code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase = 16 _lowercase = 32 def A (__lowerCamelCase :Accelerator , __lowerCamelCase :int = 16 , __lowerCamelCase :str = "bert-base-cased" ): _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase :int ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase :List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) _lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader def A (__lowerCamelCase :Any , __lowerCamelCase :Optional[int] , __lowerCamelCase :Tuple , __lowerCamelCase :Union[str, Any] ): model.eval() _lowerCAmelCase = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowerCAmelCase , _lowerCAmelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase ) - 1: _lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) _lowerCAmelCase = metric.compute() return eval_metric["accuracy"] def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] ): # Initialize accelerator _lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config["""lr"""] _lowerCAmelCase = int(config["""num_epochs"""] ) _lowerCAmelCase = int(config["""seed"""] ) _lowerCAmelCase = int(config["""batch_size"""] ) _lowerCAmelCase = args.model_name_or_path set_seed(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase ) # Instantiate optimizer _lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=__lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: _lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _lowerCAmelCase = 1 _lowerCAmelCase = (len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=0 , num_training_steps=__lowerCamelCase , ) else: _lowerCAmelCase = DummyScheduler(__lowerCamelCase , total_num_steps=__lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _lowerCAmelCase = 0 _lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) _lowerCAmelCase = num_epochs if args.partial_train_epoch is not None: _lowerCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] _lowerCAmelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowerCAmelCase = int(__lowerCamelCase ) + 1 _lowerCAmelCase = evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __lowerCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: _lowerCAmelCase = json.load(__lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowerCAmelCase = {} for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.loss _lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowerCAmelCase = f'epoch_{epoch}' _lowerCAmelCase = os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) _lowerCAmelCase = evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = accuracy _lowerCAmelCase = lr_scheduler.get_lr()[0] _lowerCAmelCase = optimizer.param_groups[0]["""lr"""] _lowerCAmelCase = epoch _lowerCAmelCase = overall_step accelerator.print(f'epoch {epoch}:' , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=__lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__lowerCamelCase , default=2 , help="""Number of train epochs.""" , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : Optional[int] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['''DeiTFeatureExtractor'''] A__ : List[Any] = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
'''simple docstring''' import os import sys import unittest A__ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A__ : List[str] = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') A__ : List[str] = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class snake_case__ ( unittest.TestCase ): def A_ ( self : int ) -> Optional[int]: '''simple docstring''' __snake_case : str = get_test_to_tester_mapping(__a ) __snake_case : Any = get_test_to_tester_mapping(__a ) __snake_case : Dict = {'BertModelTest': 'BertModelTester'} __snake_case : Optional[int] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__a ) , __a ) self.assertEqual(get_test_info.to_json(__a ) , __a ) def A_ ( self : Dict ) -> int: '''simple docstring''' __snake_case : Tuple = get_model_to_test_mapping(__a ) __snake_case : str = get_model_to_test_mapping(__a ) __snake_case : Tuple = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __snake_case : Tuple = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__a ) , __a ) self.assertEqual(get_test_info.to_json(__a ) , __a ) def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = get_model_to_tester_mapping(__a ) __snake_case : List[str] = get_model_to_tester_mapping(__a ) __snake_case : Dict = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __snake_case : int = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__a ) , __a ) self.assertEqual(get_test_info.to_json(__a ) , __a )
124
0
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ) -> tuple[int, float, str]: _snake_case = cipher_alphabet or [chr(lowerCAmelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _snake_case = { '''a''': 0.0_8497, '''b''': 0.0_1492, '''c''': 0.0_2202, '''d''': 0.0_4253, '''e''': 0.1_1162, '''f''': 0.0_2228, '''g''': 0.0_2015, '''h''': 0.0_6094, '''i''': 0.0_7546, '''j''': 0.0_0153, '''k''': 0.0_1292, '''l''': 0.0_4025, '''m''': 0.0_2406, '''n''': 0.0_6749, '''o''': 0.0_7507, '''p''': 0.0_1929, '''q''': 0.0_0095, '''r''': 0.0_7587, '''s''': 0.0_6327, '''t''': 0.0_9356, '''u''': 0.0_2758, '''v''': 0.0_0978, '''w''': 0.0_2560, '''x''': 0.0_0150, '''y''': 0.0_1994, '''z''': 0.0_0077, } else: # Custom frequencies dictionary _snake_case = frequencies_dict if not case_sensitive: _snake_case = ciphertext.lower() # Chi squared statistic values _snake_case = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase_ ) ): _snake_case = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _snake_case = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _snake_case = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _snake_case = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _snake_case = decrypted_with_shift.lower().count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula _snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _snake_case = decrypted_with_shift.count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula _snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _snake_case = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase_ ) -> tuple[float, str]: return chi_squared_statistic_values[key] _snake_case = min( lowerCAmelCase_ , key=lowerCAmelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _snake_case ) , ( _snake_case ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
103
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCamelCase ( lowerCamelCase_: str=None ): '''simple docstring''' if subparsers is not None: A : Tuple = subparsers.add_parser('''test''' ) else: A : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCamelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def _lowerCamelCase ( lowerCamelCase_: str ): '''simple docstring''' A : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: A : Any = script_name else: A : str = f"""--config_file={args.config_file} {script_name}""" A : Tuple = ['''accelerate-launch'''] + test_args.split() A : List[Any] = execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _lowerCamelCase ( ): '''simple docstring''' A : List[str] = test_command_parser() A : Any = parser.parse_args() test_command(lowerCamelCase_ ) if __name__ == "__main__": main()
256
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ): """simple docstring""" snake_case__ : Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) snake_case__ : List[str] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) snake_case__ : Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) snake_case__ : List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) snake_case__ : Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) snake_case__ : str = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) snake_case__ : Union[str, Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) snake_case__ : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ): """simple docstring""" if split_mlp_wi: snake_case__ : Optional[int] = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] snake_case__ : Dict = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] snake_case__ : str = (wi_a, wi_a) else: snake_case__ : Tuple = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] snake_case__ : int = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def lowerCAmelCase__ ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ): """simple docstring""" snake_case__ : int = traverse_util.flatten_dict(variables["""target"""] ) snake_case__ : int = {"""/""".join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case__ : Optional[Any] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , UpperCAmelCase ) snake_case__ : int = collections.OrderedDict() # Shared embeddings. snake_case__ : Union[str, Any] = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). snake_case__ : Any = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) snake_case__ : Any = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , """attention""" ) snake_case__ : List[Any] = layer_norm snake_case__ : Optional[Any] = k.T snake_case__ : List[Any] = o.T snake_case__ : List[Any] = q.T snake_case__ : Union[str, Any] = v.T # Block i, layer 1 (MLP). snake_case__ : Any = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) snake_case__ : Optional[int] = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , UpperCAmelCase ) snake_case__ : Union[str, Any] = layer_norm if split_mlp_wi: snake_case__ : str = wi[0].T snake_case__ : Union[str, Any] = wi[1].T else: snake_case__ : List[Any] = wi.T snake_case__ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case__ : Union[str, Any] = tax_relpos_bias_lookup( UpperCAmelCase , UpperCAmelCase , """encoder""" ).T snake_case__ : Optional[Any] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: snake_case__ : Any = tax_relpos_bias_lookup( UpperCAmelCase , 0 , """encoder""" ).T snake_case__ : int = tax_relpos_bias_lookup( UpperCAmelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). snake_case__ : Union[str, Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) snake_case__ : Optional[int] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """self_attention""" ) snake_case__ : Union[str, Any] = layer_norm snake_case__ : Optional[Any] = k.T snake_case__ : int = o.T snake_case__ : int = q.T snake_case__ : str = v.T # Block i, layer 1 (Cross Attention). snake_case__ : int = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) snake_case__ : List[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """encoder_decoder_attention""" ) snake_case__ : List[str] = layer_norm snake_case__ : Optional[Any] = k.T snake_case__ : Tuple = o.T snake_case__ : Optional[int] = q.T snake_case__ : str = v.T # Block i, layer 2 (MLP). snake_case__ : int = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) snake_case__ : Union[str, Any] = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , UpperCAmelCase ) snake_case__ : Tuple = layer_norm if split_mlp_wi: snake_case__ : Union[str, Any] = wi[0].T snake_case__ : List[str] = wi[1].T else: snake_case__ : Optional[Any] = wi.T snake_case__ : str = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case__ : List[str] = tax_relpos_bias_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" ).T snake_case__ : Union[str, Any] = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case__ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case__ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case__ : Dict = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) snake_case__ : str = state_dict["""shared.weight"""] return state_dict def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : int = checkpoints.load_tax_checkpoint(UpperCAmelCase ) snake_case__ : Dict = convert_tax_to_pytorch( UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase , scalable_attention=UpperCAmelCase ) snake_case__ : List[str] = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , ): """simple docstring""" snake_case__ : str = MTaConfig.from_json_file(UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case__ : Tuple = UMTaEncoderModel(UpperCAmelCase ) else: snake_case__ : Optional[int] = UMTaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print("""Done""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
705
'''simple docstring''' import math from datetime import datetime, timedelta def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : List[str] = year % 19 snake_case__ : Optional[Any] = year % 4 snake_case__ : Optional[Any] = year % 7 snake_case__ : List[str] = math.floor(year / 100 ) snake_case__ : int = math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case__ : Dict = leap_day_inhibits / 4 snake_case__ : Optional[int] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case__ : Optional[int] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case__ : Optional[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case__ : Optional[int] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase , 4 , 18 ) else: return datetime(UpperCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowerCAmelCase__ = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
