = 0 for name, metric in metrics: a__ : Tuple = evaluator.evaluate_documents(A__ , A__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: a__ : Tuple = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def A_ ( A__ ) -> Optional[Any]: a__ : Optional[Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: a__ : Optional[int] = line.split()[5] if not parse_col == "-": a__ : Any = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string')), 'references': datasets.Sequence(datasets.Value('string')), }) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=True , lowercase=False , lowercase=False , lowercase=False) -> Optional[int]: '''simple docstring''' a__ : List[str] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: a__ : Dict = util.check_gold_parse_annotation(lowercase) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" a__ : Any = evaluate( key_lines=lowercase , sys_lines=lowercase , metrics=lowercase , NP_only=lowercase , remove_nested=lowercase , keep_singletons=lowercase , min_span=lowercase , ) return score
717
from collections import namedtuple lowercase : List[str] = namedtuple("""from_to""", """from_ to""") lowercase : Tuple = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def A_ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
392
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = None , ) -> Optional[Any]: super().__init__() a : int = initial_learning_rate a : str = warmup_steps a : Optional[Any] = power a : int = decay_schedule_fn a : str = name def __call__( self , lowerCAmelCase__ ) -> Any: with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. a : Dict = tf.cast(lowerCAmelCase__ , tf.floataa ) a : Tuple = tf.cast(self.warmup_steps , tf.floataa ) a : List[str] = global_step_float / warmup_steps_float a : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCAmelCase__ , ) def __a ( self ) -> Dict: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : int , _lowercase : int , _lowercase : float = 0.0 , _lowercase : float = 0.9 , _lowercase : float = 0.999 , _lowercase : float = 1E-8 , _lowercase : Optional[float] = None , _lowercase : Optional[float] = None , _lowercase : float = 0.0 , _lowercase : float = 1.0 , _lowercase : Optional[List[str]] = None , ) ->Optional[int]: '''simple docstring''' a : Optional[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowercase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowercase , ) if num_warmup_steps: a : Dict = WarmUp( initial_learning_rate=_lowercase , decay_schedule_fn=_lowercase , warmup_steps=_lowercase , ) if weight_decay_rate > 0.0: a : List[Any] = AdamWeightDecay( learning_rate=_lowercase , weight_decay_rate=_lowercase , beta_a=_lowercase , beta_a=_lowercase , epsilon=_lowercase , clipnorm=_lowercase , global_clipnorm=_lowercase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=_lowercase , ) else: a : List[str] = tf.keras.optimizers.Adam( learning_rate=_lowercase , beta_a=_lowercase , beta_a=_lowercase , epsilon=_lowercase , clipnorm=_lowercase , global_clipnorm=_lowercase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ = 0.001 , lowerCAmelCase__ = 0.9 , lowerCAmelCase__ = 0.999 , lowerCAmelCase__ = 1E-7 , lowerCAmelCase__ = False , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "AdamWeightDecay" , **lowerCAmelCase__ , ) -> Tuple: super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a : str = weight_decay_rate a : Union[str, Any] = include_in_weight_decay a : Tuple = exclude_from_weight_decay @classmethod def __a ( cls , lowerCAmelCase__ ) -> int: a : Tuple = {"WarmUp": WarmUp} return super(lowerCAmelCase__ , cls ).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: super(lowerCAmelCase__ , self )._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: a : List[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> int: a, a : int = list(zip(*lowerCAmelCase__ ) ) return super(lowerCAmelCase__ , self ).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , name=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: if apply_state is None: return self._decayed_lr_t[var_dtype], {} a : Union[str, Any] = apply_state or {} a : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: a : Union[str, Any] = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Tuple: a, a : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) a : Optional[Any] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: a, a : str = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__ ) a : int = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase__ , self )._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self ) -> int: a : Optional[Any] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ) is not None: return False return True class __UpperCamelCase ( a__ ): def __init__( self ) -> List[Any]: a : List[Any] = [] a : int = None @property def __a ( self ) -> int: if self._accum_steps is None: a : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __a ( self ) -> int: if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , lowerCAmelCase__ ) -> Any: if not self._gradients: a : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__ ) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase__ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase__ )}""" ) for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__ ) self._accum_steps.assign_add(1 ) def __a ( self ) -> Union[str, Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__ ) )
633
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->int: '''simple docstring''' a : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( _lowercase , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict a : Any = torch.load(hf_hub_download(repo_id=_lowercase , filename="pytorch_model.bin" ) ) a : int = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): a : List[Any] = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue a : Dict = tensor_value a : Optional[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_lowercase , config=_lowercase , state_dict=_lowercase ) model.save_pretrained(_lowercase ) # convert tokenizer a : List[Any] = AutoTokenizer.from_pretrained(_lowercase ) tokenizer.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Tuple = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
633
1
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple ) -> Any: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowerCAmelCase ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) SCREAMING_SNAKE_CASE : Optional[int] = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format SCREAMING_SNAKE_CASE : int = PipelineDataFormat.from_str( format=_lowerCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_lowerCAmelCase , _lowerCAmelCase ) class _a ( __snake_case ): """simple docstring""" def __init__( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Optional[Any] = nlp SCREAMING_SNAKE_CASE : Tuple = reader @staticmethod def __a ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser('run' ,help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' ,choices=get_supported_tasks() ,help='Task to run' ) run_parser.add_argument('--input' ,type=A_ ,help='Path to the file to use for inference' ) run_parser.add_argument('--output' ,type=A_ ,help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' ,type=A_ ,help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' ,type=A_ ,help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' ,type=A_ ,help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' ,type=A_ ,help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' ,) run_parser.add_argument( '--format' ,type=A_ ,default='infer' ,choices=PipelineDataFormat.SUPPORTED_FORMATS ,help='Input format to read from' ,) run_parser.add_argument( '--device' ,type=A_ ,default=-1 ,help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' ,) run_parser.add_argument('--overwrite' ,action='store_true' ,help='Allow overwriting the output file.' ) run_parser.set_defaults(func=A_ ) def __a ( self ): SCREAMING_SNAKE_CASE : List[Any] = self._nlp, [] for entry in self._reader: SCREAMING_SNAKE_CASE : Tuple = nlp(**A_ ) if self._reader.is_multi_columns else nlp(A_ ) if isinstance(A_ ,A_ ): outputs.append(A_ ) else: outputs += output # Saving data if self._nlp.binary_output: SCREAMING_SNAKE_CASE : Optional[Any] = self._reader.save_binary(A_ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A_ )
