code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase__ : int = 50_003 lowerCamelCase__ : List[str] = 50_002 @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PLBartTokenizer lowercase_ = None lowercase_ = False def lowerCAmelCase_ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ = PLBartTokenizer(_lowerCAmelCase , language_codes='base' , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = PLBartTokenizer(_lowerCAmelCase , language_codes='base' , keep_accents=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ = [tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) for x in range(end - 4 , _lowerCAmelCase )] self.assertListEqual(_lowerCAmelCase , ['__java__', '__python__', '__en_XX__', '<mask>'] ) SCREAMING_SNAKE_CASE_ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) , _lowerCAmelCase , ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = PLBartTokenizer(_lowerCAmelCase , language_codes='multi' , keep_accents=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ = [tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) for x in range(end - 7 , _lowerCAmelCase )] self.assertListEqual( _lowerCAmelCase , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) SCREAMING_SNAKE_CASE_ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) , _lowerCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = "uclanlp/plbart-python-en_XX" lowercase_ = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] lowercase_ = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] lowercase_ = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase_ ( cls : Optional[int] ): SCREAMING_SNAKE_CASE_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) SCREAMING_SNAKE_CASE_ = 1 return cls def lowerCAmelCase_ ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 50_003 ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE_ = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [50_004, 50_001] ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PLBartTokenizer.from_pretrained(_lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _lowerCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = self.tokenizer( text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = targets['input_ids'] SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 50_003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 50_001, } , )
31
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __UpperCamelCase ( _a ): '''simple docstring''' def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCAmelCase ( self ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _UpperCAmelCase ( self ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Dict = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCAmelCase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__: List[str] = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: List[str] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCAmelCase ( self ): UpperCAmelCase__: str = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _UpperCAmelCase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__: Union[str, Any] = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Any = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: int = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _UpperCAmelCase ( self ): import PIL.Image UpperCAmelCase__: int = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=lowerCamelCase__ ) as mock_cast_to_python_objects: UpperCAmelCase__: Tuple = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , lowerCamelCase__ ) self.assertFalse(kwargs["optimize_list_casting"] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Optional[Any] = pa.BufferReader(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE ,pa.Buffer ) else pa.memory_map(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: str = pa.ipc.open_stream(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = pa.BufferOutputStream() UpperCAmelCase__: Tuple = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase__ , UpperCAmelCase__: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _A ( ): UpperCAmelCase__: Tuple = pa.BufferOutputStream() UpperCAmelCase__: Any = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,features=SCREAMING_SNAKE_CASE ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) UpperCAmelCase__ , UpperCAmelCase__: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase__: Dict = pa.BufferReader(output.getvalue() ) UpperCAmelCase__: Any = pa.ipc.open_stream(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: pa.Table = f.read_all() UpperCAmelCase__: Union[str, Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ,hash_salt="split_name" ,check_duplicates=SCREAMING_SNAKE_CASE ,) as writer: with pytest.raises(SCREAMING_SNAKE_CASE ): writer.write({"col_1": "foo", "col_2": 1} ,key=[1, 2] ) UpperCAmelCase__ , UpperCAmelCase__: Any = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 1_0] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ,hash_salt="split_name" ,check_duplicates=SCREAMING_SNAKE_CASE ,) as writer: with pytest.raises(SCREAMING_SNAKE_CASE ): writer.write({"col_1": "foo", "col_2": 1} ,key=1_0 ) writer.write({"col_1": "bar", "col_2": 2} ,key=1_0 ) UpperCAmelCase__ , UpperCAmelCase__: str = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 1_0] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Dict = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ,hash_salt="split_name" ,check_duplicates=SCREAMING_SNAKE_CASE ,) as writer: writer.write({"col_1": "foo", "col_2": 1} ,key=1 ) writer.write({"col_1": "bar", "col_2": 2} ,key=2 ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = pa.BufferOutputStream() UpperCAmelCase__: Optional[Any] = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) UpperCAmelCase__ , UpperCAmelCase__: int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: Optional[Any] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = pa.BufferOutputStream() UpperCAmelCase__: List[str] = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) UpperCAmelCase__ , UpperCAmelCase__: Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: str = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = pa.BufferOutputStream() UpperCAmelCase__: List[Any] = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) UpperCAmelCase__ , UpperCAmelCase__: Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: Dict = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _A ( ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} UpperCAmelCase__: str = os.path.join(SCREAMING_SNAKE_CASE ,"test.arrow" ) with ArrowWriter(path=SCREAMING_SNAKE_CASE ,schema=pa.schema(SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(SCREAMING_SNAKE_CASE ,1 ) def _A ( SCREAMING_SNAKE_CASE ): if pa.types.is_list(SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): if isinstance(lst[0] ,SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0] ,SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__: Dict = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" ,[(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = pa.array(TypedSequence(SCREAMING_SNAKE_CASE ,optimized_int_type=SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" ,[ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] ,) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): # in range UpperCAmelCase__: List[Any] = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE ,col=SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase__: Dict = copy.deepcopy(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: List[Any] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Tuple = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE ,col=SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" ,[False, True] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[Any] = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[Any] = "mock://dataset-train.arrow" with ArrowWriter(path=SCREAMING_SNAKE_CASE ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase__ , UpperCAmelCase__: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(SCREAMING_SNAKE_CASE ) def _A ( ): UpperCAmelCase__: Dict = pa.BufferOutputStream() with ParquetWriter(stream=SCREAMING_SNAKE_CASE ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase__ , UpperCAmelCase__: str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase__: str = pa.BufferReader(output.getvalue() ) UpperCAmelCase__: pa.Table = pq.read_table(SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" ,[False, True] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): import PIL.Image UpperCAmelCase__: List[str] = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(SCREAMING_SNAKE_CASE ,format="png" ) UpperCAmelCase__: List[Any] = pa.BufferOutputStream() with ParquetWriter( stream=SCREAMING_SNAKE_CASE ,features=Features({"image": Image()} ) ,embed_local_files=SCREAMING_SNAKE_CASE ) as writer: writer.write({"image": image_path} ) writer.finalize() UpperCAmelCase__: Optional[int] = pa.BufferReader(output.getvalue() ) UpperCAmelCase__: pa.Table = pq.read_table(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Dict = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] ,SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE ,"rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _A ( ): UpperCAmelCase__: List[str] = pa.schema([pa.field("col_1" ,pa.string() ,nullable=SCREAMING_SNAKE_CASE )] ) UpperCAmelCase__: Optional[Any] = pa.BufferOutputStream() with ArrowWriter(stream=SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field("col_1" ,pa.string() )] )
113
0
def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(_lowerCAmelCase , x % y ) def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return (x * y) // greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : int = 20 ): """simple docstring""" UpperCAmelCase__ = 1 for i in range(1 , n + 1 ): UpperCAmelCase__ = lcm(_lowerCAmelCase , _lowerCAmelCase ) return g if __name__ == "__main__": print(F'''{solution() = }''')
717
import math def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : float = 1 / 1_2345 ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 3 while True: UpperCAmelCase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): UpperCAmelCase__ = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
364
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = TaConfig.from_json_file(UpperCamelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) A = TaForConditionalGeneration(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A : Tuple = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A : Union[str, Any] = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE )[0] @deprecated(SCREAMING_SNAKE_CASE , """Please use tf.data to implement this functionality.""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream: SCREAMING_SNAKE_CASE = _readaa(SCREAMING_SNAKE_CASE ) if magic != 20_51: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) SCREAMING_SNAKE_CASE = _readaa(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _readaa(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _readaa(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE = data.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE , """Please use tf.one_hot on tensors.""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = labels_dense.shape[0] SCREAMING_SNAKE_CASE = numpy.arange(SCREAMING_SNAKE_CASE ) * num_classes SCREAMING_SNAKE_CASE = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE , """Please use tf.data to implement this functionality.""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=10 ): '''simple docstring''' print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream: SCREAMING_SNAKE_CASE = _readaa(SCREAMING_SNAKE_CASE ) if magic != 20_49: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) SCREAMING_SNAKE_CASE = _readaa(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = bytestream.read(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return labels class UpperCAmelCase_ : '''simple docstring''' @deprecated( a , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Optional[Any] , a : List[str] , a : str , a : Union[str, Any]=False , a : int=False , a : Optional[int]=dtypes.floataa , a : Tuple=True , a : int=None , ) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = random_seed.get_seed(a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE = dtypes.as_dtype(a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: SCREAMING_SNAKE_CASE = 10_000 SCREAMING_SNAKE_CASE = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" SCREAMING_SNAKE_CASE = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE = numpy.multiply(a , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE = images SCREAMING_SNAKE_CASE = labels SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 @property def _UpperCAmelCase ( self : Union[str, Any] ) -> str: return self._images @property def _UpperCAmelCase ( self : str ) -> List[str]: return self._labels @property def _UpperCAmelCase ( self : str ) -> Union[str, Any]: return self._num_examples @property def _UpperCAmelCase ( self : Tuple ) -> Dict: return self._epochs_completed def _UpperCAmelCase ( self : int , a : Tuple , a : List[Any]=False , a : List[Any]=True ) -> Dict: if fake_data: SCREAMING_SNAKE_CASE = [1] * 784 SCREAMING_SNAKE_CASE = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(a )], [fake_label for _ in range(a )], ) SCREAMING_SNAKE_CASE = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE = numpy.arange(self._num_examples ) numpy.random.shuffle(a ) SCREAMING_SNAKE_CASE = self.images[perma] SCREAMING_SNAKE_CASE = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE = self._num_examples - start SCREAMING_SNAKE_CASE = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE = numpy.arange(self._num_examples ) numpy.random.shuffle(a ) SCREAMING_SNAKE_CASE = self.images[perm] SCREAMING_SNAKE_CASE = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = batch_size - rest_num_examples SCREAMING_SNAKE_CASE = self._index_in_epoch SCREAMING_SNAKE_CASE = self._images[start:end] SCREAMING_SNAKE_CASE = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE , """Please write your own downloading logic.""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE ): gfile.MakeDirs(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not gfile.Exists(SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.size() print("""Successfully downloaded""" , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , """bytes.""" ) return filepath @deprecated( SCREAMING_SNAKE_CASE , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=dtypes.floataa , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50_00 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , seed=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = fake() SCREAMING_SNAKE_CASE = fake() SCREAMING_SNAKE_CASE = fake() return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE ) if not source_url: # empty string check SCREAMING_SNAKE_CASE = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE = """train-images-idx3-ubyte.gz""" SCREAMING_SNAKE_CASE = """train-labels-idx1-ubyte.gz""" SCREAMING_SNAKE_CASE = """t10k-images-idx3-ubyte.gz""" SCREAMING_SNAKE_CASE = """t10k-labels-idx1-ubyte.gz""" SCREAMING_SNAKE_CASE = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE , """rb""" ) as f: SCREAMING_SNAKE_CASE = _extract_images(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE , """rb""" ) as f: SCREAMING_SNAKE_CASE = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE , """rb""" ) as f: SCREAMING_SNAKE_CASE = _extract_images(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE , """rb""" ) as f: SCREAMING_SNAKE_CASE = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = ( """Validation size should be between 0 and """ f"""{len(SCREAMING_SNAKE_CASE )}. Received: {validation_size}.""" ) raise ValueError(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = train_images[:validation_size] SCREAMING_SNAKE_CASE = train_labels[:validation_size] SCREAMING_SNAKE_CASE = train_images[validation_size:] SCREAMING_SNAKE_CASE = train_labels[validation_size:] SCREAMING_SNAKE_CASE = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} SCREAMING_SNAKE_CASE = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE )
450
from __future__ import annotations def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE ) )] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE ) return for i in range(len(SCREAMING_SNAKE_CASE ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , SCREAMING_SNAKE_CASE ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
450
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __magic_name__ : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowercase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=1_8 , _A=3_0 , _A=4_0_0 , _A=None , _A=True , _A=True , _A=None , ): '''simple docstring''' UpperCamelCase : Any = size if size is not None else {"""height""": 2_0, """width""": 2_0} UpperCamelCase : Tuple = parent UpperCamelCase : str = batch_size UpperCamelCase : str = num_channels UpperCamelCase : List[Any] = image_size UpperCamelCase : Any = min_resolution UpperCamelCase : Any = max_resolution UpperCamelCase : int = size UpperCamelCase : Dict = do_normalize UpperCamelCase : Optional[int] = do_convert_rgb UpperCamelCase : Any = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCamelCase : List[str] = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} def _a ( self ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" UpperCamelCase : List[Any] = Image.open(requests.get(_A , stream=_A ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = PixaStructImageProcessingTester(self ) @property def _a ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) self.assertTrue(hasattr(_A , """do_convert_rgb""" ) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase : List[Any] = 2_0_4_8 UpperCamelCase : str = image_processor(_A , return_tensors="""pt""" , max_patches=_A ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCamelCase : Optional[int] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase : Optional[Any] = image_processor( _A , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCamelCase : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase : Tuple = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_A ): UpperCamelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_A ).flattened_patches UpperCamelCase : Dict = """Hello""" UpperCamelCase : Optional[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_A , header_text=_A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase : str = image_processor( _A , return_tensors="""pt""" , max_patches=_A , header_text=_A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) UpperCamelCase : Optional[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase : int = image_processor( _A , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCamelCase : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase : List[str] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase : List[Any] = image_processor( _A , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase : Optional[int] = 3 @property def _a ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) self.assertTrue(hasattr(_A , """do_convert_rgb""" ) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCamelCase : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase : Optional[Any] = image_processor( _A , return_tensors="""pt""" , max_patches=_A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
102
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( UpperCAmelCase_ ): _A : str = ["""image_processor""", """tokenizer"""] _A : str = """OwlViTImageProcessor""" _A : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __A=None , __A=None , **__A ): __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) __UpperCAmelCase = kwargs.pop('feature_extractor' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A="max_length" , __A="np" , **__A ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): __UpperCAmelCase = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): __UpperCAmelCase = [] # Maximum number of queries across batch __UpperCAmelCase = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: __UpperCAmelCase = t + [' '] * (max_num_queries - len(__A )) __UpperCAmelCase = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCAmelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCAmelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = input_ids __UpperCAmelCase = attention_mask if query_images is not None: __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values __UpperCAmelCase = query_pixel_values if images is not None: __UpperCAmelCase = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process_object_detection(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.tokenizer.batch_decode(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.tokenizer.decode(*__A , **__A ) @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
126
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = "arrow" , **__SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__( split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case__ : str =load_from_cache_file snake_case__ : int =file_format snake_case__ : Optional[Any] =Spark( df=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , working_dir=UpperCAmelCase__ , **UpperCAmelCase__ , ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case__ : Optional[Any] =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
718
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =KandinskyVaaPipeline lowerCAmelCase__ =[ '''image_embeds''', '''negative_image_embeds''', ] lowerCAmelCase__ =['''image_embeds''', '''negative_image_embeds'''] lowerCAmelCase__ =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCAmelCase__ =False @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return 32 @property def UpperCAmelCase ( self ) -> Any: """simple docstring""" return 32 @property def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return 100 @property def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Any ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case__ : Union[str, Any] =UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) snake_case__ : List[Any] =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Union[str, Any] =self.dummy_unet snake_case__ : Dict =self.dummy_movq snake_case__ : Any =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> List[str]: """simple docstring""" snake_case__ : Optional[Any] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): snake_case__ : List[str] =torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Any =torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : int ='''cpu''' snake_case__ : Dict =self.get_dummy_components() snake_case__ : List[Any] =self.pipeline_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Union[str, Any] =output.images snake_case__ : List[str] =pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] snake_case__ : List[Any] =image[0, -3:, -3:, -1] snake_case__ : Tuple =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : List[Any] =np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) snake_case__ : int =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) snake_case__ : Optional[Any] =pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : int ='''red cat, 4k photo''' snake_case__ : Dict =torch.Generator(device='''cuda''' ).manual_seed(0 ) snake_case__, snake_case__ : Optional[Any] =pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case__ : List[str] =torch.Generator(device='''cuda''' ).manual_seed(0 ) snake_case__ : Any =pipeline( image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , output_type='''np''' , ) snake_case__ : Optional[int] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
408
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): snake_case : Optional[int] = ["""audio_values""", """audio_mask"""] def __init__(self , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1 , lowerCAmelCase__=[1_6, 1_6] , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_4_1_0_0 , lowerCAmelCase__=8_6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = spectrogram_length _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Optional[Any] = patch_size _UpperCAmelCase : List[Any] = feature_size // self.patch_size[1] _UpperCAmelCase : List[str] = n_fft _UpperCAmelCase : int = sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : List[Any] = padding_value _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowerCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ).T def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Dict = spectrogram( lowerCAmelCase__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) _UpperCAmelCase : Tuple = log_spec[:, :-1] _UpperCAmelCase : Union[str, Any] = log_spec - 2_0.0 _UpperCAmelCase : List[Any] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : List[str] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _UpperCAmelCase : Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : Optional[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding _UpperCAmelCase : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : Dict = np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _UpperCAmelCase : Dict = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : List[Any] = audio_features[i] _UpperCAmelCase : Tuple = feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features} _UpperCAmelCase : List[str] = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
414
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): snake_case : Optional[int] = ["""audio_values""", """audio_mask"""] def __init__(self , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1 , lowerCAmelCase__=[1_6, 1_6] , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_4_1_0_0 , lowerCAmelCase__=8_6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = spectrogram_length _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Optional[Any] = patch_size _UpperCAmelCase : List[Any] = feature_size // self.patch_size[1] _UpperCAmelCase : List[str] = n_fft _UpperCAmelCase : int = sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : List[Any] = padding_value _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowerCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ).T def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Dict = spectrogram( lowerCAmelCase__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) _UpperCAmelCase : Tuple = log_spec[:, :-1] _UpperCAmelCase : Union[str, Any] = log_spec - 2_0.0 _UpperCAmelCase : List[Any] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : List[str] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _UpperCAmelCase : Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : Optional[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding _UpperCAmelCase : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : Dict = np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _UpperCAmelCase : Dict = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : List[Any] = audio_features[i] _UpperCAmelCase : Tuple = feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features} _UpperCAmelCase : List[str] = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
414
1
"""simple docstring""" import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _SCREAMING_SNAKE_CASE : List[str] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _SCREAMING_SNAKE_CASE : int = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names _SCREAMING_SNAKE_CASE : List[str] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _SCREAMING_SNAKE_CASE : Optional[int] = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _SCREAMING_SNAKE_CASE : Optional[Any] = '''allenai''' def lowerCamelCase__ ( _lowerCamelCase : int ) -> Any: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase_ = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase_ = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] lowerCamelCase_ = d[k] # restore return da def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int ) -> Optional[Any]: # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase_ = basename(_lowerCamelCase ) lowerCamelCase_ = dirname(_lowerCamelCase ) lowerCamelCase_ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase_ = cls.hub_models() lowerCamelCase_ = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase_ = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) lowerCamelCase_ = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase_ = vars(chkpt['args']['model'] ) lowerCamelCase_ = args['source_lang'] lowerCamelCase_ = args['target_lang'] lowerCamelCase_ = dirname(_lowerCamelCase ) lowerCamelCase_ = basename(_lowerCamelCase ) # dicts lowerCamelCase_ = os.path.join(_lowerCamelCase , F'''dict.{src_lang}.txt''' ) lowerCamelCase_ = os.path.join(_lowerCamelCase , F'''dict.{tgt_lang}.txt''' ) lowerCamelCase_ = Dictionary.load(_lowerCamelCase ) lowerCamelCase_ = rewrite_dict_keys(src_dict.indices ) lowerCamelCase_ = len(_lowerCamelCase ) lowerCamelCase_ = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase_ = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase_ = False break lowerCamelCase_ = Dictionary.load(_lowerCamelCase ) lowerCamelCase_ = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase_ = len(_lowerCamelCase ) lowerCamelCase_ = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase_ = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase_ = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase_ = fin.read() lowerCamelCase_ = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase_ = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args["tokenizer"]}''' lowerCamelCase_ = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase_ = 5 lowerCamelCase_ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase_ = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase_ = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase_ = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase_ = chkpt['models'][0] lowerCamelCase_ = model.state_dict() # rename keys to start with 'model.' lowerCamelCase_ = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase_ = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase_ = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase_ = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
706
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class a ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ) -> str: lowerCamelCase_ = [10, 20, 30, 40, 50, 60] lowerCamelCase_ = [2, 4, 6, 8, 10, 12] lowerCamelCase_ = 100 self.assertEqual(kp.calc_profit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 210 ) def UpperCamelCase ( self : Tuple ) -> Dict: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'max_weight must greater than zero.' ) def UpperCamelCase ( self : Dict ) -> str: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'Weight can not be negative.' ) def UpperCamelCase ( self : List[str] ) -> Any: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'Profit can not be negative.' ) def UpperCamelCase ( self : Any ) -> Dict: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'max_weight must greater than zero.' ) def UpperCamelCase ( self : List[str] ) -> str: self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
137
0
from __future__ import annotations import math def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list[int]: """simple docstring""" if num <= 0: UpperCamelCase_ = f"{num}: Invalid input, please enter a positive integer." raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = [True] * (num + 1) UpperCamelCase_ = [] UpperCamelCase_ = 2 UpperCamelCase_ = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE_ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE_ ): if sieve[i] is True: UpperCamelCase_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
628
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[int]: """simple docstring""" UpperCamelCase_ = SwinvaConfig() UpperCamelCase_ = swinva_name.split("_" ) UpperCamelCase_ = name_split[1] if "to" in name_split[3]: UpperCamelCase_ = int(name_split[3][-3:] ) else: UpperCamelCase_ = int(name_split[3] ) if "to" in name_split[2]: UpperCamelCase_ = int(name_split[2][-2:] ) else: UpperCamelCase_ = int(name_split[2][6:] ) if model_size == "tiny": UpperCamelCase_ = 9_6 UpperCamelCase_ = (2, 2, 6, 2) UpperCamelCase_ = (3, 6, 1_2, 2_4) elif model_size == "small": UpperCamelCase_ = 9_6 UpperCamelCase_ = (2, 2, 1_8, 2) UpperCamelCase_ = (3, 6, 1_2, 2_4) elif model_size == "base": UpperCamelCase_ = 1_2_8 UpperCamelCase_ = (2, 2, 1_8, 2) UpperCamelCase_ = (4, 8, 1_6, 3_2) else: UpperCamelCase_ = 1_9_2 UpperCamelCase_ = (2, 2, 1_8, 2) UpperCamelCase_ = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: UpperCamelCase_ = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCamelCase_ = 2_1_8_4_1 UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = "imagenet-22k-id2label.json" UpperCamelCase_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} else: UpperCamelCase_ = 1_0_0_0 UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = "imagenet-1k-id2label.json" UpperCamelCase_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} UpperCamelCase_ = img_size UpperCamelCase_ = num_classes UpperCamelCase_ = embed_dim UpperCamelCase_ = depths UpperCamelCase_ = num_heads UpperCamelCase_ = window_size return config def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCamelCase_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: UpperCamelCase_ = "encoder." + name if "attn.proj" in name: UpperCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: UpperCamelCase_ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: UpperCamelCase_ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: UpperCamelCase_ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: UpperCamelCase_ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": UpperCamelCase_ = "layernorm.weight" if name == "norm.bias": UpperCamelCase_ = "layernorm.bias" if "head" in name: UpperCamelCase_ = name.replace("head" , "classifier" ) else: UpperCamelCase_ = "swinv2." + name return name def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase_ = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase_ = key.split("." ) UpperCamelCase_ = int(key_split[1] ) UpperCamelCase_ = int(key_split[3] ) UpperCamelCase_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase_ = val[:dim, :] UpperCamelCase_ = val[dim : dim * 2, :] UpperCamelCase_ = val[-dim:, :] else: UpperCamelCase_ = val[:dim] UpperCamelCase_ = val[ dim : dim * 2 ] UpperCamelCase_ = val[-dim:] else: UpperCamelCase_ = val return orig_state_dict def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" UpperCamelCase_ = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() UpperCamelCase_ = get_swinva_config(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = SwinvaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase_ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase_ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) UpperCamelCase_ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) UpperCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) UpperCamelCase_ = timm_model(inputs["pixel_values"] ) UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) print(f"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE :int = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
628
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = '''trocr''' __UpperCamelCase : Any = ['''past_key_values'''] __UpperCamelCase : List[str] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__(self , SCREAMING_SNAKE_CASE__=5_02_65 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , **SCREAMING_SNAKE_CASE__ , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = d_model SCREAMING_SNAKE_CASE__ : Any = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[str] = activation_function SCREAMING_SNAKE_CASE__ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = dropout SCREAMING_SNAKE_CASE__ : str = attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] = activation_dropout SCREAMING_SNAKE_CASE__ : str = init_std SCREAMING_SNAKE_CASE__ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE__ : str = scale_embedding SCREAMING_SNAKE_CASE__ : Tuple = use_learned_position_embeddings SCREAMING_SNAKE_CASE__ : str = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
702
"""simple docstring""" def lowercase_ ( _snake_case ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ : List[str] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = 1 while repunit: SCREAMING_SNAKE_CASE__ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase_ ( _snake_case = 1_000_000 ): SCREAMING_SNAKE_CASE__ : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_snake_case ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
545
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE :Dict = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
628
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :List[Any] = LayoutLMTokenizer UpperCamelCase_ :Dict = LayoutLMTokenizerFast UpperCamelCase_ :List[str] = True UpperCamelCase_ :Dict = True def UpperCAmelCase_ ( self )-> str: super().setUp() UpperCamelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self , **_lowercase )-> List[str]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase )-> Union[str, Any]: UpperCamelCase_ = "UNwant\u00E9d,running" UpperCamelCase_ = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.tokenizer_class(self.vocab_file ) UpperCamelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_lowercase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self )-> Dict: pass
628