172
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[Any] ,) -> int: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _UpperCamelCase =s_dict.pop(__SCREAMING_SNAKE_CASE ) elif "subsample" in key: _UpperCamelCase =s_dict.pop(__SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase , _UpperCamelCase =emb.weight.shape _UpperCamelCase =nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =emb.weight.data return lin_layer def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCamelCase =mam_aaa['''args'''] _UpperCamelCase =mam_aaa['''model'''] _UpperCamelCase =state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) rename_keys(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =state_dict['''decoder.embed_tokens.weight'''].shape[0] _UpperCamelCase =args.share_decoder_input_output_embed _UpperCamelCase =[int(__SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(''',''' )] _UpperCamelCase =SpeechaTextConfig( vocab_size=__SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=__SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__SCREAMING_SNAKE_CASE , num_beams=5 , max_length=200 , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=__SCREAMING_SNAKE_CASE , ) _UpperCamelCase =SpeechaTextForConditionalGeneration(__SCREAMING_SNAKE_CASE ) _UpperCamelCase , _UpperCamelCase =model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0 and not set(__SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: _UpperCamelCase =make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCamelCase =lm_head_weights model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCamelCase : List[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
404
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowercase__ : Dict = parser.parse_args() if args.model_type == "bert": lowercase__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) lowercase__ : int = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowercase__ : List[Any] = model.state_dict() lowercase__ : Optional[Any] = {} for w in ["word_embeddings", "position_embeddings"]: lowercase__ : Dict = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowercase__ : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowercase__ : List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowercase__ : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowercase__ : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowercase__ : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowercase__ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowercase__ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowercase__ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowercase__ : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowercase__ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowercase__ : int = state_dict['''cls.predictions.decoder.weight'''] lowercase__ : List[Any] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowercase__ : Optional[Any] = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowercase__ : Union[str, Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
8
def __UpperCamelCase ( lowerCAmelCase__ : str ): if n_term == "": return [] __a : list = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f"1/{temp + 1}" if series else '''1''' ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
521
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> Optional[Any]: '''simple docstring''' try: __UpperCAmelCase : int = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Optional[int] = 2 while i * i <= n: while n % i == 0: __UpperCAmelCase : Union[str, Any] = i n //= i i += 1 if n > 1: __UpperCAmelCase : Union[str, Any] = n return int(lowerCamelCase_ ) if __name__ == "__main__": print(F"{solution() = }")
713
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') UpperCAmelCase : List[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' with open(_UpperCamelCase , """rb""" ) as f: __UpperCAmelCase : List[Any] = Image.open(_UpperCamelCase ) return im.convert("""RGB""" ) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( default=A , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) __a = field( default=A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __a = field(default=A , metadata={"""help""": """A folder containing the training data."""} ) __a = field(default=A , metadata={"""help""": """A folder containing the validation data."""} ) __a = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __a = field( default=A , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(A )} , ) __a = field( default=A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a = field( default=A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a = field(default=A , metadata={"""help""": """Name or path of preprocessor config."""} ) __a = field( default=A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __a = field( default=A , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' __UpperCAmelCase : str = torch.stack([example["""pixel_values"""] for example in examples] ) __UpperCAmelCase : Optional[Any] = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : int = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __UpperCAmelCase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCAmelCase : Tuple = {} if data_args.train_dir is not None: __UpperCAmelCase : Optional[int] = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: __UpperCAmelCase : Any = os.path.join(data_args.validation_dir , """**""" ) __UpperCAmelCase : Dict = load_dataset( """imagefolder""" , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCAmelCase : List[str] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: __UpperCAmelCase : Any = dataset["""train"""].train_test_split(data_args.train_val_split ) __UpperCAmelCase : Union[str, Any] = split["""train"""] __UpperCAmelCase : Optional[Any] = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCAmelCase : Union[str, Any] = dataset["""train"""].features["""labels"""].names __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = {}, {} for i, label in enumerate(_UpperCamelCase ): __UpperCAmelCase : Any = str(_UpperCamelCase ) __UpperCAmelCase : str = label # Load the accuracy metric from the datasets package __UpperCAmelCase : str = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __UpperCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __UpperCAmelCase : int = image_processor.size["""shortest_edge"""] else: __UpperCAmelCase : List[Any] = (image_processor.size["""height"""], image_processor.size["""width"""]) __UpperCAmelCase : List[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __UpperCAmelCase : Any = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __UpperCAmelCase : str = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : List[Any] ): __UpperCAmelCase : Optional[int] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(_UpperCamelCase : Optional[int] ): __UpperCAmelCase : Dict = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __UpperCAmelCase : str = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __UpperCAmelCase : Dict = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer __UpperCAmelCase : Any = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Dict = last_checkpoint __UpperCAmelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCAmelCase : Optional[int] = trainer.evaluate() trainer.log_metrics("""eval""" , _UpperCamelCase ) trainer.save_metrics("""eval""" , _UpperCamelCase ) # Write model card and (optionally) push to hub __UpperCAmelCase : Union[str, Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
299
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str ) -> YolosConfig: __A : Any = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __A : Tuple = 1_92 __A : Dict = 7_68 __A : Dict = 12 __A : Union[str, Any] = 3 __A : int = [8_00, 13_33] __A : List[str] = False elif yolos_name == "yolos_s_dWr": __A : Optional[int] = 3_30 __A : Union[str, Any] = 14 __A : str = 6 __A : List[Any] = 13_20 elif "yolos_s" in yolos_name: __A : str = 3_84 __A : int = 15_36 __A : Any = 12 __A : Tuple = 6 elif "yolos_b" in yolos_name: __A : List[str] = [8_00, 13_44] __A : Optional[int] = 91 __A : Optional[Any] = 'huggingface/label-files' __A : List[str] = 'coco-detection-id2label.json' __A : List[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) __A : Optional[Any] = {int(_snake_case ): v for k, v in idalabel.items()} __A : List[Any] = idalabel __A : Dict = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( __snake_case : dict , __snake_case : YolosConfig , __snake_case : bool = False ) -> Optional[int]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __A : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A : int = in_proj_weight[: config.hidden_size, :] __A : Optional[int] = in_proj_bias[: config.hidden_size] __A : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : List[Any] = in_proj_weight[-config.hidden_size :, :] __A : List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __snake_case : str ) -> str: if "backbone" in name: __A : List[str] = name.replace('backbone' , 'vit' ) if "cls_token" in name: __A : Dict = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: __A : Tuple = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: __A : Dict = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: __A : Optional[int] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: __A : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: __A : str = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: __A : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __A : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: __A : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __A : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __A : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __A : str = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: __A : Optional[int] = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: __A : Dict = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: __A : Dict = name.replace('vit.norm' , 'vit.layernorm' ) return name def _lowerCAmelCase ( __snake_case : dict , __snake_case : YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): __A : List[str] = orig_state_dict.pop(_snake_case ) if "qkv" in key: __A : Optional[int] = key.split('.' ) __A : List[str] = int(key_split[2] ) __A : List[Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __A : Dict = val[:dim, :] __A : List[Any] = val[ dim : dim * 2, : ] __A : Optional[int] = val[-dim:, :] else: __A : Optional[int] = val[:dim] __A : Optional[int] = val[dim : dim * 2] __A : List[Any] = val[-dim:] else: __A : Tuple = val return orig_state_dict def _lowerCAmelCase ( ) -> torch.Tensor: __A : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Tuple = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __snake_case : str , __snake_case : str , __snake_case : str , __snake_case : bool = False ) -> Dict: __A : Optional[Any] = get_yolos_config(_snake_case ) # load original state_dict __A : List[Any] = torch.load(_snake_case , map_location='cpu' )['model'] # load 🤗 model __A : Any = YolosForObjectDetection(_snake_case ) model.eval() __A : Any = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor __A : Union[str, Any] = 8_00 if yolos_name != 'yolos_ti' else 5_12 __A : List[Any] = YolosImageProcessor(format='coco_detection' , size=_snake_case ) __A : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) __A : Dict = model(**_snake_case ) __A ,__A : Tuple = outputs.logits, outputs.pred_boxes __A ,__A : Any = None, None if yolos_name == "yolos_ti": __A : Dict = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __A : Optional[Any] = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __A : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __A : Optional[Any] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __A : Tuple = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __A : str = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __A : Union[str, Any] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __A : Optional[int] = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __A : Optional[int] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __A : Any = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: __A : Union[str, Any] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) __A : str = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='hustvl' ) model.push_to_hub(_snake_case , organization='hustvl' ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : int = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
8