716
'''simple docstring''' import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.array ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
220
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def A_ ( lowercase_ ) -> Union[str, Any]: _snake_case : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): _snake_case : str = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): _snake_case : Any = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _snake_case : str = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] _snake_case : Union[str, Any] = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowercase_ )-1}''' ) if "norm" in key: _snake_case : Union[str, Any] = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _snake_case : List[str] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] _snake_case : int = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowercase_ )-1}''' ) if "layer_norm1" in key: _snake_case : str = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: _snake_case : Union[str, Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 _snake_case : str = key[key.find('''block''' ) + len('''block''' )] _snake_case : Dict = key.replace(f'''block{idx}''' , f'''block.{int(lowercase_ )-1}''' ) if "attn.q" in key: _snake_case : Dict = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: _snake_case : Optional[int] = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: _snake_case : Optional[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: _snake_case : str = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: _snake_case : Optional[int] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: _snake_case : Optional[int] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: _snake_case : List[str] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) _snake_case : Optional[int] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _snake_case : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] _snake_case : List[Any] = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowercase_ )-1}''' ) if "bot_conv" in key: _snake_case : Optional[Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: _snake_case : Tuple = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: _snake_case : Optional[Any] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: _snake_case : Tuple = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: _snake_case : Dict = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: _snake_case : Dict = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: _snake_case : Dict = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): _snake_case : Optional[Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) _snake_case : Union[str, Any] = value return new_state_dict def A_ ( lowercase_ , lowercase_ ) -> Dict: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _snake_case : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _snake_case : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _snake_case : Any = kv_weight[ : config.hidden_sizes[i], : ] _snake_case : List[str] = kv_bias[: config.hidden_sizes[i]] _snake_case : Any = kv_weight[ config.hidden_sizes[i] :, : ] _snake_case : Optional[int] = kv_bias[config.hidden_sizes[i] :] def A_ ( ) -> int: _snake_case : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case : Optional[Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image @torch.no_grad() def A_ ( lowercase_ , lowercase_ , lowercase_=False , lowercase_=None ) -> Optional[Any]: _snake_case : int = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _snake_case : int = GLPNImageProcessor() # prepare image _snake_case : int = prepare_img() _snake_case : int = image_processor(images=lowercase_ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict _snake_case : List[Any] = torch.load(lowercase_ , map_location=torch.device('''cpu''' ) ) # rename keys _snake_case : Any = rename_keys(lowercase_ ) # key and value matrices need special treatment read_in_k_v(lowercase_ , lowercase_ ) # create HuggingFace model and load state dict _snake_case : Dict = GLPNForDepthEstimation(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # forward pass _snake_case : Tuple = model(lowercase_ ) _snake_case : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _snake_case : Tuple = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _snake_case : List[Any] = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) _snake_case : Union[str, Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowercase_ , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowercase_ , lowercase_ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowercase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowercase_ , lowercase_ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowercase_ , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) lowerCAmelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
326
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A_ ( ) -> int: _snake_case : Optional[int] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _snake_case : Tuple = Dataset.from_dict(lowercase_ ) return dataset class A (__UpperCAmelCase ): def __a ( self ) -> Optional[Any]: '''simple docstring''' _snake_case : int = get_dataset() _snake_case : Dict = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __a ( self ) -> Tuple: '''simple docstring''' _snake_case : Tuple = get_dataset() _snake_case , _snake_case : Optional[int] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowercase_ )
326
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Dict=37 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=None , ): lowerCamelCase__ = parent lowerCamelCase__ = 13 lowerCamelCase__ = 7 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 99 lowerCamelCase__ = 3_84 lowerCamelCase__ = 2 lowerCamelCase__ = 4 lowerCamelCase__ = 37 lowerCamelCase__ = 'gelu' lowerCamelCase__ = 0.1 lowerCamelCase__ = 0.1 lowerCamelCase__ = 5_12 lowerCamelCase__ = 16 lowerCamelCase__ = 2 lowerCamelCase__ = 0.02 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = 1_28 lowerCamelCase__ = 2 lowerCamelCase__ = 9 lowerCamelCase__ = 1 lowerCamelCase__ = None def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFConvBertModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = TFConvBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFConvBertForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = TFConvBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFConvBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFConvBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ : Tuple = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ : Union[str, Any] = False a_ : Dict = False a_ : str = False def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = TFConvBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : int ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = True lowerCamelCase__ = True if hasattr(SCREAMING_SNAKE_CASE__ , 'use_cache' ): lowerCamelCase__ = True lowerCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase__ = getattr(self.model_tester , 'key_length' , SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: lowerCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = len(model(SCREAMING_SNAKE_CASE__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ , saved_model=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'saved_model' , '1' ) lowerCamelCase__ = tf.keras.models.load_model(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) if self.is_encoder_decoder: lowerCamelCase__ = outputs['encoder_hidden_states'] lowerCamelCase__ = outputs['encoder_attentions'] else: lowerCamelCase__ = outputs['hidden_states'] lowerCamelCase__ = outputs['attentions'] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = True lowerCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase__ = getattr(self.model_tester , 'key_length' , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = getattr(self.model_tester , 'key_length' , SCREAMING_SNAKE_CASE__ ) def check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase__ = outputs.decoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) if self.is_encoder_decoder: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_decoder_attentions_output(SCREAMING_SNAKE_CASE__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase__ = True lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) # Check attention is always last and order is fine lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(model.config.output_hidden_states , SCREAMING_SNAKE_CASE__ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE__ ) @require_tf class _a ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Any ): lowerCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) lowerCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = [1, 6, 7_68] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 )