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = 'RegNetConfig' # Base docstring UpperCamelCase_ = 'facebook/regnet-y-040' UpperCamelCase_ = [1, 1_0_8_8, 7, 7] # Image classification docstring UpperCamelCase_ = 'facebook/regnet-y-040' UpperCamelCase_ = 'tabby, tabby cat' UpperCamelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , ): '''simple docstring''' super().__init__() __UpperCAmelCase =nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , groups=UpperCAmelCase__ , bias=UpperCAmelCase__ , ) __UpperCAmelCase =nn.BatchNormad(UpperCAmelCase__) __UpperCAmelCase =ACTaFN[activation] if activation is not None else nn.Identity() def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.convolution(UpperCAmelCase__) __UpperCAmelCase =self.normalization(UpperCAmelCase__) __UpperCAmelCase =self.activation(UpperCAmelCase__) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase): '''simple docstring''' super().__init__() __UpperCAmelCase =RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) __UpperCAmelCase =config.num_channels def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''') __UpperCAmelCase =self.embedder(UpperCAmelCase__) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2): '''simple docstring''' super().__init__() __UpperCAmelCase =nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__) __UpperCAmelCase =nn.BatchNormad(UpperCAmelCase__) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.convolution(UpperCAmelCase__) __UpperCAmelCase =self.normalization(UpperCAmelCase__) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' super().__init__() __UpperCAmelCase =nn.AdaptiveAvgPoolad((1, 1)) __UpperCAmelCase =nn.Sequential( nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1) , nn.ReLU() , nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1) , nn.Sigmoid() , ) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.pooler(UpperCAmelCase__) __UpperCAmelCase =self.attention(UpperCAmelCase__) __UpperCAmelCase =hidden_state * attention return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1): '''simple docstring''' super().__init__() __UpperCAmelCase =in_channels != out_channels or stride != 1 __UpperCAmelCase =max(1 , out_channels // config.groups_width) __UpperCAmelCase =( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase =nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__) , ) __UpperCAmelCase =ACTaFN[config.hidden_act] def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =hidden_state __UpperCAmelCase =self.layer(UpperCAmelCase__) __UpperCAmelCase =self.shortcut(UpperCAmelCase__) hidden_state += residual __UpperCAmelCase =self.activation(UpperCAmelCase__) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1): '''simple docstring''' super().__init__() __UpperCAmelCase =in_channels != out_channels or stride != 1 __UpperCAmelCase =max(1 , out_channels // config.groups_width) __UpperCAmelCase =( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase =nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act) , RegNetSELayer(UpperCAmelCase__ , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__) , ) __UpperCAmelCase =ACTaFN[config.hidden_act] def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =hidden_state __UpperCAmelCase =self.layer(UpperCAmelCase__) __UpperCAmelCase =self.shortcut(UpperCAmelCase__) hidden_state += residual __UpperCAmelCase =self.activation(UpperCAmelCase__) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , ): '''simple docstring''' super().__init__() __UpperCAmelCase =RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer __UpperCAmelCase =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) for _ in range(depth - 1)] , ) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.layers(UpperCAmelCase__) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__(self , UpperCAmelCase): '''simple docstring''' super().__init__() __UpperCAmelCase =nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) __UpperCAmelCase =zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:]): self.stages.append(RegNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__)) def A__ (self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True): '''simple docstring''' __UpperCAmelCase =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase =hidden_states + (hidden_state,) __UpperCAmelCase =stage_module(UpperCAmelCase__) if output_hidden_states: __UpperCAmelCase =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : List[Any] = RegNetConfig a_ : Tuple = 'regnet' a_ : str = 'pixel_values' a_ : Union[str, Any] = True def A__ (self , UpperCAmelCase): '''simple docstring''' if isinstance(UpperCAmelCase__ , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''') elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def A__ (self , UpperCAmelCase , UpperCAmelCase=False): '''simple docstring''' if isinstance(UpperCAmelCase__ , UpperCAmelCase__): __UpperCAmelCase =value UpperCamelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , _lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__(self , UpperCAmelCase): '''simple docstring''' super().__init__(UpperCAmelCase__) __UpperCAmelCase =config __UpperCAmelCase =RegNetEmbeddings(UpperCAmelCase__) __UpperCAmelCase =RegNetEncoder(UpperCAmelCase__) __UpperCAmelCase =nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None): '''simple docstring''' __UpperCAmelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase =self.embedder(UpperCAmelCase__) __UpperCAmelCase =self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__) __UpperCAmelCase =encoder_outputs[0] __UpperCAmelCase =self.pooler(UpperCAmelCase__) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , _lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__(self , UpperCAmelCase): '''simple docstring''' super().__init__(UpperCAmelCase__) __UpperCAmelCase =config.num_labels __UpperCAmelCase =RegNetModel(UpperCAmelCase__) # classification head __UpperCAmelCase =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ (self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): '''simple docstring''' __UpperCAmelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase =self.regnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__) __UpperCAmelCase =outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase =self.classifier(UpperCAmelCase__) __UpperCAmelCase =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase ='''single_label_classification''' else: __UpperCAmelCase ='''multi_label_classification''' if self.config.problem_type == "regression": __UpperCAmelCase =MSELoss() if self.num_labels == 1: __UpperCAmelCase =loss_fct(logits.squeeze() , labels.squeeze()) else: __UpperCAmelCase =loss_fct(UpperCAmelCase__ , UpperCAmelCase__) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase =CrossEntropyLoss() __UpperCAmelCase =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase =BCEWithLogitsLoss() __UpperCAmelCase =loss_fct(UpperCAmelCase__ , UpperCAmelCase__) if not return_dict: __UpperCAmelCase =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states)
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=1_6 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , lowercase=1_0_0_0 , ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : List[str] = seq_length __SCREAMING_SNAKE_CASE : int = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : int = num_choices __SCREAMING_SNAKE_CASE : int = scope __SCREAMING_SNAKE_CASE : Dict = range_bbox def _snake_case ( self ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 3] __SCREAMING_SNAKE_CASE : str = bbox[i, j, 1] __SCREAMING_SNAKE_CASE : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE : Optional[int] = bbox[i, j, 2] __SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] __SCREAMING_SNAKE_CASE : List[Any] = t __SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor(lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : List[str] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : Any = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Dict = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMModel(config=lowercase ) __SCREAMING_SNAKE_CASE : Dict = model(lowercase , lowercase , attention_mask=lowercase , token_type_ids=lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowercase , lowercase , token_type_ids=lowercase ) __SCREAMING_SNAKE_CASE : Any = model(lowercase , lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = TFLayoutLMForMaskedLM(config=lowercase ) __SCREAMING_SNAKE_CASE : int = model(lowercase , lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = self.num_labels __SCREAMING_SNAKE_CASE : Any = TFLayoutLMForSequenceClassification(config=lowercase ) __SCREAMING_SNAKE_CASE : Tuple = model(lowercase , lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = self.num_labels __SCREAMING_SNAKE_CASE : Dict = TFLayoutLMForTokenClassification(config=lowercase ) __SCREAMING_SNAKE_CASE : Tuple = model(lowercase , lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = TFLayoutLMForQuestionAnswering(config=lowercase ) __SCREAMING_SNAKE_CASE : List[str] = model(lowercase , lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs __SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ): __a : Optional[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __a : str = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __a : Optional[int] = False __a : Union[str, Any] = True __a : Any = 10 def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = TFLayoutLMModelTester(self ) __SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase , hidden_size=3_7 ) def _snake_case ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def _snake_case ( self ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def _snake_case ( self ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) def _snake_case ( self ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) @slow def _snake_case ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' pass def A_ ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 __SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 __SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE : Tuple = model(input_ids=lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase ) # test the sequence output on [0, :3, :3] __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-3 ) ) # test the pooled output on [1, :3] __SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowercase , atol=1e-3 ) ) @slow def _snake_case ( self ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE : List[str] = model( input_ids=lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __SCREAMING_SNAKE_CASE : Dict = outputs.loss __SCREAMING_SNAKE_CASE : int = (2,) self.assertEqual(loss.shape , lowercase ) # test the shape of the logits __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits __SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2) self.assertEqual(logits.shape , lowercase ) @slow def _snake_case ( self ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=1_3 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE : Tuple = model( input_ids=lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) # test the shape of the logits __SCREAMING_SNAKE_CASE : Tuple = outputs.logits __SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , lowercase ) @slow def _snake_case ( self ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE : Any = model(input_ids=lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase ) # test the shape of the logits __SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , lowercase ) self.assertEqual(outputs.end_logits.shape , lowercase )
158
'''simple docstring''' from __future__ import annotations def A_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> list: __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __SCREAMING_SNAKE_CASE : Optional[int] = result + left + right return input_list def A_ ( __SCREAMING_SNAKE_CASE : list ) -> list: if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __SCREAMING_SNAKE_CASE : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __SCREAMING_SNAKE_CASE : Dict = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Union[str, Any] = i __SCREAMING_SNAKE_CASE : Optional[int] = i + p - 1 __SCREAMING_SNAKE_CASE : int = (low + high + 1) // 2 __SCREAMING_SNAKE_CASE : Tuple = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Optional[int] = i __SCREAMING_SNAKE_CASE : List[str] = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _A = [] else: _A = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
158
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
301
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') _lowercase : Optional[Any] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) sd_pipe.set_scheduler('sample_euler') _lowercase : str = 'A painting of a squirrel eating a burger' _lowercase : int = torch.manual_seed(0) _lowercase : int = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type='np') _lowercase : Union[str, Any] = output.images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Dict = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : int = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : Optional[int] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) sd_pipe.set_scheduler('sample_euler') _lowercase : Any = 'A painting of a squirrel eating a burger' _lowercase : Any = torch.manual_seed(0) _lowercase : Union[str, Any] = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type='np') _lowercase : List[str] = output.images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Tuple = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-1 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : List[str] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) sd_pipe.set_scheduler('sample_dpmpp_2m') _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = sd_pipe( [prompt], generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=15, output_type='np', use_karras_sigmas=lowerCamelCase, ) _lowercase : List[Any] = output.images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Dict = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
89
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Optional[int] = "encoder-decoder" snake_case :List[Any] = True def __init__( self , **UpperCamelCase_ ): super().__init__(**__UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __UpperCAmelCase : str = kwargs.pop("encoder" ) __UpperCAmelCase : Tuple = encoder_config.pop("model_type" ) __UpperCAmelCase : Optional[Any] = kwargs.pop("decoder" ) __UpperCAmelCase : Tuple = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig __UpperCAmelCase : Optional[int] = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) __UpperCAmelCase : Any = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) __UpperCAmelCase : Any = True @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Tuple = self.encoder.to_dict() __UpperCAmelCase : List[Any] = self.decoder.to_dict() __UpperCAmelCase : Any = self.__class__.model_type return output
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
from math import factorial def __a ( __UpperCAmelCase : Dict = 100 ) -> int: """simple docstring""" return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
488
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A :List[Any] = DebertaTokenizer A :Any = True A :Any = DebertaTokenizerFast def _A ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] a__ : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) a__ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a__ : Dict = {"unk_token": "[UNK]"} a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) def _A ( self , **__UpperCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Any = "lower newer" a__ : Union[str, Any] = "lower newer" return input_text, output_text def _A ( self ): """simple docstring""" a__ : Optional[Any] = self.get_tokenizer() a__ : str = "lower newer" a__ : Tuple = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] a__ : Any = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a__ : Union[str, Any] = tokens + [tokenizer.unk_token] a__ : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[str] = self.get_tokenizer() a__ : List[Any] = tokenizer("Hello" , "World" ) a__ : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __UpperCAmelCase ) @slow def _A ( self ): """simple docstring""" a__ : Dict = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) a__ : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCAmelCase ) a__ : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCAmelCase ) a__ : int = tokenizer.encode( "sequence builders" , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) a__ : str = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) a__ : Tuple = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) a__ : List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _A ( self ): """simple docstring""" a__ : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: a__ : str = tokenizer_class.from_pretrained("microsoft/deberta-base" ) a__ : int = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] a__ : Tuple = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase ) a__ : List[Any] = [tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for seq in encoding["input_ids"]] # fmt: off a__ : Tuple = { "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a__ : Optional[Any] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __UpperCAmelCase ) for expected, decoded in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
207
def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> float: a__ : Optional[Any] = 0 while len(__UpperCamelCase ) > 1: a__ : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): a__ : List[str] = files.index(min(__UpperCamelCase ) ) temp += files[min_index] files.pop(__UpperCamelCase ) files.append(__UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
207
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = IFInpaintingSuperResolutionPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ ( self : str , A_ : List[str] , A_ : Tuple=0 ) -> Tuple: """simple docstring""" if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ ( self : int ) -> List[str]: """simple docstring""" self._test_save_load_local() def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
70
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : Union[str, Any] = b.T _a : List[str] = np.sum(np.square(UpperCamelCase_ ) , axis=1 ) _a : List[str] = np.sum(np.square(UpperCamelCase_ ) , axis=0 ) _a : Optional[int] = np.matmul(UpperCamelCase_ , UpperCamelCase_ ) _a : Optional[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : int = x.reshape(-1 , 3 ) _a : Any = squared_euclidean_distance(UpperCamelCase_ , UpperCamelCase_ ) return np.argmin(UpperCamelCase_ , axis=1 ) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = ['pixel_values'] def __init__( self : List[Any] , __snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : bool = True , **__snake_case : str , ) -> None: super().__init__(**__snake_case ) _a : int = size if size is not None else {'''height''': 256, '''width''': 256} _a : Union[str, Any] = get_size_dict(__snake_case ) _a : Tuple = np.array(__snake_case ) if clusters is not None else None _a : List[Any] = do_resize _a : List[str] = size _a : List[Any] = resample _a : Optional[Any] = do_normalize _a : Dict = do_color_quantize def snake_case_ ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: _a : List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( __snake_case , size=(size['''height'''], size['''width''']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def snake_case_ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: _a : List[Any] = rescale(image=__snake_case , scale=1 / 127.5 , data_format=__snake_case ) _a : List[Any] = image - 1 return image def snake_case_ ( self : Optional[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__snake_case : List[Any] , ) -> PIL.Image.Image: _a : Any = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = size if size is not None else self.size _a : List[Any] = get_size_dict(__snake_case ) _a : List[str] = resample if resample is not None else self.resample _a : List[str] = do_normalize if do_normalize is not None else self.do_normalize _a : Union[str, Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _a : List[Any] = clusters if clusters is not None else self.clusters _a : int = np.array(__snake_case ) _a : Optional[int] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(__snake_case ) for image in images] if do_resize: _a : Optional[int] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_normalize: _a : Dict = [self.normalize(image=__snake_case ) for image in images] if do_color_quantize: _a : Optional[int] = [to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _a : List[Any] = np.array(__snake_case ) _a : Optional[int] = color_quantize(__snake_case , __snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _a : int = images.shape[0] _a : int = images.reshape(__snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _a : Dict = list(__snake_case ) else: _a : Optional[Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] _a : int = {'''input_ids''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
471
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(_SCREAMING_SNAKE_CASE ) * abs(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase : Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase : Tuple = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase : int = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) __UpperCamelCase : Union[str, Any] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions __UpperCamelCase : Optional[int] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) __UpperCamelCase : Tuple = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase : Optional[Any] = np.expand_dims(test_image, axis=0) __UpperCamelCase : Tuple = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase : List[str] = 'Normal' if result[0][0] == 1: __UpperCamelCase : Dict = 'Abnormality detected'
248
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.normalize(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = nn.functional.normalize(_lowercase ) return torch.mm(_lowercase , normalized_text_embeds.t() ) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = CLIPConfig UpperCamelCase_ = ["""CLIPEncoderLayer"""] def __init__( self : str , UpperCamelCase__ : CLIPConfig ): '''simple docstring''' super().__init__(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModel(config.vision_config ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase__ ) @torch.no_grad() def __A ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.vision_model(UpperCamelCase__ )[1] # pooled_output SCREAMING_SNAKE_CASE : Any = self.visual_projection(UpperCamelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE : str = cosine_distance(UpperCamelCase__ , self.special_care_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(UpperCamelCase__ , self.concept_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = image_embeds.shape[0] for i in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Dict = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): SCREAMING_SNAKE_CASE : Dict = special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) SCREAMING_SNAKE_CASE : Optional[Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): SCREAMING_SNAKE_CASE : Optional[int] = cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE : List[str] = self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE : Dict = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __A ( self : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.FloatTensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.vision_model(UpperCamelCase__ )[1] # pooled_output SCREAMING_SNAKE_CASE : Union[str, Any] = self.visual_projection(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = cosine_distance(UpperCamelCase__ , self.special_care_embeds ) SCREAMING_SNAKE_CASE : Any = cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE : int = 0.0 SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE : Any = torch.any(special_scores > 0 , dim=1 ) SCREAMING_SNAKE_CASE : Any = special_care * 0.01 SCREAMING_SNAKE_CASE : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) SCREAMING_SNAKE_CASE : List[str] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE : Tuple = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
248
1
from __future__ import annotations def a__ ( a ) -> int: if not nums: return 0 A_ : Tuple = nums[0] A_ : int = 0 for num in nums[1:]: A_ , A_ : Union[str, Any] = ( max_excluding + num, max(a , a ), ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
236
import heapq def a__ ( a ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(a , [-1 * len(a ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : int = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : int = heapq.heappop(a )[1][0] chosen_vertices.add(a ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : Dict = elem[1][1].index(a ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(a ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
236
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowercase_ = threading.Lock() lowercase_ = None lowercase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase_ = logging.WARNING lowercase_ = True def lowerCAmelCase (): """simple docstring""" _a = os.getenv('''TRANSFORMERS_VERBOSITY''' , __A) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys()) }''') return _default_log_level def lowerCAmelCase (): """simple docstring""" return __name__.split('''.''')[0] def lowerCAmelCase (): """simple docstring""" return logging.getLogger(_get_library_name()) def lowerCAmelCase (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a = logging.StreamHandler() # Set sys.stderr as stream. _a = sys.stderr.flush # Apply our default configuration to the library root logger. _a = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) _a = False def lowerCAmelCase (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _a = None def lowerCAmelCase (): """simple docstring""" return log_levels def lowerCAmelCase (__A = None): """simple docstring""" if name is None: _a = _get_library_name() _configure_library_root_logger() return logging.getLogger(__A) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase (__A): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def lowerCAmelCase (__A): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__A) def lowerCAmelCase (__A): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__A) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() _a = False def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() _a = True def lowerCAmelCase (): """simple docstring""" _a = _get_library_root_logger().handlers for handler in handlers: _a = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''') handler.setFormatter(__A) def lowerCAmelCase (): """simple docstring""" _a = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__A) def lowerCAmelCase (self , *__A , **__A): """simple docstring""" _a = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __A) if no_advisory_warnings: return self.warning(*__A , **__A) lowercase_ = warning_advice @functools.lru_cache(__A) def lowerCAmelCase (self , *__A , **__A): """simple docstring""" self.warning(*__A , **__A) lowercase_ = warning_once class __A : '''simple docstring''' def __init__(self , *A , **A ) -> str: # pylint: disable=unused-argument """simple docstring""" _a = args[0] if args else None def __iter__(self ) -> Optional[int]: """simple docstring""" return iter(self._iterator ) def __getattr__(self , A ) -> Optional[int]: """simple docstring""" def empty_fn(*A , **A ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> List[Any]: """simple docstring""" return self def __exit__(self , A , A , A ) -> Union[str, Any]: """simple docstring""" return class __A : '''simple docstring''' def __call__(self , *A , **A ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*A , **A ) else: return EmptyTqdm(*A , **A ) def a__ (self , *A , **A ) -> Optional[int]: """simple docstring""" _a = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A , **A ) def a__ (self ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase_ = _tqdm_cls() def lowerCAmelCase (): """simple docstring""" global _tqdm_active return bool(_tqdm_active) def lowerCAmelCase (): """simple docstring""" global _tqdm_active _a = True hf_hub_utils.enable_progress_bars() def lowerCAmelCase (): """simple docstring""" global _tqdm_active _a = False hf_hub_utils.disable_progress_bars()
11
__UpperCamelCase = 2_5_6 # Modulus to hash a string __UpperCamelCase = 1_0_0_0_0_0_3 def UpperCamelCase_( _A :str , _A :str )-> bool: UpperCamelCase__ = len(_A ) UpperCamelCase__ = len(_A ) if p_len > t_len: return False UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 1 # Calculating the hash of pattern and substring of text for i in range(_A ): UpperCamelCase__ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus UpperCamelCase__ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue UpperCamelCase__ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash UpperCamelCase__ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCamelCase_( )-> None: UpperCamelCase__ = "abc1abc12" UpperCamelCase__ = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__ = "alskfjaldsk23adsfabcabc" assert rabin_karp(_A , _A ) and not rabin_karp(_A , _A ) # Test 2) UpperCamelCase__ = "ABABX" UpperCamelCase__ = "ABABZABABYABABX" assert rabin_karp(_A , _A ) # Test 3) UpperCamelCase__ = "AAAB" UpperCamelCase__ = "ABAAAAAB" assert rabin_karp(_A , _A ) # Test 4) UpperCamelCase__ = "abcdabcy" UpperCamelCase__ = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_A , _A ) # Test 5) UpperCamelCase__ = "Lü" UpperCamelCase__ = "Lüsai" assert rabin_karp(_A , _A ) UpperCamelCase__ = "Lue" assert not rabin_karp(_A , _A ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
551
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __SCREAMING_SNAKE_CASE = numpy.array([0, 0]) __SCREAMING_SNAKE_CASE = numpy.array([0.5, 0.8_66_02_54]) __SCREAMING_SNAKE_CASE = numpy.array([1, 0]) __SCREAMING_SNAKE_CASE = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : Optional[Any] =initial_vectors for _ in range(__lowercase ): UpperCamelCase_ : List[str] =iteration_step(__lowercase ) return vectors def A_ ( __lowercase ): UpperCamelCase_ : Tuple =[] for i, start_vector in enumerate(vectors[:-1] ): UpperCamelCase_ : str =vectors[i + 1] new_vectors.append(__lowercase ) UpperCamelCase_ : Any =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : Any =numpy.radians(__lowercase ) UpperCamelCase_ , UpperCamelCase_ : Tuple =numpy.cos(__lowercase ), numpy.sin(__lowercase ) UpperCamelCase_ : Any =numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowercase , __lowercase ) def A_ ( __lowercase ): UpperCamelCase_ : str =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =zip(*__lowercase ) plt.plot(__lowercase , __lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
395
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A_ ( __lowercase ): monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def A_ ( __lowercase ): class a__ : def __init__( self :int , _lowerCamelCase :Any ): '''simple docstring''' UpperCamelCase_ : str =metric_id class a__ : UpperCAmelCase__ = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def A_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if "tmp_path" in args: UpperCamelCase_ : List[Any] =tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__lowercase , match='https://huggingface.co/docs/evaluate' ): func(*__lowercase )
395
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_stages _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __A : Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __A : str = False __A : Dict = False __A : Any = False __A : Tuple = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = ConvNextVaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase = False _UpperCAmelCase = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def A__ ( ) -> str: """simple docstring""" _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def UpperCamelCase( self ): _UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = preprocessor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
32
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: snake_case : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[Any] = downstream_dict["""projector.weight"""] snake_case : Any = downstream_dict["""projector.bias"""] snake_case : Optional[Any] = downstream_dict["""model.post_net.linear.weight"""] snake_case : List[str] = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : Tuple = downstream_dict["""model.linear.weight"""] snake_case : Optional[int] = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: snake_case : Tuple = WavaVecaForXVector.from_pretrained(lowercase ,config=lowercase ) snake_case : str = downstream_dict["""connector.weight"""] snake_case : Tuple = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case : Dict = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case : Optional[int] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case : Union[str, Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> str: snake_case : Optional[int] = torch.load(lowercase ,map_location="""cpu""" ) snake_case : int = checkpoint["""Downstream"""] snake_case : str = WavaVecaConfig.from_pretrained(lowercase ) snake_case : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( lowercase ,return_attention_mask=lowercase ,do_normalize=lowercase ) snake_case : str = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case : Union[str, Any] = convert_classification(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case : str = convert_diarization(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForXVector""" ): snake_case : Any = convert_xvector(lowercase ,lowercase ,lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case : Tuple = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase : Optional[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
587
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCAmelCase_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCAmelCase_ : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCAmelCase_ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase( self : str ): '''simple docstring''' torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) snake_case__ = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=3_2 , ) snake_case__ = CLIPTextModel(__UpperCamelCase ) snake_case__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__UpperCamelCase ) snake_case__ = CLIPTextModelWithProjection(__UpperCamelCase ) snake_case__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__UpperCamelCase ) snake_case__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __lowerCAmelCase( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Any=0 ): '''simple docstring''' snake_case__ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ = image / 2 + 0.5 if str(__UpperCamelCase ).startswith("""mps""" ): snake_case__ = torch.manual_seed(__UpperCamelCase ) else: snake_case__ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = StableDiffusionXLImgaImgPipeline(**__UpperCamelCase ) snake_case__ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ = sd_pipe(**__UpperCamelCase ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase( self : Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase( self : Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' pass def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = self.get_dummy_components() snake_case__ = StableDiffusionXLImgaImgPipeline(**__UpperCamelCase ) snake_case__ = sd_pipe.to(__UpperCamelCase ) snake_case__ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) # forward without prompt embeds snake_case__ = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ = 3 * ["""this is a negative prompt"""] snake_case__ = negative_prompt snake_case__ = 3 * [inputs["""prompt"""]] snake_case__ = sd_pipe(**__UpperCamelCase ) snake_case__ = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case__ = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ = 3 * ["""this is a negative prompt"""] snake_case__ = 3 * [inputs.pop("""prompt""" )] ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = sd_pipe.encode_prompt(__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case__ = sd_pipe( **__UpperCamelCase , prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , pooled_prompt_embeds=__UpperCamelCase , negative_pooled_prompt_embeds=__UpperCamelCase , ) snake_case__ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __magic_name__( unittest.TestCase ): def __lowerCAmelCase( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]="cpu" , __UpperCamelCase : Dict=torch.floataa , __UpperCamelCase : Optional[Any]=0 ): '''simple docstring''' snake_case__ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 6_4, 6_4) ) snake_case__ = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) snake_case__ = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ = self.get_inputs(__UpperCamelCase ) snake_case__ = pipe(**__UpperCamelCase ).images snake_case__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
566
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] a__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = ''' Hello world! cécé herlolip''' a__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def snake_case__ ( a ) -> Optional[Any]: '''simple docstring''' snake_case__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(a , a ) def snake_case__ ( a , a , a ) -> List[str]: '''simple docstring''' snake_case__ = dct.pop(a ) snake_case__ = val def snake_case__ ( a ) -> str: '''simple docstring''' snake_case__ = torch.load(a , map_location="""cpu""" ) snake_case__ = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def snake_case__ ( a ) -> Dict: '''simple docstring''' snake_case__ , snake_case__ = emb.weight.shape snake_case__ = nn.Linear(a , a , bias=a ) snake_case__ = emb.weight.data return lin_layer @torch.no_grad() def snake_case__ ( a , a , a=None ) -> Optional[int]: '''simple docstring''' if not os.path.exists(a ): snake_case__ = torch.hub.load("""pytorch/fairseq""" , a ).eval() else: snake_case__ = load_xsum_checkpoint(a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case__ = checkpoint_path.replace(""".""" , """-""" ) snake_case__ = BartConfig.from_pretrained(a ) snake_case__ = bart.encode(a ).unsqueeze(0 ) snake_case__ = BartTokenizer.from_pretrained(a ).encode(a , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(a , a ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": snake_case__ = bart.state_dict() remove_ignore_keys_(a ) snake_case__ = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(a , a , a ) snake_case__ = BartForSequenceClassification(a ).eval() model.load_state_dict(a ) snake_case__ = bart.predict("""mnli""" , a , return_logits=a ) snake_case__ = model(a )[0] # logits else: # no classification heads to worry about snake_case__ = bart.model.state_dict() remove_ignore_keys_(a ) snake_case__ = state_dict["""decoder.embed_tokens.weight"""] snake_case__ = bart.extract_features(a ) if hf_checkpoint_name == "facebook/bart-large": snake_case__ = BartModel(a ).eval() model.load_state_dict(a ) snake_case__ = model(a ).model[0] else: snake_case__ = BartForConditionalGeneration(a ).eval() # an existing summarization ckpt model.model.load_state_dict(a ) if hasattr(a , """lm_head""" ): snake_case__ = make_linear_from_emb(model.model.shared ) snake_case__ = model.model(a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
566
1
from __future__ import annotations def UpperCamelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ) -> list[list[str]]: '''simple docstring''' _lowercase : Dict = word_bank or [] # create a table _lowercase : int = len(_UpperCAmelCase ) + 1 _lowercase : list[list[list[str]]] = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value _lowercase : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: _lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
461