UpperCAmelCase_ = 2_5_6 # Modulus to hash a string UpperCAmelCase_ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str ) -> bool: _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = '''abc1abc12''' _A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = '''ABABX''' _A = '''ABABZABABYABABX''' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = '''AAAB''' _A = '''ABAAAAAB''' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = '''abcdabcy''' _A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = '''Lü''' _A = '''Lüsai''' assert rabin_karp(_snake_case , _snake_case ) _A = '''Lue''' assert not rabin_karp(_snake_case , _snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
2
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig A_ = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring A_ = '''UperNetConfig''' class lowercase( nn.Module ): '''simple docstring''' def __init__( self: str, a_: int, a_: int, a_: Union[int, Tuple[int, int]], a_: Union[int, Tuple[int, int], str] = 0, a_: bool = False, a_: Union[int, Tuple[int, int]] = 1, ): '''simple docstring''' super().__init__() _snake_case : Union[str, Any] = nn.Convad( in_channels=a_, out_channels=a_, kernel_size=a_, padding=a_, bias=a_, dilation=a_, ) _snake_case : Optional[int] = nn.BatchNormad(a_ ) _snake_case : Tuple = nn.ReLU() def UpperCamelCase_ ( self: Optional[Any], a_: torch.Tensor ): '''simple docstring''' _snake_case : Union[str, Any] = self.conv(a_ ) _snake_case : Optional[int] = self.batch_norm(a_ ) _snake_case : Dict = self.activation(a_ ) return output class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[str], a_: int, a_: int, a_: int ): '''simple docstring''' super().__init__() _snake_case : List[str] = [ nn.AdaptiveAvgPoolad(a_ ), UperNetConvModule(a_, a_, kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(a_ ), a_ ) def UpperCamelCase_ ( self: List[Any], a_: torch.Tensor ): '''simple docstring''' _snake_case : List[Any] = input for layer in self.layers: _snake_case : str = layer(a_ ) return hidden_state class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[str], a_: Tuple[int, ...], a_: int, a_: int, a_: bool ): '''simple docstring''' super().__init__() _snake_case : List[str] = pool_scales _snake_case : Optional[Any] = align_corners _snake_case : List[Any] = in_channels _snake_case : Dict = channels _snake_case : Optional[int] = [] for i, pool_scale in enumerate(a_ ): _snake_case : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=a_, in_channels=a_, channels=a_ ) self.blocks.append(a_ ) self.add_module(str(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: torch.Tensor ): '''simple docstring''' _snake_case : str = [] for ppm in self.blocks: _snake_case : Any = ppm(a_ ) _snake_case : Dict = nn.functional.interpolate( a_, size=x.size()[2:], mode="""bilinear""", align_corners=self.align_corners ) ppm_outs.append(a_ ) return ppm_outs class lowercase( nn.Module ): '''simple docstring''' def __init__( self: Any, a_: Any, a_: Dict ): '''simple docstring''' super().__init__() _snake_case : Tuple = config _snake_case : Tuple = config.pool_scales # e.g. (1, 2, 3, 6) _snake_case : str = in_channels _snake_case : Dict = config.hidden_size _snake_case : Any = False _snake_case : List[Any] = nn.Convad(self.channels, config.num_labels, kernel_size=1 ) # PSP Module _snake_case : List[Any] = UperNetPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) _snake_case : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module _snake_case : str = nn.ModuleList() _snake_case : Tuple = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _snake_case : List[Any] = UperNetConvModule(a_, self.channels, kernel_size=1 ) _snake_case : Optional[Any] = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1 ) self.lateral_convs.append(a_ ) self.fpn_convs.append(a_ ) _snake_case : str = UperNetConvModule( len(self.in_channels ) * self.channels, self.channels, kernel_size=3, padding=1, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' self.apply(self._init_weights ) def UpperCamelCase_ ( self: Optional[Any], a_: List[Any] ): '''simple docstring''' if isinstance(a_, nn.Convad ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCamelCase_ ( self: List[Any], a_: Any ): '''simple docstring''' _snake_case : Optional[int] = inputs[-1] _snake_case : Tuple = [x] psp_outs.extend(self.psp_modules(a_ ) ) _snake_case : Tuple = torch.cat(a_, dim=1 ) _snake_case : Optional[Any] = self.bottleneck(a_ ) return output def UpperCamelCase_ ( self: Optional[Any], a_: torch.Tensor ): '''simple docstring''' _snake_case : int = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(a_ ) ) # build top-down path _snake_case : List[str] = len(a_ ) for i in range(used_backbone_levels - 1, 0, -1 ): _snake_case : Dict = laterals[i - 1].shape[2:] _snake_case : Tuple = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=a_, mode="""bilinear""", align_corners=self.align_corners ) # build outputs _snake_case : Optional[int] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1, 0, -1 ): _snake_case : int = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="""bilinear""", align_corners=self.align_corners ) _snake_case : Optional[Any] = torch.cat(a_, dim=1 ) _snake_case : Any = self.fpn_bottleneck(a_ ) _snake_case : Dict = self.classifier(a_ ) return output class lowercase( nn.Module ): '''simple docstring''' def __init__( self: Dict, a_: int, a_: int = 2, a_: int = 3, a_: Union[int, Tuple[int, int]] = 1 ): '''simple docstring''' super().__init__() _snake_case : List[Any] = config _snake_case : Dict = config.auxiliary_in_channels _snake_case : Dict = config.auxiliary_channels _snake_case : int = config.auxiliary_num_convs _snake_case : Any = config.auxiliary_concat_input _snake_case : Union[str, Any] = in_index _snake_case : int = (kernel_size // 2) * dilation _snake_case : Tuple = [] convs.append( UperNetConvModule( self.in_channels, self.channels, kernel_size=a_, padding=a_, dilation=a_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels, self.channels, kernel_size=a_, padding=a_, dilation=a_ ) ) if self.num_convs == 0: _snake_case : str = nn.Identity() else: _snake_case : List[Any] = nn.Sequential(*a_ ) if self.concat_input: _snake_case : Dict = UperNetConvModule( self.in_channels + self.channels, self.channels, kernel_size=a_, padding=kernel_size // 2 ) _snake_case : Optional[Any] = nn.Convad(self.channels, config.num_labels, kernel_size=1 ) def UpperCamelCase_ ( self: int ): '''simple docstring''' self.apply(self._init_weights ) def UpperCamelCase_ ( self: Dict, a_: List[str] ): '''simple docstring''' if isinstance(a_, nn.Convad ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCamelCase_ ( self: List[Any], a_: torch.Tensor ): '''simple docstring''' _snake_case : Any = encoder_hidden_states[self.in_index] _snake_case : Optional[Any] = self.convs(a_ ) if self.concat_input: _snake_case : Any = self.conv_cat(torch.cat([hidden_states, output], dim=1 ) ) _snake_case : str = self.classifier(a_ ) return output class lowercase( __a ): '''simple docstring''' lowercase__ = UperNetConfig lowercase__ = "pixel_values" lowercase__ = True def UpperCamelCase_ ( self: Dict, a_: Optional[int] ): '''simple docstring''' if isinstance(a_, a_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCamelCase_ ( self: str ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCamelCase_ ( self: int, a_: Union[str, Any], a_: str=False ): '''simple docstring''' if isinstance(a_, a_ ): _snake_case : Union[str, Any] = value A_ = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' A_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , __a , ) class lowercase( __a ): '''simple docstring''' def __init__( self: Union[str, Any], a_: Any ): '''simple docstring''' super().__init__(a_ ) _snake_case : Tuple = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _snake_case : int = UperNetHead(a_, in_channels=self.backbone.channels ) _snake_case : Tuple = UperNetFCNHead(a_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=a_, config_class=_CONFIG_FOR_DOC ) def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[torch.Tensor] = None, a_: Optional[bool] = None, a_: Optional[bool] = None, a_: Optional[torch.Tensor] = None, a_: Optional[bool] = None, ): '''simple docstring''' _snake_case : Dict = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions _snake_case : str = self.backbone.forward_with_filtered_kwargs( a_, output_hidden_states=a_, output_attentions=a_ ) _snake_case : Dict = outputs.feature_maps _snake_case : Optional[Any] = self.decode_head(a_ ) _snake_case : int = nn.functional.interpolate(a_, size=pixel_values.shape[2:], mode="""bilinear""", align_corners=a_ ) _snake_case : Dict = None if self.auxiliary_head is not None: _snake_case : Optional[Any] = self.auxiliary_head(a_ ) _snake_case : List[str] = nn.functional.interpolate( a_, size=pixel_values.shape[2:], mode="""bilinear""", align_corners=a_ ) _snake_case : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss _snake_case : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _snake_case : Any = loss_fct(a_, a_ ) _snake_case : List[str] = loss_fct(a_, a_ ) _snake_case : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _snake_case : List[str] = (logits,) + outputs[1:] else: _snake_case : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=a_, logits=a_, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
28
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
1
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece.model''') UpperCamelCase_ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') UpperCamelCase_ : List[Any] = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" snake_case = CamembertTokenizer snake_case = CamembertTokenizerFast snake_case = True snake_case = True def lowerCamelCase__ ( self : Dict ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A_ = CamembertTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : str ) -> Dict: """simple docstring""" A_ = "<pad>" A_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def lowerCamelCase__ ( self : Tuple ) -> Dict: """simple docstring""" A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_snake_case ) , 1_004 ) def lowerCamelCase__ ( self : Tuple ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" A_ = CamembertTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) A_ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) A_ = "I was born in 92000, and this is falsé." A_ = tokenizer.encode(_snake_case ) A_ = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) A_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) A_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) A_ = tokenizer.convert_ids_to_tokens(_snake_case ) A_ = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" if not self.test_rust_tokenizer: return A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = "I was born in 92000, and this is falsé." A_ = tokenizer.tokenize(_snake_case ) A_ = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) A_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) A_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(_snake_case ) A_ = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @slow def lowerCamelCase__ ( self : Tuple ) -> Dict: """simple docstring""" # fmt: off A_ = {"input_ids": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. A_ = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=_snake_case , )
115
'''simple docstring''' a__ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a__ : List[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a__ : Any = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def _lowercase ( __A ,__A ,__A ): '''simple docstring''' assert len(str(__A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __UpperCamelCase = year // 100 __UpperCamelCase = (5 * (century % 4) + 2) % 7 __UpperCamelCase = year % 100 __UpperCamelCase = centurian % 12 __UpperCamelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCamelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCamelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
601