659
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
1
"""simple docstring""" import cva import numpy as np class __lowerCAmelCase : '''simple docstring''' def __init__( self , a , a ): """simple docstring""" if k in (0.04, 0.06): snake_case_ :Optional[Any] = k snake_case_ :Tuple = window_size else: raise ValueError("invalid k value" ) def __str__( self ): """simple docstring""" return str(self.k ) def _a ( self , a ): """simple docstring""" snake_case_ :List[str] = cva.imread(a__ , 0 ) snake_case_ , snake_case_ :int = img.shape snake_case_ :Any = [] snake_case_ :Any = img.copy() snake_case_ :Union[str, Any] = cva.cvtColor(a__ , cva.COLOR_GRAY2RGB ) snake_case_ , snake_case_ :Optional[Any] = np.gradient(a__ ) snake_case_ :str = dx**2 snake_case_ :Optional[Any] = dy**2 snake_case_ :Any = dx * dy snake_case_ :Tuple = 0.04 snake_case_ :Tuple = self.window_size // 2 for y in range(a__ , h - offset ): for x in range(a__ , w - offset ): snake_case_ :Optional[int] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ :Union[str, Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ :Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ :Any = (wxx * wyy) - (wxy**2) snake_case_ :Any = wxx + wyy snake_case_ :List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = HarrisCorner(0.04, 3) __UpperCAmelCase : Optional[Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
584
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCAmelCase ( UpperCamelCase__: List[Any]=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: A = subparsers.add_parser("""test""" ) else: A = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=UpperCamelCase__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Any: """simple docstring""" A = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: A = script_name else: A = f'--config_file={args.config_file} {script_name}' A = ["""accelerate-launch"""] + test_args.split() A = execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" A = test_command_parser() A = parser.parse_args() test_command(UpperCamelCase__ ) if __name__ == "__main__": main()
641
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __snake_case ( lowercase : Iterable[str] , lowercase : int ): snake_case_ = iter(lowercase ) while True: snake_case_ = tuple(itertools.islice(lowercase , lowercase ) ) if not chunk: return yield chunk def __snake_case ( lowercase : str ): snake_case_ = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case_ = "" if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def __snake_case ( lowercase : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) snake_case_ = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def __snake_case ( lowercase : str , lowercase : str ): snake_case_ = generate_table(lowercase ) snake_case_ = prepare_input(lowercase ) snake_case_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase , 2 ): snake_case_ , snake_case_ = divmod(table.index(lowercase ) , 5 ) snake_case_ , snake_case_ = divmod(table.index(lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __snake_case ( lowercase : str , lowercase : str ): snake_case_ = generate_table(lowercase ) snake_case_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase , 2 ): snake_case_ , snake_case_ = divmod(table.index(lowercase ) , 5 ) snake_case_ , snake_case_ = divmod(table.index(lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
420
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __snake_case ( lowercase : int = 1_000_000 , lowercase : int = 10 ): snake_case_ = defaultdict(lowercase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: snake_case_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: snake_case_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
420
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : int = 0 __a : bool = False __a : float = 3.0 class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=__lowerCAmelCase ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def _UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase_ : str = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase_ : Any = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase_ : Tuple = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , __lowerCAmelCase ) @require_multi_gpu def _UpperCAmelCase ( self ): UpperCamelCase_ : Any = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase =DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCamelCase =Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase =torch.nn.Linear(100, 200) UpperCamelCase =accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase ="" UpperCamelCase =model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
208
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): """simple docstring""" @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_ : List[str] = PNDMScheduler() UpperCamelCase_ : Dict = PNDMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) pndm.to(__lowerCAmelCase ) pndm.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = pndm(generator=__lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images UpperCamelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase_ : Tuple = pndm(generator=__lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=__lowerCAmelCase )[0] UpperCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase_ : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = """google/ddpm-cifar10-32""" UpperCamelCase_ : List[str] = UNetaDModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : int = PNDMScheduler() UpperCamelCase_ : Any = PNDMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) pndm.to(__lowerCAmelCase ) pndm.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = pndm(generator=__lowerCAmelCase , output_type="""numpy""" ).images UpperCamelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase_ : Union[str, Any] = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
208
1
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' return baseaa.baaencode(string.encode('utf-8' ) ) def _SCREAMING_SNAKE_CASE ( __snake_case : bytes ): '''simple docstring''' return baseaa.baadecode(__snake_case ).decode('utf-8' ) if __name__ == "__main__": _UpperCamelCase : Dict = 'Hello World!' _UpperCamelCase : List[Any] = baseaa_encode(test) print(encoded) _UpperCamelCase : str = baseaa_decode(encoded) print(decoded)
134
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : str = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
134