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters UpperCamelCase_ : int = logging.get_logger(__name__) def UpperCamelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=None ) -> Tuple: '''simple docstring''' if "." in tensor_name: _lowercase : Dict = tensor_name.split("." ) for split in splits[:-1]: _lowercase : Optional[int] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _lowercase : List[Any] = new_module _lowercase : Dict = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) _lowercase : Dict = tensor_name in module._buffers _lowercase : Union[str, Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) _lowercase : int = False _lowercase : str = False if is_buffer or not is_bitsandbytes_available(): _lowercase : int = False _lowercase : List[str] = False else: _lowercase : List[str] = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowercase : int = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowercase : Optional[int] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowercase : int = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , torch.Tensor ): _lowercase : Dict = value.to("cpu" ) if value.dtype == torch.inta: _lowercase : str = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: _lowercase : List[str] = torch.tensor(_UpperCAmelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _UpperCAmelCase ) and fpaa_statistics is None: _lowercase : List[Any] = new_value.T _lowercase : List[str] = old_value.__dict__ if is_abit: _lowercase : Optional[Any] = bnb.nn.IntaParams(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase ) elif is_abit: _lowercase : Dict = bnb.nn.Paramsabit(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase ) _lowercase : str = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_UpperCAmelCase ) ) else: if value is None: _lowercase : Optional[Any] = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , torch.Tensor ): _lowercase : Tuple = value.to(_UpperCAmelCase ) else: _lowercase : Optional[Any] = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase ) if is_buffer: _lowercase : str = new_value else: _lowercase : int = nn.Parameter(_UpperCAmelCase , requires_grad=old_value.requires_grad ) _lowercase : str = new_value def UpperCamelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=False ) -> int: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: _lowercase : int = [] current_key_name.append(_UpperCAmelCase ) if (isinstance(_UpperCAmelCase , nn.Linear ) or isinstance(_UpperCAmelCase , _UpperCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_UpperCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowercase , _lowercase : Tuple = module.weight.shape else: _lowercase : List[Any] = module.in_features _lowercase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowercase : Union[str, Any] = bnb.nn.LinearabitLt( _UpperCAmelCase , _UpperCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowercase : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowercase : List[Any] = bnb.nn.Linearabit( _UpperCAmelCase , _UpperCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowercase : Optional[int] = True # Store the module class in case we need to transpose the weight later _lowercase : str = type(_UpperCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_UpperCAmelCase ) if len(list(module.children() ) ) > 0: _lowercase , _lowercase : List[str] = _replace_with_bnb_linear( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , has_been_replaced=_UpperCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : int=None ) -> Optional[int]: '''simple docstring''' _lowercase : str = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert _lowercase , _lowercase : Any = _replace_with_bnb_linear( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def UpperCamelCase ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _UpperCAmelCase , ) return replace_with_bnb_linear(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase ( *_UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ) -> int: '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _UpperCAmelCase , ) return set_module_quantized_tensor_to_device(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase ( _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _lowercase : Tuple = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowercase : List[Any] = find_tied_parameters(_UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowercase : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowercase : Tuple = sum(_UpperCAmelCase , [] ) _lowercase : List[Any] = len(_UpperCAmelCase ) > 0 # Check if it is a base model _lowercase : Any = not hasattr(_UpperCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowercase : int = list(model.named_children() ) _lowercase : str = [list_modules[-1][0]] # add last module together with tied weights _lowercase : Optional[int] = set(_UpperCAmelCase ) - set(_UpperCAmelCase ) _lowercase : Optional[int] = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase ) # remove ".weight" from the keys _lowercase : str = [".weight", ".bias"] _lowercase : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowercase : Optional[Any] = name.replace(_UpperCAmelCase , "" ) filtered_module_names.append(_UpperCAmelCase ) return filtered_module_names
461
1
def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__UpperCamelCase , n - 1 , __UpperCamelCase ) * a) % mod else: a_ : Any = binary_exponentiation(__UpperCamelCase , n / 2 , __UpperCamelCase ) return (b * b) % mod # a prime number __lowerCamelCase = 701 __lowerCamelCase = 1000000000 __lowerCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
715
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class a__ ( lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase__: str = """convnextv2""" def __init__( self : Tuple , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=4 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Optional[int]="gelu" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-12 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Union[str, Any]=2_2_4 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : List[Any] , ): super().__init__(**lowerCamelCase_ ) a_ : Dict = num_channels a_ : Optional[int] = patch_size a_ : int = num_stages a_ : Any = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes a_ : Any = [3, 3, 9, 3] if depths is None else depths a_ : Any = hidden_act a_ : Dict = initializer_range a_ : Optional[Any] = layer_norm_eps a_ : int = drop_path_rate a_ : Optional[Any] = image_size a_ : Dict = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] a_ , a_ : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
478
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowercase_ = logging.getLogger(__name__) @dataclass class __a : lowerCamelCase : Optional[Any] =field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : List[str] =field( default=snake_case__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase : List[str] =field( default=snake_case__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCamelCase : List[str] =field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : List[str] =field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase : int =field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class __a : lowerCamelCase : Optional[Any] =field( default=snake_case__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Dict =field( default=snake_case__ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCamelCase : int =field( default=snake_case__ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCamelCase : List[Any] =field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[int] =field( default=snake_case__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase : Optional[int] =field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase : Optional[Any] =field( default=snake_case__ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCamelCase : Any =field( default=snake_case__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCamelCase : List[Any] =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase : Dict =field( default=snake_case__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase : List[str] =field( default=snake_case__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , snake_case__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase_ = training_args.get_process_log_level() logger.setLevel(snake_case__ ) datasets.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase_ = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase_ = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase_ = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase_ = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase_ = predict_dataset.features["label"].names # Labels lowerCAmelCase_ = len(snake_case__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , idalabel={str(snake_case__ ): label for i, label in enumerate(snake_case__ )} , labelaid={label: i for i, label in enumerate(snake_case__ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase_ = False def preprocess_function(_lowercase : int ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=snake_case__ , max_length=data_args.max_seq_length , truncation=snake_case__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase_ = min(len(snake_case__ ) , data_args.max_train_samples ) lowerCAmelCase_ = train_dataset.select(range(snake_case__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCAmelCase_ = train_dataset.map( snake_case__ , batched=snake_case__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(snake_case__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase_ = min(len(snake_case__ ) , data_args.max_eval_samples ) lowerCAmelCase_ = eval_dataset.select(range(snake_case__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCAmelCase_ = eval_dataset.map( snake_case__ , batched=snake_case__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase_ = min(len(snake_case__ ) , data_args.max_predict_samples ) lowerCAmelCase_ = predict_dataset.select(range(snake_case__ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): lowerCAmelCase_ = predict_dataset.map( snake_case__ , batched=snake_case__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function lowerCAmelCase_ = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase : str ): lowerCAmelCase_ = p.predictions[0] if isinstance(p.predictions , snake_case__ ) else p.predictions lowerCAmelCase_ = np.argmax(snake_case__ , axis=1 ) return metric.compute(predictions=snake_case__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase_ = default_data_collator elif training_args.fpaa: lowerCAmelCase_ = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) else: lowerCAmelCase_ = None # Initialize our Trainer lowerCAmelCase_ = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=snake_case__ , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: lowerCAmelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase_ = last_checkpoint lowerCAmelCase_ = trainer.train(resume_from_checkpoint=snake_case__ ) lowerCAmelCase_ = train_result.metrics lowerCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) lowerCAmelCase_ = min(snake_case__ , len(snake_case__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , snake_case__ ) trainer.save_metrics('''train''' , snake_case__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase_ = trainer.evaluate(eval_dataset=snake_case__ ) lowerCAmelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case__ ) lowerCAmelCase_ = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('''eval''' , snake_case__ ) trainer.save_metrics('''eval''' , snake_case__ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) lowerCAmelCase_ = trainer.predict(snake_case__ , metric_key_prefix='''predict''' ) lowerCAmelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(snake_case__ ) ) lowerCAmelCase_ = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('''predict''' , snake_case__ ) trainer.save_metrics('''predict''' , snake_case__ ) lowerCAmelCase_ = np.argmax(snake_case__ , axis=1 ) lowerCAmelCase_ = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(snake_case__ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(snake_case__ ): lowerCAmelCase_ = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
552
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowercase = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = {} state_dict.pop("pixel_mean" , snake_case__) state_dict.pop("pixel_std" , snake_case__) lowerCAmelCase_ : List[Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase_ : Dict = key.replace(snake_case__ , snake_case__) if re.match(snake_case__ , snake_case__): lowerCAmelCase_ : Any = int(re.match(snake_case__ , snake_case__).group(2)) if layer_nb == 0: lowerCAmelCase_ : List[Any] = key.replace("layers.0" , "proj_in") elif layer_nb == 1: lowerCAmelCase_ : List[Any] = key.replace("layers.1" , "layers.0") elif layer_nb == 2: lowerCAmelCase_ : int = key.replace("layers.2" , "proj_out") lowerCAmelCase_ : int = value lowerCAmelCase_ : Optional[int] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="ybelkada/segment-anything"): lowerCAmelCase_ : Optional[int] = hf_hub_download(snake_case__ , F'''checkpoints/{model_name}.pth''') if "sam_vit_b" in model_name: lowerCAmelCase_ : Optional[Any] = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase_ : Optional[int] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase_ : Union[str, Any] = SamConfig( vision_config=snake_case__ , ) elif "sam_vit_h" in model_name: lowerCAmelCase_ : Optional[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase_ : Tuple = SamConfig( vision_config=snake_case__ , ) lowerCAmelCase_ : Optional[Any] = torch.load(snake_case__ , map_location="cpu") lowerCAmelCase_ : Union[str, Any] = replace_keys(snake_case__) lowerCAmelCase_ : List[Any] = SamImageProcessor() lowerCAmelCase_ : Any = SamProcessor(image_processor=snake_case__) lowerCAmelCase_ : Any = SamModel(snake_case__) hf_model.load_state_dict(snake_case__) lowerCAmelCase_ : Dict = hf_model.to("cuda") lowerCAmelCase_ : List[str] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCAmelCase_ : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__).raw).convert("RGB") lowerCAmelCase_ : Optional[int] = [[[4_00, 6_50]]] lowerCAmelCase_ : int = [[1]] lowerCAmelCase_ : Optional[Any] = processor(images=np.array(snake_case__) , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = hf_model(**snake_case__) lowerCAmelCase_ : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowerCAmelCase_ : Any = processor( images=np.array(snake_case__) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = hf_model(**snake_case__) lowerCAmelCase_ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowerCAmelCase_ : Tuple = ((75, 2_75, 17_25, 8_50),) lowerCAmelCase_ : Optional[Any] = processor(images=np.array(snake_case__) , input_boxes=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : List[Any] = hf_model(**snake_case__) lowerCAmelCase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowerCAmelCase_ : int = [[[4_00, 6_50], [8_00, 6_50]]] lowerCAmelCase_ : Optional[Any] = [[1, 1]] lowerCAmelCase_ : List[Any] = processor( images=np.array(snake_case__) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Tuple = hf_model(**snake_case__) lowerCAmelCase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _lowercase = argparse.ArgumentParser() _lowercase = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _lowercase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
659
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] ={ '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class A_ ( __a ): _A :str = '''canine''' def __init__( self : Any , snake_case__ : List[str]=7_68 , snake_case__ : Optional[Any]=12 , snake_case__ : Dict=12 , snake_case__ : int=30_72 , snake_case__ : Tuple="gelu" , snake_case__ : Dict=0.1 , snake_case__ : int=0.1 , snake_case__ : Tuple=1_63_84 , snake_case__ : Tuple=16 , snake_case__ : Any=0.02 , snake_case__ : Tuple=1E-12 , snake_case__ : List[Any]=0 , snake_case__ : Union[str, Any]=0Xe_0_0_0 , snake_case__ : str=0Xe_0_0_1 , snake_case__ : Optional[int]=4 , snake_case__ : List[Any]=4 , snake_case__ : Optional[Any]=8 , snake_case__ : Tuple=1_63_84 , snake_case__ : Any=1_28 , **snake_case__ : Tuple , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = type_vocab_size lowercase = layer_norm_eps # Character config: lowercase = downsampling_rate lowercase = upsampling_kernel_size lowercase = num_hash_functions lowercase = num_hash_buckets lowercase = local_transformer_stride
72
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={ '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class A_ ( __a ): _A :List[str] = '''pix2struct_text_model''' _A :int = ['''past_key_values'''] _A :Optional[Any] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , snake_case__ : str=5_02_44 , snake_case__ : Dict=7_68 , snake_case__ : Optional[Any]=64 , snake_case__ : Union[str, Any]=20_48 , snake_case__ : Union[str, Any]=12 , snake_case__ : str=12 , snake_case__ : int=32 , snake_case__ : List[Any]=1_28 , snake_case__ : Optional[int]=0.1 , snake_case__ : int=1E-6 , snake_case__ : int=1.0 , snake_case__ : Dict="gelu_new" , snake_case__ : Union[str, Any]=0 , snake_case__ : str=False , snake_case__ : List[str]=0 , snake_case__ : str=1 , snake_case__ : Optional[Any]=False , snake_case__ : Tuple=True , **snake_case__ : List[str] , ): lowercase = vocab_size lowercase = hidden_size lowercase = d_kv lowercase = d_ff lowercase = num_layers lowercase = num_heads lowercase = relative_attention_num_buckets lowercase = relative_attention_max_distance lowercase = dropout_rate lowercase = layer_norm_epsilon lowercase = initializer_factor lowercase = use_cache lowercase = eos_token_id lowercase = decoder_start_token_id # for backwards compatibility lowercase = dense_act_fn super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , tie_word_embeddings=snake_case__ , is_decoder=snake_case__ , **snake_case__ , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : int ): cls._set_token_in_kwargs(snake_case__ ) lowercase , lowercase = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class A_ ( __a ): _A :Optional[int] = '''pix2struct_vision_model''' def __init__( self : Tuple , snake_case__ : Union[str, Any]=7_68 , snake_case__ : Any=7_68 , snake_case__ : Dict=20_48 , snake_case__ : int=64 , snake_case__ : str=12 , snake_case__ : Optional[int]=12 , snake_case__ : Union[str, Any]="gelu_new" , snake_case__ : Union[str, Any]=1E-6 , snake_case__ : int=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : Optional[int]=1E-10 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]=40_96 , snake_case__ : Optional[int]=32 , snake_case__ : List[Any]=1_28 , **snake_case__ : Union[str, Any] , ): super().__init__(**snake_case__ ) lowercase = hidden_size lowercase = patch_embed_hidden_size lowercase = d_ff lowercase = dropout_rate lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = initializer_range lowercase = initializer_factor lowercase = attention_dropout lowercase = layer_norm_eps lowercase = dense_act_fn lowercase = seq_len lowercase = relative_attention_num_buckets lowercase = relative_attention_max_distance lowercase = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : int ): cls._set_token_in_kwargs(snake_case__ ) lowercase , lowercase = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class A_ ( __a ): _A :int = '''pix2struct''' _A :str = True def __init__( self : Optional[int] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=1.0 , snake_case__ : Any=0.02 , snake_case__ : Tuple=False , snake_case__ : Union[str, Any]=False , snake_case__ : Tuple=True , **snake_case__ : int , ): super().__init__(tie_word_embeddings=snake_case__ , is_encoder_decoder=snake_case__ , **snake_case__ ) if text_config is None: lowercase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: lowercase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) lowercase = PixaStructTextConfig(**snake_case__ ) lowercase = PixaStructVisionConfig(**snake_case__ ) lowercase = self.text_config.decoder_start_token_id lowercase = self.text_config.pad_token_id lowercase = self.text_config.eos_token_id lowercase = initializer_factor lowercase = initializer_range lowercase = self.initializer_range lowercase = self.initializer_range lowercase = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , snake_case__ : PixaStructTextConfig , snake_case__ : PixaStructVisionConfig , **snake_case__ : Any ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
72
1
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase__ (snake_case__ : int = 8 ): """simple docstring""" _snake_case : Dict = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : int ): """simple docstring""" i -= len(UpperCamelCase__ ) _snake_case : Union[str, Any] = i // 3 _snake_case : int = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _snake_case : Optional[Any] = ( chars_incl + random(UpperCamelCase__ , quotient + remainder ) + random(UpperCamelCase__ , UpperCamelCase__ ) + random(UpperCamelCase__ , UpperCamelCase__ ) ) _snake_case : Optional[int] = list(UpperCamelCase__ ) shuffle(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase__ (snake_case__ : str , snake_case__ : int ): """simple docstring""" return "".join(secrets.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" pass # Put your code here... def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Any ): """simple docstring""" pass # Put your code here... def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : str ): """simple docstring""" pass # Put your code here... def UpperCAmelCase__ (snake_case__ : str , snake_case__ : int = 8 ): """simple docstring""" if len(UpperCamelCase__ ) < min_length: # Your Password must be at least 8 characters long return False _snake_case : Union[str, Any] = any(char in ascii_uppercase for char in password ) _snake_case : int = any(char in ascii_lowercase for char in password ) _snake_case : Any = any(char in digits for char in password ) _snake_case : Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = int(input("""Please indicate the max length of your password: """ ).strip() ) _snake_case : Any = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(UpperCamelCase__ ) ) print( """Alternative Password generated:""" , alternative_password_generator(UpperCamelCase__ , UpperCamelCase__ ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
609
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" __lowerCamelCase = 0 for ch in input_str: __lowerCamelCase = ord(UpperCamelCase__ ) __lowerCamelCase = pow(2 , UpperCamelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
469
0
"""simple docstring""" def UpperCamelCase ( _A : Dict = 10 ) -> str: if not isinstance(_A , _A ) or n < 0: raise ValueError("""Invalid input""" ) lowercase : List[str] = 10**n lowercase : Optional[int] = 28_433 * (pow(2 , 7_830_457 , _A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(10) = }')
706
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Optional[int] = tau * frequency / samplerate lowercase : Union[str, Any] = sin(_A ) lowercase : Tuple = cos(_A ) lowercase : Any = _sin / (2 * q_factor) lowercase : Any = (1 - _cos) / 2 lowercase : List[str] = 1 - _cos lowercase : int = 1 + alpha lowercase : Optional[int] = -2 * _cos lowercase : str = 1 - alpha lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Union[str, Any] = tau * frequency / samplerate lowercase : Dict = sin(_A ) lowercase : List[Any] = cos(_A ) lowercase : str = _sin / (2 * q_factor) lowercase : Any = (1 + _cos) / 2 lowercase : Dict = -1 - _cos lowercase : Tuple = 1 + alpha lowercase : Tuple = -2 * _cos lowercase : Any = 1 - alpha lowercase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Optional[int] = tau * frequency / samplerate lowercase : Optional[int] = sin(_A ) lowercase : Any = cos(_A ) lowercase : str = _sin / (2 * q_factor) lowercase : Optional[int] = _sin / 2 lowercase : Dict = 0 lowercase : Any = -ba lowercase : Any = 1 + alpha lowercase : Union[str, Any] = -2 * _cos lowercase : Any = 1 - alpha lowercase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Optional[int] = tau * frequency / samplerate lowercase : List[Any] = sin(_A ) lowercase : Tuple = cos(_A ) lowercase : Any = _sin / (2 * q_factor) lowercase : Dict = 1 - alpha lowercase : int = -2 * _cos lowercase : Optional[Any] = 1 + alpha lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase : Optional[Any] = tau * frequency / samplerate lowercase : Optional[int] = sin(_A ) lowercase : Dict = cos(_A ) lowercase : Optional[Any] = _sin / (2 * q_factor) lowercase : int = 10 ** (gain_db / 40) lowercase : str = 1 + alpha * big_a lowercase : str = -2 * _cos lowercase : Optional[int] = 1 - alpha * big_a lowercase : Optional[Any] = 1 + alpha / big_a lowercase : Tuple = -2 * _cos lowercase : List[Any] = 1 - alpha / big_a lowercase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase : Optional[Any] = tau * frequency / samplerate lowercase : str = sin(_A ) lowercase : str = cos(_A ) lowercase : Optional[int] = _sin / (2 * q_factor) lowercase : List[Any] = 10 ** (gain_db / 40) lowercase : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos lowercase : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos lowercase : List[Any] = (big_a - 1) - (big_a + 1) * _cos lowercase : Dict = (big_a - 1) + (big_a + 1) * _cos lowercase : int = 2 * sqrt(_A ) * alpha lowercase : Union[str, Any] = big_a * (pmc + aaa) lowercase : int = 2 * big_a * mpc lowercase : Optional[Any] = big_a * (pmc - aaa) lowercase : Tuple = ppmc + aaa lowercase : int = -2 * pmpc lowercase : Optional[int] = ppmc - aaa lowercase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase : Optional[Any] = tau * frequency / samplerate lowercase : Union[str, Any] = sin(_A ) lowercase : List[Any] = cos(_A ) lowercase : str = _sin / (2 * q_factor) lowercase : List[str] = 10 ** (gain_db / 40) lowercase : str = (big_a + 1) - (big_a - 1) * _cos lowercase : List[Any] = (big_a + 1) + (big_a - 1) * _cos lowercase : str = (big_a - 1) - (big_a + 1) * _cos lowercase : str = (big_a - 1) + (big_a + 1) * _cos lowercase : int = 2 * sqrt(_A ) * alpha lowercase : int = big_a * (ppmc + aaa) lowercase : Optional[Any] = -2 * big_a * pmpc lowercase : Tuple = big_a * (ppmc - aaa) lowercase : Union[str, Any] = pmc + aaa lowercase : List[Any] = 2 * mpc lowercase : Optional[Any] = pmc - aaa lowercase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
348
0
def A ( snake_case__ : int = 10**12 ) -> Tuple: '''simple docstring''' __snake_case = 1 __snake_case = 0 __snake_case = 1 __snake_case = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"""{solution() = }""")
313
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = KandinskyVaaImgaImgPipeline lowerCAmelCase_ : Optional[Any] = ["""image_embeds""", """negative_image_embeds""", """image"""] lowerCAmelCase_ : List[str] = [ """image_embeds""", """negative_image_embeds""", """image""", ] lowerCAmelCase_ : Any = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase_ : Optional[Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.dummy_unet UpperCAmelCase__ = self.dummy_movq UpperCAmelCase__ = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase__ = DDIMScheduler(**_UpperCAmelCase ) UpperCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=0 ): """simple docstring""" UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create init_image UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(_UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = """cpu""" UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) UpperCAmelCase__ = output.images UpperCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase__ = """A red cartoon frog, 4k""" UpperCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) UpperCAmelCase__ = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) UpperCAmelCase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase__ = pipeline( image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
603
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase_ : pass
541
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 255 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 256} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = offset _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" in size: _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: _snake_case = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> int: _snake_case = image.astype(np.floataa ) if offset: _snake_case = image - (scale / 2) return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. _snake_case = to_numpy_array(lowerCAmelCase_ ) if do_resize: _snake_case = self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) if do_center_crop: _snake_case = self.center_crop(lowerCAmelCase_ , size=lowerCAmelCase_ ) if do_rescale: _snake_case = self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ , offset=lowerCAmelCase_ ) if do_normalize: _snake_case = self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) _snake_case = to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) return image def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = offset if offset is not None else self.offset _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _snake_case = make_batched(lowerCAmelCase_ ) _snake_case = [ [ self._preprocess_image( image=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , crop_size=lowerCAmelCase_ , do_rescale=lowerCAmelCase_ , rescale_factor=lowerCAmelCase_ , offset=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , image_mean=lowerCAmelCase_ , image_std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , ) for img in video ] for video in videos ] _snake_case = {'pixel_values': videos} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
541
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" lowerCAmelCase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("RGB" ) return image def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] ): """simple docstring""" lowerCAmelCase_ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" lowerCAmelCase_ = dct.pop(__lowerCAmelCase ) lowerCAmelCase_ = val def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase_ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCAmelCase_ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCAmelCase_ = torch.cat((q_bias, torch.zeros_like(__lowerCAmelCase , requires_grad=__lowerCAmelCase ), v_bias) ) lowerCAmelCase_ = qkv_bias def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] ): """simple docstring""" lowerCAmelCase_ = 364 if "coco" in model_name else 224 lowerCAmelCase_ = InstructBlipVisionConfig(image_size=__lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowerCAmelCase_ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase_ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowerCAmelCase_ = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: lowerCAmelCase_ = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowerCAmelCase_ = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() lowerCAmelCase_ = InstructBlipConfig(vision_config=__lowerCAmelCase , text_config=__lowerCAmelCase , qformer_config=__lowerCAmelCase ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=False ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: lowerCAmelCase_ = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowerCAmelCase_ = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) lowerCAmelCase_ , lowerCAmelCase_ = get_blipa_config(__lowerCAmelCase ) lowerCAmelCase_ = InstructBlipForConditionalGeneration(__lowerCAmelCase ).eval() lowerCAmelCase_ = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } lowerCAmelCase_ , lowerCAmelCase_ = model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCAmelCase_ = "cuda:1" if torch.cuda.is_available() else "cpu" lowerCAmelCase_ = "cuda:2" if torch.cuda.is_available() else "cpu" lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = load_model_and_preprocess( name=__lowerCAmelCase , model_type=__lowerCAmelCase , is_eval=__lowerCAmelCase , device=__lowerCAmelCase ) original_model.eval() print("Done!" ) # update state dict keys lowerCAmelCase_ = original_model.state_dict() lowerCAmelCase_ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase_ = state_dict.pop(__lowerCAmelCase ) if key.startswith("Qformer.bert" ): lowerCAmelCase_ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCAmelCase_ = key.replace("self" , "attention" ) if "llm_proj" in key: lowerCAmelCase_ = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: lowerCAmelCase_ = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): lowerCAmelCase_ = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): lowerCAmelCase_ = key.replace("t5" , "language" ) lowerCAmelCase_ = val # read in qv biases read_in_q_v_bias(__lowerCAmelCase , __lowerCAmelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCAmelCase_ = load_demo_image() lowerCAmelCase_ = "What is unusual about this image?" # create processor lowerCAmelCase_ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowerCAmelCase_ = InstructBlipProcessor( image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase , qformer_tokenizer=__lowerCAmelCase , ) lowerCAmelCase_ = processor(images=__lowerCAmelCase , text=__lowerCAmelCase , return_tensors="pt" ).to(__lowerCAmelCase ) # make sure processor creates exact same pixel values lowerCAmelCase_ = vis_processors["eval"](__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) lowerCAmelCase_ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __lowerCAmelCase ) original_model.to(__lowerCAmelCase ) hf_model.to(__lowerCAmelCase ) with torch.no_grad(): if "vicuna" in model_name: lowerCAmelCase_ = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits lowerCAmelCase_ = hf_model(**__lowerCAmelCase ).logits else: lowerCAmelCase_ = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits lowerCAmelCase_ = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__lowerCAmelCase ) lowerCAmelCase_ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase_ = hf_model(**__lowerCAmelCase , labels=__lowerCAmelCase ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowerCAmelCase_ = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __lowerCAmelCase , atol=__lowerCAmelCase ) print("Looks ok!" ) print("Generating with original model..." ) lowerCAmelCase_ = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) lowerCAmelCase_ = hf_model.generate( **__lowerCAmelCase , do_sample=__lowerCAmelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowerCAmelCase_ = 2 print("Original generation:" , __lowerCAmelCase ) lowerCAmelCase_ = processor.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) lowerCAmelCase_ = [text.strip() for text in output_text] print("HF generation:" , __lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() _A = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _A = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
290
from collections.abc import Callable def lowerCamelCase__ ( __lowerCAmelCase : Callable[[float], float] , __lowerCAmelCase : float , __lowerCAmelCase : float ): """simple docstring""" lowerCAmelCase_ = a lowerCAmelCase_ = b if function(__lowerCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(__lowerCAmelCase ) == 0: return b elif ( function(__lowerCAmelCase ) * function(__lowerCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: lowerCAmelCase_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__lowerCAmelCase ) == 0: return mid elif function(__lowerCAmelCase ) * function(__lowerCAmelCase ) < 0: lowerCAmelCase_ = mid else: lowerCAmelCase_ = mid lowerCAmelCase_ = start + (end - start) / 2.0 return mid def lowerCamelCase__ ( __lowerCAmelCase : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
290
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Dict = sys.version_info >= (3, 10) def A_ ( _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'titi' lowerCAmelCase_ = 'toto' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'titi' lowerCAmelCase_ = 'toto' lowerCAmelCase_ = 42 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = "toto" def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[Any] = BasicEnum(self.foo ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = "toto" def lowerCamelCase_ ( self : str ): _lowerCamelCase : Tuple = MixedTypeEnum(self.foo ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = field(default=A , metadata={'help': 'help message'} ) lowerCAmelCase_ = None lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[] ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[1, 2, 3] ) lowerCAmelCase_ = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowerCAmelCase_ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field() lowerCAmelCase_ = field() lowerCAmelCase_ = field() def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = field() lowerCAmelCase_ = None lowerCAmelCase_ = field(default='toto' , metadata={'help': 'help message'} ) lowerCAmelCase_ = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = field(default=A , metadata={'help': 'help message'} ) lowerCAmelCase_ = None lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[] ) class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : int,__A : argparse.ArgumentParser,__A : argparse.ArgumentParser ): self.assertEqual(len(a._actions ),len(b._actions ) ) for x, y in zip(a._actions,b._actions ): _lowerCamelCase : List[str] = {k: v for k, v in vars(__A ).items() if k != "container"} _lowerCamelCase : List[Any] = {k: v for k, v in vars(__A ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices",__A ) and yy.get("choices",__A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__A ),yy["type"](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo",type=__A,required=__A ) expected.add_argument("--bar",type=__A,required=__A ) expected.add_argument("--baz",type=__A,required=__A ) expected.add_argument("--flag",type=__A,default=__A,const=__A,nargs="?" ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Any = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((_lowerCamelCase) , ) : Tuple = parser.parse_args_into_dataclasses(__A,look_for_args_file=__A ) self.assertFalse(example.flag ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo",default=4_2,type=__A ) expected.add_argument("--baz",default="toto",type=__A,help="help message" ) self.argparsersEqual(__A,__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("--foo",type=__A,default=__A,const=__A,nargs="?" ) expected.add_argument("--baz",type=__A,default=__A,const=__A,nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz",action="store_false",default=__A,dest="baz" ) expected.add_argument("--opt",type=__A,default=__A ) _lowerCamelCase : Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowerCamelCase : str = HfArgumentParser(__A ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : Dict = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : Optional[Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : Optional[int] = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : List[str] = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = HfArgumentParser(__A ) _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo",default="toto",choices=["titi", "toto", 4_2],type=make_choice_type_function(["titi", "toto", 4_2] ),) self.argparsersEqual(__A,__A ) _lowerCamelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo,"toto" ) _lowerCamelCase : str = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo,MixedTypeEnum.toto ) _lowerCamelCase : int = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo,"titi" ) _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo,MixedTypeEnum.titi ) _lowerCamelCase : Optional[int] = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo,4_2 ) _lowerCamelCase : Any = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo,MixedTypeEnum.fourtytwo ) def lowerCamelCase_ ( self : Union[str, Any] ): @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = "toto" _lowerCamelCase : int = HfArgumentParser(__A ) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument( "--foo",default="toto",choices=("titi", "toto", 4_2),type=make_choice_type_function(["titi", "toto", 4_2] ),) self.argparsersEqual(__A,__A ) _lowerCamelCase : Any = parser.parse_args([] ) self.assertEqual(args.foo,"toto" ) _lowerCamelCase : Optional[Any] = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo,"titi" ) _lowerCamelCase : int = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo,4_2 ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo_int",nargs="+",default=[],type=__A ) expected.add_argument("--bar_int",nargs="+",default=[1, 2, 3],type=__A ) expected.add_argument("--foo_str",nargs="+",default=["Hallo", "Bonjour", "Hello"],type=__A ) expected.add_argument("--foo_float",nargs="+",default=[0.1, 0.2, 0.3],type=__A ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual( __A,Namespace(foo_int=[],bar_int=[1, 2, 3],foo_str=["Hallo", "Bonjour", "Hello"],foo_float=[0.1, 0.2, 0.3] ),) _lowerCamelCase : Any = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__A,Namespace(foo_int=[1],bar_int=[2, 3],foo_str=["a", "b", "c"],foo_float=[0.1, 0.7] ) ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("--foo",default=__A,type=__A ) expected.add_argument("--bar",default=__A,type=__A,help="help message" ) expected.add_argument("--baz",default=__A,type=__A ) expected.add_argument("--ces",nargs="+",default=[],type=__A ) expected.add_argument("--des",nargs="+",default=[],type=__A ) _lowerCamelCase : Optional[int] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowerCamelCase : Any = HfArgumentParser(__A ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(__A,Namespace(foo=__A,bar=__A,baz=__A,ces=[],des=[] ) ) _lowerCamelCase : Any = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__A,Namespace(foo=1_2,bar=3.14,baz="42",ces=["a", "b", "c"],des=[1, 2, 3] ) ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[Any] = HfArgumentParser(__A ) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument("--required_list",nargs="+",type=__A,required=__A ) expected.add_argument("--required_str",type=__A,required=__A ) expected.add_argument( "--required_enum",type=make_choice_type_function(["titi", "toto"] ),choices=["titi", "toto"],required=__A,) self.argparsersEqual(__A,__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument("--foo",type=__A,required=__A ) expected.add_argument( "--required_enum",type=make_choice_type_function(["titi", "toto"] ),choices=["titi", "toto"],required=__A,) expected.add_argument("--opt",type=__A,default=__A ) expected.add_argument("--baz",default="toto",type=__A,help="help message" ) expected.add_argument("--foo_str",nargs="+",default=["Hallo", "Bonjour", "Hello"],type=__A ) self.argparsersEqual(__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = HfArgumentParser(__A ) _lowerCamelCase : Optional[Any] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } _lowerCamelCase : Tuple = parser.parse_dict(__A )[0] _lowerCamelCase : str = BasicExample(**__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = HfArgumentParser(__A ) _lowerCamelCase : str = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, "extra": 4_2, } self.assertRaises(__A,parser.parse_dict,__A,allow_extra_keys=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : List[str] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Dict = os.path.join(__A,"temp_json" ) os.mkdir(__A ) with open(temp_local_path + ".json","w+" ) as f: json.dump(__A,__A ) _lowerCamelCase : Tuple = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] _lowerCamelCase : List[Any] = BasicExample(**__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Union[str, Any] = HfArgumentParser(__A ) _lowerCamelCase : List[str] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Tuple = os.path.join(__A,"temp_yaml" ) os.mkdir(__A ) with open(temp_local_path + ".yaml","w+" ) as f: yaml.dump(__A,__A ) _lowerCamelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] _lowerCamelCase : Optional[int] = BasicExample(**__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = HfArgumentParser(__A ) self.assertIsNotNone(__A )