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings SCREAMING_SNAKE_CASE_ = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(lowercase_ ) class UpperCamelCase__ ( lowercase_ ): '''simple docstring''' __snake_case : List[str] = '''rag''' __snake_case : Tuple = True def __init__( self : List[str] ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : int=" / " ,lowerCamelCase__ : Any=" // " ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : List[str]=300 ,lowerCamelCase__ : Tuple=768 ,lowerCamelCase__ : Dict=8 ,lowerCamelCase__ : Any="wiki_dpr" ,lowerCamelCase__ : Optional[Any]="train" ,lowerCamelCase__ : Any="compressed" ,lowerCamelCase__ : int=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Optional[int]=False ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Union[str, Any]=None ,**lowerCamelCase__ : Optional[Any] ,) -> Tuple: '''simple docstring''' super().__init__( bos_token_id=UpperCamelCase__ ,pad_token_id=UpperCamelCase__ ,eos_token_id=UpperCamelCase__ ,decoder_start_token_id=UpperCamelCase__ ,forced_eos_token_id=UpperCamelCase__ ,is_encoder_decoder=UpperCamelCase__ ,prefix=UpperCamelCase__ ,vocab_size=UpperCamelCase__ ,**UpperCamelCase__ ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" SCREAMING_SNAKE_CASE = kwargs.pop("""question_encoder""" ) SCREAMING_SNAKE_CASE = question_encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE = kwargs.pop("""generator""" ) SCREAMING_SNAKE_CASE = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE = AutoConfig.for_model(UpperCamelCase__ ,**UpperCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.for_model(UpperCamelCase__ ,**UpperCamelCase__ ) SCREAMING_SNAKE_CASE = reduce_loss SCREAMING_SNAKE_CASE = label_smoothing SCREAMING_SNAKE_CASE = exclude_bos_score SCREAMING_SNAKE_CASE = do_marginalize SCREAMING_SNAKE_CASE = title_sep SCREAMING_SNAKE_CASE = doc_sep SCREAMING_SNAKE_CASE = n_docs SCREAMING_SNAKE_CASE = max_combined_length SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = dataset_split SCREAMING_SNAKE_CASE = index_name SCREAMING_SNAKE_CASE = retrieval_vector_size SCREAMING_SNAKE_CASE = retrieval_batch_size SCREAMING_SNAKE_CASE = passages_path SCREAMING_SNAKE_CASE = index_path SCREAMING_SNAKE_CASE = use_dummy_dataset SCREAMING_SNAKE_CASE = output_retrieved SCREAMING_SNAKE_CASE = do_deduplication SCREAMING_SNAKE_CASE = use_cache if self.forced_eos_token_id is None: SCREAMING_SNAKE_CASE = getattr(self.generator ,"""forced_eos_token_id""" ,UpperCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict ,lowerCamelCase__ : PretrainedConfig ,lowerCamelCase__ : PretrainedConfig ,**lowerCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.question_encoder.to_dict() SCREAMING_SNAKE_CASE = self.generator.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
711
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' _validate_point(_SCREAMING_SNAKE_CASE ) _validate_point(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if point: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): SCREAMING_SNAKE_CASE = ( """Expected a list of numbers as input, found """ F"""{type(_SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = F"""Expected a list of numbers as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) else: raise ValueError("""Missing an input""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' _validate_point(_SCREAMING_SNAKE_CASE ) _validate_point(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
116
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _UpperCamelCase : List[Any] = 'scheduler_config.json' class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = 3 __lowerCamelCase = 4 __lowerCamelCase = 5 __lowerCamelCase = 6 __lowerCamelCase = 7 __lowerCamelCase = 8 __lowerCamelCase = 9 __lowerCamelCase = 10 __lowerCamelCase = 11 __lowerCamelCase = 12 __lowerCamelCase = 13 __lowerCamelCase = 14 @dataclass class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = 42 class _lowercase: """simple docstring""" __lowerCamelCase = SCHEDULER_CONFIG_NAME __lowerCamelCase = [] __lowerCamelCase = True @classmethod def snake_case ( cls: int ,a: Dict[str, Any] = None ,a: Optional[str] = None ,a: List[Any]=False ,**a: Union[str, Any] ,): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=a ,subfolder=a ,return_unused_kwargs=a ,return_commit_hash=a ,**a ,) return cls.from_config(a ,return_unused_kwargs=a ,**a ) def snake_case ( self: Optional[Any] ,a: Union[str, os.PathLike] ,a: bool = False ,**a: int ): self.save_config(save_directory=a ,push_to_hub=a ,**a ) @property def snake_case ( self: int ): return self._get_compatibles() @classmethod def snake_case ( cls: Optional[int] ): __UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase = importlib.import_module(__name__.split('.' )[0] ) __UpperCAmelCase = [ getattr(a ,a ) for c in compatible_classes_str if hasattr(a ,a ) ] return compatible_classes
396
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCamelCase : Any = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCamelCase : List[Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCamelCase : List[str] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowercase( datasets.Metric ): """simple docstring""" def snake_case ( self: int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ) ,id='references' ), } ) ,) def snake_case ( self: Dict ,a: List[List[List[str]]] ,a: List[List[str]] ,a: int = 1 ,a: int = 4 ,): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a ,hypotheses=a ,min_len=a ,max_len=a ) }
396
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : int=7 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : str=18 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCamelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCamelCase__ : List[str]=False , ) -> Tuple: """simple docstring""" __lowercase = size if size is not None else {'''height''': 20, '''width''': 20} __lowercase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_reduce_labels def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _A( ) -> List[str]: '''simple docstring''' __lowercase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __lowercase = Image.open(dataset[0]['''file'''] ) __lowercase = Image.open(dataset[1]['''file'''] ) return image, map def _A( ) -> int: '''simple docstring''' __lowercase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __lowercase = Image.open(ds[0]['''file'''] ) __lowercase = Image.open(ds[1]['''file'''] ) __lowercase = Image.open(ds[2]['''file'''] ) __lowercase = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase__ ) __lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowercase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowercase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowercase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) __lowercase = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __lowercase = image_processing(lowerCamelCase__ , lowerCamelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __lowercase , __lowercase = prepare_semantic_single_inputs() __lowercase = image_processing(lowerCamelCase__ , lowerCamelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __lowercase , __lowercase = prepare_semantic_batch_inputs() __lowercase = image_processing(lowerCamelCase__ , lowerCamelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __lowercase , __lowercase = prepare_semantic_single_inputs() __lowercase = image_processing(lowerCamelCase__ , lowerCamelCase__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __lowercase = True __lowercase = image_processing(lowerCamelCase__ , lowerCamelCase__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
362
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = GPTSwaTokenizer UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[Any] = False def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase = GPTSwaTokenizer(lowerCamelCase__ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : int , lowerCamelCase__ : Dict ) -> Dict: """simple docstring""" __lowercase = '''This is a test''' __lowercase = '''This is a test''' return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = '''<s>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowerCamelCase__ ) , 2_000 ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = GPTSwaTokenizer(lowerCamelCase__ ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [465, 287, 265, 631, 842] ) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( lowerCamelCase__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) # fmt: off self.assertListEqual( lowerCamelCase__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = GPTSwaTokenizer(lowerCamelCase__ ) __lowercase = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __lowercase = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertListEqual(tokenizer.encode_fast(lowerCamelCase__ ) , lowerCamelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(tokenizer.decode_fast(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __lowercase = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=lowerCamelCase__ , )
362
1
"""simple docstring""" import heapq def snake_case_ ( A_ : dict ): '''simple docstring''' _lowerCamelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A_, [-1 * len(A_ ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCamelCase : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCamelCase : Dict = heapq.heappop(A_ )[1][0] chosen_vertices.add(A_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCamelCase : List[str] = elem[1][1].index(A_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
83
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase__ = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__UpperCAmelCase ) , torch_builtin(__UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__UpperCAmelCase ) , gelu_new(__UpperCAmelCase ) ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase__ = get_activation("gelu" ) lowerCAmelCase__ = get_activation("gelu_10" ) lowerCAmelCase__ = torch_builtin(__UpperCAmelCase ) lowerCAmelCase__ = geluaa(__UpperCAmelCase ) lowerCAmelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__UpperCAmelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__UpperCAmelCase ): get_activation("bogus" ) with self.assertRaises(__UpperCAmelCase ): get_activation(__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = get_activation("gelu" ) lowerCAmelCase__ = 1 lowerCAmelCase__ = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ = acta.a
339
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase = _symbol_database.Default() _UpperCAmelCase = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _UpperCAmelCase = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase = None _UpperCAmelCase = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase = 4_5 _UpperCAmelCase = 1_5_8_1 _UpperCAmelCase = 1_5_1_7 _UpperCAmelCase = 1_5_7_0 _UpperCAmelCase = 1_5_8_4 _UpperCAmelCase = 1_7_9_3 _UpperCAmelCase = 1_7_9_5 _UpperCAmelCase = 1_9_1_6 _UpperCAmelCase = 1_8_6_4 _UpperCAmelCase = 1_9_0_5 _UpperCAmelCase = 1_9_1_9 _UpperCAmelCase = 2_4_2_9 _UpperCAmelCase = 2_2_0_8 _UpperCAmelCase = 2_4_1_8 _UpperCAmelCase = 2_3_2_3 _UpperCAmelCase = 2_4_0_7 # @@protoc_insertion_point(module_scope)
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings UpperCamelCase_ = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_SCREAMING_SNAKE_CASE , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_SCREAMING_SNAKE_CASE , py_version="py36" , ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.create_estimator(_SCREAMING_SNAKE_CASE ) # run training estimator.fit() # result dataframe UpperCamelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _SCREAMING_SNAKE_CASE )
371
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class lowerCamelCase_ ( lowerCamelCase ): a__ = '''timesformer''' def __init__( self , __lowerCAmelCase=2_2_4 , __lowerCAmelCase=1_6 , __lowerCAmelCase=3 , __lowerCAmelCase=8 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase="divided_space_time" , __lowerCAmelCase=0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) __magic_name__ :str = image_size __magic_name__ :Tuple = patch_size __magic_name__ :Any = num_channels __magic_name__ :str = num_frames __magic_name__ :Optional[Any] = hidden_size __magic_name__ :Union[str, Any] = num_hidden_layers __magic_name__ :Optional[Any] = num_attention_heads __magic_name__ :Optional[int] = intermediate_size __magic_name__ :List[Any] = hidden_act __magic_name__ :str = hidden_dropout_prob __magic_name__ :Optional[Any] = attention_probs_dropout_prob __magic_name__ :Optional[Any] = initializer_range __magic_name__ :Dict = layer_norm_eps __magic_name__ :List[Any] = qkv_bias __magic_name__ :int = attention_type __magic_name__ :Optional[Any] = drop_path_rate