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '▁' _lowercase = {'vocab_file': 'sentencepiece.bpe.model'} _lowercase = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _lowercase = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off _lowercase = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase_ ( a_ ): '''simple docstring''' _lowercase : Any = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = ['''input_ids''', '''attention_mask'''] _lowercase : List[str] = [] _lowercase : Tuple = [] def __init__( self , _lowercase , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = None , _lowercase=None , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = legacy_behaviour super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , tokenizer_file=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_lowercase , **_lowercase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowercase ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase = src_lang if src_lang is not None else '''eng_Latn''' _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowercase ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) _lowerCAmelCase = self.convert_tokens_to_ids(_lowercase ) _lowerCAmelCase = tgt_lang_id return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self , _lowercase ): """simple docstring""" return self.sp_model.encode(_lowercase , out_type=_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(_lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowercase ( self , _lowercase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = ''''''.join(_lowercase ).replace(_lowercase , """ """ ).strip() return out_string def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def _lowercase ( self , _lowercase , _lowercase = "eng_Latn" , _lowercase = None , _lowercase = "fra_Latn" , **_lowercase , ): """simple docstring""" _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id]
5
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _UpperCAmelCase ( a_ ): """simple docstring""" def a__ ( self ) -> str: _lowerCamelCase : Any = tempfile.mkdtemp() _lowerCamelCase : List[Any] = 5 # Realm tok _lowerCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCamelCase : int = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) _lowerCamelCase : Any = os.path.join(_lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) def a__ ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def a__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> str: _lowerCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def a__ ( self ) -> int: _lowerCamelCase : Dict = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_lowercase , ) return block_records def a__ ( self ) -> Dict: _lowerCamelCase : Union[str, Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def a__ ( self ) -> int: _lowerCamelCase : int = self.get_config() _lowerCamelCase : Optional[Any] = self.get_dummy_retriever() _lowerCamelCase : Union[str, Any] = retriever.tokenizer _lowerCamelCase : Any = np.array([0, 3] , dtype='''long''' ) _lowerCamelCase : Any = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : str = tokenizer( ['''the fourth'''] , add_special_tokens=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , ).input_ids _lowerCamelCase : List[str] = config.reader_seq_len _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = retriever( _lowercase , _lowercase , answer_ids=_lowercase , max_length=_lowercase , return_tensors='''np''' ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def a__ ( self ) -> int: _lowerCamelCase : str = self.get_config() _lowerCamelCase : Union[str, Any] = self.get_dummy_retriever() _lowerCamelCase : str = retriever.tokenizer _lowerCamelCase : List[str] = np.array([0, 3, 5] , dtype='''long''' ) _lowerCamelCase : List[Any] = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : List[str] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , ).input_ids _lowerCamelCase : Optional[Any] = config.reader_seq_len _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = retriever( _lowercase , _lowercase , answer_ids=_lowercase , max_length=_lowercase , return_tensors='''np''' ) self.assertEqual([False, True, True] , _lowercase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowercase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowercase ) def a__ ( self ) -> int: _lowerCamelCase : Optional[int] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _lowerCamelCase : Dict = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _lowerCamelCase : Optional[Any] = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCamelCase : List[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
434
0
'''simple docstring''' from __future__ import annotations UpperCAmelCase_ = [True] * 1_0_0_0_0_0_1 UpperCAmelCase_ = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): UpperCAmelCase_ = False i += 1 def lowerCAmelCase_ ( lowercase: int ) -> Tuple: '''simple docstring''' return seive[n] def lowerCAmelCase_ ( lowercase: int ) -> Dict: '''simple docstring''' return any(digit in '''02468''' for digit in str(lowercase ) ) def lowerCAmelCase_ ( lowercase: int = 1_000_000 ) -> str: '''simple docstring''' _UpperCamelCase: Union[str, Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowercase ) and not contains_an_even_digit(lowercase ): _UpperCamelCase: Any = str(lowercase ) _UpperCamelCase: int = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase ) )] if all(is_prime(lowercase ) for i in list_nums ): result.append(lowercase ) return result def lowerCAmelCase_ ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
721
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : """simple docstring""" def __init__( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int=13 , _lowercase : Optional[int]=32 , _lowercase : Optional[Any]=3 , _lowercase : Union[str, Any]=4 , _lowercase : Any=[10, 20, 30, 40] , _lowercase : str=[2, 2, 3, 2] , _lowercase : Any=True , _lowercase : Union[str, Any]=True , _lowercase : int=37 , _lowercase : Union[str, Any]="gelu" , _lowercase : Union[str, Any]=10 , _lowercase : Tuple=0.02 , _lowercase : int=["stage2", "stage3", "stage4"] , _lowercase : Optional[Any]=3 , _lowercase : Optional[int]=None , ): """simple docstring""" _UpperCamelCase: Optional[int] = parent _UpperCamelCase: str = batch_size _UpperCamelCase: str = image_size _UpperCamelCase: Any = num_channels _UpperCamelCase: Union[str, Any] = num_stages _UpperCamelCase: Any = hidden_sizes _UpperCamelCase: int = depths _UpperCamelCase: Dict = is_training _UpperCamelCase: Optional[int] = use_labels _UpperCamelCase: Optional[int] = intermediate_size _UpperCamelCase: int = hidden_act _UpperCamelCase: Tuple = type_sequence_label_size _UpperCamelCase: List[Any] = initializer_range _UpperCamelCase: Dict = out_features _UpperCamelCase: Union[str, Any] = num_labels _UpperCamelCase: Tuple = scope _UpperCamelCase: Union[str, Any] = num_stages def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase: Any = None if self.use_labels: _UpperCamelCase: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase: Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Any ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowerCAmelCase ( self : Tuple , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Dict ): """simple docstring""" _UpperCamelCase: Optional[Any] = UperNetForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase: int = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: List[str] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ): str = config_and_inputs _UpperCamelCase: Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : List[Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase : Tuple = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase : Dict = False lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = False def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Optional[int] = UperNetModelTester(self ) _UpperCamelCase: List[str] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowerCAmelCase ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : List[Any] ): """simple docstring""" return def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase: List[Any] = model_class(_lowercase ) _UpperCamelCase: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase: Any = [*signature.parameters.keys()] _UpperCamelCase: List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowerCAmelCase ( self : Any ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowerCAmelCase ( self : Dict ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" def check_hidden_states_output(_lowercase : List[str] , _lowercase : List[str] , _lowercase : List[str] ): _UpperCamelCase: Any = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _UpperCamelCase: Union[str, Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _UpperCamelCase: Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase: List[str] = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase: Optional[int] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase: Union[str, Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase: int = _config_zero_init(_lowercase ) _UpperCamelCase: List[Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _UpperCamelCase: int = model_class(config=_lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" pass @slow def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase: Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCamelCase: Any = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase: Any = Image.open(lowercase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Any = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) _UpperCamelCase: Optional[Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowercase ) _UpperCamelCase: List[Any] = prepare_img() _UpperCamelCase: int = processor(images=_lowercase , return_tensors='''pt''' ).to(_lowercase ) with torch.no_grad(): _UpperCamelCase: Any = model(**_lowercase ) _UpperCamelCase: Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _UpperCamelCase: Tuple = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1E-4 ) ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Tuple = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) _UpperCamelCase: int = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowercase ) _UpperCamelCase: int = prepare_img() _UpperCamelCase: Union[str, Any] = processor(images=_lowercase , return_tensors='''pt''' ).to(_lowercase ) with torch.no_grad(): _UpperCamelCase: List[Any] = model(**_lowercase ) _UpperCamelCase: Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _UpperCamelCase: Optional[Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1E-4 ) )
264
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : int = ["input_features"] def __init__( self : Dict , _snake_case : str=80 , _snake_case : List[Any]=1_60_00 , _snake_case : str=1_60 , _snake_case : Any=30 , _snake_case : Dict=4_00 , _snake_case : int=0.0 , _snake_case : Tuple=False , **_snake_case : Optional[Any] , ): """simple docstring""" super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = n_fft A__ = hop_length A__ = chunk_length A__ = chunk_length * sampling_rate A__ = self.n_samples // hop_length A__ = sampling_rate A__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_snake_case , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , ) def _a ( self : List[str] , _snake_case : np.array ): """simple docstring""" A__ = spectrogram( _snake_case , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) A__ = log_spec[:, :-1] A__ = np.maximum(_snake_case , log_spec.max() - 8.0 ) A__ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : str , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = True , _snake_case : Optional[int] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[str] = "max_length" , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , **_snake_case : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) A__ = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [np.asarray([raw_speech] ).T] A__ = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding A__ = self.pad( _snake_case , padding=_snake_case , max_length=max_length if max_length else self.n_samples , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: A__ = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) A__ = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format A__ = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) A__ = [self._np_extract_fbank_features(_snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] , _snake_case ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] else: A__ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) A__ = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
9
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : int = AutoencoderKL a__ : Optional[Any] = """sample""" a__ : Union[str, Any] = 1e-2 @property def _lowercase (self : Optional[int] ): UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def _lowercase (self : Any ): return (3, 32, 32) @property def _lowercase (self : Dict ): return (3, 32, 32) def _lowercase (self : int ): UpperCAmelCase_ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def _lowercase (self : int ): pass def _lowercase (self : int ): pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _lowercase (self : List[Any] ): # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.model_class(**__a ) model.to(__a ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ = model(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ = torch.randn_like(__a ) UpperCAmelCase_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ = self.model_class(**__a ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__a ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ = model_a(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) UpperCAmelCase_ = dict(model.named_parameters() ) UpperCAmelCase_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _lowercase (self : Any ): UpperCAmelCase_ , UpperCAmelCase_ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) UpperCAmelCase_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowercase (self : List[str] ): UpperCAmelCase_ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) UpperCAmelCase_ = model.to(__a ) model.eval() if torch_device == "mps": UpperCAmelCase_ = torch.manual_seed(0 ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase_ = image.to(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a , sample_posterior=__a , generator=__a ).sample UpperCAmelCase_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: UpperCAmelCase_ = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) ) @slow class __A ( unittest.TestCase ): def _lowercase (self : Dict , __a : Dict , __a : int ): return f"""gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy""" def _lowercase (self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Optional[Any] , __a : Optional[Any]=0 , __a : str=(4, 3, 512, 512) , __a : List[str]=False ): UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ = torch.from_numpy(load_hf_numpy(self.get_file_format(__a , __a ) ) ).to(__a ).to(__a ) return image def _lowercase (self : List[Any] , __a : Union[str, Any]="CompVis/stable-diffusion-v1-4" , __a : List[Any]=False ): UpperCAmelCase_ = "fp16" if fpaa else None UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ = AutoencoderKL.from_pretrained( __a , subfolder="vae" , torch_dtype=__a , revision=__a , ) model.to(__a ).eval() return model def _lowercase (self : List[Any] , __a : List[Any]=0 ): if torch_device == "mps": return torch.manual_seed(__a ) return torch.Generator(device=__a ).manual_seed(__a ) @parameterized.expand( [ # fmt: off [33, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def _lowercase (self : List[Any] , __a : Dict , __a : Optional[int] , __a : List[str] ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a ) UpperCAmelCase_ = self.get_generator(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape UpperCAmelCase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__a , __a , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [47, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def _lowercase (self : Dict , __a : Optional[int] , __a : int ): UpperCAmelCase_ = self.get_sd_vae_model(fpaa=__a ) UpperCAmelCase_ = self.get_sd_image(__a , fpaa=__a ) UpperCAmelCase_ = self.get_generator(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape UpperCAmelCase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def _lowercase (self : str , __a : int , __a : Union[str, Any] , __a : List[Any] ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a ).sample assert sample.shape == image.shape UpperCAmelCase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__a , __a , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [37, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def _lowercase (self : int , __a : int , __a : int ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [16, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def _lowercase (self : Union[str, Any] , __a : List[str] , __a : Optional[Any] ): UpperCAmelCase_ = self.get_sd_vae_model(fpaa=__a ) UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _lowercase (self : List[str] , __a : int ): UpperCAmelCase_ = self.get_sd_vae_model(fpaa=__a ) UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _lowercase (self : Union[str, Any] , __a : Dict ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [47, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def _lowercase (self : Tuple , __a : List[Any] , __a : List[Any] ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a ) UpperCAmelCase_ = self.get_generator(__a ) with torch.no_grad(): UpperCAmelCase_ = model.encode(__a ).latent_dist UpperCAmelCase_ = dist.sample(generator=__a ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ = torch.tensor(__a ) UpperCAmelCase_ = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(__a , __a , atol=__a )