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
"""simple docstring""" from math import pi def _lowerCamelCase ( __a, __a ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
626
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase__ = get_logger(__name__) def _lowerCamelCase ( __a, __a, __a, __a, __a=0 ): os.makedirs(__a, exist_ok=__a ) with FSDP.state_dict_type( __a, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' SCREAMING_SNAKE_CASE_ = os.path.join(__a, __a ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(__a, __a ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) SCREAMING_SNAKE_CASE_ = os.path.join(__a, __a ) logger.info(F'Saving model to {output_model_file}' ) torch.save(__a, __a ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = os.path.join(__a, F'{MODEL_NAME}_{model_index}' ) os.makedirs(__a, exist_ok=__a ) logger.info(F'Saving model to {ckpt_dir}' ) SCREAMING_SNAKE_CASE_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__a, storage_writer=dist_cp.FileSystemWriter(__a ), planner=DefaultSavePlanner(), ) logger.info(F'Model saved to {ckpt_dir}' ) def _lowerCamelCase ( __a, __a, __a, __a, __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return SCREAMING_SNAKE_CASE_ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' SCREAMING_SNAKE_CASE_ = os.path.join(__a, __a ) logger.info(F'Loading model from {input_model_file}' ) SCREAMING_SNAKE_CASE_ = torch.load(__a ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) SCREAMING_SNAKE_CASE_ = os.path.join(__a, __a ) logger.info(F'Loading model from {input_model_file}' ) SCREAMING_SNAKE_CASE_ = torch.load(__a ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( os.path.join(__a, F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) SCREAMING_SNAKE_CASE_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__a, storage_reader=dist_cp.FileSystemReader(__a ), planner=DefaultLoadPlanner(), ) SCREAMING_SNAKE_CASE_ = state_dict['''model'''] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(__a ) def _lowerCamelCase ( __a, __a, __a, __a, __a, __a=0 ): os.makedirs(__a, exist_ok=__a ) with FSDP.state_dict_type( __a, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict(__a, __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE_ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) SCREAMING_SNAKE_CASE_ = os.path.join(__a, __a ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(__a, __a ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: SCREAMING_SNAKE_CASE_ = os.path.join(__a, F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(__a, exist_ok=__a ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(__a ), planner=DefaultSavePlanner(), ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def _lowerCamelCase ( __a, __a, __a, __a, __a, __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE_ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) SCREAMING_SNAKE_CASE_ = os.path.join(__a, __a ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) SCREAMING_SNAKE_CASE_ = torch.load(__a ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: SCREAMING_SNAKE_CASE_ = ( os.path.join(__a, F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) SCREAMING_SNAKE_CASE_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(__a ), ) SCREAMING_SNAKE_CASE_ = optim_state['''optimizer'''] logger.info(F'Optimizer loaded from {ckpt_dir}' ) SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict_to_load(__a, __a, __a ) optimizer.load_state_dict(__a )
626
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : str = 'data2vec-text' def __init__( self : Tuple , __lowercase : str=3_05_22 , __lowercase : Optional[Any]=7_68 , __lowercase : Any=12 , __lowercase : List[Any]=12 , __lowercase : Optional[Any]=30_72 , __lowercase : List[Any]="gelu" , __lowercase : List[str]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : Optional[Any]=5_12 , __lowercase : Optional[Any]=2 , __lowercase : Any=0.02 , __lowercase : Union[str, Any]=1e-12 , __lowercase : int=1 , __lowercase : Optional[Any]=0 , __lowercase : Any=2 , __lowercase : List[str]="absolute" , __lowercase : List[str]=True , __lowercase : Tuple=None , **__lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class _UpperCamelCase ( A_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
486
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
486
1
from sklearn.metrics import matthews_corrcoef import datasets _lowercase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' _lowercase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' _lowercase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) ,reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] ,) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[Any]=None ) -> Tuple: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase__ ,lowerCAmelCase__ ,sample_weight=lowerCAmelCase__ ) ), }
659
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase_ ( ): lowercase : Any = torch.nn.Linear(2 , 4 ) lowercase : int = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowercase : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(UpperCAmelCase_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowercase : List[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowercase : Optional[int] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase_ ( UpperCAmelCase_ : Any ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase_ ( UpperCAmelCase_ : Dict ): lowercase : List[str] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(UpperCAmelCase_ ) class UpperCAmelCase ( __lowerCamelCase ): @require_cuda def _lowerCAmelCase ( self : Optional[Any] ): lowercase : List[Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCAmelCase ): lowercase : Optional[Any] = Accelerator(cpu=lowerCAmelCase ) def _lowerCAmelCase ( self : Union[str, Any] ): lowercase : int = Accelerator() lowercase : Union[str, Any] = GradientState() assert state.num_steps == 1 lowercase : Tuple = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase : Tuple = False assert state.sync_gradients is False GradientState._reset_state() def _lowerCAmelCase ( self : Union[str, Any] ): lowercase : List[str] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = create_components() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowerCAmelCase ( self : int ): lowercase : Optional[Any] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = create_components() accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowerCAmelCase ( self : Dict ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCAmelCase : Any , **lowerCAmelCase : Optional[int] ): pass with patch('''torch.cuda.set_device''' , lowerCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): lowercase : Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def _lowerCAmelCase ( self : Union[str, Any] ): lowercase : Tuple = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase : int = create_components() accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) lowercase : List[Any] = get_signature(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase ) # make sure random weights don't match load_random_weights(lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase ) ) < 1E-3 ) def _lowerCAmelCase ( self : Optional[Any] ): lowercase : int = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase : List[str] = create_components() accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) lowercase : Tuple = get_signature(lowerCAmelCase ) # saving hook def save_config(lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : int ): lowercase : Optional[int] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(lowerCAmelCase , '''data.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) # loading hook def load_config(lowerCAmelCase : Dict , lowerCAmelCase : Dict ): with open(os.path.join(lowerCAmelCase , '''data.json''' ) , '''r''' ) as f: lowercase : Dict = json.load(lowerCAmelCase ) lowercase : Union[str, Any] = config['''class_name'''] lowercase : str = accelerator.register_save_state_pre_hook(lowerCAmelCase ) lowercase : Tuple = accelerator.register_load_state_pre_hook(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase ) # make sure random weights don't match with hooks load_random_weights(lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase : List[Any] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase : Any = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowerCAmelCase ( self : Union[str, Any] ): lowercase : List[Any] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = create_components() lowercase : int = None # This should work lowercase , lowercase , lowercase , lowercase , lowercase , lowercase : int = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertTrue(dummy_obj is None ) def _lowerCAmelCase ( self : Dict ): lowercase : str = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase : List[str] = create_components() lowercase : List[str] = [1, 2, 3] # This should work lowercase , lowercase , lowercase , lowercase , lowercase , lowercase : Union[str, Any] = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertEqual( getattr(lowerCAmelCase , '''_is_accelerate_prepared''' , lowerCAmelCase ) , lowerCAmelCase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(lowerCAmelCase , '''_is_accelerate_prepared''' , lowerCAmelCase ) , lowerCAmelCase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(lowerCAmelCase , '''_is_accelerate_prepared''' , lowerCAmelCase ) , lowerCAmelCase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(lowerCAmelCase , '''_is_accelerate_prepared''' , lowerCAmelCase ) , lowerCAmelCase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(lowerCAmelCase , '''_is_accelerate_prepared''' , lowerCAmelCase ) , lowerCAmelCase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(lowerCAmelCase , '''_is_accelerate_prepared''' , lowerCAmelCase ) , lowerCAmelCase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def _lowerCAmelCase ( self : Optional[int] ): from transformers import AutoModelForCausalLM lowercase : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=lowerCAmelCase , device_map={'''''': 0} , ) lowercase : List[str] = Accelerator() # This should work lowercase : Any = accelerator.prepare(lowerCAmelCase ) @slow @require_bnb def _lowerCAmelCase ( self : Optional[Any] ): from transformers import AutoModelForCausalLM lowercase : Optional[int] = Accelerator() with init_empty_weights(): lowercase : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() lowercase : Optional[Any] = infer_auto_device_map(lowerCAmelCase ) lowercase : str = '''cpu''' lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=lowerCAmelCase , load_in_abit=lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase ) # This should not work and get value error with self.assertRaises(lowerCAmelCase ): lowercase : Optional[Any] = accelerator.prepare(lowerCAmelCase ) @slow @require_bnb @require_multi_gpu def _lowerCAmelCase ( self : Union[str, Any] ): from transformers import AutoModelForCausalLM lowercase : Tuple = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() lowercase : int = infer_auto_device_map(lowerCAmelCase ) lowercase : Tuple = 1 lowercase : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=lowerCAmelCase , device_map=lowerCAmelCase , ) lowercase : Any = Accelerator() # This should not work and get value error with self.assertRaises(lowerCAmelCase ): lowercase : str = accelerator.prepare(lowerCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowerCAmelCase ( self : str ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) lowercase : Any = infer_auto_device_map(lowerCAmelCase ) lowercase : Any = 1 lowercase : int = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=lowerCAmelCase , device_map=lowerCAmelCase , ) lowercase : List[str] = Accelerator() # This should work lowercase : List[Any] = accelerator.prepare(lowerCAmelCase ) @require_cuda def _lowerCAmelCase ( self : str ): lowercase : int = torch.nn.Linear(10 , 10 ) lowercase : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.01 ) lowercase : Union[str, Any] = Accelerator(cpu=lowerCAmelCase ) lowercase : Union[str, Any] = accelerator.prepare(lowerCAmelCase )
583
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __SCREAMING_SNAKE_CASE : Tuple =logging.getLogger(__name__) def UpperCamelCase__ ( lowerCAmelCase__=2 ,lowerCAmelCase__=3 ,lowerCAmelCase__=16 ,lowerCAmelCase__ = 10 ,lowerCAmelCase__ = 2 ): def get_dataset(lowerCAmelCase__ ): lowercase = torch.randn(batch_size * n_batches ,1 ) return TensorDataset(lowerCAmelCase__ ,a * x + b + 0.1 * torch.randn(batch_size * n_batches ,1 ) ) lowercase = get_dataset(lowerCAmelCase__ ) lowercase = get_dataset(lowerCAmelCase__ ) lowercase = DataLoader(lowerCAmelCase__ ,shuffle=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,num_workers=4 ) lowercase = DataLoader(lowerCAmelCase__ ,shuffle=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ): lowercase = [] for epoch in range(lowerCAmelCase__ ): # Train quickly model.train() for batch in dataloader: lowercase , lowercase = batch lowercase = model(lowerCAmelCase__ ) lowercase = torch.nn.functional.mse_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) accelerator.backward(lowerCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A_ ( nn.Module ): def __init__( self : Any ): super().__init__() lowercase = nn.Parameter(torch.randn(1 ) ) lowercase = nn.Parameter(torch.randn(1 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : Any ): return x * self.a + self.b class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase = dummy_dataloaders() lowercase = ProjectConfiguration(total_limit=1 , project_dir=snake_case__ , automatic_checkpoint_naming=snake_case__ ) # Train baseline lowercase = Accelerator(project_config=snake_case__ ) lowercase , lowercase , lowercase , lowercase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase = dummy_dataloaders() # Train baseline lowercase = Accelerator() lowercase , lowercase , lowercase , lowercase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save initial lowercase = os.path.join(snake_case__ , """initial""" ) accelerator.save_state(snake_case__ ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() lowercase = train(3 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() # Train partially set_seed(42 ) lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase = dummy_dataloaders() lowercase = Accelerator() lowercase , lowercase , lowercase , lowercase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) accelerator.load_state(snake_case__ ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) lowercase = train(2 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save everything lowercase = os.path.join(snake_case__ , """checkpoint""" ) accelerator.save_state(snake_case__ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case__ ) test_rands += train(1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase = dummy_dataloaders() lowercase = ProjectConfiguration(automatic_checkpoint_naming=snake_case__ ) # Train baseline lowercase = Accelerator(project_dir=snake_case__ , project_config=snake_case__ ) lowercase , lowercase , lowercase , lowercase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save initial accelerator.save_state() ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() lowercase = train(3 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() # Train partially set_seed(42 ) lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase , lowercase = dummy_dataloaders() lowercase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case__ ) lowercase = Accelerator(project_dir=snake_case__ , project_config=snake_case__ ) lowercase , lowercase , lowercase , lowercase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) accelerator.load_state(os.path.join(snake_case__ , """checkpoints""" , """checkpoint_0""" ) ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) lowercase = train(2 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case__ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase)) = model.a.item(), model.b.item() lowercase = optimizer.state_dict() self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowercase = torch.tensor([1, 2, 3] ) lowercase = torch.tensor([2, 3, 4] ) lowercase = DummyModel() lowercase = torch.optim.Adam(net.parameters() ) lowercase = Accelerator() with self.assertRaises(snake_case__ ) as ve: accelerator.register_for_checkpointing(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowercase = torch.optim.lr_scheduler.StepLR(snake_case__ , step_size=1 , gamma=0.99 ) lowercase , lowercase = dummy_dataloaders() lowercase = ProjectConfiguration(automatic_checkpoint_naming=snake_case__ ) # Train baseline lowercase = Accelerator(project_dir=snake_case__ , project_config=snake_case__ ) lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save initial accelerator.save_state() lowercase = scheduler.state_dict() train(3 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.assertNotEqual(snake_case__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case__ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(snake_case__ , scheduler.state_dict() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase = DummyModel() lowercase = ProjectConfiguration(automatic_checkpoint_naming=snake_case__ , total_limit=2 ) # Train baseline lowercase = Accelerator(project_dir=snake_case__ , project_config=snake_case__ ) lowercase = accelerator.prepare(snake_case__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case__ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = ["""torchrun""", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any ='''/tmp/accelerate/state_checkpointing''' __SCREAMING_SNAKE_CASE : Optional[Any] =DummyModel() __SCREAMING_SNAKE_CASE : int =torch.optim.Adam(params=model.parameters(), lr=1E-3) __SCREAMING_SNAKE_CASE : List[Any] =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] =dummy_dataloaders() __SCREAMING_SNAKE_CASE : Dict =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __SCREAMING_SNAKE_CASE : Union[str, Any] =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __SCREAMING_SNAKE_CASE : Dict =group['''params'''][0].device break assert param_device.type == accelerator.device.type __SCREAMING_SNAKE_CASE : Optional[int] =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: __SCREAMING_SNAKE_CASE : str =group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: __SCREAMING_SNAKE_CASE : Optional[int] =group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
72
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __SCREAMING_SNAKE_CASE : Any =logging.get_logger(__name__) # General docstring __SCREAMING_SNAKE_CASE : Union[str, Any] ='''PoolFormerConfig''' # Base docstring __SCREAMING_SNAKE_CASE : List[Any] ='''sail/poolformer_s12''' __SCREAMING_SNAKE_CASE : Union[str, Any] =[1, 512, 7, 7] # Image classification docstring __SCREAMING_SNAKE_CASE : Any ='''sail/poolformer_s12''' __SCREAMING_SNAKE_CASE : Union[str, Any] ='''tabby, tabby cat''' __SCREAMING_SNAKE_CASE : Tuple =[ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = 0.0 ,lowerCAmelCase__ = False ): if drop_prob == 0.0 or not training: return input lowercase = 1 - drop_prob lowercase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase = keep_prob + torch.rand(lowerCAmelCase__ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize lowercase = input.div(lowerCAmelCase__ ) * random_tensor return output class A_ ( nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : Optional[float] = None ): super().__init__() lowercase = drop_prob def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : torch.Tensor ): return drop_path(snake_case__ , self.drop_prob , self.training ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return "p={}".format(self.drop_prob ) class A_ ( nn.Module ): def __init__( self : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[str]=None ): super().__init__() lowercase = patch_size if isinstance(snake_case__ , collections.abc.Iterable ) else (patch_size, patch_size) lowercase = stride if isinstance(snake_case__ , collections.abc.Iterable ) else (stride, stride) lowercase = padding if isinstance(snake_case__ , collections.abc.Iterable ) else (padding, padding) lowercase = nn.Convad(snake_case__ , snake_case__ , kernel_size=snake_case__ , stride=snake_case__ , padding=snake_case__ ) lowercase = norm_layer(snake_case__ ) if norm_layer else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[Any] ): lowercase = self.projection(snake_case__ ) lowercase = self.norm(snake_case__ ) return embeddings class A_ ( nn.GroupNorm ): def __init__( self : Union[str, Any] , snake_case__ : Dict , **snake_case__ : List[str] ): super().__init__(1 , snake_case__ , **snake_case__ ) class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Any ): super().__init__() lowercase = nn.AvgPoolad(snake_case__ , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Union[str, Any] ): return self.pool(snake_case__ ) - hidden_states class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Any , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Dict ): super().__init__() lowercase = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase = PoolFormerDropPath(snake_case__ ) if isinstance(config.hidden_act , snake_case__ ): lowercase = ACTaFN[config.hidden_act] else: lowercase = config.hidden_act def SCREAMING_SNAKE_CASE__ ( self : int , snake_case__ : Dict ): lowercase = self.conva(snake_case__ ) lowercase = self.act_fn(snake_case__ ) lowercase = self.drop(snake_case__ ) lowercase = self.conva(snake_case__ ) lowercase = self.drop(snake_case__ ) return hidden_states class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[str] ): super().__init__() lowercase = PoolFormerPooling(snake_case__ ) lowercase = PoolFormerOutput(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase = PoolFormerGroupNorm(snake_case__ ) lowercase = PoolFormerGroupNorm(snake_case__ ) # Useful for training neural nets lowercase = PoolFormerDropPath(snake_case__ ) if drop_path > 0.0 else nn.Identity() lowercase = config.use_layer_scale if config.use_layer_scale: lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) , requires_grad=snake_case__ ) lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) , requires_grad=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : List[str] ): if self.use_layer_scale: lowercase = self.pooling(self.before_norm(snake_case__ ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase = hidden_states + self.drop_path(snake_case__ ) lowercase = () lowercase = self.output(self.after_norm(snake_case__ ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase = hidden_states + self.drop_path(snake_case__ ) lowercase = (output,) + outputs return outputs else: lowercase = self.drop_path(self.pooling(self.before_norm(snake_case__ ) ) ) # First residual connection lowercase = pooling_output + hidden_states lowercase = () # Second residual connection inside the PoolFormerOutput block lowercase = self.drop_path(self.output(self.after_norm(snake_case__ ) ) ) lowercase = hidden_states + layer_output lowercase = (output,) + outputs return outputs class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Optional[Any] ): super().__init__() lowercase = config # stochastic depth decay rule lowercase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowercase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowercase = nn.ModuleList(snake_case__ ) # Transformer blocks lowercase = [] lowercase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( snake_case__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(snake_case__ ) ) lowercase = nn.ModuleList(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True ): lowercase = () if output_hidden_states else None lowercase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowercase , lowercase = layers # Get patch embeddings from hidden_states lowercase = embedding_layer(snake_case__ ) # Send the embeddings through the blocks for _, blk in enumerate(snake_case__ ): lowercase = blk(snake_case__ ) lowercase = layer_outputs[0] if output_hidden_states: lowercase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) class A_ ( __a ): _A :Any = PoolFormerConfig _A :int = '''poolformer''' _A :Union[str, Any] = '''pixel_values''' _A :str = True def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Union[str, Any] ): if isinstance(snake_case__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Any , snake_case__ : Optional[int]=False ): if isinstance(snake_case__ , snake_case__ ): lowercase = value __SCREAMING_SNAKE_CASE : Optional[Any] =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __SCREAMING_SNAKE_CASE : str =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __a , ) class A_ ( __a ): def __init__( self : Union[str, Any] , snake_case__ : int ): super().__init__(snake_case__ ) lowercase = config lowercase = PoolFormerEncoder(snake_case__ ) # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowercase = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , ) lowercase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=snake_case__ , hidden_states=encoder_outputs.hidden_states , ) class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Optional[int] ): super().__init__() lowercase = nn.Linear(config.hidden_size , config.hidden_size ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : str ): lowercase = self.dense(snake_case__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __a , ) class A_ ( __a ): def __init__( self : Dict , snake_case__ : Any ): super().__init__(snake_case__ ) lowercase = config.num_labels lowercase = PoolFormerModel(snake_case__ ) # Final norm lowercase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.LongTensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.poolformer( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , ) lowercase = outputs[0] lowercase = self.classifier(self.norm(snake_case__ ).mean([-2, -1] ) ) lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase = """single_label_classification""" else: lowercase = """multi_label_classification""" if self.config.problem_type == "regression": lowercase = MSELoss() if self.num_labels == 1: lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase = loss_fct(snake_case__ , snake_case__ ) elif self.config.problem_type == "single_label_classification": lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase = BCEWithLogitsLoss() lowercase = loss_fct(snake_case__ , snake_case__ ) if not return_dict: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
72
1
__snake_case = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __snake_case = [None] * 10_000_000 __snake_case = True __snake_case = False def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCamelCase = chain(next_number(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = number_chain while number < 10_000_000: UpperCamelCase = number_chain number *= 10 return number_chain def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 10_000_000 ): """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
386
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = GPTSwaTokenizer lowercase = False lowercase = True lowercase = False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = GPTSwaTokenizer(__magic_name__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = """This is a test""" UpperCamelCase = """This is a test""" return input_text, output_text def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = """<s>""" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__magic_name__ ) , 2_0_0_0 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = GPTSwaTokenizer(__magic_name__ ) UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( __magic_name__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on UpperCamelCase = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(__magic_name__ ) # fmt: off self.assertListEqual( __magic_name__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = GPTSwaTokenizer(__magic_name__ ) UpperCamelCase = ["""This is a test""", """I was born in 92000, and this is falsé."""] UpperCamelCase = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__magic_name__ , __magic_name__ ): self.assertListEqual(tokenizer.encode_fast(__magic_name__ ) , __magic_name__ ) # Test that decode_fast returns the input text for text, token_ids in zip(__magic_name__ , __magic_name__ ): self.assertEqual(tokenizer.decode_fast(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off UpperCamelCase = {"""input_ids""": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=__magic_name__ , )
386
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( __lowerCAmelCase ): """simple docstring""" UpperCAmelCase__ : Dict = 4_2 UpperCAmelCase__ : List[str] = 4_2 def __init__( self , A_ , A_ ) -> Tuple: super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 2000 , A_ = None , A_ = "pil" , A_ = True , **A_ , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCamelCase =self.unet.config.sample_size __UpperCamelCase =(batch_size, 3, img_size, img_size) __UpperCamelCase =self.unet __UpperCamelCase =randn_tensor(_UpperCamelCase , generator=_UpperCamelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase =sample.to(self.device ) self.scheduler.set_timesteps(_UpperCamelCase ) self.scheduler.set_sigmas(_UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase =self.unet(_UpperCamelCase , _UpperCamelCase ).sample __UpperCamelCase =self.scheduler.step_correct(_UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample # prediction step __UpperCamelCase =model(_UpperCamelCase , _UpperCamelCase ).sample __UpperCamelCase =self.scheduler.step_pred(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) __UpperCamelCase =output.prev_sample, output.prev_sample_mean __UpperCamelCase =sample_mean.clamp(0 , 1 ) __UpperCamelCase =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase =self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_UpperCamelCase )
715
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
327
import unittest from transformers import DonutProcessor lowercase : Optional[int] = "naver-clova-ix/donut-base" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Tuple = DonutProcessor.from_pretrained(__UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Tuple = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } __UpperCamelCase : int = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) __UpperCamelCase : List[str] = self.processor.tokenajson(__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase , __UpperCamelCase )
327
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "facebook/bart-large-mnli" SCREAMING_SNAKE_CASE : int = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) SCREAMING_SNAKE_CASE : Union[str, Any] = "text_classifier" SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Union[str, Any] = ["text", ["text"]] SCREAMING_SNAKE_CASE : Dict = ["text"] def lowerCamelCase ( self ): super().setup() UpperCAmelCase__ : Tuple = self.model.config UpperCAmelCase__ : Dict = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): UpperCAmelCase__ : Optional[Any] = int(_UpperCAmelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Optional[int] = labels return self.pre_processor( [text] * len(_UpperCAmelCase ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Tuple = outputs.logits UpperCAmelCase__ : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
599
1
"""simple docstring""" class _lowerCAmelCase : def __init__( self , UpperCamelCase__ = "" , UpperCamelCase__ = False ) -> Any: '''simple docstring''' snake_case : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word snake_case : Tuple = is_leaf snake_case : Tuple = prefix def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : str = 0 for q, w in zip(self.prefix , _A ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' for word in words: self.insert(_A ) def lowerCamelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' if self.prefix == word: snake_case : Optional[int] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case : Tuple = RadixNode(prefix=_A , is_leaf=_A ) else: snake_case : Optional[int] = self.nodes[word[0]] snake_case : Optional[Any] = incoming_node.match( _A ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_A ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case : List[str] = remaining_prefix snake_case : str = self.nodes[matching_string[0]] snake_case : List[Any] = RadixNode(_A , _A ) snake_case : Tuple = aux_node if remaining_word == "": snake_case : int = True else: self.nodes[matching_string[0]].insert(_A ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = self.nodes.get(word[0] , _A ) if not incoming_node: return False else: snake_case : str = incoming_node.match( _A ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_A ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Tuple = self.nodes.get(word[0] , _A ) if not incoming_node: return False else: snake_case : Optional[int] = incoming_node.match( _A ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_A ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case : Dict = list(self.nodes.values() )[0] snake_case : int = merging_node.is_leaf self.prefix += merging_node.prefix snake_case : str = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case : Union[str, Any] = False # If there is 1 edge, we merge it with its child else: snake_case : int = list(incoming_node.nodes.values() )[0] snake_case : Optional[int] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case : Optional[Any] = merging_node.nodes return True def lowerCamelCase ( self , UpperCamelCase__ = 0 ) -> str: '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Any = "banana bananas bandana band apple all beast".split() snake_case : int = RadixNode() root.insert_many(lowercase ) assert all(root.find(lowercase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" assert test_trie() def __lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case : List[str] = RadixNode() snake_case : Any = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(lowercase ) print("Words:" , lowercase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
178
def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE_ : Optional[int] = True for i in range(lowerCAmelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE_ : int = True if a[i].islower(): SCREAMING_SNAKE_CASE_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
216
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _a: int = """<<<<<<< This should probably be modified because it mentions: """ _a: Union[str, Any] = """======= >>>>>>> """ _a: int = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] _a: int = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __lowerCAmelCase ( A ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __UpperCamelCase ( lowercase ): @staticmethod def __A ( lowerCAmelCase : ArgumentParser ): '''simple docstring''' UpperCAmelCase_ = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCAmelCase , required=lowerCAmelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCAmelCase , required=lowerCAmelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Any , lowerCAmelCase : str , lowerCAmelCase : str , *lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = get_logger("datasets-cli/converting" ) UpperCAmelCase_ = tfds_path UpperCAmelCase_ = datasets_directory def __A ( self : Union[str, Any] ): '''simple docstring''' if os.path.isdir(self._tfds_path ): UpperCAmelCase_ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase_ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) UpperCAmelCase_ = os.path.abspath(self._datasets_directory ) self._logger.info(F"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase_ = os.listdir(lowerCAmelCase ) else: UpperCAmelCase_ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"Looking at file {f_name}" ) UpperCAmelCase_ = os.path.join(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCAmelCase , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = [] for line in lines: UpperCAmelCase_ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase_ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here UpperCAmelCase_ = "" continue elif "from absl import logging" in out_line: UpperCAmelCase_ = "from datasets import logging\n" elif "getLogger" in out_line: UpperCAmelCase_ = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase_ = True UpperCAmelCase_ = list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + "\n" ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase_ = re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase_ = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) UpperCAmelCase_ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase_ = True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase_ = f_name.replace(".py" , "" ) UpperCAmelCase_ = os.path.join(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(F"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.writelines(lowerCAmelCase ) self._logger.info(F"Converted in {output_file}" ) for utils_file in utils_files: try: UpperCAmelCase_ = os.path.basename(lowerCAmelCase ) UpperCAmelCase_ = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F"Moving {dest_folder} to {utils_file}" ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(F"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
268