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Dict = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = '''layoutlmv3''' def __init__(self : Dict , A__ : List[str]=5_0_2_6_5 , A__ : str=7_6_8 , A__ : Tuple=1_2 , A__ : int=1_2 , A__ : Optional[Any]=3_0_7_2 , A__ : Tuple="gelu" , A__ : Union[str, Any]=0.1 , A__ : Any=0.1 , A__ : Union[str, Any]=5_1_2 , A__ : Dict=2 , A__ : Any=0.0_2 , A__ : List[str]=1e-5 , A__ : Optional[Any]=1 , A__ : Optional[Any]=0 , A__ : List[str]=2 , A__ : Optional[int]=1_0_2_4 , A__ : Optional[Any]=1_2_8 , A__ : Any=1_2_8 , A__ : List[str]=True , A__ : List[str]=3_2 , A__ : Optional[Any]=1_2_8 , A__ : List[Any]=6_4 , A__ : Union[str, Any]=2_5_6 , A__ : Optional[int]=True , A__ : int=True , A__ : Any=True , A__ : List[str]=2_2_4 , A__ : List[str]=3 , A__ : Optional[Any]=1_6 , A__ : Optional[int]=None , **A__ : List[Any] , ) -> Any: super().__init__( vocab_size=A__ , hidden_size=A__ , num_hidden_layers=A__ , num_attention_heads=A__ , intermediate_size=A__ , hidden_act=A__ , hidden_dropout_prob=A__ , attention_probs_dropout_prob=A__ , max_position_embeddings=A__ , type_vocab_size=A__ , initializer_range=A__ , layer_norm_eps=A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ , ) lowercase = max_ad_position_embeddings lowercase = coordinate_size lowercase = shape_size lowercase = has_relative_attention_bias lowercase = rel_pos_bins lowercase = max_rel_pos lowercase = has_spatial_attention_bias lowercase = rel_ad_pos_bins lowercase = max_rel_ad_pos lowercase = text_embed lowercase = visual_embed lowercase = input_size lowercase = num_channels lowercase = patch_size lowercase = classifier_dropout class UpperCAmelCase ( _lowercase ): UpperCAmelCase : List[Any] = version.parse('''1.12''' ) @property def UpperCAmelCase__ (self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def UpperCAmelCase__ (self : Any ) -> float: return 1e-5 @property def UpperCAmelCase__ (self : Optional[int] ) -> int: return 1_2 def UpperCAmelCase__ (self : Optional[int] , A__ : "ProcessorMixin" , A__ : int = -1 , A__ : int = -1 , A__ : bool = False , A__ : Optional["TensorType"] = None , A__ : int = 3 , A__ : int = 4_0 , A__ : int = 4_0 , ) -> Mapping[str, Any]: setattr(processor.image_processor , "apply_ocr" , A__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase = compute_effective_axis_dimension( A__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase = processor.tokenizer.num_special_tokens_to_add(A__ ) lowercase = compute_effective_axis_dimension( A__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A__ ) # Generate dummy inputs according to compute batch and sequence lowercase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase = self._generate_dummy_images(A__ , A__ , A__ , A__ ) lowercase = dict( processor( A__ , text=A__ , boxes=A__ , return_tensors=A__ , ) ) return inputs
310
0
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a_ : Optional[int] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } a_ : Any = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def UpperCAmelCase ( A__: Dict , A__: str=False ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = create_model( 'HTSAT-tiny' , 'roberta' , A__ , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=A__ , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def UpperCAmelCase ( A__: List[str] ) -> List[str]: __lowerCamelCase : Union[str, Any] = {} __lowerCamelCase : int = r'.*sequential.(\d+).*' __lowerCamelCase : List[Any] = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowerCamelCase : str = key.replace(A__ , A__ ) if re.match(A__ , A__ ): # replace sequential layers with list __lowerCamelCase : Optional[int] = re.match(A__ , A__ ).group(1 ) __lowerCamelCase : Dict = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(A__ )//3}.linear.''' ) elif re.match(A__ , A__ ): __lowerCamelCase : List[str] = int(re.match(A__ , A__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __lowerCamelCase : List[Any] = 1 if projecton_layer == 0 else 2 __lowerCamelCase : Tuple = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __lowerCamelCase : Optional[int] = value __lowerCamelCase : Optional[int] = mixed_qkv.size(0 ) // 3 __lowerCamelCase : Tuple = mixed_qkv[:qkv_dim] __lowerCamelCase : List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] __lowerCamelCase : Any = mixed_qkv[qkv_dim * 2 :] __lowerCamelCase : str = query_layer __lowerCamelCase : Tuple = key_layer __lowerCamelCase : List[Any] = value_layer else: __lowerCamelCase : int = value return model_state_dict def UpperCAmelCase ( A__: List[Any] , A__: int , A__: List[Any] , A__: List[str]=False ) -> str: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = init_clap(A__ , enable_fusion=A__ ) clap_model.eval() __lowerCamelCase : Any = clap_model.state_dict() __lowerCamelCase : Tuple = rename_state_dict(A__ ) __lowerCamelCase : Optional[int] = ClapConfig() __lowerCamelCase : Dict = enable_fusion __lowerCamelCase : int = ClapModel(A__ ) # ignore the spectrogram embedding layer model.load_state_dict(A__ , strict=A__ ) model.save_pretrained(A__ ) transformers_config.save_pretrained(A__ ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') a_ : Union[str, Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
263
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a_ : List[str] = None a_ : Any = logging.get_logger(__name__) a_ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ : int = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } a_ : Any = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } a_ : Union[str, Any] = '''▁''' class __lowercase( lowercase__ ): '''simple docstring''' __a : Optional[Any] = VOCAB_FILES_NAMES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ['input_ids', 'attention_mask'] __a : Optional[Any] = BarthezTokenizer def __init__( self , __a=None , __a=None , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , **__a , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Optional[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , **__a , ) __lowerCamelCase : Tuple = vocab_file __lowerCamelCase : List[str] = False if not self.vocab_file else True def snake_case_ ( self , __a , __a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Optional[Any] = [self.cls_token_id] __lowerCamelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , __a , __a = None ): __lowerCamelCase : Optional[int] = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , __a , __a = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase : List[Any] = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
263
1
def UpperCamelCase_ ( __a ) -> str: stooge(__a , 0 , len(__a ) - 1 ) return arr def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a__, a__ : Optional[int] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a__ : List[Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__a , __a , (h - t) ) # Recursively sort last 2/3 elements stooge(__a , i + t , (__a) ) # Recursively sort first 2/3 elements stooge(__a , __a , (h - t) ) if __name__ == "__main__": UpperCamelCase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase : str = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase: Optional[int] = logging.get_logger(__name__) __UpperCamelCase: Optional[int] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = "mobilenet_v1" def __init__( self: Dict, lowerCamelCase_: Any=3, lowerCamelCase_: Dict=224, lowerCamelCase_: int=1.0, lowerCamelCase_: List[Any]=8, lowerCamelCase_: int="relu6", lowerCamelCase_: Optional[int]=True, lowerCamelCase_: Any=0.9_9_9, lowerCamelCase_: List[str]=0.0_2, lowerCamelCase_: Optional[int]=0.0_0_1, **lowerCamelCase_: Tuple, ): super().__init__(**lowerCamelCase_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) lowercase__ : Optional[int] = num_channels lowercase__ : List[Any] = image_size lowercase__ : str = depth_multiplier lowercase__ : Optional[Any] = min_depth lowercase__ : int = hidden_act lowercase__ : Dict = tf_padding lowercase__ : Optional[Any] = classifier_dropout_prob lowercase__ : int = initializer_range lowercase__ : Any = layer_norm_eps class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = version.parse("1.11" ) @property def snake_case__( self: Optional[int] ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def snake_case__( self: Dict ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def snake_case__( self: List[Any] ): return 1E-4
266
0
def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = '''''' for word_or_phrase in separated: if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
597
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( __lowerCamelCase = "laptop" ): SCREAMING_SNAKE_CASE_ = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(__lowerCamelCase, headers=__lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: SCREAMING_SNAKE_CASE_ = item.ha.text SCREAMING_SNAKE_CASE_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE_ = '''Not available''' try: SCREAMING_SNAKE_CASE_ = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE_ = '''''' try: SCREAMING_SNAKE_CASE_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE_ = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE_ = ''' ''' SCREAMING_SNAKE_CASE_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
597
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset A : Union[str, Any] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) A : Optional[Any] = dataset.iloc[:, 1:2].values A : int = dataset.iloc[:, 2].values A , A , A , A : Tuple = train_test_split(X, y, test_size=0.2, random_state=0) A : List[str] = PolynomialFeatures(degree=4) A : Optional[Any] = poly_reg.fit_transform(X) A : int = LinearRegression() pol_reg.fit(X_poly, y) def a__ ( ): plt.scatter(snake_case__ , snake_case__ , color="red" ) plt.plot(snake_case__ , pol_reg.predict(poly_reg.fit_transform(snake_case__ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
140
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : str=[10, 20, 30, 40] , lowerCAmelCase : Any=[2, 2, 3, 2] , lowerCAmelCase : Any=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : int="gelu" , lowerCAmelCase : List[str]=10 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : Tuple=["stage2", "stage3", "stage4"] , lowerCAmelCase : str=[2, 3, 4] , lowerCAmelCase : Union[str, Any]=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = num_stages lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = scope def __lowercase ( self : str ): lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __lowercase ( self : Dict ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Dict ): lowerCAmelCase = ConvNextVaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str ): lowerCAmelCase = ConvNextVaForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str ): lowerCAmelCase = ConvNextVaBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = ConvNextVaBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict def __lowercase ( self : Tuple ): lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , unittest.TestCase ): _a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _a = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def __lowercase ( self : Any ): lowerCAmelCase = ConvNextVaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def __lowercase ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __lowercase ( self : Dict ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __lowercase ( self : Optional[Any] ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __lowercase ( self : Dict ): pass def __lowercase ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase = True if model_class.__name__ in [ *get_values(lowerCAmelCase ), *get_values(lowerCAmelCase ), ]: continue lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) lowerCAmelCase = model(**lowerCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[int] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase = False lowerCAmelCase = True if ( model_class.__name__ in [*get_values(lowerCAmelCase ), *get_values(lowerCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) lowerCAmelCase = model(**lowerCAmelCase ).loss loss.backward() def __lowercase ( self : Dict ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowerCAmelCase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ): def check_hidden_states_output(lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : int ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def __lowercase ( self : Any ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = ConvNextVaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase () -> List[str]: '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def __lowercase ( self : int ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __lowercase ( self : int ): lowerCAmelCase = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(lowerCAmelCase ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = preprocessor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowerCAmelCase ) # verify the logits lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
169
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> List[Any]: """simple docstring""" def is_in_circle(__magic_name__ : float , __magic_name__ : float ) -> bool: UpperCamelCase :Union[str, Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCamelCase :Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__magic_name__ ) ) # The ratio of the area for circle to square is pi/4. UpperCamelCase :Union[str, Any] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : Callable[[float], float] , __magic_name__ : float = 0.0 , __magic_name__ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(__magic_name__ , __magic_name__ ) ) for _ in range(__magic_name__ ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : float = 0.0 , __magic_name__ : float = 1.0 ) -> None: """simple docstring""" def identity_function(__magic_name__ : float ) -> float: return x UpperCamelCase :Union[str, Any] = area_under_curve_estimator( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) UpperCamelCase :int = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> None: """simple docstring""" def function_to_integrate(__magic_name__ : float ) -> float: return sqrt(4.0 - x * x ) UpperCamelCase :Optional[int] = area_under_curve_estimator( __magic_name__ , __magic_name__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