78
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ : Union[str, Any] =abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def A_ ( __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def A_ ( __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def A_ ( __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __A : Union[str, Any] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ ) def A_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" if exitstatus == 5: __A : Any = 0 # Doctest custom flag to ignore output. A__ : Tuple =doctest.register_optionflag('IGNORE_RESULT') A__ : List[Any] =doctest.OutputChecker class __A ( __lowerCamelCase ): def lowercase_( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Any ): """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) A__ : List[Any] =CustomOutputChecker A__ : Dict =HfDoctestModule A__ : int =HfDocTestParser
714
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" if not is_accelerate_available(): return method __A : int = version.parse(accelerate.__version__ ).base_version if version.parse(__SCREAMING_SNAKE_CASE ) < version.parse("""0.17.0""" ): return method def wrapper(self : str , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Tuple ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return wrapper
499
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): UpperCamelCase_ = IFInpaintingSuperResolutionPipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase_ ( self ) -> List[str]: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase_ ( self , A_ , A_=0 ) -> Optional[int]: """simple docstring""" if str(A_ ).startswith('''mps''' ): _lowercase: Dict = torch.manual_seed(A_ ) else: _lowercase: Union[str, Any] = torch.Generator(device=A_ ).manual_seed(A_ ) _lowercase: List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ ) _lowercase: List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) _lowercase: int = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) _lowercase: Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self ) -> List[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase_ ( self ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase_ ( self ) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase_ ( self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase_ ( self ) -> str: """simple docstring""" self._test_save_load_local() def lowercase_ ( self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
353
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , A_ , A_ ) -> List[str]: """simple docstring""" _lowercase: List[str] = params _lowercase: str = np.array(A_ ) _lowercase: Optional[int] = np.array([len(A_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A_ ) -> Optional[Any]: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> List[str]: """simple docstring""" return len(self.lengths ) def lowercase_ ( self ) -> Dict: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowercase_ ( self ) -> str: """simple docstring""" _lowercase: Tuple = self.params.max_model_input_size _lowercase: Tuple = self.lengths > max_len logger.info(f'''Splitting {sum(A_ )} too long sequences.''' ) def divide_chunks(A_ , A_ ): return [l[i : i + n] for i in range(0 , len(A_ ) , A_ )] _lowercase: Dict = [] _lowercase: Union[str, Any] = [] if self.params.mlm: _lowercase , _lowercase: int = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: _lowercase , _lowercase: Dict = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _lowercase: Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _lowercase: Any = np.insert(A_ , 0 , A_ ) if sub_s[-1] != sep_id: _lowercase: Optional[int] = np.insert(A_ , len(A_ ) , A_ ) assert len(A_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A_ ) new_tok_ids.extend(A_ ) new_lengths.extend([len(A_ ) for l in sub_seqs] ) _lowercase: Optional[Any] = np.array(A_ ) _lowercase: List[str] = np.array(A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: List[Any] = len(self ) _lowercase: Optional[Any] = self.lengths > 11 _lowercase: int = self.token_ids[indices] _lowercase: List[str] = self.lengths[indices] _lowercase: Optional[int] = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowercase_ ( self ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: _lowercase: Dict = self.params.special_tok_ids['''unk_token'''] _lowercase: int = len(self ) _lowercase: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _lowercase: Dict = (unk_occs / self.lengths) < 0.5 _lowercase: str = self.token_ids[indices] _lowercase: Dict = self.lengths[indices] _lowercase: int = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowercase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowercase: List[str] = [t[0] for t in batch] _lowercase: Dict = [t[1] for t in batch] assert len(A_ ) == len(A_ ) # Max for paddings _lowercase: Tuple = max(A_ ) # Pad token ids if self.params.mlm: _lowercase: str = self.params.special_tok_ids['''pad_token'''] else: _lowercase: Union[str, Any] = self.params.special_tok_ids['''unk_token'''] _lowercase: int = [list(t.astype(A_ ) ) + [pad_idx] * (max_seq_len_ - len(A_ )) for t in token_ids] assert len(tk_ ) == len(A_ ) assert all(len(A_ ) == max_seq_len_ for t in tk_ ) _lowercase: str = torch.tensor(tk_ ) # (bs, max_seq_len_) _lowercase: int = torch.tensor(A_ ) # (bs) return tk_t, lg_t
353
1
"""simple docstring""" from __future__ import annotations def A( snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] lowercase__: Optional[int] = (left + right) >> 1 # the middle lowercase__: List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] lowercase__: Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
704
"""simple docstring""" class _a : '''simple docstring''' def __init__( self) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 0 lowercase__: Optional[Any] = 0 lowercase__: Any = {} def __lowercase ( self , UpperCAmelCase_) -> Tuple: '''simple docstring''' if vertex not in self.adjacency: lowercase__: int = {} self.num_vertices += 1 def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) -> str: '''simple docstring''' self.add_vertex(UpperCAmelCase_) self.add_vertex(UpperCAmelCase_) if head == tail: return lowercase__: List[str] = weight lowercase__: Optional[Any] = weight def __lowercase ( self) -> str: '''simple docstring''' lowercase__: Any = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__: Optional[int] = edge edges.remove((tail, head, weight)) for i in range(len(UpperCAmelCase_)): lowercase__: Optional[int] = list(edges[i]) edges.sort(key=lambda UpperCAmelCase_: e[2]) for i in range(len(UpperCAmelCase_) - 1): if edges[i][2] >= edges[i + 1][2]: lowercase__: str = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__: Optional[Any] = edge lowercase__: Optional[Any] = weight lowercase__: Any = weight def __str__( self) -> List[str]: '''simple docstring''' lowercase__: Any = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__: Tuple = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip("\n") def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' lowercase__: Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __lowercase ( self) -> List[str]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __lowercase ( UpperCAmelCase_=None , UpperCAmelCase_=None) -> Optional[int]: '''simple docstring''' lowercase__: Any = Graph() if vertices is None: lowercase__: List[Any] = [] if edges is None: lowercase__: Any = [] for vertex in vertices: g.add_vertex(UpperCAmelCase_) for edge in edges: g.add_edge(*UpperCAmelCase_) return g class _a : '''simple docstring''' def __init__( self) -> List[str]: '''simple docstring''' lowercase__: str = {} lowercase__: int = {} def __len__( self) -> Optional[int]: '''simple docstring''' return len(self.parent) def __lowercase ( self , UpperCAmelCase_) -> Any: '''simple docstring''' if item in self.parent: return self.find(UpperCAmelCase_) lowercase__: str = item lowercase__: Any = 0 return item def __lowercase ( self , UpperCAmelCase_) -> Tuple: '''simple docstring''' if item not in self.parent: return self.make_set(UpperCAmelCase_) if item != self.parent[item]: lowercase__: Tuple = self.find(self.parent[item]) return self.parent[item] def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' lowercase__: int = self.find(UpperCAmelCase_) lowercase__: Optional[int] = self.find(UpperCAmelCase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__: List[Any] = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__: Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__: List[str] = roota return roota return None @staticmethod def __lowercase ( UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' lowercase__: str = graph.num_vertices lowercase__: Optional[Any] = Graph.UnionFind() lowercase__: List[str] = [] while num_components > 1: lowercase__: int = {} for vertex in graph.get_vertices(): lowercase__: Dict = -1 lowercase__: Dict = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__: str = edge edges.remove((tail, head, weight)) for edge in edges: lowercase__ , lowercase__ , lowercase__: Optional[Any] = edge lowercase__: List[str] = union_find.find(UpperCAmelCase_) lowercase__: List[Any] = union_find.find(UpperCAmelCase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__: Optional[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__: Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__: Optional[Any] = cheap_edge[vertex] if union_find.find(UpperCAmelCase_) != union_find.find(UpperCAmelCase_): union_find.union(UpperCAmelCase_ , UpperCAmelCase_) mst_edges.append(cheap_edge[vertex]) lowercase__: Optional[int] = num_components - 1 lowercase__: str = Graph.build(edges=UpperCAmelCase_) return mst
120
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def a ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE__ : Tuple = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(A__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : str = spark.range(1_0_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : str = Spark(A__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : str = spark.range(1_0 ).repartition(2 ) SCREAMING_SNAKE_CASE__ : str = [1, 0] SCREAMING_SNAKE_CASE__ : Optional[Any] = _generate_iterable_examples(A__ , A__ ) # Reverse the partitions. SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , A__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Dict = spark.range(1_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : Tuple = SparkExamplesIterable(A__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Optional[Any] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: SCREAMING_SNAKE_CASE__ : int = lambda A__ : x.reverse() SCREAMING_SNAKE_CASE__ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [2, 1, 0] ) SCREAMING_SNAKE_CASE__ : Dict = SparkExamplesIterable(A__ ).shuffle_data_sources(A__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : List[str] = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE__ : Optional[int] = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE__ : int = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Optional[int] = spark.range(1_0_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = Spark(A__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int , a_ : int ): __a = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __a = n - k # Calculate C(n,k) for i in range(a_ ): result *= n - i result //= i + 1 return result def SCREAMING_SNAKE_CASE ( a_ : int ): return binomial_coefficient(2 * node_count , a_ ) // (node_count + 1) def SCREAMING_SNAKE_CASE ( a_ : int ): if n < 0: raise ValueError('factorial() not defined for negative values' ) __a = 1 for i in range(1 , n + 1 ): result *= i return result def SCREAMING_SNAKE_CASE ( a_ : int ): return catalan_number(a_ ) * factorial(a_ ) if __name__ == "__main__": UpperCAmelCase_ = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
490
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE ( a_ : List[DatasetType] , a_ : Optional[List[float]] = None , a_ : Optional[int] = None , a_ : Optional[DatasetInfo] = None , a_ : Optional[NamedSplit] = None , a_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(a_ ): if not isinstance(a_ , (Dataset, IterableDataset) ): if isinstance(a_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(a_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}." ) if i == 0: __a , __a = ( (Dataset, IterableDataset) if isinstance(a_ , a_ ) else (IterableDataset, Dataset) ) elif not isinstance(a_ , a_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( a_ , a_ , a_ , info=a_ , split=a_ , stopping_strategy=a_ ) else: return _interleave_iterable_datasets( a_ , a_ , a_ , info=a_ , split=a_ , stopping_strategy=a_ ) def SCREAMING_SNAKE_CASE ( a_ : List[DatasetType] , a_ : Optional[DatasetInfo] = None , a_ : Optional[NamedSplit] = None , a_ : int = 0 , ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(a_ ): if not isinstance(a_ , (Dataset, IterableDataset) ): if isinstance(a_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(a_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}." ) if i == 0: __a , __a = ( (Dataset, IterableDataset) if isinstance(a_ , a_ ) else (IterableDataset, Dataset) ) elif not isinstance(a_ , a_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(a_ , info=a_ , split=a_ , axis=a_ ) else: return _concatenate_iterable_datasets(a_ , info=a_ , split=a_ , axis=a_ )
490
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) snake_case_ : List[Any] = logging.getLogger() def lowercase__( )-> int: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCamelCase = parser.parse_args() return args.f class A_ ( lowerCAmelCase_ ): '''simple docstring''' def a ( self ): _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(A_ ) def a ( self , A_ ): _UpperCamelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(A_ , "argv" , A_ ): _UpperCamelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(A_ , 0.666 ) @slow @require_torch_non_multi_gpu def a ( self ): _UpperCamelCase = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(A_ ) _UpperCamelCase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(A_ ) _UpperCamelCase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(A_ )
138
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : Optional[int] )-> List[Any]: """simple docstring""" _UpperCamelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCamelCase = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _UpperCamelCase = f"{src_lang}-{tgt_lang}" _UpperCamelCase = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) _UpperCamelCase = os.path.join(_UpperCamelCase , "README.md" ) print(f"Generating {path}" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project snake_case_ : List[Any] = Path(__file__).resolve().parent.parent.parent snake_case_ : List[Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : str = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
138