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a: List[Any] = logging.get_logger(__name__) _a: List[str] = """▁""" _a: Union[str, Any] = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } _a: Tuple = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } _a: Optional[int] = { """facebook/s2t-small-librispeech-asr""": 1024, } _a: List[Any] = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] _a: Tuple = {"""mustc""": MUSTC_LANGS} class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ = [] def __init__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Any="<pad>" , lowerCAmelCase : Union[str, Any]="<unk>" , lowerCAmelCase : Tuple=False , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Any , ): '''simple docstring''' UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , do_upper_case=lowerCAmelCase , do_lower_case=lowerCAmelCase , tgt_lang=lowerCAmelCase , lang_codes=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase_ = do_upper_case UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = load_json(lowerCAmelCase ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: UpperCAmelCase_ = lang_codes UpperCAmelCase_ = LANGUAGES[lang_codes] UpperCAmelCase_ = [F"<lang:{lang}>" for lang in self.langs] UpperCAmelCase_ = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} UpperCAmelCase_ = self.lang_tokens UpperCAmelCase_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCAmelCase_ = {} @property def __A ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) @property def __A ( self : Any ): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __A ( self : int , lowerCAmelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCAmelCase ) def __A ( self : List[Any] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ = [lang_code_id] def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def __A ( self : str , lowerCAmelCase : int ): '''simple docstring''' return self.encoder.get(lowerCAmelCase , self.encoder[self.unk_token] ) def __A ( self : Optional[Any] , lowerCAmelCase : int ): '''simple docstring''' return self.decoder.get(lowerCAmelCase , self.unk_token ) def __A ( self : Dict , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase_ = self.sp_model.decode(lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase_ = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase_ = self.sp_model.decode(lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __A ( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __A ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = [1] * len(self.prefix_tokens ) UpperCAmelCase_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Tuple , lowerCAmelCase : Dict ): '''simple docstring''' UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs ) def __A ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ = Path(lowerCAmelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" UpperCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (str(lowerCAmelCase ), str(lowerCAmelCase )) def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**A ) spm.Load(str(A ) ) return spm def __lowerCAmelCase ( A ): with open(A , "r" ) as f: return json.load(A ) def __lowerCAmelCase ( A , A ): with open(A , "w" ) as f: json.dump(A , A , indent=2 )
268
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _a : str = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 2048-bit 1_4: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 3072-bit 1_5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 4096-bit 1_6: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 6144-bit 1_7: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 8192-bit 1_8: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, } class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE = 14 ): '''simple docstring''' if group not in primes: raise ValueError("""Unsupported Group""" ) __lowerCAmelCase = primes[group]["""prime"""] __lowerCAmelCase = primes[group]["""generator"""] __lowerCAmelCase = int(hexlify(urandom(32 ) ),base=16 ) def lowerCamelCase__ ( self ): '''simple docstring''' return hex(self.__private_key )[2:] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = pow(self.generator,self.__private_key,self.prime ) return hex(__SCREAMING_SNAKE_CASE )[2:] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(__SCREAMING_SNAKE_CASE,(self.prime - 1) // 2,self.prime ) == 1 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = int(__SCREAMING_SNAKE_CASE,base=16 ) if not self.is_valid_public_key(__SCREAMING_SNAKE_CASE ): raise ValueError("""Invalid public key""" ) __lowerCAmelCase = pow(__SCREAMING_SNAKE_CASE,self.__private_key,self.prime ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(__SCREAMING_SNAKE_CASE,(prime - 1) // 2,__SCREAMING_SNAKE_CASE ) == 1 ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 14 ): '''simple docstring''' __lowerCAmelCase = int(__SCREAMING_SNAKE_CASE,base=16 ) __lowerCAmelCase = int(__SCREAMING_SNAKE_CASE,base=16 ) __lowerCAmelCase = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): raise ValueError("""Invalid public key""" ) __lowerCAmelCase = pow(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase_ ( lowercase__ , lowercase__): if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative") elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative") else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance)))), ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' class lowercase : '''simple docstring''' def __init__( self : Union[str, Any] ) -> None: '''simple docstring''' lowerCamelCase__ = {} # Mapping from char to TrieNode lowerCamelCase__ = False def a__ ( self : List[Any] , __lowerCamelCase : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(__lowerCamelCase ) def a__ ( self : int , __lowerCamelCase : str ) -> None: '''simple docstring''' lowerCamelCase__ = self for char in word: if char not in curr.nodes: lowerCamelCase__ = TrieNode() lowerCamelCase__ = curr.nodes[char] lowerCamelCase__ = True def a__ ( self : Optional[Any] , __lowerCamelCase : str ) -> bool: '''simple docstring''' lowerCamelCase__ = self for char in word: if char not in curr.nodes: return False lowerCamelCase__ = curr.nodes[char] return curr.is_leaf def a__ ( self : Optional[Any] , __lowerCamelCase : str ) -> None: '''simple docstring''' def _delete(__lowerCamelCase : TrieNode , __lowerCamelCase : str , __lowerCamelCase : int ) -> bool: if index == len(__lowerCamelCase ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase__ = False return len(curr.nodes ) == 0 lowerCamelCase__ = word[index] lowerCamelCase__ = curr.nodes.get(__lowerCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase__ = _delete(__lowerCamelCase , __lowerCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __lowerCamelCase , 0 ) def lowerCamelCase_ ( lowercase__ , lowercase__): if node.is_leaf: print(lowercase__ , end=" ") for key, value in node.nodes.items(): print_words(lowercase__ , word + key) def lowerCamelCase_ ( ): lowerCamelCase__ = "banana bananas bandana band apple all beast".split() lowerCamelCase__ = TrieNode() root.insert_many(lowercase__) # print_words(root, "") assert all(root.find(lowercase__) for word in words) assert root.find("banana") assert not root.find("bandanas") assert not root.find("apps") assert root.find("apple") assert root.find("all") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def lowerCamelCase_ ( lowercase__ , lowercase__): print(str(lowercase__) , "works!" if passes else "doesn't work :(") def lowerCamelCase_ ( ): assert test_trie() def lowerCamelCase_ ( ): print_results("Testing trie functionality" , test_trie()) if __name__ == "__main__": main()
187
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = """ylacombe/bark-small""" _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = """en_speaker_1""" _UpperCAmelCase = """This is a test string""" _UpperCAmelCase = """speaker_embeddings_path.json""" _UpperCAmelCase = """speaker_embeddings""" def lowerCAmelCase_ ( self : Tuple , **__lowerCAmelCase : List[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BarkProcessor(tokenizer=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _UpperCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase = 35 _UpperCAmelCase = 2 _UpperCAmelCase = 8 _UpperCAmelCase = { """semantic_prompt""": np.ones(__lowerCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) _UpperCAmelCase = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) _UpperCAmelCase = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BarkProcessor(tokenizer=__lowerCAmelCase ) _UpperCAmelCase = processor(text=self.input_string ) _UpperCAmelCase = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
277
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = False ): """simple docstring""" if radian_mode: return [magnitude * cos(lowercase ), magnitude * sin(lowercase )] return [magnitude * cos(radians(lowercase ) ), magnitude * sin(radians(lowercase ) )] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 10**-1 ): """simple docstring""" _UpperCAmelCase = cross(lowercase ,lowercase ) _UpperCAmelCase = sum(lowercase ) return abs(lowercase ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase__ = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) UpperCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase__ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) UpperCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase__ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) UpperCAmelCase__ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
277
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : str = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = '''canine''' def __init__( self : str , _snake_case : Dict=768 , _snake_case : int=12 , _snake_case : Optional[Any]=12 , _snake_case : List[str]=3072 , _snake_case : Any="gelu" , _snake_case : List[Any]=0.1 , _snake_case : List[Any]=0.1 , _snake_case : Any=1_6384 , _snake_case : Union[str, Any]=16 , _snake_case : str=0.02 , _snake_case : Any=1E-1_2 , _snake_case : Tuple=0 , _snake_case : Dict=0XE_0_0_0 , _snake_case : int=0XE_0_0_1 , _snake_case : List[str]=4 , _snake_case : Optional[Any]=4 , _snake_case : Union[str, Any]=8 , _snake_case : Optional[int]=1_6384 , _snake_case : Tuple=128 , **_snake_case : Optional[Any] , ): super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) __lowercase : int = max_position_embeddings __lowercase : List[Any] = hidden_size __lowercase : str = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Union[str, Any] = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Optional[int] = initializer_range __lowercase : List[Any] = type_vocab_size __lowercase : List[str] = layer_norm_eps # Character config: __lowercase : Union[str, Any] = downsampling_rate __lowercase : Union[str, Any] = upsampling_kernel_size __lowercase : Optional[int] = num_hash_functions __lowercase : List[Any] = num_hash_buckets __lowercase : int = local_transformer_stride
709
from __future__ import annotations def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not nums: return 0 __lowercase : List[Any] = nums[0] __lowercase : Union[str, Any] = 0 for num in nums[1:]: __lowercase , __lowercase : Dict = ( max_excluding + num, max(__lowerCAmelCase , __lowerCAmelCase ), ) return max(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
284
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = hf_hub_url(repo_id=SCREAMING_SNAKE_CASE , path=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(SCREAMING_SNAKE_CASE )}'''
590
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Dict: '''simple docstring''' super().tearDown() gc.collect() def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ , A_ : List[Any] = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ , A_ : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ : int = controlnet_params A_ : Union[str, Any] = '''bird''' A_ : Any = jax.device_count() A_ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) A_ : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) A_ : Dict = jax.random.PRNGKey(0 ) A_ : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) A_ : Optional[Any] = replicate(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = shard(_SCREAMING_SNAKE_CASE ) A_ : Dict = shard(_SCREAMING_SNAKE_CASE ) A_ : Any = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) A_ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A_ : List[Any] = images[0, 253:256, 253:256, -1] A_ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ : Union[str, Any] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _snake_case ( self )->List[str]: '''simple docstring''' A_ , A_ : Optional[int] = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ , A_ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) A_ : str = controlnet_params A_ : Tuple = '''Chef in the kitchen''' A_ : List[str] = jax.device_count() A_ : Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) A_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) A_ : List[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) A_ : List[str] = jax.random.PRNGKey(0 ) A_ : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) A_ : Dict = replicate(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = shard(_SCREAMING_SNAKE_CASE ) A_ : Any = shard(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) A_ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A_ : int = images[0, 253:256, 253:256, -1] A_ : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ : Optional[Any] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
590
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase__ : def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : List[Any] ): '''simple docstring''' raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' raise NotImplementedError() class UpperCamelCase__ ( __A ): def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple = False , **UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = tokenizer lowercase_ = skip_prompt lowercase_ = decode_kwargs # variables used in the streaming process lowercase_ = [] lowercase_ = 0 lowercase_ = True def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase_ = text[self.print_len :] lowercase_ = [] lowercase_ = 0 # If the last token is a CJK character, we print the characters. elif len(UpperCamelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase_ = text[self.print_len :] self.print_len += len(UpperCamelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase_ = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(UpperCamelCase__ ) self.on_finalized_text(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if len(self.token_cache ) > 0: lowercase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase_ = text[self.print_len :] lowercase_ = [] lowercase_ = 0 else: lowercase_ = '' lowercase_ = True self.on_finalized_text(UpperCamelCase__ , stream_end=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str = False ): '''simple docstring''' print(UpperCamelCase__ , flush=UpperCamelCase__ , end="""""" if not stream_end else None ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class UpperCamelCase__ ( __A ): def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] = False , UpperCamelCase__ : Union[str, Any] = None , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = Queue() lowercase_ = None lowercase_ = timeout def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any = False ): '''simple docstring''' self.text_queue.put(UpperCamelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[Any] ): '''simple docstring''' return self def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' for attribute in key.split(""".""" ): lowercase__ : Union[str, Any] = getattr(lowercase_ , lowercase_ ) if weight_type is not None: lowercase__ : str = getattr(lowercase_ , lowercase_ ).shape else: lowercase__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ : Union[str, Any] = value elif weight_type == "weight_g": lowercase__ : str = value elif weight_type == "weight_v": lowercase__ : str = value elif weight_type == "bias": lowercase__ : Optional[int] = value else: lowercase__ : Any = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = fairseq_model.state_dict() lowercase__ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ : str = True else: for key, mapped_key in MAPPING.items(): lowercase__ : Optional[int] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ : Tuple = True if "*" in mapped_key: lowercase__ : Optional[Any] = name.split(lowercase_ )[0].split(""".""" )[-2] lowercase__ : Optional[Any] = mapped_key.replace("""*""" , lowercase_ ) if "weight_g" in name: lowercase__ : Optional[int] = """weight_g""" elif "weight_v" in name: lowercase__ : Dict = """weight_v""" elif "weight" in name: lowercase__ : List[str] = """weight""" elif "bias" in name: lowercase__ : str = """bias""" else: lowercase__ : List[Any] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = full_name.split("""conv_layers.""" )[-1] lowercase__ : int = name.split(""".""" ) lowercase__ : Union[str, Any] = int(items[0] ) lowercase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ : Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ : Optional[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Optional[Any] = SEWConfig() if is_finetuned: lowercase__ : Any = model.wav_encoder.wav_model.cfg else: lowercase__ : Dict = model.cfg lowercase__ : Optional[Any] = fs_config.conv_bias lowercase__ : Tuple = eval(fs_config.conv_feature_layers ) lowercase__ : List[str] = [x[0] for x in conv_layers] lowercase__ : Dict = [x[1] for x in conv_layers] lowercase__ : Tuple = [x[2] for x in conv_layers] lowercase__ : List[str] = """gelu""" lowercase__ : Union[str, Any] = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase__ : Union[str, Any] = 0.0 lowercase__ : Tuple = fs_config.activation_fn.name lowercase__ : Tuple = fs_config.encoder_embed_dim lowercase__ : List[str] = 0.02 lowercase__ : Optional[Any] = fs_config.encoder_ffn_embed_dim lowercase__ : Optional[Any] = 1E-5 lowercase__ : List[Any] = fs_config.encoder_layerdrop lowercase__ : Any = fs_config.encoder_attention_heads lowercase__ : Any = fs_config.conv_pos_groups lowercase__ : Dict = fs_config.conv_pos lowercase__ : List[Any] = len(lowercase_ ) lowercase__ : Union[str, Any] = fs_config.encoder_layers lowercase__ : Optional[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase__ : Optional[Any] = model.cfg lowercase__ : Union[str, Any] = fs_config.final_dropout lowercase__ : int = fs_config.layerdrop lowercase__ : int = fs_config.activation_dropout lowercase__ : Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase__ : Tuple = fs_config.attention_dropout lowercase__ : Any = fs_config.dropout_input lowercase__ : Any = fs_config.dropout lowercase__ : Dict = fs_config.mask_channel_length lowercase__ : Optional[int] = fs_config.mask_channel_prob lowercase__ : Any = fs_config.mask_length lowercase__ : Dict = fs_config.mask_prob lowercase__ : Dict = """Wav2Vec2FeatureExtractor""" lowercase__ : List[Any] = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> int: '''simple docstring''' if is_finetuned: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase__ , lowercase__ , lowercase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase__ : Optional[Any] = SEWConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = convert_config(model[0] , lowercase_ ) lowercase__ : Dict = model[0].eval() lowercase__ : Any = True if config.feat_extract_norm == """layer""" else False lowercase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) if is_finetuned: if dict_path: lowercase__ : Optional[int] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : List[Any] = target_dict.pad_index lowercase__ : int = target_dict.bos_index lowercase__ : Optional[Any] = target_dict.pad_index lowercase__ : List[str] = target_dict.bos_index lowercase__ : Optional[int] = target_dict.eos_index lowercase__ : Union[str, Any] = len(target_dict.symbols ) lowercase__ : Optional[int] = os.path.join(lowercase_ , """vocab.json""" ) if not os.path.isdir(lowercase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowercase_ ) lowercase__ : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase_ , ) lowercase__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) lowercase__ : List[str] = SEWForCTC(lowercase_ ) else: lowercase__ : str = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase__ : Optional[int] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
12
from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" _A = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _A = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _A = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
27
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase: Any = logging.get_logger(__name__) lowerCAmelCase: List[Any] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class a__( lowerCamelCase__ ): lowercase__ = """mctct""" def __init__( self : List[Any] , __snake_case : Union[str, Any]=80_65 , __snake_case : Tuple=15_36 , __snake_case : Optional[Any]=36 , __snake_case : str=61_44 , __snake_case : List[Any]=4 , __snake_case : Union[str, Any]=3_84 , __snake_case : Union[str, Any]=9_20 , __snake_case : Union[str, Any]=1e-5 , __snake_case : int=0.3 , __snake_case : Any="relu" , __snake_case : Optional[Any]=0.02 , __snake_case : List[str]=0.3 , __snake_case : Any=0.3 , __snake_case : str=1 , __snake_case : Union[str, Any]=0 , __snake_case : Optional[int]=2 , __snake_case : Any=1 , __snake_case : List[Any]=0.3 , __snake_case : Any=1 , __snake_case : Dict=(7,) , __snake_case : Union[str, Any]=(3,) , __snake_case : Optional[Any]=80 , __snake_case : int=1 , __snake_case : Optional[int]=None , __snake_case : str="sum" , __snake_case : str=False , **__snake_case : Tuple , ): super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) a : Any = vocab_size a : Dict = hidden_size a : Any = num_hidden_layers a : List[Any] = intermediate_size a : Optional[int] = num_attention_heads a : Tuple = attention_head_dim a : Optional[int] = max_position_embeddings a : Any = layer_norm_eps a : List[Any] = layerdrop a : Union[str, Any] = hidden_act a : Dict = initializer_range a : Dict = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Union[str, Any] = pad_token_id a : List[Any] = bos_token_id a : List[str] = eos_token_id a : Dict = conv_glu_dim a : List[str] = conv_dropout a : List[Any] = num_conv_layers a : Optional[int] = input_feat_per_channel a : List[Any] = input_channels a : List[Any] = conv_channels a : Optional[Any] = ctc_loss_reduction a : List[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json a : Optional[int] = list(__snake_case ) a : List[str] = list(__snake_case ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
705
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase: List[str] = TypeVar('T') def lowerCamelCase__ ( _A ): return (position - 1) // 2 def lowerCamelCase__ ( _A ): return (2 * position) + 1 def lowerCamelCase__ ( _A ): return (2 * position) + 2 class a__( Generic[T] ): def __init__( self : Optional[Any] ): a : list[tuple[T, int]] = [] a : dict[T, int] = {} a : int = 0 def __len__( self : Union[str, Any] ): return self.elements def __repr__( self : Any ): return str(self.heap ) def lowercase_ ( self : Optional[int] ): # Check if the priority queue is empty return self.elements == 0 def lowercase_ ( self : Union[str, Any] , __snake_case : T , __snake_case : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) a : int = self.elements self.elements += 1 self._bubble_up(__snake_case ) def lowercase_ ( self : Union[str, Any] ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) a , a : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: a , a : List[Any] = self.heap[0] self._bubble_down(__snake_case ) return elem def lowercase_ ( self : List[str] , __snake_case : T , __snake_case : int ): # Update the weight of the given key a : Any = self.position_map[elem] a : Union[str, Any] = (elem, weight) if position > 0: a : Optional[Any] = get_parent_position(__snake_case ) a , a : Union[str, Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__snake_case ) else: self._bubble_down(__snake_case ) else: self._bubble_down(__snake_case ) def lowercase_ ( self : int , __snake_case : T ): # Place a node at the proper position (upward movement) [to be used internally # only] a : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None a : Union[str, Any] = get_parent_position(__snake_case ) a , a : Tuple = self.heap[curr_pos] a , a : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_up(__snake_case ) return None def lowercase_ ( self : Tuple , __snake_case : T ): # Place a node at the proper position (downward movement) [to be used # internally only] a : str = self.position_map[elem] a , a : List[Any] = self.heap[curr_pos] a : int = get_child_left_position(__snake_case ) a : Dict = get_child_right_position(__snake_case ) if child_left_position < self.elements and child_right_position < self.elements: a , a : int = self.heap[child_left_position] a , a : Optional[Any] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_down(__snake_case ) if child_left_position < self.elements: a , a : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_down(__snake_case ) else: return None if child_right_position < self.elements: a , a : List[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_down(__snake_case ) return None def lowercase_ ( self : List[Any] , __snake_case : int , __snake_case : int ): # Swap the nodes at the given positions a : Optional[int] = self.heap[nodea_pos][0] a : int = self.heap[nodea_pos][0] a , a : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) a : Tuple = nodea_pos a : Any = nodea_pos class a__( Generic[T] ): def __init__( self : Optional[int] ): a : dict[T, dict[T, int]] = {} a : int = 0 def __repr__( self : List[str] ): return str(self.connections ) def __len__( self : str ): return self.nodes def lowercase_ ( self : int , __snake_case : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: a : Optional[int] = {} self.nodes += 1 def lowercase_ ( self : Dict , __snake_case : T , __snake_case : T , __snake_case : int ): # Add an edge between 2 nodes in the graph self.add_node(__snake_case ) self.add_node(__snake_case ) a : Any = weight a : Dict = weight def lowerCamelCase__ ( _A , ): a : dict[T, int] = {node: maxsize for node in graph.connections} a : dict[T, T | None] = {node: None for node in graph.connections} a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_A , _A ) if priority_queue.is_empty(): return dist, parent # initialization a : int = priority_queue.extract_min() a : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_A , dist[neighbour] ) a : Dict = node # running prim's algorithm while not priority_queue.is_empty(): a : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_A , dist[neighbour] ) a : Optional[int] = node return dist, parent
195
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = [] for line in lines: _lowerCamelCase : List[str] = re.sub(r"#.*" , "" , _lowerCAmelCase ) # remove comments if line: filtered_lines.append(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "\n".join(_lowerCAmelCase ) # Make a hash from all this code _lowerCamelCase : Tuple = full_str.encode("utf-8" ) return shaaaa(_lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : int = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Union[str, Any] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Dict = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
44
def A__ ( snake_case_ : float , snake_case_ : float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
64
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib SCREAMING_SNAKE_CASE_ = threading.Lock() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } SCREAMING_SNAKE_CASE_ = logging.WARNING SCREAMING_SNAKE_CASE_ = True def A__ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = os.getenv("TRANSFORMERS_VERBOSITY" , A__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def A__ ( ) -> str: '''simple docstring''' return __name__.split("." )[0] def A__ ( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def A__ ( ) -> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _UpperCAmelCase = logging.StreamHandler() # Set sys.stderr as stream. _UpperCAmelCase = sys.stderr.flush # Apply our default configuration to the library root logger. _UpperCAmelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _UpperCAmelCase = False def A__ ( ) -> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return _UpperCAmelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _UpperCAmelCase = None def A__ ( ) -> Tuple: '''simple docstring''' return log_levels def A__ ( A__ = None ) -> logging.Logger: '''simple docstring''' if name is None: _UpperCAmelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(A__ ) def A__ ( ) -> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A__ ( A__ ) -> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(A__ ) def A__ ( ) -> int: '''simple docstring''' return set_verbosity(A__ ) def A__ ( ) -> Optional[Any]: '''simple docstring''' return set_verbosity(A__ ) def A__ ( ) -> Dict: '''simple docstring''' return set_verbosity(A__ ) def A__ ( ) -> Union[str, Any]: '''simple docstring''' return set_verbosity(A__ ) def A__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A__ ( A__ ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(A__ ) def A__ ( A__ ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(A__ ) def A__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() _UpperCAmelCase = False def A__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() _UpperCAmelCase = True def A__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = _get_library_root_logger().handlers for handler in handlers: _UpperCAmelCase = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(A__ ) def A__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(A__ ) def A__ ( self , *A__ , **A__ ) -> int: '''simple docstring''' _UpperCAmelCase = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , A__ ) if no_advisory_warnings: return self.warning(*A__ , **A__ ) SCREAMING_SNAKE_CASE_ = warning_advice @functools.lru_cache(A__ ) def A__ ( self , *A__ , **A__ ) -> Optional[int]: '''simple docstring''' self.warning(*A__ , **A__ ) SCREAMING_SNAKE_CASE_ = warning_once class a : """simple docstring""" def __init__( self , *snake_case_ , **snake_case_ ) -> Dict: # pylint: disable=unused-argument _UpperCAmelCase = args[0] if args else None def __iter__( self ) -> int: return iter(self._iterator ) def __getattr__( self , snake_case_ ) -> Any: def empty_fn(*snake_case_ , **snake_case_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> List[str]: return self def __exit__( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: return class a : """simple docstring""" def __call__( self , *snake_case_ , **snake_case_ ) -> Dict: if _tqdm_active: return tqdm_lib.tqdm(*snake_case_ , **snake_case_ ) else: return EmptyTqdm(*snake_case_ , **snake_case_ ) def __A ( self , *snake_case_ , **snake_case_ ) -> Dict: _UpperCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case_ , **snake_case_ ) def __A ( self ) -> str: if _tqdm_active: return tqdm_lib.tqdm.get_lock() SCREAMING_SNAKE_CASE_ = _tqdm_cls() def A__ ( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def A__ ( ) -> Tuple: '''simple docstring''' global _tqdm_active _UpperCAmelCase = True hf_hub_utils.enable_progress_bars() def A__ ( ) -> int: '''simple docstring''' global _tqdm_active _UpperCAmelCase = False hf_hub_utils.disable_progress_bars()
700
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } SCREAMING_SNAKE_CASE_ = {'''mobilebert-uncased''': 512} SCREAMING_SNAKE_CASE_ = {} class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = MobileBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case_ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case_ ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(snake_case_ , normalizer_state.pop("type" ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**snake_case_ ) _UpperCAmelCase = do_lower_case def __A ( self , snake_case_ , snake_case_=None ) -> List[str]: _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , snake_case_ , snake_case_ = None ) -> List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
579
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Any = {'''cls_token''': '''<s>'''} def __UpperCAmelCase ( self : List[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase = dict(zip(__A ,range(len(__A ) ) ) ) _lowercase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase = {'unk_token': '<unk>'} _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def __UpperCAmelCase ( self : List[str] ,**__A : List[Any] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Union[str, Any] ,**__A : Any ) -> str: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : str ,__A : List[str] ) -> List[Any]: _lowercase = 'lower newer' _lowercase = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: _lowercase = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase = 'lower newer' _lowercase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A ,__A ) _lowercase = tokens + [tokenizer.unk_token] _lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) ,__A ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _lowercase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=__A ) ,[0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=__A ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: _lowercase = self.tokenizer_class.from_pretrained('roberta-base' ) _lowercase = tokenizer.encode('sequence builders' ,add_special_tokens=__A ) _lowercase = tokenizer.encode('multi-sequence build' ,add_special_tokens=__A ) _lowercase = tokenizer.encode( 'sequence builders' ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ,__A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: _lowercase = self.get_tokenizer() _lowercase = 'Encode this sequence.' _lowercase = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase = tokenizer.encode(__A ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A ,__A ) _lowercase = tokenizer.encode(__A ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A ,__A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase = tokenizer.encode(__A ,add_special_tokens=__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A ,__A ) # Testing spaces after special tokens _lowercase = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__A ,lstrip=__A ,rstrip=__A )} ) # mask token has a left space _lowercase = tokenizer.convert_tokens_to_ids(__A ) _lowercase = 'Encode <mask> sequence' _lowercase = 'Encode <mask>sequence' _lowercase = tokenizer.encode(__A ) _lowercase = encoded.index(__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A ,__A ) _lowercase = tokenizer.encode(__A ) _lowercase = encoded.index(__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A ,__A ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: pass def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = self.rust_tokenizer_class.from_pretrained(__A ,**__A ) _lowercase = self.tokenizer_class.from_pretrained(__A ,**__A ) _lowercase = 'A, <mask> AllenNLP sentence.' _lowercase = tokenizer_r.encode_plus(__A ,add_special_tokens=__A ,return_token_type_ids=__A ) _lowercase = tokenizer_p.encode_plus(__A ,add_special_tokens=__A ,return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __A ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __A ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __UpperCAmelCase ( self : int ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): _lowercase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,__A ) self.assertEqual(post_processor_state['add_prefix_space'] ,__A ) self.assertEqual(post_processor_state['trim_offsets'] ,__A ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase = F"""{text_of_1_token} {text_of_1_token}""" _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ), len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ), len(__A ) + 1 + len(__A )) ,) _lowercase = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) ,)
67
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" def merge(UpperCAmelCase__ ,UpperCAmelCase__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case : Any = input('Enter numbers separated by a comma:\n').strip() snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
605
0
import functools def UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A= len(lowerCAmelCase_ ) _A= len(lowerCAmelCase_ ) @functools.cache def min_distance(lowerCAmelCase_ , lowerCAmelCase_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _A= int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCAmelCase_ ) , 1 + min_distance(lowerCAmelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
709
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def a__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase__ ): _A= AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _A= FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def a__ ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase__ ): _A= AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _A= FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def a__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: _A= AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _A= FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _A= tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() @slow def a__ ( self ): for model_name in ["roberta-base", "roberta-large"]: _A= AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _A= FlaxRobertaModel.from_pretrained(lowerCAmelCase__ ) _A= tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() def a__ ( self ): with self.assertRaisesRegex( lowerCAmelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): _A= FlaxAutoModel.from_pretrained('bert-base' ) def a__ ( self ): with self.assertRaisesRegex( lowerCAmelCase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _A= FlaxAutoModel.from_pretrained(lowerCAmelCase__ , revision='aaaaaa' ) def a__ ( self ): with self.assertRaisesRegex( lowerCAmelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _A= FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self ): with self.assertRaisesRegex(lowerCAmelCase__ , 'Use `from_pt=True` to load this model' ): _A= FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
476
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "canine" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=16384 , _lowerCAmelCase=16 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase=0XE0_00 , _lowerCAmelCase=0XE0_01 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=8 , _lowerCAmelCase=16384 , _lowerCAmelCase=128 , **_lowerCAmelCase , ) -> List[Any]: super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps # Character config: _lowerCAmelCase = downsampling_rate _lowerCAmelCase = upsampling_kernel_size _lowerCAmelCase = num_hash_functions _lowerCAmelCase = num_hash_buckets _lowerCAmelCase = local_transformer_stride
18
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE : Tuple = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE : Any = { 'openbmb/cpm-ant-10b': 10_24, } def UpperCAmelCase__ ( __magic_name__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase : int = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowerCAmelCase : int = reader.readlines() for index, token in enumerate(__magic_name__ ): lowerCAmelCase : str = token.rstrip('''\n''' ) lowerCAmelCase : Tuple = index return vocab class __magic_name__ ( snake_case ): def __init__( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : Union[str, Any]=2_0_0 ): lowerCAmelCase : Union[str, Any] = vocab lowerCAmelCase : int = unk_token lowerCAmelCase : List[str] = max_input_chars_per_word def _A ( self : List[Any] , lowerCamelCase__ : List[str] ): lowerCAmelCase : str = list(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase : str = 0 lowerCAmelCase : Dict = [] while start < len(lowerCamelCase__ ): lowerCAmelCase : Dict = len(lowerCamelCase__ ) lowerCAmelCase : Optional[Any] = None while start < end: lowerCAmelCase : Tuple = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase__ ) lowerCAmelCase : List[Any] = end return sub_tokens class __magic_name__ ( snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = False def __init__( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str="<d>" , lowerCamelCase__ : Any="</d>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : Any="<unk>" , lowerCamelCase__ : Union[str, Any]="</n>" , lowerCamelCase__ : Dict="</_>" , lowerCamelCase__ : Optional[int]="left" , **lowerCamelCase__ : Optional[int] , ): requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=lowerCamelCase__ , eod_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , line_token=lowerCamelCase__ , space_token=lowerCamelCase__ , padding_side=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase : Tuple = bod_token lowerCAmelCase : Tuple = eod_token lowerCAmelCase : Union[str, Any] = load_vocab(lowerCamelCase__ ) lowerCAmelCase : Any = self.encoder[space_token] lowerCAmelCase : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase__ : x[1] ) ) lowerCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _A ( self : Optional[Any] ): return self.encoder[self.bod_token] @property def _A ( self : int ): return self.encoder[self.eod_token] @property def _A ( self : int ): return self.encoder["\n"] @property def _A ( self : Any ): return len(self.encoder ) def _A ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _A ( self : str , lowerCamelCase__ : int ): lowerCAmelCase : Optional[Any] = [] for x in jieba.cut(lowerCamelCase__ , cut_all=lowerCamelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase__ ) ) return output_tokens def _A ( self : int , lowerCamelCase__ : Tuple , **lowerCamelCase__ : Any ): lowerCAmelCase : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : Optional[int] , lowerCamelCase__ : Any ): return token in self.encoder def _A ( self : Optional[Any] , lowerCamelCase__ : List[str] ): return "".join(lowerCamelCase__ ) def _A ( self : Tuple , lowerCamelCase__ : Optional[Any] ): return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def _A ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] ): return self.decoder.get(lowerCamelCase__ , self.unk_token ) def _A ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): if os.path.isdir(lowerCamelCase__ ): lowerCAmelCase : List[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCAmelCase : str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCAmelCase : Tuple = 0 if " " in self.encoder: lowerCAmelCase : Optional[int] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase : List[Any] = self.encoder['''\n'''] del self.encoder["\n"] lowerCAmelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase__ : x[1] ) ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowerCAmelCase : int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _A ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _A ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) return [1] + ([0] * len(lowerCamelCase__ ))