590
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Tuple = """summarization""" snake_case__ : Tuple = ["""loss"""] snake_case__ : int = ROUGE_KEYS snake_case__ : int = """rouge2""" def __init__( self : Tuple , __lowerCamelCase : List[str] , **__lowerCamelCase : List[str] ): if hparams.sortish_sampler and hparams.gpus > 1: UpperCamelCase :Optional[int] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__lowerCamelCase , num_labels=__lowerCamelCase , mode=self.mode , **__lowerCamelCase ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) UpperCamelCase :str = Path(self.output_dir ) / """metrics.json""" UpperCamelCase :Dict = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) UpperCamelCase :List[str] = 0 UpperCamelCase :Dict = defaultdict(__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.config.model_type UpperCamelCase :List[str] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCamelCase :dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCamelCase :List[str] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCamelCase :int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCamelCase :Dict = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCamelCase :Optional[Any] = get_git_info()["""repo_sha"""] UpperCamelCase :List[str] = hparams.num_workers UpperCamelCase :Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __lowerCamelCase ): UpperCamelCase :Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCamelCase :Union[str, Any] = self.decoder_start_token_id UpperCamelCase :int = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCamelCase :Union[str, Any] = False UpperCamelCase :Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCamelCase :int = self.hparams.eval_max_gen_length else: UpperCamelCase :Dict = self.model.config.max_length UpperCamelCase :Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _A ( self : List[Any] , __lowerCamelCase : Dict[str, torch.Tensor] ): UpperCamelCase :List[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__lowerCamelCase , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) UpperCamelCase :Dict = True return readable_batch def _A ( self : Union[str, Any] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[str] ): return self.model(__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : List[int] ): UpperCamelCase :Optional[Any] = self.tokenizer.batch_decode( __lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) return lmap(str.strip , __lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : dict ): UpperCamelCase :Any = self.tokenizer.pad_token_id UpperCamelCase , UpperCamelCase :Dict = batch["""input_ids"""], batch["""attention_mask"""] UpperCamelCase :int = batch["""labels"""] if isinstance(self.model , __lowerCamelCase ): UpperCamelCase :List[str] = self.model._shift_right(__lowerCamelCase ) else: UpperCamelCase :Optional[int] = shift_tokens_right(__lowerCamelCase , __lowerCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCamelCase :Any = decoder_input_ids self.save_readable_batch(__lowerCamelCase ) UpperCamelCase :int = self(__lowerCamelCase , attention_mask=__lowerCamelCase , decoder_input_ids=__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCamelCase :Any = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCamelCase :Dict = nn.CrossEntropyLoss(ignore_index=__lowerCamelCase ) assert lm_logits.shape[-1] == self.vocab_size UpperCamelCase :Any = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCamelCase :Optional[int] = nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) UpperCamelCase , UpperCamelCase :str = label_smoothed_nll_loss( __lowerCamelCase , __lowerCamelCase , self.hparams.label_smoothing , ignore_index=__lowerCamelCase ) return (loss,) @property def _A ( self : List[str] ): return self.tokenizer.pad_token_id def _A ( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :Optional[int] = self._step(__lowerCamelCase ) UpperCamelCase :Optional[int] = dict(zip(self.loss_names , __lowerCamelCase ) ) # tokens per batch UpperCamelCase :Dict = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCamelCase :Optional[Any] = batch["""input_ids"""].shape[0] UpperCamelCase :Union[str, Any] = batch["""input_ids"""].eq(self.pad ).sum() UpperCamelCase :int = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _A ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ): return self._generative_step(__lowerCamelCase ) def _A ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict="val" ): self.step_count += 1 UpperCamelCase :Any = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCamelCase :List[str] = losses["""loss"""] UpperCamelCase :Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCamelCase :List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCamelCase :torch.FloatTensor = torch.tensor(__lowerCamelCase ).type_as(__lowerCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__lowerCamelCase ) UpperCamelCase :Optional[Any] = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCamelCase :Tuple = self.step_count self.metrics[prefix].append(__lowerCamelCase ) # callback writes this to self.metrics_save_path UpperCamelCase :List[str] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"""{prefix}_loss""": loss, F"""{prefix}_{self.val_metric}""": metric_tensor, } def _A ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): return calculate_rouge(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int , __lowerCamelCase : dict ): UpperCamelCase :Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCamelCase :Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__lowerCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCamelCase :Dict = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCamelCase :List[str] = self.ids_to_clean_text(__lowerCamelCase ) UpperCamelCase :List[str] = self.ids_to_clean_text(batch["""labels"""] ) UpperCamelCase :List[str] = self._step(__lowerCamelCase ) UpperCamelCase :List[str] = dict(zip(self.loss_names , __lowerCamelCase ) ) UpperCamelCase :Dict = self.calc_generative_metrics(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = np.mean(lmap(__lowerCamelCase , __lowerCamelCase ) ) base_metrics.update(gen_time=__lowerCamelCase , gen_len=__lowerCamelCase , preds=__lowerCamelCase , target=__lowerCamelCase , **__lowerCamelCase ) return base_metrics def _A ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): return self._generative_step(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Dict ): return self.validation_epoch_end(__lowerCamelCase , prefix="""test""" ) def _A ( self : Optional[int] , __lowerCamelCase : Any ): UpperCamelCase :List[Any] = self.n_obs[type_path] UpperCamelCase :int = self.target_lens[type_path] UpperCamelCase :Union[str, Any] = self.dataset_class( self.tokenizer , type_path=__lowerCamelCase , n_obs=__lowerCamelCase , max_target_length=__lowerCamelCase , **self.dataset_kwargs , ) return dataset def _A ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : bool = False ): UpperCamelCase :Optional[int] = self.get_dataset(__lowerCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCamelCase :str = dataset.make_sortish_sampler(__lowerCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=__lowerCamelCase , num_workers=self.num_workers , sampler=__lowerCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCamelCase :Dict = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowerCamelCase , batch_sampler=__lowerCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=__lowerCamelCase , num_workers=self.num_workers , sampler=__lowerCamelCase , ) def _A ( self : Any ): UpperCamelCase :int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__lowerCamelCase ) return dataloader def _A ( self : Any ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _A ( self : Any ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _A ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): BaseTransformer.add_model_specific_args(__lowerCamelCase , __lowerCamelCase ) add_generic_args(__lowerCamelCase , __lowerCamelCase ) parser.add_argument( """--max_source_length""" , default=1_024 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__lowerCamelCase ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__lowerCamelCase ) parser.add_argument("""--max_tokens_per_batch""" , type=__lowerCamelCase , default=__lowerCamelCase ) parser.add_argument("""--logger_name""" , type=__lowerCamelCase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__lowerCamelCase , default=500 , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__lowerCamelCase , default="""summarization""" , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__lowerCamelCase , default=0.0 , required=__lowerCamelCase ) parser.add_argument("""--src_lang""" , type=__lowerCamelCase , default="""""" , required=__lowerCamelCase ) parser.add_argument("""--tgt_lang""" , type=__lowerCamelCase , default="""""" , required=__lowerCamelCase ) parser.add_argument("""--eval_beams""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase ) parser.add_argument( """--val_metric""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__lowerCamelCase , default=1 , required=__lowerCamelCase , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = """translation""" snake_case__ : str = ["""loss"""] snake_case__ : Any = ["""bleu"""] snake_case__ : List[Any] = """bleu""" def __init__( self : List[str] , __lowerCamelCase : Tuple , **__lowerCamelCase : Tuple ): super().__init__(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Dict = hparams.src_lang UpperCamelCase :List[Any] = hparams.tgt_lang def _A ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return calculate_bleu(__lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Tuple=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=__magic_name__ ) check_output_dir(__magic_name__ , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCamelCase :SummarizationModule = SummarizationModule(__magic_name__ ) else: UpperCamelCase :SummarizationModule = TranslationModule(__magic_name__ ) UpperCamelCase :Tuple = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCamelCase :Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCamelCase :List[Any] = os.environ.get("""WANDB_PROJECT""" , __magic_name__ ) UpperCamelCase :Any = WandbLogger(name=model.output_dir.name , project=__magic_name__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCamelCase :Union[str, Any] = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: UpperCamelCase :Tuple = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCamelCase :str = False UpperCamelCase :List[str] = args.val_metric == """loss""" UpperCamelCase :pl.Trainer = generic_train( __magic_name__ , __magic_name__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __magic_name__ ) , early_stopping_callback=__magic_name__ , logger=__magic_name__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCamelCase :Optional[int] = """""" UpperCamelCase :Dict = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__magic_name__ ) ) if checkpoints: UpperCamelCase :Union[str, Any] = checkpoints[-1] UpperCamelCase :Optional[int] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() UpperCAmelCase_ : Optional[int] = pl.Trainer.add_argparse_args(parser) UpperCAmelCase_ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase_ : Dict = parser.parse_args() main(args)
590
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase : dict , lowercase : str ) ->set[str]: """simple docstring""" lowercase__ , lowercase__ = set(lowercase ), [start] while stack: lowercase__ = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored _lowerCAmelCase = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
161
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): """simple docstring""" A_ = 'vit_msn' def __init__( self , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-06 , _lowerCamelCase=2_2_4 , _lowerCamelCase=1_6 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , )-> Optional[Any]: super().__init__(**_lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias
161
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(__UpperCamelCase , (list, tuple) ) or not all( isinstance(__UpperCamelCase , __UpperCamelCase ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) snake_case_ : List[Any] = numbers[0] for i in range(1 , len(__UpperCamelCase ) ): # update the maximum and minimum subarray products snake_case_ : Dict = numbers[i] if number < 0: snake_case_ , snake_case_ : Optional[int] = min_till_now, max_till_now snake_case_ : List[str] = max(__UpperCamelCase , max_till_now * number ) snake_case_ : Any = min(__UpperCamelCase , min_till_now * number ) # update the maximum product found till now snake_case_ : Tuple = max(__UpperCamelCase , __UpperCamelCase ) return max_prod