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Dict = '''owlvit_text_model''' def __init__( self : Optional[int] , _snake_case : Any=4_9408 , _snake_case : Optional[Any]=512 , _snake_case : Optional[Any]=2048 , _snake_case : str=12 , _snake_case : Dict=8 , _snake_case : Optional[Any]=16 , _snake_case : List[str]="quick_gelu" , _snake_case : Tuple=1E-5 , _snake_case : int=0.0 , _snake_case : int=0.02 , _snake_case : str=1.0 , _snake_case : str=0 , _snake_case : Union[str, Any]=4_9406 , _snake_case : List[str]=4_9407 , **_snake_case : str , ): super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) __lowercase : int = vocab_size __lowercase : List[str] = hidden_size __lowercase : Any = intermediate_size __lowercase : int = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : str = max_position_embeddings __lowercase : Any = hidden_act __lowercase : Tuple = layer_norm_eps __lowercase : Optional[Any] = attention_dropout __lowercase : int = initializer_range __lowercase : int = initializer_factor @classmethod def snake_case_ ( cls : int , _snake_case : Union[str, os.PathLike] , **_snake_case : Dict ): cls._set_token_in_kwargs(_snake_case ) __lowercase , __lowercase : int = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase : Tuple = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : int = '''owlvit_vision_model''' def __init__( self : List[Any] , _snake_case : Tuple=768 , _snake_case : Dict=3072 , _snake_case : Optional[Any]=12 , _snake_case : List[Any]=12 , _snake_case : Optional[Any]=3 , _snake_case : Tuple=768 , _snake_case : str=32 , _snake_case : List[Any]="quick_gelu" , _snake_case : Optional[Any]=1E-5 , _snake_case : Tuple=0.0 , _snake_case : Dict=0.02 , _snake_case : List[Any]=1.0 , **_snake_case : Optional[Any] , ): super().__init__(**_snake_case ) __lowercase : Optional[int] = hidden_size __lowercase : List[str] = intermediate_size __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Dict = num_channels __lowercase : Tuple = image_size __lowercase : Optional[int] = patch_size __lowercase : int = hidden_act __lowercase : Dict = layer_norm_eps __lowercase : Optional[Any] = attention_dropout __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = initializer_factor @classmethod def snake_case_ ( cls : List[Any] , _snake_case : Union[str, os.PathLike] , **_snake_case : Union[str, Any] ): cls._set_token_in_kwargs(_snake_case ) __lowercase , __lowercase : List[Any] = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase : Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : List[str] = '''owlvit''' A__ : List[str] = True def __init__( self : Union[str, Any] , _snake_case : int=None , _snake_case : Any=None , _snake_case : Dict=512 , _snake_case : int=2.65_92 , _snake_case : Tuple=True , **_snake_case : List[Any] , ): super().__init__(**_snake_case ) if text_config is None: __lowercase : Optional[int] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __lowercase : Optional[Any] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __lowercase : List[str] = OwlViTTextConfig(**_snake_case ) __lowercase : Any = OwlViTVisionConfig(**_snake_case ) __lowercase : Optional[Any] = projection_dim __lowercase : int = logit_scale_init_value __lowercase : Tuple = return_dict __lowercase : Optional[Any] = 1.0 @classmethod def snake_case_ ( cls : Any , _snake_case : Union[str, os.PathLike] , **_snake_case : int ): cls._set_token_in_kwargs(_snake_case ) __lowercase , __lowercase : List[str] = cls.get_config_dict(_snake_case , **_snake_case ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) @classmethod def snake_case_ ( cls : Dict , _snake_case : Dict , _snake_case : Dict , **_snake_case : str ): __lowercase : Union[str, Any] = {} __lowercase : Dict = text_config __lowercase : List[str] = vision_config return cls.from_dict(_snake_case , **_snake_case ) def snake_case_ ( self : Optional[Any] ): __lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) __lowercase : List[Any] = self.text_config.to_dict() __lowercase : List[str] = self.vision_config.to_dict() __lowercase : Tuple = self.__class__.model_type return output class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @property def snake_case_ ( self : Union[str, Any] ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def snake_case_ ( self : int ): return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def snake_case_ ( self : Any ): return 1E-4 def snake_case_ ( self : Union[str, Any] , _snake_case : "ProcessorMixin" , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : Optional["TensorType"] = None , ): __lowercase : List[str] = super().generate_dummy_inputs( processor.tokenizer , batch_size=_snake_case , seq_length=_snake_case , framework=_snake_case ) __lowercase : List[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=_snake_case , framework=_snake_case ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : Dict ): return 14
284
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[int] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : List[Any] = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : List[Any] = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) __lowercase : int = TextIteratorStreamer(_snake_case ) __lowercase : int = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[Any] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() __lowercase : Optional[int] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : List[str] ): __lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[Any] = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : str = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : List[Any] = greedy_ids[:, input_ids.shape[1] :] __lowercase : Optional[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : int = TextStreamer(_snake_case , skip_prompt=_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : int = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase : Dict = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase : List[str] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_snake_case ) __lowercase : str = -1 __lowercase : Dict = torch.ones((1, 5) , device=_snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case , skip_special_tokens=_snake_case ) model.generate(_snake_case , max_new_tokens=1 , do_sample=_snake_case , streamer=_snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase : Dict = cs.out[:-1] # Remove the final "\n" __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case_ ( self : Any ): __lowercase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : Dict = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = TextIteratorStreamer(_snake_case , timeout=0.0_01 ) __lowercase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[int] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_snake_case ): __lowercase : List[Any] = '''''' for new_text in streamer: streamer_text += new_text
284
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
237
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
237
1
def lowercase ( __A : int = 100 ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
719
def lowercase ( __A : int = 100_0000 ) -> int: '''simple docstring''' snake_case : Union[str, Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
315
0
from __future__ import annotations def __lowerCamelCase ( __a :list[int | float] , __a :int , __a :int ) -> int | float: """simple docstring""" if len(__a ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(__a ) or left < -len(__a ) or right >= len(__a ) or right < -len(__a ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] A__ = (left + right) >> 1 # the middle A__ = find_max(__a , __a , __a ) # find max in range[left, mid] A__ = find_max(__a , mid + 1 , __a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
176
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) A__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A__ = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : str , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Dict , **__lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : List[Any] , **__lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : int ) -> Tuple: """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def a_ ( self : int ) -> Any: """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) A__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = processor(text=__lowerCAmelCase ) A__ = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
176
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): _UpperCAmelCase : int = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=a_ ) _UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go _UpperCAmelCase : List[Any] = parser.parse_args() if not hasattr(a_, "func" ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
257
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): _UpperCAmelCase : int = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=a_ ) _UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go _UpperCAmelCase : List[Any] = parser.parse_args() if not hasattr(a_, "func" ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
257
1