348
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCamelCase__ = logging.getLogger(__name__) UpperCamelCase__ = tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> int: __lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowercase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowercase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowercase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowercase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowercase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowercase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowercase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowercase__ , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowercase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowercase__ , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowercase__ , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowercase__ , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowercase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowercase__ , required=lowercase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowercase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) __lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowercase__ ) -> List[str]: try: if args.tpu_name: __lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def UpperCAmelCase__ ( lowercase__ ) -> int: __lowercase = 0 for file in file_list: __lowercase = file.split("""/""" )[-1] __lowercase = re.search(r"""-\d+-(\d+)\.tfrecord""" , lowercase__ ).group(1 ) __lowercase = int(lowercase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ) -> Dict: __lowercase = count_samples(lowercase__ ) __lowercase = tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: __lowercase = dataset.shuffle(len(lowercase__ ) ) __lowercase = tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) __lowercase = dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None __lowercase = dataset.shuffle(args.shuffle_buffer_size ) __lowercase = dataset.batch(lowercase__ , drop_remainder=lowercase__ ) __lowercase = dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) __lowercase = dataset.prefetch(lowercase__ ) return dataset def UpperCAmelCase__ ( lowercase__ ) -> List[Any]: if not args.no_tpu: __lowercase = initialize_tpu(lowercase__ ) __lowercase = tf.distribute.TPUStrategy(lowercase__ ) else: __lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) __lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) __lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) __lowercase = tokenizer.vocab_size __lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) __lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) __lowercase = count_samples(lowercase__ ) __lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): __lowercase = TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowercase , __lowercase = create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["""accuracy"""] ) def decode_fn(lowercase__ ): __lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowercase = DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="""tf""" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function __lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) __lowercase , __lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch __lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync __lowercase = prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) __lowercase = prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) __lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCamelCase__ = parse_args() main(args)
634
def UpperCAmelCase__ ( lowercase__ , lowercase__ ) -> int: if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) __lowercase = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
634
1
'''simple docstring''' UpperCAmelCase_ : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCAmelCase_ : str = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCAmelCase_ : str = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCAmelCase_ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCAmelCase_ : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCAmelCase_ : List[str] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
44
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' if len(a__) == 0: return [] a_ , a_ : List[Any] = min(a__), max(a__) a_ : Tuple = int(max_value - min_value) + 1 a_ : list[list] = [[] for _ in range(a__)] for i in my_list: buckets[int(i - min_value)].append(a__) return [v for bucket in buckets for v in sorted(a__)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
540
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Dict=30 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : str=True , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Optional[int]=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Tuple=None , ) -> Any: '''simple docstring''' __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase =(image_size // patch_size) ** 2 __UpperCamelCase =num_patches + 1 def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =TFViTModel(config=UpperCamelCase__ ) __UpperCamelCase =model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __UpperCamelCase =self.image_size // 2 __UpperCamelCase =pixel_values[:, :, :image_size, :image_size] __UpperCamelCase =model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) __UpperCamelCase =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =TFViTForImageClassification(UpperCamelCase__ ) __UpperCamelCase =model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __UpperCamelCase =self.image_size // 2 __UpperCamelCase =pixel_values[:, :, :image_size, :image_size] __UpperCamelCase =model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase =1 __UpperCamelCase =TFViTForImageClassification(UpperCamelCase__ ) __UpperCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowercase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase_ ( self : List[str] ) -> str: '''simple docstring''' __UpperCamelCase =TFViTModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' pass def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' __UpperCamelCase =TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' __UpperCamelCase =TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=UpperCamelCase__ , return_tensors='''tf''' ) # forward pass __UpperCamelCase =model(**UpperCamelCase__ ) # verify the logits __UpperCamelCase =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __UpperCamelCase =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 )
701
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowercase = 299_792_458 # Symbols __lowercase , __lowercase , __lowercase , __lowercase = symbols('''ct x y z''') def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return 1 / sqrt(1 - beta(__UpperCamelCase ) ** 2 ) def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return np.array( [ [gamma(__UpperCamelCase ), -gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), 0, 0], [-gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), gamma(__UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase (__UpperCamelCase : float , __UpperCamelCase : np.ndarray | None = None ): """simple docstring""" if event is None: __UpperCamelCase =np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowercase = transform(29_979_245) print('''Example of four vector: ''') print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __lowercase = {ct: c, x: 1, y: 1, z: 1} __lowercase = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
296
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } _UpperCamelCase = { """Salesforce/codegen-350M-mono""": 2048, } class __magic_name__ ( snake_case_ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = CodeGenTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<|endoftext|>" , lowerCamelCase="<|endoftext|>" , lowerCamelCase="<|endoftext|>" , lowerCamelCase=False , **lowerCamelCase , ): '''simple docstring''' super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) if kwargs.pop("add_bos_token" , lowerCamelCase ): __A : Tuple = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __A : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: __A : str = getattr(lowerCamelCase , pre_tok_state.pop("type" ) ) __A : int = add_prefix_space __A : int = pre_tok_class(**lowerCamelCase ) __A : Union[str, Any] = add_prefix_space def lowerCAmelCase__ ( self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' __A : Any = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase__ ( self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' __A : int = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' __A : Any = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' __A : Dict = super().decode( token_ids=lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase , **lowerCamelCase , ) if truncate_before_pattern is not None and len(lowerCamelCase ) > 0: __A : str = self.truncate(lowerCamelCase , lowerCamelCase ) return decoded_text def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' def find_re(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __A : Dict = pattern.search(lowerCamelCase , lowerCamelCase ) return m.start() if m else -1 __A : List[Any] = [re.compile(lowerCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern] __A : Any = list(re.finditer("^print" , lowerCamelCase , re.MULTILINE ) ) if len(lowerCamelCase ) > 1: __A : Optional[Any] = completion[: prints[1].start()] __A : Any = list(re.finditer("^def" , lowerCamelCase , re.MULTILINE ) ) if len(lowerCamelCase ) > 1: __A : str = completion[: defs[1].start()] __A : Tuple = 0 __A : List[Any] = [ pos for pos in [find_re(lowerCamelCase , lowerCamelCase , lowerCamelCase ) for terminal in terminals] if pos != -1 ] if len(lowerCamelCase ) > 0: return completion[: min(lowerCamelCase )] else: return completion
111
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
417
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase = logging.getLogger(__name__) @dataclass class __A : """simple docstring""" A_ = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) A_ = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) A_ = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A_ = field( default=a , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) A_ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A_ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) A_ = field( default=a , metadata={'help': 'A csv or a json file containing the training data.'} ) A_ = field( default=a , metadata={'help': 'A csv or a json file containing the validation data.'} ) A_ = field(default=a , metadata={'help': 'A csv or a json file containing the test data.'} ) def snake_case_( self )-> Tuple: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowercase__ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __A : """simple docstring""" A_ = field( default=a , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ = field( default=a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ = field( default=a , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) A_ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _lowerCAmelCase ( ) ->Any: """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__ = data_args.train_file.split('''.''' )[-1] lowercase__ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowercase__ = load_dataset('''csv''' , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__ = load_dataset('''json''' , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__ = raw_datasets['''train'''].features['''label'''].names lowercase__ = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) lowercase__ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__ = {'''Refused''': 0, '''Entailed''': 1} lowercase__ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase__ = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase : Tuple ): lowercase__ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowercase__ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__ = examples['''statement'''] lowercase__ = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) lowercase__ = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) lowercase__ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowercase__ = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowercase__ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowercase__ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowercase__ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowercase__ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowercase__ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowercase__ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase : EvalPrediction ): lowercase__ = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions lowercase__ = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ = default_data_collator elif training_args.fpaa: lowercase__ = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: lowercase__ = None # Initialize our Trainer lowercase__ = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=lowercase ) lowercase__ = train_result.metrics lowercase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) lowercase__ = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , lowercase ) trainer.save_metrics('''train''' , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ = trainer.evaluate(eval_dataset=lowercase ) lowercase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) lowercase__ = min(lowercase , len(lowercase ) ) trainer.log_metrics('''eval''' , lowercase ) trainer.save_metrics('''eval''' , lowercase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__ = predict_dataset.remove_columns('''label''' ) lowercase__ = trainer.predict(lowercase , metric_key_prefix='''predict''' ).predictions lowercase__ = np.argmax(lowercase , axis=1 ) lowercase__ = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowercase , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowercase ): lowercase__ = label_list[item] writer.write(F'''{index}\t{item}\n''' ) lowercase__ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase : List[Any] ) ->Any: """simple docstring""" main() if __name__ == "__main__": main()
318
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : str ) ->Any: """simple docstring""" def get_masked_lm_array(lowercase : str ): lowercase__ = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase__ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: lowercase__ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_array(lowercase : str ): lowercase__ = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase__ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: lowercase__ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_layer_array(lowercase : int , lowercase : str ): lowercase__ = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase__ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: lowercase__ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_attention_layer_array(lowercase : int , lowercase : str , lowercase : Any ): lowercase__ = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase__ = tf.train.load_variable(lowercase , lowercase ) lowercase__ = array.reshape(lowercase ) if "kernel" in name: lowercase__ = array.transpose() return torch.from_numpy(lowercase ) print(F'''Loading model based on config from {config_path}...''' ) lowercase__ = BertConfig.from_json_file(lowercase ) lowercase__ = BertForMaskedLM(lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase__ = model.bert.encoder.layer[layer_index] # Self-attention lowercase__ = layer.attention.self lowercase__ = get_encoder_attention_layer_array( lowercase , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) lowercase__ = get_encoder_attention_layer_array( lowercase , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) lowercase__ = get_encoder_attention_layer_array( lowercase , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) lowercase__ = get_encoder_attention_layer_array( lowercase , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) lowercase__ = get_encoder_attention_layer_array( lowercase , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) lowercase__ = get_encoder_attention_layer_array( lowercase , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase__ = layer.attention.output lowercase__ = get_encoder_attention_layer_array( lowercase , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) lowercase__ = get_encoder_attention_layer_array( lowercase , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) lowercase__ = get_encoder_layer_array(lowercase , '''_attention_layer_norm/gamma''' ) lowercase__ = get_encoder_layer_array(lowercase , '''_attention_layer_norm/beta''' ) # Intermediate lowercase__ = layer.intermediate lowercase__ = get_encoder_layer_array(lowercase , '''_intermediate_dense/kernel''' ) lowercase__ = get_encoder_layer_array(lowercase , '''_intermediate_dense/bias''' ) # Output lowercase__ = layer.output lowercase__ = get_encoder_layer_array(lowercase , '''_output_dense/kernel''' ) lowercase__ = get_encoder_layer_array(lowercase , '''_output_dense/bias''' ) lowercase__ = get_encoder_layer_array(lowercase , '''_output_layer_norm/gamma''' ) lowercase__ = get_encoder_layer_array(lowercase , '''_output_layer_norm/beta''' ) # Embeddings lowercase__ = get_encoder_array('''_position_embedding_layer/embeddings''' ) lowercase__ = get_encoder_array('''_type_embedding_layer/embeddings''' ) lowercase__ = get_encoder_array('''_embedding_norm_layer/gamma''' ) lowercase__ = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head lowercase__ = model.cls.predictions.transform lowercase__ = get_masked_lm_array('''dense/kernel''' ) lowercase__ = get_masked_lm_array('''dense/bias''' ) lowercase__ = get_masked_lm_array('''layer_norm/gamma''' ) lowercase__ = get_masked_lm_array('''layer_norm/beta''' ) lowercase__ = get_masked_lm_array('''embedding_table''' ) # Pooling lowercase__ = BertPooler(config=lowercase ) lowercase__ = get_encoder_array('''_pooler_layer/kernel''' ) lowercase__ = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(lowercase ) # Integration test - should load without any errors ;) lowercase__ = BertForMaskedLM.from_pretrained(lowercase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
318
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : str = None A__ : str = BloomTokenizerFast A__ : List[str] = BloomTokenizerFast A__ : Union[str, Any] = True A__ : int = False A__ : List[Any] = "tokenizer_file" A__ : Optional[Any] = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _a ( self : Dict ): """simple docstring""" super().setUp() A__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Optional[int] , **_snake_case : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.get_rust_tokenizer() A__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] A__ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] A__ = tokenizer.batch_encode_plus(_snake_case )['input_ids'] self.assertListEqual(_snake_case , _snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Dict=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_snake_case , max_length=_snake_case ) tokenizer_r.encode_plus(_snake_case , max_length=_snake_case ) tokenizer_r.batch_encode_plus(_snake_case , max_length=_snake_case ) tokenizer_r.encode(_snake_case , max_length=_snake_case ) tokenizer_r.batch_encode_plus(_snake_case , max_length=_snake_case ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) A__ = None # Hotfixing padding = None self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='max_length' ) # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='max_length' ) # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='max_length' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='max_length' ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='max_length' ) # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='max_length' , ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.get_rust_tokenizer() A__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_snake_case ) A__ = next(iter(_snake_case ) )['premise'] # pick up one data A__ = list(sample_data.values() ) A__ = list(map(tokenizer.encode , _snake_case ) ) A__ = [tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) for x in output_tokens] self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
9
import math def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' if not isinstance(UpperCAmelCase ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase ) if number < 1: SCREAMING_SNAKE_CASE_ = f'''Input value of [number={number}] must be > 0''' raise ValueError(UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE_ = int(math.log(number // 3 ,2 ) ) + 2 SCREAMING_SNAKE_CASE_ = [3, 5] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 for block in range(1 ,UpperCAmelCase ): for _ in range(UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): A_ = 0 try: A_ = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
393
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = " "): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for index, char in enumerate(_UpperCAmelCase): if char == separator: split_words.append(string[last_index:index]) SCREAMING_SNAKE_CASE = index + 1 elif index + 1 == len(_UpperCAmelCase): split_words.append(string[last_index : index + 1]) return split_words if __name__ == "__main__": from doctest import testmod testmod()
707
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( A__ ): _lowercase : Union[str, Any] = ['''image_processor''', '''tokenizer'''] _lowercase : Optional[int] = '''Pix2StructImageProcessor''' _lowercase : str = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , a , a) -> Any: SCREAMING_SNAKE_CASE = False super().__init__(a , a) def __call__( self , a=None , a = None , a = True , a = False , a = None , a = None , a = 2048 , a = 0 , a = None , a = None , a = False , a = False , a = False , a = False , a = False , a = True , a = None , **a , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE = self.tokenizer SCREAMING_SNAKE_CASE = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE = self.image_processor( a , return_tensors=a , max_patches=a , **a) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE = text_encoding.pop('attention_mask') if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE = text_encoding.pop('input_ids') else: SCREAMING_SNAKE_CASE = None if text_encoding is not None: encoding_image_processor.update(a) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]: return self.tokenizer.batch_decode(*a , **a) def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> Optional[int]: return self.tokenizer.decode(*a , **a) @property def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
444
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase :Tuple = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCamelCase :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): a_ : Optional[Any] = (EulerDiscreteScheduler,) a_ : Tuple = 10 def A__ (self , **UpperCAmelCase): '''simple docstring''' __UpperCAmelCase ={ """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_a) return config def A__ (self): '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a) def A__ (self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=_a , beta_end=_a) def A__ (self): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a) def A__ (self): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.scheduler_classes[0] __UpperCAmelCase =self.get_scheduler_config() __UpperCAmelCase =scheduler_class(**_a) scheduler.set_timesteps(self.num_inference_steps) __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =self.dummy_model() __UpperCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase =sample.to(_a) for i, t in enumerate(scheduler.timesteps): __UpperCAmelCase =scheduler.scale_model_input(_a , _a) __UpperCAmelCase =model(_a , _a) __UpperCAmelCase =scheduler.step(_a , _a , _a , generator=_a) __UpperCAmelCase =output.prev_sample __UpperCAmelCase =torch.sum(torch.abs(_a)) __UpperCAmelCase =torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 10.0807) < 1e-2 assert abs(result_mean.item() - 0.0131) < 1e-3 def A__ (self): '''simple docstring''' __UpperCAmelCase =self.scheduler_classes[0] __UpperCAmelCase =self.get_scheduler_config(prediction_type='''v_prediction''') __UpperCAmelCase =scheduler_class(**_a) scheduler.set_timesteps(self.num_inference_steps) __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =self.dummy_model() __UpperCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase =sample.to(_a) for i, t in enumerate(scheduler.timesteps): __UpperCAmelCase =scheduler.scale_model_input(_a , _a) __UpperCAmelCase =model(_a , _a) __UpperCAmelCase =scheduler.step(_a , _a , _a , generator=_a) __UpperCAmelCase =output.prev_sample __UpperCAmelCase =torch.sum(torch.abs(_a)) __UpperCAmelCase =torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 0.0002) < 1e-2 assert abs(result_mean.item() - 2.2676e-06) < 1e-3 def A__ (self): '''simple docstring''' __UpperCAmelCase =self.scheduler_classes[0] __UpperCAmelCase =self.get_scheduler_config() __UpperCAmelCase =scheduler_class(**_a) scheduler.set_timesteps(self.num_inference_steps , device=_a) __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =self.dummy_model() __UpperCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __UpperCAmelCase =sample.to(_a) for t in scheduler.timesteps: __UpperCAmelCase =scheduler.scale_model_input(_a , _a) __UpperCAmelCase =model(_a , _a) __UpperCAmelCase =scheduler.step(_a , _a , _a , generator=_a) __UpperCAmelCase =output.prev_sample __UpperCAmelCase =torch.sum(torch.abs(_a)) __UpperCAmelCase =torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 10.0807) < 1e-2 assert abs(result_mean.item() - 0.0131) < 1e-3 def A__ (self): '''simple docstring''' __UpperCAmelCase =self.scheduler_classes[0] __UpperCAmelCase =self.get_scheduler_config() __UpperCAmelCase =scheduler_class(**_a , use_karras_sigmas=_a) scheduler.set_timesteps(self.num_inference_steps , device=_a) __UpperCAmelCase =torch.manual_seed(0) __UpperCAmelCase =self.dummy_model() __UpperCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __UpperCAmelCase =sample.to(_a) for t in scheduler.timesteps: __UpperCAmelCase =scheduler.scale_model_input(_a , _a) __UpperCAmelCase =model(_a , _a) __UpperCAmelCase =scheduler.step(_a , _a , _a , generator=_a) __UpperCAmelCase =output.prev_sample __UpperCAmelCase =torch.sum(torch.abs(_a)) __UpperCAmelCase =torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 124.52_2994_9951_1719) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963) < 1e-3
712
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase_ = get_logger() UpperCamelCase_ = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' super().__init__(features=UpperCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCAmelCase)}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''') __UpperCAmelCase =device if isinstance(UpperCAmelCase , UpperCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default """ f"""device: {str(jax.devices()[0])}.""") __UpperCAmelCase =str(jax.devices()[0]) __UpperCAmelCase =jnp_array_kwargs @staticmethod def A__ (): '''simple docstring''' import jax return {str(UpperCAmelCase): device for device in jax.devices()} def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase) and column: if all( isinstance(UpperCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(UpperCAmelCase , axis=0) return column def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase))): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __UpperCAmelCase ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __UpperCAmelCase ={'''dtype''': jnp.intaa} else: __UpperCAmelCase ={'''dtype''': jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __UpperCAmelCase ={'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image): __UpperCAmelCase =np.asarray(UpperCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def A__ (self , UpperCAmelCase): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(UpperCAmelCase , '''__array__''') and not isinstance(UpperCAmelCase , jax.Array): __UpperCAmelCase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) elif isinstance(UpperCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) return self._tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_row(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_row(UpperCAmelCase) return self.recursive_tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_column(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0]) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) __UpperCAmelCase =self._consolidate(UpperCAmelCase) return column def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_batch(UpperCAmelCase) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) for column_name in batch: __UpperCAmelCase =self._consolidate(batch[column_name]) return batch
142
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE : str = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } class snake_case__ ( __SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = VOCAB_FILES_NAMES UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Optional[Any] = TaTokenizer UpperCAmelCase : List[int] = [] def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_=100 , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Optional[Any]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: a_ : str = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens a_ : Any = len(set(filter(lambda UpperCamelCase_ : bool("""extra_id_""" in str(UpperCamelCase_ ) ) , UpperCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) a_ : str = vocab_file a_ : Any = False if not self.vocab_file else True a_ : List[str] = extra_ids @staticmethod def A ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: a_ : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase_ , ) return max_model_length def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Union[str, Any]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> str: """simple docstring""" a_ : Optional[int] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: a_ : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> int: """simple docstring""" a_ : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A ( self ) -> List[Any]: """simple docstring""" return list( set(filter(lambda UpperCamelCase_ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def A ( self ) -> List[str]: """simple docstring""" return [self.convert_tokens_to_ids(UpperCamelCase_ ) for token in self.get_sentinel_tokens()]
419
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A__ : # setable values _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[jnp.ndarray] = None _UpperCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def UpperCamelCase__ ( cls ): return cls() @dataclass class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : jnp.ndarray _UpperCAmelCase : jnp.ndarray _UpperCAmelCase : KarrasVeSchedulerState class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): return True @register_to_config def __init__( self , __magic_name__ = 0.02 , __magic_name__ = 1_0_0 , __magic_name__ = 1.007 , __magic_name__ = 8_0 , __magic_name__ = 0.05 , __magic_name__ = 5_0 , ): pass def UpperCamelCase__ ( self ): return KarrasVeSchedulerState.create() def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ = () ): lowerCamelCase : Dict = jnp.arange(0 , __magic_name__ )[::-1].copy() lowerCamelCase : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__magic_name__ , schedule=jnp.array(__magic_name__ , dtype=jnp.floataa ) , timesteps=__magic_name__ , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase : Dict = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase : List[Any] = random.split(__magic_name__ , num=1 ) lowerCamelCase : Union[str, Any] = self.config.s_noise * random.normal(key=__magic_name__ , shape=sample.shape ) lowerCamelCase : List[Any] = sigma + gamma * sigma lowerCamelCase : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = True , ): lowerCamelCase : Optional[Any] = sample_hat + sigma_hat * model_output lowerCamelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__magic_name__ , derivative=__magic_name__ , state=__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = True , ): lowerCamelCase : str = sample_prev + sigma_prev * model_output lowerCamelCase : str = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__magic_name__ , derivative=__magic_name__ , state=__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): raise NotImplementedError()
681
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class A_ : """simple docstring""" def __init__( self : Tuple ,__A : int=2 ,__A : List[Any]=3 ,__A : Optional[Any]=64 ,__A : List[str]=None ) -> Tuple: _lowercase = np.random.default_rng(__A ) _lowercase = length _lowercase = rng.normal(size=(length,) ).astype(np.floataa ) _lowercase = a * self.x + b + rng.normal(scale=0.1 ,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ) -> int: return self.length def __getitem__( self : List[str] ,__A : List[Any] ) -> Tuple: return {"x": self.x[i], "y": self.y[i]} class A_ ( torch.nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,__A : Optional[int]=0 ,__A : Any=0 ,__A : Dict=False ) -> List[Any]: super().__init__() _lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowercase = True def __UpperCAmelCase ( self : int ,__A : str=None ) -> Dict: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) _lowercase = False return x * self.a[0] + self.b[0] class A_ ( torch.nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,__A : Union[str, Any]=0 ,__A : Optional[int]=0 ,__A : str=False ) -> Optional[Any]: super().__init__() _lowercase = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowercase = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowercase = True def __UpperCAmelCase ( self : List[Any] ,__A : Optional[Any]=None ) -> str: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) _lowercase = False return x * self.a + self.b def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] , snake_case__ :int = 16 ) -> int: from datasets import load_dataset from transformers import AutoTokenizer _lowercase = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} _lowercase = load_dataset('csv' , data_files=snake_case__ ) _lowercase = datasets['train'].unique('label' ) _lowercase = {v: i for i, v in enumerate(snake_case__ )} def tokenize_function(snake_case__ :str ): # max_length=None => use the model max length (it's actually the default) _lowercase = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ , padding='max_length' ) if "label" in examples: _lowercase = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(snake_case__ :Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(snake_case__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase = DataLoader(tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=2 ) _lowercase = DataLoader(tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=1 ) return train_dataloader, eval_dataloader
535
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
535
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Initialise PyTorch model snake_case__ = BigBirdConfig.from_json_file(__lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: snake_case__ = BigBirdForQuestionAnswering(__lowerCAmelCase ) else: snake_case__ = BigBirdForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCAmelCase , __lowerCAmelCase , is_trivia_qa=__lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) lowerCamelCase__ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
33
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): A__ = MODEL_FOR_CAUSAL_LM_MAPPING A__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __magic_name__( self ): lowerCAmelCase__ : Tuple = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase__ : str = text_generator('''This is a test''' , do_sample=__UpperCAmelCase , num_return_sequences=2 , return_tensors=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ] , ) lowerCAmelCase__ : List[Any] = text_generator.model.config.eos_token_id lowerCAmelCase__ : List[Any] = '''<pad>''' lowerCAmelCase__ : List[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCAmelCase , ) self.assertEqual( __UpperCAmelCase , [ [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : int = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : List[Any] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Dict = TextGenerationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def __magic_name__( self ): lowerCAmelCase__ : Any = '''Hello I believe in''' lowerCAmelCase__ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Optional[int] = text_generator(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , stop_sequence=''' fe''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = text_generator.model lowerCAmelCase__ : Optional[int] = text_generator.tokenizer lowerCAmelCase__ : Tuple = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : Dict = pipeline(task='''text-generation''' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , return_full_text=__UpperCAmelCase ) lowerCAmelCase__ : Dict = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : List[str] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ : List[str] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Any = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_text=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : str = text_generator('''test''' , return_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ : str = text_generator('''''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ : Optional[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) lowerCAmelCase__ : Optional[Any] = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__UpperCAmelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch # Classic `model_kwargs` lowerCAmelCase__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ : str = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=__UpperCAmelCase , top_p=0.5 ) def __magic_name__( self ): lowerCAmelCase__ : int = '''Hello world''' lowerCAmelCase__ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase__ : List[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase__ : Dict = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase__ : Optional[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Any = text_generator(__UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(__UpperCAmelCase , cl.out ) with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Union[str, Any] = text_generator(__UpperCAmelCase , max_length=10 ) self.assertNotIn(__UpperCAmelCase , cl.out )