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class A ( UpperCamelCase_ ): def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[Any] ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
464
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=3 , _lowerCamelCase : str=7 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : int=True , _lowerCamelCase : Tuple=9_9 , _lowerCamelCase : Union[str, Any]=3_2 , _lowerCamelCase : Optional[Any]=5 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : Tuple=3_7 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Tuple=5_1_2 , _lowerCamelCase : Optional[int]=1_6 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : str=None , ): '''simple docstring''' __lowerCamelCase : Dict = parent __lowerCamelCase : List[str] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : List[str] = is_training __lowerCamelCase : List[Any] = use_input_mask __lowerCamelCase : Optional[Any] = use_token_type_ids __lowerCamelCase : List[Any] = use_labels __lowerCamelCase : Dict = vocab_size __lowerCamelCase : Dict = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : List[Any] = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : str = max_position_embeddings __lowerCamelCase : Any = type_vocab_size __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Tuple = num_choices __lowerCamelCase : int = scope def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : List[str] = None if self.use_input_mask: __lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : List[str] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : Tuple = None __lowerCamelCase : Dict = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Tuple ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_lowerCamelCase , ) def _snake_case ( self : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : int ): '''simple docstring''' __lowerCamelCase : Any = FalconModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) __lowerCamelCase : int = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , ): '''simple docstring''' __lowerCamelCase : int = True __lowerCamelCase : Optional[Any] = FalconModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) __lowerCamelCase : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) __lowerCamelCase : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Dict , ): '''simple docstring''' __lowerCamelCase : Tuple = FalconForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , ): '''simple docstring''' __lowerCamelCase : Dict = True __lowerCamelCase : List[str] = True __lowerCamelCase : Dict = FalconForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass __lowerCamelCase : Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase , ) __lowerCamelCase : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase : Any = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )["""hidden_states"""][0] __lowerCamelCase : Tuple = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )["""hidden_states"""][0] # select random slice __lowerCamelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( A,A,A,unittest.TestCase ): '''simple docstring''' a_ : Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) a_ : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else () a_ : Any = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) a_ : List[Any] = False a_ : int = False def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = FalconModelTester(self ) __lowerCamelCase : Tuple = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=3_7 ) def _snake_case ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase , *__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __lowerCamelCase : List[str] = alibi self.model_tester.create_and_check_model(_lowerCamelCase , *_lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = 3 __lowerCamelCase : List[str] = input_dict["""input_ids"""] __lowerCamelCase : Dict = input_ids.ne(1 ).to(_lowerCamelCase ) __lowerCamelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCamelCase : Optional[int] = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = 3 __lowerCamelCase : Any = """single_label_classification""" __lowerCamelCase : Tuple = input_dict["""input_ids"""] __lowerCamelCase : Dict = input_ids.ne(1 ).to(_lowerCamelCase ) __lowerCamelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCamelCase : Tuple = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = input_dict["""input_ids"""] __lowerCamelCase : Optional[int] = FalconForCausalLM(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : Dict = model(_lowerCamelCase , use_cache=_lowerCamelCase ) __lowerCamelCase : List[str] = input_ids.shape[0] __lowerCamelCase : Any = model._convert_to_rw_cache(result.past_key_values ) __lowerCamelCase : Dict = model._convert_cache_to_standard_format(_lowerCamelCase , _lowerCamelCase ) for layer in range(len(_lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[int] = 3 __lowerCamelCase : Optional[int] = """multi_label_classification""" __lowerCamelCase : Optional[int] = input_dict["""input_ids"""] __lowerCamelCase : Any = input_ids.ne(1 ).to(_lowerCamelCase ) __lowerCamelCase : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCamelCase : Tuple = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Any ): '''simple docstring''' for model_class in self.all_generative_model_classes: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_lowerCamelCase , """use_cache""" ): return __lowerCamelCase : Tuple = model_class(_lowerCamelCase ).to(_lowerCamelCase ) if "use_cache" not in inputs: __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = model(**_lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __lowerCamelCase : Tuple = ( getattr(_lowerCamelCase , """decoder_layers""" , _lowerCamelCase ) or getattr(_lowerCamelCase , """num_decoder_layers""" , _lowerCamelCase ) or config.num_hidden_layers ) __lowerCamelCase : str = getattr(_lowerCamelCase , """num_kv_heads""" , config.num_attention_heads ) __lowerCamelCase : Dict = getattr(_lowerCamelCase , """d_model""" , config.hidden_size ) __lowerCamelCase : Any = embed_dim // num_attention_heads __lowerCamelCase : int = outputs["""past_key_values"""] self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = inputs["""input_ids"""].shape for i in range(_lowerCamelCase ): if config.new_decoder_architecture: __lowerCamelCase : Any = config.num_attention_heads elif config.multi_query: __lowerCamelCase : int = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) __lowerCamelCase : List[str] = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(_lowerCamelCase ) __lowerCamelCase : Optional[int] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : int = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) __lowerCamelCase : Dict = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=1_9 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __lowerCamelCase : int = AutoTokenizer.from_pretrained(_lowerCamelCase ) __lowerCamelCase : Dict = FalconForCausalLM.from_pretrained(_lowerCamelCase ) model.eval() model.to(_lowerCamelCase ) __lowerCamelCase : Tuple = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=4 ) model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=4 ) model.generate(**_lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def _snake_case ( self : List[str] ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __lowerCamelCase : Any = AutoTokenizer.from_pretrained(_lowerCamelCase ) __lowerCamelCase : Dict = FalconForCausalLM.from_pretrained(_lowerCamelCase ) model.eval() model.to(device=_lowerCamelCase ) __lowerCamelCase : str = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCamelCase ) # Test results are the same with and without cache __lowerCamelCase : Optional[Any] = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=2_0 , use_cache=_lowerCamelCase ) __lowerCamelCase : Any = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=2_0 , use_cache=_lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
458
def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __lowerCamelCase : str = 6 __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : Optional[int] = 1_901 __lowerCamelCase : Optional[Any] = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __lowerCamelCase : Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __lowerCamelCase : str = day - 29 else: if day > days_per_month[month - 1]: month += 1 __lowerCamelCase : Any = day - days_per_month[month - 2] if month > 12: year += 1 __lowerCamelCase : Optional[Any] = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
458
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = len(A_ ) for i in range(A_ ): _lowerCamelCase : float = -1 for j in range(i + 1, A_ ): if arr[i] < arr[j]: _lowerCamelCase : int = arr[j] break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] for i, outer in enumerate(A_ ): _lowerCamelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCamelCase : List[str] = inner break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) _lowerCamelCase : list[float] = [] _lowerCamelCase : list[float] = [-1] * arr_size for index in reversed(range(A_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCamelCase : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
83
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = False if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } lowerCAmelCase__ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } lowerCAmelCase__ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: lowerCAmelCase__ = reader.read() lowerCAmelCase__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): lowerCAmelCase__ = UNetaDModel(**config) else: lowerCAmelCase__ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel lowerCAmelCase__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase__ = config[key] del config[key] lowerCAmelCase__ = [k.replace("UNetRes", "") for k in config["down_block_types"]] lowerCAmelCase__ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: lowerCAmelCase__ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) lowerCAmelCase__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue lowerCAmelCase__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: lowerCAmelCase__ = param_value lowerCAmelCase__ = True if not has_changed: lowerCAmelCase__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
720
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( a_, r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class lowercase ( a_ ): def _snake_case ( self , _snake_case) -> np.ndarray: if self.framework == "tf": UpperCAmelCase_ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": UpperCAmelCase_ : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case) else: raise ValueError('Unsupported framework') return masked_index def _snake_case ( self , _snake_case) -> np.ndarray: UpperCAmelCase_ : Optional[int] = self.get_masked_index(_snake_case) UpperCAmelCase_ : int = np.prod(masked_index.shape) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _snake_case ( self , _snake_case) -> int: if isinstance(_snake_case , _snake_case): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_snake_case) def _snake_case ( self , _snake_case , _snake_case=None , **_snake_case) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCAmelCase_ : Optional[Any] = self.framework UpperCAmelCase_ : str = self.tokenizer(_snake_case , return_tensors=_snake_case) self.ensure_exactly_one_mask_token(_snake_case) return model_inputs def _snake_case ( self , _snake_case) -> Optional[int]: UpperCAmelCase_ : List[str] = self.model(**_snake_case) UpperCAmelCase_ : Optional[Any] = model_inputs['input_ids'] return model_outputs def _snake_case ( self , _snake_case , _snake_case=5 , _snake_case=None) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ : Optional[int] = target_ids.shape[0] UpperCAmelCase_ : Union[str, Any] = model_outputs['input_ids'][0] UpperCAmelCase_ : Optional[Any] = model_outputs['logits'] if self.framework == "tf": UpperCAmelCase_ : Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] UpperCAmelCase_ : Tuple = outputs.numpy() UpperCAmelCase_ : Dict = outputs[0, masked_index, :] UpperCAmelCase_ : List[str] = stable_softmax(_snake_case , axis=-1) if target_ids is not None: UpperCAmelCase_ : str = tf.gather_nd(tf.squeeze(_snake_case , 0) , target_ids.reshape(-1 , 1)) UpperCAmelCase_ : str = tf.expand_dims(_snake_case , 0) UpperCAmelCase_ : int = tf.math.top_k(_snake_case , k=_snake_case) UpperCAmelCase_ , UpperCAmelCase_ : Dict = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ : int = outputs[0, masked_index, :] UpperCAmelCase_ : str = logits.softmax(dim=-1) if target_ids is not None: UpperCAmelCase_ : List[str] = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = probs.topk(_snake_case) UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): UpperCAmelCase_ : Union[str, Any] = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place UpperCAmelCase_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ : str = target_ids[p].tolist() UpperCAmelCase_ : Union[str, Any] = p # Filter padding out: UpperCAmelCase_ : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ : Union[str, Any] = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ : Tuple = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p]), 'sequence': sequence} row.append(_snake_case) result.append(_snake_case) if single_mask: return result[0] return result def _snake_case ( self , _snake_case , _snake_case=None) -> List[str]: if isinstance(_snake_case , _snake_case): UpperCAmelCase_ : List[str] = [targets] try: UpperCAmelCase_ : Optional[int] = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : List[Any] = [] for target in targets: UpperCAmelCase_ : Optional[int] = vocab.get(_snake_case , _snake_case) if id_ is None: UpperCAmelCase_ : int = self.tokenizer( _snake_case , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , max_length=1 , truncation=_snake_case , )['input_ids'] if len(_snake_case) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it') continue UpperCAmelCase_ : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""") target_ids.append(id_) UpperCAmelCase_ : Union[str, Any] = list(set(_snake_case)) if len(_snake_case) == 0: raise ValueError('At least one target must be provided when passed.') UpperCAmelCase_ : Dict = np.array(_snake_case) return target_ids def _snake_case ( self , _snake_case=None , _snake_case=None) -> Dict: UpperCAmelCase_ : str = {} if targets is not None: UpperCAmelCase_ : Dict = self.get_target_ids(_snake_case , _snake_case) UpperCAmelCase_ : Optional[int] = target_ids if top_k is not None: UpperCAmelCase_ : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.') return {}, {}, postprocess_params def __call__( self , _snake_case , *_snake_case , **_snake_case) -> Optional[int]: UpperCAmelCase_ : Any = super().