678
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __UpperCamelCase ( __lowerCamelCase : Optional[int] ) -> int: '''simple docstring''' monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def __UpperCamelCase ( __lowerCamelCase : Any ) -> Any: '''simple docstring''' class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase ) -> Dict: _a = metric_id class __SCREAMING_SNAKE_CASE : UpperCAmelCase = [MetricMock(__SCREAMING_SNAKE_CASE ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def a_ ( self ) -> Optional[Any]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def __UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' if "tmp_path" in args: _a = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase__ , match="https://huggingface.co/docs/evaluate" ): func(*lowerCAmelCase__ )
721
'''simple docstring''' lowercase__ = 256 # Modulus to hash a string lowercase__ = 1_000_003 def __UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> bool: '''simple docstring''' _a = len(__lowerCamelCase ) _a = len(__lowerCamelCase ) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(__lowerCamelCase ): _a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __UpperCamelCase ( ) -> None: '''simple docstring''' _a = "abc1abc12" _a = "alskfjaldsabc1abc1abc12k23adsfabcabc" _a = "alskfjaldsk23adsfabcabc" assert rabin_karp(__lowerCamelCase , __lowerCamelCase ) and not rabin_karp(__lowerCamelCase , __lowerCamelCase ) # Test 2) _a = "ABABX" _a = "ABABZABABYABABX" assert rabin_karp(__lowerCamelCase , __lowerCamelCase ) # Test 3) _a = "AAAB" _a = "ABAAAAAB" assert rabin_karp(__lowerCamelCase , __lowerCamelCase ) # Test 4) _a = "abcdabcy" _a = "abcxabcdabxabcdabcdabcy" assert rabin_karp(__lowerCamelCase , __lowerCamelCase ) # Test 5) _a = "Lü" _a = "Lüsai" assert rabin_karp(__lowerCamelCase , __lowerCamelCase ) _a = "Lue" assert not rabin_karp(__lowerCamelCase , __lowerCamelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
276
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCamelCase ( _lowercase ): '''simple docstring''' a_ : int = '''decision_transformer''' a_ : Union[str, Any] = ['''past_key_values'''] a_ : Dict = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _lowerCamelCase : Any=1_7 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Optional[int]=1_2_8 , _lowerCamelCase : Any=4_0_9_6 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : int=1 , _lowerCamelCase : List[Any]=1_0_2_4 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : List[str]=None , _lowerCamelCase : Any="relu" , _lowerCamelCase : Any=0.1 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : List[str]=1E-5 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : Dict=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[Any]=5_0_2_5_6 , _lowerCamelCase : Dict=5_0_2_5_6 , _lowerCamelCase : int=False , _lowerCamelCase : Any=False , **_lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowerCamelCase : str = state_dim __lowerCamelCase : Optional[Any] = act_dim __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = max_ep_len __lowerCamelCase : Optional[int] = action_tanh __lowerCamelCase : Tuple = vocab_size __lowerCamelCase : Union[str, Any] = n_positions __lowerCamelCase : Tuple = n_layer __lowerCamelCase : Tuple = n_head __lowerCamelCase : Optional[Any] = n_inner __lowerCamelCase : Optional[int] = activation_function __lowerCamelCase : Optional[Any] = resid_pdrop __lowerCamelCase : List[Any] = embd_pdrop __lowerCamelCase : int = attn_pdrop __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Tuple = scale_attn_weights __lowerCamelCase : List[Any] = use_cache __lowerCamelCase : Optional[int] = scale_attn_by_inverse_layer_idx __lowerCamelCase : Optional[int] = reorder_and_upcast_attn __lowerCamelCase : Union[str, Any] = bos_token_id __lowerCamelCase : List[str] = eos_token_id super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
519
from __future__ import annotations from typing import Any class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 ) -> None: a__ , a__ = row, column a__ = [[default_value for c in range(SCREAMING_SNAKE_CASE )] for r in range(SCREAMING_SNAKE_CASE )] def __str__( self ) -> str: a__ = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier a__ = 0 for row_vector in self.array: for obj in row_vector: a__ = max(SCREAMING_SNAKE_CASE , len(str(SCREAMING_SNAKE_CASE ) ) ) a__ = f"%{max_element_length}s" # Make string and return def single_line(SCREAMING_SNAKE_CASE ) -> str: nonlocal string_format_identifier a__ = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(SCREAMING_SNAKE_CASE ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> bool: if not (isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and len(SCREAMING_SNAKE_CASE ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , SCREAMING_SNAKE_CASE ) -> Any: assert self.validate_indicies(SCREAMING_SNAKE_CASE ) return self.array[loc[0]][loc[1]] def __setitem__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: assert self.validate_indicies(SCREAMING_SNAKE_CASE ) a__ = value def __add__( self , SCREAMING_SNAKE_CASE ) -> Matrix: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert self.row == another.row and self.column == another.column # Add a__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): a__ = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: a__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): a__ = -self[r, c] return result def __sub__( self , SCREAMING_SNAKE_CASE ) -> Matrix: return self + (-another) def __mul__( self , SCREAMING_SNAKE_CASE ) -> Matrix: if isinstance(SCREAMING_SNAKE_CASE , (int, float) ): # Scalar multiplication a__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): a__ = self[r, c] * another return result elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Matrix multiplication assert self.column == another.row a__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: a__ = f"Unsupported type given for another ({type(SCREAMING_SNAKE_CASE )})" raise TypeError(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Matrix: a__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): a__ = self[r, c] return result def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate a__ = v.transpose() a__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __a ( ): # a^(-1) a__ = Matrix(3 , 3 , 0 ) for i in range(3 ): a__ = 1 print(f"a^(-1) is {ainv}" ) # u, v a__ = Matrix(3 , 1 , 0 ) a__ , a__ , a__ = 1, 2, -3 a__ = Matrix(3 , 1 , 0 ) a__ , a__ , a__ = 4, -2, 5 print(f"u is {u}" ) print(f"v is {v}" ) print(f"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(__UpperCAmelCase , __UpperCAmelCase )}" ) def __a ( ): import doctest doctest.testmod() testa()
194
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : int = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _a ( _A ): """simple docstring""" snake_case ="""open-llama""" def __init__( self , _snake_case=10_0000 , _snake_case=4096 , _snake_case=1_1008 , _snake_case=32 , _snake_case=32 , _snake_case="silu" , _snake_case=2048 , _snake_case=0.02 , _snake_case=1E-6 , _snake_case=True , _snake_case=0 , _snake_case=1 , _snake_case=2 , _snake_case=False , _snake_case=True , _snake_case=0.1 , _snake_case=0.1 , _snake_case=True , _snake_case=True , _snake_case=None , **_snake_case , ): _UpperCAmelCase =vocab_size _UpperCAmelCase =max_position_embeddings _UpperCAmelCase =hidden_size _UpperCAmelCase =intermediate_size _UpperCAmelCase =num_hidden_layers _UpperCAmelCase =num_attention_heads _UpperCAmelCase =hidden_act _UpperCAmelCase =initializer_range _UpperCAmelCase =rms_norm_eps _UpperCAmelCase =use_cache _UpperCAmelCase =kwargs.pop( "use_memorry_efficient_attention" , __lowerCamelCase ) _UpperCAmelCase =hidden_dropout_prob _UpperCAmelCase =attention_dropout_prob _UpperCAmelCase =use_stable_embedding _UpperCAmelCase =shared_input_output_embedding _UpperCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase , ) def SCREAMING_SNAKE_CASE ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"got {self.rope_scaling}" ) _UpperCAmelCase =self.rope_scaling.get("type" , __lowerCamelCase ) _UpperCAmelCase =self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
717
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
592
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
12
"""simple docstring""" import requests def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : Optional[Any] = requests.post(__UpperCamelCase , json={"""text""": message_body} , headers=__UpperCamelCase ) if response.status_code != 200: UpperCAmelCase__ : Any = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(__UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
65
0
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple )-> None: if len(lowercase__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowerCamelCase__ : list[float] =list(lowercase__ ) lowerCamelCase__ : Optional[int] =degree def __add__( self : List[str], lowerCamelCase : Tuple )-> Polynomial: if self.degree > polynomial_a.degree: lowerCamelCase__ : Optional[Any] =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, lowercase__ ) else: lowerCamelCase__ : Any =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, lowercase__ ) def __sub__( self : str, lowerCamelCase : Optional[Any] )-> Polynomial: return self + polynomial_a * Polynomial(0, [-1] ) def __neg__( self : Any )-> Polynomial: return Polynomial(self.degree, [-c for c in self.coefficients] ) def __mul__( self : str, lowerCamelCase : List[Any] )-> Polynomial: lowerCamelCase__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, lowercase__ ) def snake_case ( self : str, lowerCamelCase : str )-> int | float: lowerCamelCase__ : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str )-> str: lowerCamelCase__ : str ='''''' for i in range(self.degree, -1, -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase__ ) return polynomial def __repr__( self : Union[str, Any] )-> str: return self.__str__() def snake_case ( self : Union[str, Any] )-> Polynomial: lowerCamelCase__ : list[float] =[0] * self.degree for i in range(self.degree ): lowerCamelCase__ : Optional[Any] =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, lowercase__ ) def snake_case ( self : Union[str, Any], lowerCamelCase : str = 0 )-> Polynomial: lowerCamelCase__ : list[float] =[0] * (self.degree + 2) lowerCamelCase__ : Union[str, Any] =constant for i in range(self.degree + 1 ): lowerCamelCase__ : List[Any] =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, lowercase__ ) def __eq__( self : Any, lowerCamelCase : Optional[int] )-> bool: if not isinstance(lowercase__, lowercase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str], lowerCamelCase : str )-> bool: return not self.__eq__(lowercase__ )
703
"""simple docstring""" def snake_case__ ( __lowerCamelCase : list[int] ): """simple docstring""" if not numbers: return 0 if not isinstance(__lowerCamelCase , (list, tuple) ) or not all( isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCamelCase__ : Any =numbers[0] for i in range(1 , len(__lowerCamelCase ) ): # update the maximum and minimum subarray products lowerCamelCase__ : Dict =numbers[i] if number < 0: lowerCamelCase__ , lowerCamelCase__ : List[Any] =min_till_now, max_till_now lowerCamelCase__ : Optional[int] =max(__lowerCamelCase , max_till_now * number ) lowerCamelCase__ : Dict =min(__lowerCamelCase , min_till_now * number ) # update the maximum product found till now lowerCamelCase__ : Tuple =max(__lowerCamelCase , __lowerCamelCase ) return max_prod
625
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a = logging.getLogger(__name__) def _snake_case ( _snake_case : torch.nn.Module , _snake_case : BnbQuantizationConfig , _snake_case : Union[str, os.PathLike] = None , _snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None , _snake_case : Optional[List[str]] = None , _snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None , _snake_case : Optional[Union[str, os.PathLike]] = None , _snake_case : bool = False , ) -> Any: '''simple docstring''' _A = bnb_quantization_config.load_in_abit _A = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) _A = [] # custom device map if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(device_map.keys() ) > 1: _A = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _A = get_keys_to_not_convert(lowerCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCamelCase__ ) _A = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _A = [] _A = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCamelCase__ ) # compatibility with peft _A = load_in_abit _A = load_in_abit _A = get_parameter_device(lowerCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) _A = replace_with_bnb_layers(lowerCamelCase__ , lowerCamelCase__ , modules_to_not_convert=lowerCamelCase__ ) # convert param to the right dtype _A = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _A = name.replace('.weight' , '' ).replace('.bias' , '' ) _A = getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCamelCase__ ): param.to(lowerCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): _A = replace_with_bnb_layers( lowerCamelCase__ , lowerCamelCase__ , modules_to_not_convert=lowerCamelCase__ ) _A = get_quantized_model_device_map( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , max_memory=lowerCamelCase__ , no_split_module_classes=lowerCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _A = True _A = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCamelCase__ , offload_state_dict=lowerCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCamelCase__ , device_map=lowerCamelCase__ , offload_dir=lowerCamelCase__ ) def _snake_case ( _snake_case : Dict , _snake_case : int , _snake_case : List[str]=None , _snake_case : int=None , _snake_case : Any=None ) -> Any: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): _A = {"""""": torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) _A = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _A = {} _A = special_dtypes _A = no_split_module_classes _A = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _A = get_balanced_memory( lowerCamelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=lowerCamelCase__ , **lowerCamelCase__ , ) _A = max_memory _A = infer_auto_device_map(lowerCamelCase__ , **lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # check if don't have any quantized module on the cpu _A = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _A = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _snake_case ( _snake_case : Dict , _snake_case : List[Any] , _snake_case : Any=None , _snake_case : List[Any]=None ) -> Dict: '''simple docstring''' if modules_to_not_convert is None: _A = [] _A = _replace_with_bnb_layers( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _snake_case ( _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Tuple=None , _snake_case : int=None , ) -> List[str]: '''simple docstring''' _A = False for name, module in model.named_children(): if current_key_name is None: _A = [] current_key_name.append(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _A = """.""".join(lowerCamelCase__ ) _A = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _A = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _A = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _A = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) _A = module.weight.data if module.bias is not None: _A = module.bias.data bnb_module.requires_grad_(lowerCamelCase__ ) setattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _A = True if len(list(module.children() ) ) > 0: _A = _replace_with_bnb_layers( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _A = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _snake_case ( _snake_case : Any ) -> List[str]: '''simple docstring''' with init_empty_weights(): _A = deepcopy(lowerCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _A = find_tied_parameters(lowerCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _A = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _A = sum(lowerCamelCase__ , [] ) _A = len(lowerCamelCase__ ) > 0 # Check if it is a base model _A = False if hasattr(lowerCamelCase__ , 'base_model_prefix' ): _A = not hasattr(lowerCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A = list(model.named_children() ) _A = [list_modules[-1][0]] # add last module together with tied weights _A = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) _A = list(set(lowerCamelCase__ ) ) + list(lowerCamelCase__ ) # remove ".weight" from the keys _A = [""".weight""", """.bias"""] _A = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A = name.replace(lowerCamelCase__ , '' ) filtered_module_names.append(lowerCamelCase__ ) return filtered_module_names def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' for m in model.modules(): if isinstance(lowerCamelCase__ , bnb.nn.Linearabit ): return True return False def _snake_case ( _snake_case : nn.Module ) -> int: '''simple docstring''' return next(parameter.parameters() ).device def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : Any ) -> List[str]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowerCamelCase__ , lowerCamelCase__ , 0 , dtype=lowerCamelCase__ , value=lowerCamelCase__ ) _A = param_name _A = model if "." in tensor_name: _A = tensor_name.split('.' ) for split in splits[:-1]: _A = getattr(lowerCamelCase__ , lowerCamelCase__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) _A = new_module _A = splits[-1] # offload weights _A = False offload_weight(module._parameters[tensor_name] , lowerCamelCase__ , lowerCamelCase__ , index=lowerCamelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , lowerCamelCase__ , index=lowerCamelCase__ , ) else: offload_weight(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index=lowerCamelCase__ ) offload_weight(lowerCamelCase__ , param_name.replace('weight' , 'SCB' ) , lowerCamelCase__ , index=lowerCamelCase__ ) set_module_tensor_to_device(lowerCamelCase__ , lowerCamelCase__ , 'meta' , dtype=lowerCamelCase__ , value=torch.empty(*param.size() ) )
7
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> Tuple: lowercase__ : str = tempfile.mkdtemp() lowercase__ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase__ : Any = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> str: return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> List[Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : Any = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__( self ) -> int: lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Union[str, Any] = self.get_rust_tokenizer() lowercase__ : Any = self.get_image_processor() lowercase__ : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) lowercase__ : List[Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ : Any = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) lowercase__ : Union[str, Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Tuple = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : Tuple = image_processor(lowerCamelCase__ , return_tensors="""np""" ) lowercase__ : str = processor(images=lowerCamelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : List[str] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Any = """lower newer""" lowercase__ : List[Any] = processor(text=lowerCamelCase__ ) lowercase__ : Tuple = tokenizer(lowerCamelCase__ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__( self ) -> str: lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : List[Any] = """lower newer""" lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : List[Any] = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : int = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Tuple = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Tuple = processor.batch_decode(lowerCamelCase__ ) lowercase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : Optional[int] = AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) lowercase__ : str = """lower newer""" lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : int = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
200
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# a : Tuple = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] a : Tuple = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] a : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks a : Tuple = F'''down_blocks.{i}.resnets.{j}.''' a : Optional[int] = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 a : Dict = F'''down_blocks.{i}.attentions.{j}.''' a : int = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks a : Dict = F'''up_blocks.{i}.resnets.{j}.''' a : int = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 a : Any = F'''up_blocks.{i}.attentions.{j}.''' a : Optional[int] = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 a : Dict = F'''down_blocks.{i}.downsamplers.0.conv.''' a : int = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 a : Tuple = F'''up_blocks.{i}.upsamplers.0.''' a : Optional[Any] = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) a : Optional[Any] = '''mid_block.attentions.0.''' a : Optional[int] = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): a : List[str] = F'''mid_block.resnets.{j}.''' a : Optional[Any] = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Any: '''simple docstring''' a : Optional[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: a : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: a : str = v.replace(_lowercase , _lowercase ) a : Tuple = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: a : Any = v.replace(_lowercase , _lowercase ) a : Any = v a : Any = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# a : Any = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): a : List[str] = F'''encoder.down_blocks.{i}.resnets.{j}.''' a : Dict = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: a : int = F'''down_blocks.{i}.downsamplers.0.''' a : List[Any] = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) a : Tuple = F'''up_blocks.{i}.upsamplers.0.''' a : List[str] = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): a : Union[str, Any] = F'''decoder.up_blocks.{i}.resnets.{j}.''' a : Optional[Any] = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): a : Dict = F'''mid_block.resnets.{i}.''' a : Tuple = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) a : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->int: '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->Optional[int]: '''simple docstring''' a : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: a : Tuple = v.replace(_lowercase , _lowercase ) a : int = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: a : int = v.replace(_lowercase , _lowercase ) a : int = v a : Dict = {v: vae_state_dict[k] for k, v in mapping.items()} a : int = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) a : Optional[int] = reshape_weight_for_sd(_lowercase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# a : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] a : Dict = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} a : str = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp a : Optional[int] = {'''q''': 0, '''k''': 1, '''v''': 2} def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->Union[str, Any]: '''simple docstring''' a : int = {} a : Optional[Any] = {} a : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): a : Dict = k[: -len(".q_proj.weight" )] a : str = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: a : List[Any] = [None, None, None] a : Union[str, Any] = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): a : str = k[: -len(".q_proj.bias" )] a : Tuple = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: a : List[Any] = [None, None, None] a : str = v continue a : str = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) a : Any = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) a : str = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) a : Dict = torch.cat(_lowercase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) a : Optional[Any] = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) a : str = torch.cat(_lowercase ) return new_state_dict def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->Optional[int]: '''simple docstring''' return text_enc_dict if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) a : List[str] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors a : Any = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') a : Union[str, Any] = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') a : Dict = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): a : Dict = load_file(unet_path, device='''cpu''') else: a : Optional[Any] = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') a : int = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): a : Dict = load_file(vae_path, device='''cpu''') else: a : Any = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') a : str = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): a : str = load_file(text_enc_path, device='''cpu''') else: a : Union[str, Any] = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') a : Dict = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model a : Any = convert_unet_state_dict(unet_state_dict) a : List[Any] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model a : Optional[int] = convert_vae_state_dict(vae_state_dict) a : Tuple = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper a : Optional[int] = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm a : int = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} a : List[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) a : Optional[int] = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: a : str = convert_text_enc_state_dict(text_enc_dict) a : List[Any] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint a : Any = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: a : Optional[Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: a : str = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
701
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a : Any = logging.get_logger(__name__) a : Tuple = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class __UpperCamelCase : def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> str: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) a : Optional[int] = model a : int = kwargs.get("model_save_dir" , lowerCAmelCase__ ) a : Tuple = kwargs.get("latest_model_name" , lowerCAmelCase__ ) def __call__( self , **lowerCAmelCase__ ) -> Dict: a : List[str] = {k: np.array(lowerCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__ ) @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Union[str, Any]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) a : List[str] = "CPUExecutionProvider" return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> int: a : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME a : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) a : List[str] = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) a : str = self.model_save_dir.joinpath(lowerCAmelCase__ ) if src_path.exists(): a : Any = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass def __a ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> str: if os.path.isfile(lowerCAmelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[int]: a : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__ ): a : Tuple = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) a : Tuple = Path(lowerCAmelCase__ ) # load model from hub else: # download model a : Optional[Any] = hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) a : Optional[int] = Path(lowerCAmelCase__ ).parent a : List[Any] = Path(lowerCAmelCase__ ).name a : int = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: a : Any = None if len(str(lowerCAmelCase__ ).split("@" ) ) == 2: a, a : Tuple = model_id.split("@" ) return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
31
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class __lowercase : snake_case_ = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) snake_case_ = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case_ = field( default=__lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {} if self.train_dir is not None: UpperCAmelCase__ : str = self.train_dir if self.validation_dir is not None: UpperCAmelCase__ : int = self.validation_dir UpperCAmelCase__ : int = data_files if data_files else None @dataclass class __lowercase : snake_case_ = field( default=__lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) snake_case_ = field( default=__lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) snake_case_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) snake_case_ = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class __lowercase ( __lowerCamelCase ): snake_case_ = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ : List[Any] = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCAmelCase__ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase__ : List[Any] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __UpperCamelCase ) and data_args.train_val_split > 0.0: UpperCAmelCase__ : List[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCAmelCase__ : Optional[Any] = split["""train"""] UpperCAmelCase__ : Tuple = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : Optional[Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase__ : int = ViTMAEConfig.from_pretrained(model_args.config_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase__ : List[str] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCAmelCase__ : List[str] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase__ : Any = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase__ : Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCAmelCase__ : Dict = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase__ : Tuple = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase__ : Any = ViTMAEForPreTraining(__UpperCamelCase ) if training_args.do_train: UpperCAmelCase__ : int = ds["""train"""].column_names else: UpperCAmelCase__ : int = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCAmelCase__ : Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCAmelCase__ : Optional[Any] = """image""" elif "img" in column_names: UpperCAmelCase__ : Dict = """img""" else: UpperCAmelCase__ : Dict = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase__ : Optional[int] = image_processor.size["""shortest_edge"""] else: UpperCAmelCase__ : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCAmelCase__ : Dict = Compose( [ Lambda(lambda __UpperCamelCase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__UpperCamelCase ): UpperCAmelCase__ : Optional[int] = [transforms(__UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCAmelCase__ : Dict = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCAmelCase__ : str = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__UpperCamelCase ) # Compute absolute learning rate UpperCAmelCase__ : List[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase__ : str = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCAmelCase__ : int = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: UpperCAmelCase__ : List[str] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ : Union[str, Any] = last_checkpoint UpperCAmelCase__ : Dict = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ : Any = trainer.evaluate() trainer.log_metrics("""eval""" , __UpperCamelCase ) trainer.save_metrics("""eval""" , __UpperCamelCase ) # Write model card and (optionally) push to hub UpperCAmelCase__ : Union[str, Any] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
65
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowercase : Optional[int] = ["small", "medium", "large"] lowercase : Optional[int] = "lm_head.decoder.weight" lowercase : List[Any] = "lm_head.weight" def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: _snake_case = torch.load(__A ) _snake_case = d.pop(__A ) os.makedirs(__A , exist_ok=__A ) torch.save(__A , os.path.join(__A , __A ) ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) lowercase : str = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowercase : List[Any] = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') lowercase : Tuple = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
495
0
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_lowerCamelCase ): a = ['''speech'''] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] ) class _UpperCAmelCase ( metaclass=_lowerCamelCase ): a = ['''speech'''] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] )
481
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 255 , a__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ : Optional[int] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} A_ : str = parent A_ : Dict = batch_size A_ : str = num_channels A_ : List[str] = min_resolution A_ : List[Any] = max_resolution A_ : Optional[Any] = do_resize A_ : int = size A_ : List[Any] = do_normalize A_ : List[Any] = image_mean A_ : Dict = image_std A_ : Tuple = do_rescale A_ : List[Any] = rescale_factor A_ : Tuple = do_pad def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self , a__ , a__=False ): if not batched: A_ : List[str] = image_inputs[0] if isinstance(a__ , Image.Image ): A_ , A_ : Tuple = image.size else: A_ , A_ : List[Any] = image.shape[1], image.shape[2] if w < h: A_ : List[str] = int(self.size["""shortest_edge"""] * h / w ) A_ : Tuple = self.size["""shortest_edge"""] elif w > h: A_ : Tuple = self.size["""shortest_edge"""] A_ : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: A_ : Optional[Any] = self.size["""shortest_edge"""] A_ : int = self.size["""shortest_edge"""] else: A_ : List[Any] = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(a__ , key=lambda a__ : item[0] )[0] A_ : Tuple = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): a = DetaImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): A_ : str = DetaImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): A_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """image_mean""" ) ) self.assertTrue(hasattr(a__ , """image_std""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """do_rescale""" ) ) self.assertTrue(hasattr(a__ , """do_pad""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) def _lowerCamelCase ( self ): A_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , a__ ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input A_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[int] = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) A_ : Optional[int] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[int] = image_processing(a__ , return_tensors="""pt""" ).pixel_values A_ , A_ : Union[str, Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): # Initialize image_processing A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : str = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : str = image_processing(a__ , return_tensors="""pt""" ).pixel_values A_ , A_ : List[Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self ): # prepare image and target A_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A_ : int = json.loads(f.read() ) A_ : Union[str, Any] = {"""image_id""": 39769, """annotations""": target} # encode them A_ : str = DetaImageProcessor() A_ : int = image_processing(images=a__ , annotations=a__ , return_tensors="""pt""" ) # verify pixel values A_ : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , a__ ) A_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area A_ : int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) ) # verify boxes A_ : str = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ ) A_ : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1E-3 ) ) # verify image_id A_ : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) ) # verify is_crowd A_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) ) # verify class_labels A_ : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) ) # verify orig_size A_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) ) # verify size A_ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) ) @slow def _lowerCamelCase ( self ): # prepare image, target and masks_path A_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A_ : Any = json.loads(f.read() ) A_ : Any = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} A_ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A_ : str = DetaImageProcessor(format="""coco_panoptic""" ) A_ : Tuple = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors="""pt""" ) # verify pixel values A_ : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , a__ ) A_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area A_ : Dict = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) ) # verify boxes A_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ ) A_ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1E-3 ) ) # verify image_id A_ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) ) # verify is_crowd A_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) ) # verify class_labels A_ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) ) # verify masks A_ : Tuple = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , a__ ) # verify orig_size A_ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) ) # verify size A_ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) )
481
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowerCamelCase_ = TypeVar('''T''') lowerCamelCase_ = Union[List[T], Tuple[T, ...]] lowerCamelCase_ = Union[T, List[T], Dict[str, T]] lowerCamelCase_ = Union[str, bytes, os.PathLike]
95
def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 SCREAMING_SNAKE_CASE_ : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. SCREAMING_SNAKE_CASE_ : Optional[int] = min(lowerCamelCase_ , lowerCamelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
105
0
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE__ ( torch.nn.Module ): def __init__( self , lowercase__="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(lowercase__ , self ).__init__() SCREAMING_SNAKE_CASE_ : int = AutoModel.from_pretrained(lowercase__ , return_dict=lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.nn.CosineSimilarity(3 , 1e-08 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.nn.Softmax(dim=1 ) def __lowerCamelCase ( self , **lowercase__ ): """simple docstring""" return self.bert(**lowercase__ ).last_hidden_state def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return token_embeddings.sum(2 , keepdim=lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__=1 ): """simple docstring""" return self.softmax(T * self.cos(lowercase__ , lowercase__ ) ) def __lowerCamelCase ( self , lowercase__ , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = W_supports["sizes"].tolist() SCREAMING_SNAKE_CASE_ : List[str] = W_supports["start_token_id"].item() SCREAMING_SNAKE_CASE_ : Any = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] SCREAMING_SNAKE_CASE_ : Any = self.BERT(**lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.BERT(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[Any] = W_supports["input_ids"] == start_token_id SCREAMING_SNAKE_CASE_ : str = W_supports["input_ids"] == end_token_id for i, size in enumerate(lowercase__ ): if i == 0: SCREAMING_SNAKE_CASE_ : Tuple = 0 else: SCREAMING_SNAKE_CASE_ : int = support_sizes[i - 1] SCREAMING_SNAKE_CASE_ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] SCREAMING_SNAKE_CASE_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] SCREAMING_SNAKE_CASE_ : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: SCREAMING_SNAKE_CASE_ : List[str] = torch.vstack((p_starts, p_start) ) SCREAMING_SNAKE_CASE_ : int = torch.vstack((p_ends, p_end) ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = p_start SCREAMING_SNAKE_CASE_ : int = p_end return p_starts, p_ends
68
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_ : int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_ : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case_ = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
68
1
def SCREAMING_SNAKE_CASE__ ( snake_case__ :list , snake_case__ :list ) -> float: _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :list[float] ) -> None: if point: if isinstance(snake_case__ , snake_case__ ): for item in point: if not isinstance(snake_case__ , (int, float) ): _lowercase = ( 'Expected a list of numbers as input, found ' F"""{type(snake_case__ ).__name__}""" ) raise TypeError(snake_case__ ) else: _lowercase = F"""Expected a list of numbers as input, found {type(snake_case__ ).__name__}""" raise TypeError(snake_case__ ) else: raise ValueError('Missing an input' ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :list , snake_case__ :list ) -> float: _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(snake_case__ , snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) UpperCAmelCase_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__UpperCamelCase ) ) return round(__UpperCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
144
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def UpperCamelCase__ ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase__ ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase__ ( self ): self.test_metrics.main() @require_multi_gpu def UpperCamelCase__ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
531
def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" assert column_title.isupper() snake_case_ = 0 snake_case_ = len(SCREAMING_SNAKE_CASE ) - 1 snake_case_ = 0 while index >= 0: snake_case_ = (ord(column_title[index] ) - 64) * pow(26 , SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
531
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCamelCase_ (__A ): __magic_name__ = '''dandelin/vilt-b32-finetuned-vqa''' __magic_name__ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) __magic_name__ = '''image_qa''' __magic_name__ = AutoProcessor __magic_name__ = AutoModelForVisualQuestionAnswering __magic_name__ = ['''image''', '''text'''] __magic_name__ = ['''text'''] def __init__( self : Optional[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[Any] ) -> Optional[int]: requires_backends(self , ["vision"] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : "Image" , lowerCAmelCase_ : str ) -> Optional[Any]: return self.pre_processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="pt" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> Union[str, Any]: with torch.no_grad(): return self.model(**lowerCAmelCase_ ).logits def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Any ) -> str: UpperCAmelCase_ : List[Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
95
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : Union[str, Any] = 'mgp-str' def __init__( self :Union[str, Any] , lowercase :Union[str, Any]=[3_2, 1_2_8] , lowercase :Tuple=4 , lowercase :Optional[int]=3 , lowercase :Union[str, Any]=2_7 , lowercase :List[str]=3_8 , lowercase :Optional[Any]=5_0_2_5_7 , lowercase :str=3_0_5_2_2 , lowercase :Dict=7_6_8 , lowercase :List[Any]=1_2 , lowercase :List[str]=1_2 , lowercase :Optional[Any]=4.0 , lowercase :Optional[Any]=True , lowercase :str=False , lowercase :Optional[Any]=1e-5 , lowercase :List[str]=0.0 , lowercase :List[Any]=0.0 , lowercase :Optional[int]=0.0 , lowercase :Dict=False , lowercase :Optional[Any]=0.02 , **lowercase :Optional[Any] , ) -> Dict: """simple docstring""" super().__init__(**lowercase ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = max_token_length SCREAMING_SNAKE_CASE = num_character_labels SCREAMING_SNAKE_CASE = num_bpe_labels SCREAMING_SNAKE_CASE = num_wordpiece_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = distilled SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = drop_rate SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = attn_drop_rate SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = output_aa_attentions SCREAMING_SNAKE_CASE = initializer_range
201
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __lowerCamelCase : str = 637_8137.0 __lowerCamelCase : List[Any] = 635_6752.31_4245 __lowerCamelCase : int = 637_8137 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCamelCase : Union[str, Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) UpperCamelCase : List[Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCamelCase : Union[str, Any] = haversine_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCamelCase : Union[str, Any] = (b_lata + b_lata) / 2 UpperCamelCase : Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCamelCase : int = (sin(SCREAMING_SNAKE_CASE__ ) ** 2) * (cos(SCREAMING_SNAKE_CASE__ ) ** 2) UpperCamelCase : Optional[Any] = cos(sigma / 2 ) ** 2 UpperCamelCase : Optional[Any] = (sigma - sin(SCREAMING_SNAKE_CASE__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCamelCase : Optional[int] = (cos(SCREAMING_SNAKE_CASE__ ) ** 2) * (sin(SCREAMING_SNAKE_CASE__ ) ** 2) UpperCamelCase : List[str] = sin(sigma / 2 ) ** 2 UpperCamelCase : Optional[Any] = (sigma + sin(SCREAMING_SNAKE_CASE__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
703
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __lowerCamelCase : Dict = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __lowerCamelCase : Tuple = { """facebook/blenderbot_small-90M""": 512, } class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase :Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[Any] = BlenderbotSmallTokenizer def __init__( self , A_=None , A_=None , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|endoftext|>" , A_=False , A_=True , **A_ , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=A_ , merges=A_ , add_prefix_space=A_ , trim_offsets=A_ , ) , bos_token=A_ , eos_token=A_ , unk_token=A_ , **A_ , ) UpperCamelCase : Union[str, Any] = add_prefix_space def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' UpperCamelCase : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Tuple = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
38
0
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : bool , lowercase : list[int] , lowercase : float ) ->int: """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowercase , lowercase , lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase , lowercase , lowercase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowercase , lowercase , lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase , lowercase , lowercase ) , ) ) def _lowerCAmelCase ( ) ->None: """simple docstring""" lowercase__ = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] lowercase__ = math.log(len(lowercase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , lowercase , lowercase , lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
161
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A ( a ): """simple docstring""" A_ = 0 A_ = False A_ = 3.0 class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> Dict: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_lowerCamelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def snake_case_( self )-> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. lowercase__ = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() lowercase__ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowercase__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , _lowerCamelCase ) @require_multi_gpu def snake_case_( self )-> Union[str, Any]: lowercase__ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) _lowerCAmelCase = Accelerator(kwargs_handlers=[ddp_scaler]) _lowerCAmelCase = torch.nn.Linear(1_0_0, 2_0_0) _lowerCAmelCase = accelerator.prepare(model) # Check the values changed in kwargs _lowerCAmelCase = "" _lowerCAmelCase = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
161
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , ) -> Any: UpperCamelCase__ = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCamelCase ( _a , unittest.TestCase ): a : Any =ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'clusters' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case_ , 'image_processor.json' ) image_processor_first.to_json_file(snake_case_ ) UpperCamelCase__ = self.image_processing_class.from_json_file(snake_case_ ).to_dict() UpperCamelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) UpperCamelCase__ = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() UpperCamelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass def lowerCAmelCase_( ) -> List[Any]: """simple docstring""" UpperCamelCase__ = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) UpperCamelCase__ = Image.open(dataset[4]['file'] ) UpperCamelCase__ = Image.open(dataset[5]['file'] ) UpperCamelCase__ = [imagea, imagea] return images @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) UpperCamelCase__ = prepare_images() # test non-batched UpperCamelCase__ = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCamelCase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched UpperCamelCase__ = image_processing(snake_case_ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCamelCase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
604
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
604
1
from functools import reduce UpperCamelCase__ : Any = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def A_( A = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 13] ) ) for i in range(len(A ) - 12 ) ) if __name__ == "__main__": print(f"{solution() = }")
486
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A_( A ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCamelCase__ : Any = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class _UpperCamelCase ( A_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE ( __lowercase : ArgumentParser ): '''simple docstring''' UpperCAmelCase_ = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=__lowercase , required=__lowercase , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=__lowercase , required=__lowercase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=__lowercase , required=__lowercase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=__lowercase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=__lowercase , default=__lowercase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Optional[int] , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : str , *__lowercase : Tuple , ): '''simple docstring''' UpperCAmelCase_ = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F"""Loading model {model_type}""" ) UpperCAmelCase_ = model_type UpperCAmelCase_ = tf_checkpoint UpperCAmelCase_ = pytorch_dump_output UpperCAmelCase_ = config UpperCAmelCase_ = finetuning_task_name def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = """""" else: UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = """""" convert_transfo_xl_checkpoint_to_pytorch( __lowercase , self._config , self._pytorch_dump_output , __lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
486
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : int = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """trocr""" a__ = ["""past_key_values"""] a__ = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Dict , UpperCamelCase__ : Optional[Any]=5_0265 , UpperCamelCase__ : int=1024 , UpperCamelCase__ : int=12 , UpperCamelCase__ : List[Any]=16 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=1 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : List[str]=2 , **UpperCamelCase__ : Tuple , ) -> Dict: """simple docstring""" __magic_name__ = vocab_size __magic_name__ = d_model __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = activation_function __magic_name__ = max_position_embeddings __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = init_std __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = scale_embedding __magic_name__ = use_learned_position_embeddings __magic_name__ = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
529
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="attention" ): __lowerCamelCase : Optional[int] = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] __lowerCamelCase : Dict = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] __lowerCamelCase : int = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] __lowerCamelCase : int = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): if split_mlp_wi: __lowerCamelCase : Optional[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] __lowerCamelCase : str = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] __lowerCamelCase : int = (wi_a, wi_a) else: __lowerCamelCase : Dict = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] __lowerCamelCase : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = traverse_util.flatten_dict(variables['target'] ) __lowerCamelCase : List[Any] = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCamelCase : str = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = collections.OrderedDict() # Shared embeddings. __lowerCamelCase : List[Any] = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). __lowerCamelCase : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) __lowerCamelCase : Any = layer_norm __lowerCamelCase : Dict = k.T __lowerCamelCase : Any = o.T __lowerCamelCase : Dict = q.T __lowerCamelCase : List[str] = v.T # Block i, layer 1 (MLP). __lowerCamelCase : Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) __lowerCamelCase , __lowerCamelCase : Dict = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = layer_norm if split_mlp_wi: __lowerCamelCase : Any = wi[0].T __lowerCamelCase : Union[str, Any] = wi[1].T else: __lowerCamelCase : Optional[int] = wi.T __lowerCamelCase : str = wo.T __lowerCamelCase : Dict = old[ 'encoder/relpos_bias/rel_embedding' ].T __lowerCamelCase : Optional[int] = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). __lowerCamelCase : Dict = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) __lowerCamelCase : Optional[Any] = layer_norm __lowerCamelCase : List[Any] = k.T __lowerCamelCase : Any = o.T __lowerCamelCase : str = q.T __lowerCamelCase : int = v.T # Block i, layer 1 (Cross Attention). __lowerCamelCase : List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) __lowerCamelCase : Tuple = layer_norm __lowerCamelCase : str = k.T __lowerCamelCase : str = o.T __lowerCamelCase : Dict = q.T __lowerCamelCase : int = v.T # Block i, layer 2 (MLP). __lowerCamelCase : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = layer_norm if split_mlp_wi: __lowerCamelCase : Dict = wi[0].T __lowerCamelCase : Dict = wi[1].T else: __lowerCamelCase : Tuple = wi.T __lowerCamelCase : int = wo.T __lowerCamelCase : Dict = old['decoder/decoder_norm/scale'] __lowerCamelCase : List[str] = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCamelCase : int = old['decoder/logits_dense/kernel'].T return new def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCamelCase : str = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCamelCase : Dict = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __lowerCamelCase : Dict = state_dict['shared.weight'] return state_dict def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Union[str, Any] = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): __lowerCamelCase : str = TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCamelCase : Dict = TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase : Optional[int] = TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
230
from math import pow, sqrt def UpperCamelCase__ ( *SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__ ) > 0 and all(value > 0.0 for value in values ) return result def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
230
1
"""simple docstring""" def __a ( a ): """simple docstring""" if not isinstance(a, a ): raise ValueError("check_bouncy() accepts only integer arguments" ) _a = str(a ) _a = "".join(sorted(a ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __a ( a = 9_9 ): """simple docstring""" if not 0 < percent < 1_0_0: raise ValueError("solution() only accepts values from 0 to 100" ) _a = 0 _a = 1 while True: if check_bouncy(a ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(99)}')
388
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __SCREAMING_SNAKE_CASE = """src/transformers""" __SCREAMING_SNAKE_CASE = """docs/source/en""" __SCREAMING_SNAKE_CASE = """.""" def __a ( a, a, a ): """simple docstring""" with open(a, "r", encoding="utf-8", newline="\n" ) as f: _a = f.readlines() # Find the start prompt. _a = 0 while not lines[start_index].startswith(a ): start_index += 1 start_index += 1 _a = start_index while not lines[end_index].startswith(a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __SCREAMING_SNAKE_CASE = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. __SCREAMING_SNAKE_CASE = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") __SCREAMING_SNAKE_CASE = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __SCREAMING_SNAKE_CASE = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) def __a ( a ): """simple docstring""" _a = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", a ) return [m.group(0 ) for m in matches] def __a ( a, a ): """simple docstring""" _a = 2 if text == "✅" or text == "❌" else len(a ) _a = (width - text_length) // 2 _a = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __a ( ): """simple docstring""" _a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _a = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) # Let's lookup through all transformers object (once). for attr_name in dir(a ): _a = None if attr_name.endswith("Tokenizer" ): _a = slow_tokenizers _a = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _a = fast_tokenizers _a = attr_name[:-1_3] elif _re_tf_models.match(a ) is not None: _a = tf_models _a = _re_tf_models.match(a ).groups()[0] elif _re_flax_models.match(a ) is not None: _a = flax_models _a = _re_flax_models.match(a ).groups()[0] elif _re_pt_models.match(a ) is not None: _a = pt_models _a = _re_pt_models.match(a ).groups()[0] if lookup_dict is not None: while len(a ) > 0: if attr_name in model_name_to_prefix.values(): _a = True break # Try again after removing the last word in the name _a = "".join(camel_case_split(a )[:-1] ) # Let's build that table! _a = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _a = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _a = [len(a ) + 2 for c in columns] _a = max([len(a ) for name in model_names] ) + 2 # Build the table per se _a = "|" + "|".join([_center_text(a, a ) for c, w in zip(a, a )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _a = {True: "✅", False: "❌"} for name in model_names: _a = model_name_to_prefix[name] _a = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(a, a ) for l, w in zip(a, a )] ) + "|\n" return table def __a ( a=False ): """simple docstring""" _a , _a , _a , _a = _find_text_in_file( filename=os.path.join(a, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", ) _a = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(a, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __SCREAMING_SNAKE_CASE = parser.parse_args() check_model_table(args.fix_and_overwrite)
388
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class a_: """simple docstring""" @staticmethod def __UpperCamelCase ( *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any]) -> str: """simple docstring""" pass def A_ ( lowercase_ ) ->Dict: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class a_( unittest.TestCase ): """simple docstring""" __snake_case : Optional[int] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __UpperCamelCase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Any) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(lowerCAmelCase__) , lowerCAmelCase__ , ''))) SCREAMING_SNAKE_CASE = 'What is the placebo?' SCREAMING_SNAKE_CASE = [ { 'image': load_image(lowerCAmelCase__), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def __UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = dqa_pipeline(lowerCAmelCase__ , top_k=2) self.assertEqual( lowerCAmelCase__ , [ [ {'score': ANY(lowerCAmelCase__), 'answer': ANY(lowerCAmelCase__), 'start': ANY(lowerCAmelCase__), 'end': ANY(lowerCAmelCase__)}, {'score': ANY(lowerCAmelCase__), 'answer': ANY(lowerCAmelCase__), 'start': ANY(lowerCAmelCase__), 'end': ANY(lowerCAmelCase__)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __UpperCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2') SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = 'How many cats are there?' SCREAMING_SNAKE_CASE = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4) , lowerCAmelCase__) SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4) , lowerCAmelCase__) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = './tests/fixtures/tests_samples/COCO/000000039769.png' SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual(lowerCAmelCase__ , []) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = './tests/fixtures/tests_samples/COCO/000000039769.png' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2) self.assertEqual(lowerCAmelCase__ , []) @slow @require_torch @require_detectrona @require_pytesseract def __UpperCamelCase ( self : Optional[Any]) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = 'What is the invoice number?' SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __UpperCamelCase ( self : List[str]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = 'What is the invoice number?' SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCAmelCase__) SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCAmelCase__ , revision='3dc6de3' , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = 'What is the invoice number?' SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(lowerCAmelCase__) , lowerCAmelCase__ , ''))) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __UpperCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=lowerCAmelCase__) SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=lowerCAmelCase__ , revision='3dc6de3' , max_seq_len=5_0 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = 'What is the invoice number?' SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(lowerCAmelCase__) , lowerCAmelCase__ , ''))) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa') , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = 'What is the invoice number?' SCREAMING_SNAKE_CASE = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4) , [{'answer': 'us-001'}]) @require_tf @unittest.skip('Document question answering not implemented in TF') def __UpperCamelCase ( self : Optional[int]) -> int: """simple docstring""" pass
709
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( lowercase_ , lowercase_ ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = args.log_outputs SCREAMING_SNAKE_CASE = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric SCREAMING_SNAKE_CASE = load_metric('wer' ) SCREAMING_SNAKE_CASE = load_metric('cer' ) # compute metrics SCREAMING_SNAKE_CASE = wer.compute(references=result['target'] , predictions=result['prediction'] ) SCREAMING_SNAKE_CASE = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results SCREAMING_SNAKE_CASE = f'''WER: {wer_result}\nCER: {cer_result}''' print(lowercase_ ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: SCREAMING_SNAKE_CASE = f'''log_{dataset_id}_predictions.txt''' SCREAMING_SNAKE_CASE = f'''log_{dataset_id}_targets.txt''' with open(lowercase_ , 'w' ) as p, open(lowercase_ , 'w' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowercase_ , with_indices=lowercase_ ) def A_ ( lowercase_ ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training SCREAMING_SNAKE_CASE = re.sub(lowercase_ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! SCREAMING_SNAKE_CASE = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: SCREAMING_SNAKE_CASE = ' '.join(text.split(lowercase_ ) ) return text def A_ ( lowercase_ ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(args.model_id ) SCREAMING_SNAKE_CASE = feature_extractor.sampling_rate # resample audio SCREAMING_SNAKE_CASE = dataset.cast_column('audio' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else -1 SCREAMING_SNAKE_CASE = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): SCREAMING_SNAKE_CASE = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) SCREAMING_SNAKE_CASE = prediction['text'] SCREAMING_SNAKE_CASE = normalize_text(batch['sentence'] ) return batch # run inference on all examples SCREAMING_SNAKE_CASE = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __UpperCAmelCase = parser.parse_args() main(args)
259
0
"""simple docstring""" from itertools import product def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" __lowercase = sides_number __lowercase = max_face_number * dice_number __lowercase = [0] * (max_total + 1) __lowercase = 1 __lowercase = range(UpperCamelCase__ , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase__ , repeat=UpperCamelCase__ ): __lowercase = sum(UpperCamelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowercase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowercase = 0 __lowercase = 9 __lowercase = 4 * 9 __lowercase = 6 for peter_total in range(UpperCamelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowercase = (4**9) * (6**6) __lowercase = peter_wins_count / total_games_number __lowercase = round(UpperCamelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
616
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" __lowercase = cva.getAffineTransform(UpperCamelCase__ , UpperCamelCase__ ) return cva.warpAffine(UpperCamelCase__ , UpperCamelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase__ =cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value UpperCAmelCase__ =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase__ , UpperCAmelCase__ =gray_img.shape # set different points to rotate image UpperCAmelCase__ =np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase__ =np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase__ =np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase__ =np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase__ =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase__ =plt.figure(1) UpperCAmelCase__ =["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
616
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __A = "Usage of script: script_name <size_of_canvas:int>" __A = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCAmelCase_ ( __a ) -> list[list[bool]]: """simple docstring""" lowerCamelCase__: Any =[[False for i in range(__a )] for j in range(__a )] return canvas def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): lowerCamelCase__: int =bool(random.getrandbits(1 ) ) def lowerCAmelCase_ ( __a ) -> list[list[bool]]: """simple docstring""" lowerCamelCase__: str =np.array(__a ) lowerCamelCase__: Optional[Any] =np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): lowerCamelCase__: Optional[int] =__judge_point( __a , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCamelCase__: int =next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCamelCase__: list[list[bool]] =current_canvas.tolist() return return_canvas def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" lowerCamelCase__: Tuple =0 lowerCamelCase__: List[Any] =0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCamelCase__: Optional[int] =pt if pt: if alive < 2: lowerCamelCase__: Optional[int] =False elif alive == 2 or alive == 3: lowerCamelCase__: Optional[int] =True elif alive > 3: lowerCamelCase__: Dict =False else: if alive == 3: lowerCamelCase__: List[Any] =True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __A = int(sys.argv[1]) # main working structure of this module. __A = create_canvas(canvas_size) seed(c) __A , __A = plt.subplots() fig.show() __A = ListedColormap(["w", "k"]) try: while True: __A = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
437
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_vision_model" def __init__(self : Union[str, Any] , UpperCAmelCase_ : int=1_408 , UpperCAmelCase_ : List[str]=6_144 , UpperCAmelCase_ : List[Any]=39 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=224 , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : str=0.0_0001 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : str=1E-1_0 , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Any =hidden_size lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Dict =patch_size lowerCamelCase__: List[Any] =image_size lowerCamelCase__: Union[str, Any] =initializer_range lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Union[str, Any] =layer_norm_eps lowerCamelCase__: Dict =hidden_act lowerCamelCase__: Union[str, Any] =qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: str =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Any =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_qformer" def __init__(self : str , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=1E-1_2 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : int=1_408 , **UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: Any =attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] =max_position_embeddings lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: Tuple =position_embedding_type lowerCamelCase__: List[Any] =cross_attention_frequency lowerCamelCase__: Tuple =encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Tuple =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Any =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip-2" lowercase_ = True def __init__(self : Any , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=32 , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) if vision_config is None: lowerCamelCase__: Optional[int] ={} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: lowerCamelCase__: str ={} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: lowerCamelCase__: Union[str, Any] ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") lowerCamelCase__: Optional[Any] =BlipaVisionConfig(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =BlipaQFormerConfig(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase__: Dict =CONFIG_MAPPING[text_model_type](**UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.text_config.tie_word_embeddings lowerCamelCase__: List[str] =self.text_config.is_encoder_decoder lowerCamelCase__: Dict =num_query_tokens lowerCamelCase__: Optional[Any] =self.vision_config.hidden_size lowerCamelCase__: Tuple =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__: List[Any] =1.0 lowerCamelCase__: Union[str, Any] =0.02 @classmethod def SCREAMING_SNAKE_CASE_ (cls : Any , UpperCAmelCase_ : BlipaVisionConfig , UpperCAmelCase_ : BlipaQFormerConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : int , ) ->Optional[int]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =copy.deepcopy(self.__dict__) lowerCamelCase__: Any =self.vision_config.to_dict() lowerCamelCase__: Any =self.qformer_config.to_dict() lowerCamelCase__: Any =self.text_config.to_dict() lowerCamelCase__: int =self.__class__.model_type return output
437
1
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __lowerCamelCase = datasets.logging.get_logger(__name__) __lowerCamelCase = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' __lowerCamelCase = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' __lowerCamelCase = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' __lowerCamelCase = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowerCamelCase__ ( self : Any ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[int] ) -> Tuple: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) __magic_name__: List[Any] = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: __magic_name__: str = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __magic_name__: List[Any] = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer __magic_name__: Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __magic_name__: Any = score.BleurtScorer(os.path.join(__snake_case , __snake_case ) ) def lowerCamelCase__ ( self : Dict , __snake_case : Any , __snake_case : List[Any] ) -> Optional[Any]: __magic_name__: Union[str, Any] = self.scorer.score(references=__snake_case , candidates=__snake_case ) return {"scores": scores}
96
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __a = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } __a = '▁' class lowercase__( UpperCAmelCase ): """simple docstring""" a :int = VOCAB_FILES_NAMES a :Any = PRETRAINED_VOCAB_FILES_MAP a :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :Dict = ['input_ids', 'attention_mask'] a :Optional[Any] = BarthezTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Dict="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : List[str]="<pad>" , SCREAMING_SNAKE_CASE_ : Any="<mask>" , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
97
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase : def __init__( self , snake_case__ , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Tuple = 13 lowerCAmelCase : List[Any] = 7 lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Tuple = False lowerCAmelCase : int = True lowerCAmelCase : str = 99 lowerCAmelCase : str = 32 lowerCAmelCase : Tuple = 2 lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Dict = 37 lowerCAmelCase : int = 'gelu' lowerCAmelCase : Dict = 0.1 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : str = 512 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Tuple = 2 lowerCAmelCase : Tuple = 0.0_2 lowerCAmelCase : Tuple = 3 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : Union[str, Any] = None def lowercase ( self ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = None if self.use_labels: lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = TFDistilBertModel(config=snake_case__ ) lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[Any] = model(snake_case__ ) lowerCAmelCase : List[str] = [input_ids, input_mask] lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = TFDistilBertForMaskedLM(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = TFDistilBertForQuestionAnswering(config=snake_case__ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, } lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : List[str] = TFDistilBertForSequenceClassification(snake_case__ ) lowerCAmelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Optional[Any] = TFDistilBertForMultipleChoice(snake_case__ ) lowerCAmelCase : Dict = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : List[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : str = TFDistilBertForTokenClassification(snake_case__ ) lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Tuple = config_and_inputs lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCamelCase : Optional[int] = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : int = False def lowercase ( self ): lowerCAmelCase : str = TFDistilBertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , dim=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case__ ) @slow def lowercase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase : Any = TFDistilBertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Any = model(snake_case__ )[0] lowerCAmelCase : List[str] = [1, 6, 768] self.assertEqual(output.shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
"""simple docstring""" def __snake_case ( ) -> Tuple: """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def __snake_case ( UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = 1 A = 2 while i * i <= n: A = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __snake_case ( ) -> Any: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(UpperCamelCase__ ) > 500 ) if __name__ == "__main__": print(solution())
690
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=2 , lowerCAmelCase__=24 , lowerCAmelCase__=16 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.02 , lowerCAmelCase__=None , lowerCAmelCase__=2 , lowerCAmelCase__=2 , ) -> Optional[Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = patch_size __lowercase = max_length __lowercase = num_mel_bins __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = scope __lowercase = frequency_stride __lowercase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __lowercase = (self.max_length - self.patch_size) // self.time_stride + 1 __lowercase = frequency_out_dimension * time_out_dimension __lowercase = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, input_values, labels def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' __lowercase = ASTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_values''': input_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __a : Optional[int] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) __a : Tuple = False __a : Optional[int] = False __a : Any = False __a : List[Any] = False def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = ASTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''input_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ASTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __lowercase , __lowercase = torchaudio.load(lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.default_feature_extractor __lowercase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCAmelCase__ ) __lowercase = self.default_feature_extractor __lowercase , __lowercase = prepare_audio() __lowercase = audio.squeeze().numpy() __lowercase = feature_extractor(lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowercase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
522
from ...processing_utils import ProcessorMixin class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''SpeechT5FeatureExtractor''' __a : Optional[Any] = '''SpeechT5Tokenizer''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = kwargs.pop('''audio''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''text''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''text_target''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''audio_target''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''sampling_rate''' , lowerCAmelCase__ ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __lowercase = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) elif text is not None: __lowercase = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) else: __lowercase = None if audio_target is not None: __lowercase = self.feature_extractor(audio_target=lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = targets['''input_values'''] elif text_target is not None: __lowercase = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = targets['''input_ids'''] else: __lowercase = None if inputs is None: return targets if targets is not None: __lowercase = labels __lowercase = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __lowercase = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase = kwargs.pop('''input_values''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''input_ids''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''labels''' , lowerCAmelCase__ ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __lowercase = self.feature_extractor.pad(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) elif input_ids is not None: __lowercase = self.tokenizer.pad(lowerCAmelCase__ , **lowerCAmelCase__ ) else: __lowercase = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and "input_ids" in labels[0]): __lowercase = self.tokenizer.pad(lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = targets['''input_ids'''] else: __lowercase = self.feature_extractor.feature_size __lowercase = self.feature_extractor.num_mel_bins __lowercase = self.feature_extractor.pad(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = feature_size_hack __lowercase = targets['''input_values'''] else: __lowercase = None if inputs is None: return targets if targets is not None: __lowercase = labels __lowercase = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __lowercase = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
522
1