__call__(_snake_case , **_snake_case) if isinstance(_snake_case , _snake_case) and len(_snake_case) == 1: return outputs[0] return outputs
471
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
235
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = ['audio_values', 'audio_mask'] def __init__( self : Dict , a : Optional[Any]=2_048 , a : Union[str, Any]=1 , a : str=[16, 16] , a : Optional[int]=128 , a : str=44_100 , a : List[str]=86 , a : int=2_048 , a : Tuple=0.0 , **a : int , )-> Any: """simple docstring""" super().__init__( feature_size=a , sampling_rate=a , padding_value=a , **a , ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ).T def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.array )-> np.ndarray: """simple docstring""" lowercase__ = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = True , a : Optional[int] = None , a : bool = False , a : bool = False , **a : Union[str, Any] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(a ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(a ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ = {'audio_values': padded_audio_features} lowercase__ = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
235
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ : Dict = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
608
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Any=1e-12 )-> List[str]: A_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T A_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T return jnp.matmul(snake_case__ , norm_emb_a.T ) class lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa def lowercase_ ( self ): A_ = FlaxCLIPVisionModule(self.config.vision_config ) A_ = nn.Dense(self.config.projection_dim , use_bias=__UpperCamelCase , dtype=self.dtype ) A_ = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) A_ = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) A_ = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) A_ = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCamelCase ): A_ = self.vision_model(__UpperCamelCase )[1] A_ = self.visual_projection(__UpperCamelCase ) A_ = jax_cosine_distance(__UpperCamelCase , self.special_care_embeds ) A_ = jax_cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs A_ = 0.0 A_ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment A_ = jnp.round(__UpperCamelCase , 3 ) A_ = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCamelCase ) # Use a lower threshold if an image has any special care concept A_ = is_special_care * 0.01 A_ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment A_ = jnp.round(__UpperCamelCase , 3 ) A_ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = CLIPConfig lowerCAmelCase_ = """clip_input""" lowerCAmelCase_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = jnp.floataa , __UpperCamelCase = True , **__UpperCamelCase , ): if input_shape is None: A_ = (1, 224, 224, 3) A_ = self.module_class(config=__UpperCamelCase , dtype=__UpperCamelCase , **__UpperCamelCase ) super().__init__(__UpperCamelCase , __UpperCamelCase , input_shape=__UpperCamelCase , seed=__UpperCamelCase , dtype=__UpperCamelCase , _do_init=_do_init ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None ): # init input tensor A_ = jax.random.normal(__UpperCamelCase , __UpperCamelCase ) A_ , A_ = jax.random.split(__UpperCamelCase ) A_ = {"params": params_rng, "dropout": dropout_rng} A_ = self.module.init(__UpperCamelCase , __UpperCamelCase )["params"] return random_params def __call__( self , __UpperCamelCase , __UpperCamelCase = None , ): A_ = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
608
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowerCamelCase (unittest.TestCase ): def __init__( self: List[Any],A_: Dict,A_: List[str]=7,A_: Dict=3,A_: int=18,A_: Optional[Any]=30,A_: Dict=400,A_: int=True,A_: Tuple=None,A_: Any=True,): '''simple docstring''' __UpperCamelCase = size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = apply_ocr def snake_case_ ( self: Dict ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = LayoutLMvaImageProcessingTester(self ) @property def snake_case_ ( self: List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_,'do_resize' ) ) self.assertTrue(hasattr(A_,'size' ) ) self.assertTrue(hasattr(A_,'apply_ocr' ) ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{'height': 18, 'width': 18} ) __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict,size=42 ) self.assertEqual(image_processor.size,{'height': 42, 'width': 42} ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_,Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ),) self.assertIsInstance(encoding.words,A_ ) self.assertIsInstance(encoding.boxes,A_ ) # Test batched __UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ),) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_,np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ),) # Test batched __UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ),) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_,torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ),) # Test batched __UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ),) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_docvqa',split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase = image_processing(A_,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ),len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words,A_ ) self.assertListEqual(encoding.boxes,A_ ) # with apply_OCR = False __UpperCamelCase = LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase = image_processing(A_,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape,(1, 3, 224, 224) )
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase ( __a ): snake_case : str = """cvt""" def __init__(self , lowerCAmelCase__=3 , lowerCAmelCase__=[7, 3, 3] , lowerCAmelCase__=[4, 2, 2] , lowerCAmelCase__=[2, 1, 1] , lowerCAmelCase__=[6_4, 1_9_2, 3_8_4] , lowerCAmelCase__=[1, 3, 6] , lowerCAmelCase__=[1, 2, 1_0] , lowerCAmelCase__=[4.0, 4.0, 4.0] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=[0.0, 0.0, 0.1] , lowerCAmelCase__=[True, True, True] , lowerCAmelCase__=[False, False, True] , lowerCAmelCase__=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__=[3, 3, 3] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : int = num_channels _UpperCAmelCase : Any = patch_sizes _UpperCAmelCase : Any = patch_stride _UpperCAmelCase : Optional[int] = patch_padding _UpperCAmelCase : Any = embed_dim _UpperCAmelCase : List[Any] = num_heads _UpperCAmelCase : List[Any] = depth _UpperCAmelCase : Tuple = mlp_ratio _UpperCAmelCase : Optional[Any] = attention_drop_rate _UpperCAmelCase : Dict = drop_rate _UpperCAmelCase : Union[str, Any] = drop_path_rate _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : List[Any] = cls_token _UpperCAmelCase : Tuple = qkv_projection_method _UpperCAmelCase : str = kernel_qkv _UpperCAmelCase : Tuple = padding_kv _UpperCAmelCase : Dict = stride_kv _UpperCAmelCase : int = padding_q _UpperCAmelCase : Union[str, Any] = stride_q _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps
414
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata _SCREAMING_SNAKE_CASE : Optional[int] = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class A ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : str = " "): _lowercase: Optional[Any] = sentence_delimiter def UpperCAmelCase__ ( self : List[Any] , _UpperCamelCase : str): return list(_UpperCamelCase) def UpperCAmelCase__ ( self : Dict , _UpperCamelCase : List[str]): _lowercase: List[str] = [] for sent_idx, sentence in enumerate(_UpperCamelCase): chars.extend(self.process_string(_UpperCamelCase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_UpperCamelCase) - 1: chars.append(self.sentence_delimiter) return chars _SCREAMING_SNAKE_CASE : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _SCREAMING_SNAKE_CASE : Any = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _SCREAMING_SNAKE_CASE : Optional[Any] = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _SCREAMING_SNAKE_CASE : int = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' _SCREAMING_SNAKE_CASE : str = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : Union[str, Any]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def UpperCAmelCase__ ( self : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : int=False): if concatenate_texts: return jiwer.compute_measures( _UpperCamelCase , _UpperCamelCase , truth_transform=_UpperCamelCase , hypothesis_transform=_UpperCamelCase , )["wer"] _lowercase: Tuple = 0 _lowercase: List[str] = 0 for prediction, reference in zip(_UpperCamelCase , _UpperCamelCase): _lowercase: List[str] = jiwer.compute_measures( _UpperCamelCase , _UpperCamelCase , truth_transform=_UpperCamelCase , hypothesis_transform=_UpperCamelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
711
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCAmelCase ( ): print("Making key files..." ) make_key_files("rsa" , 1_0_2_4 ) print("Key files generation successful." ) def __lowerCAmelCase ( __magic_name__ ): print("Generating prime p..." ) _lowercase: List[Any] = rabinMiller.generate_large_prime(__magic_name__ ) print("Generating prime q..." ) _lowercase: str = rabinMiller.generate_large_prime(__magic_name__ ) _lowercase: Union[str, Any] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowercase: int = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__magic_name__ , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowercase: str = cryptoMath.find_mod_inverse(__magic_name__ , (p - 1) * (q - 1) ) _lowercase: str = (n, e) _lowercase: List[Any] = (n, d) return (public_key, private_key) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print("\nWARNING:" ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowercase , _lowercase: Dict = generate_key(__magic_name__ ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , "w" ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
206
0
'''simple docstring''' import os def __a ( ) -> Dict: with open(os.path.dirname(A__ ) + "/grid.txt" ) as f: lowerCAmelCase = [] # noqa: E741 for _ in range(20 ): l.append([int(A__ ) for x in f.readline().split()] ) lowerCAmelCase = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase = temp return maximum if __name__ == "__main__": print(solution())
649
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int=1_3 , SCREAMING_SNAKE_CASE : Any=7 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : int=9_9 , SCREAMING_SNAKE_CASE : int=3_2 , SCREAMING_SNAKE_CASE : Optional[Any]=5 , SCREAMING_SNAKE_CASE : Dict=4 , SCREAMING_SNAKE_CASE : str=3_7 , SCREAMING_SNAKE_CASE : List[Any]="gelu" , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE : str=1_6 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Any=0.0_2 , SCREAMING_SNAKE_CASE : Any=4 , ) -> Optional[int]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __A ( self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = FlaxRobertaModelTester(self ) @slow def __A ( self : Any ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained("roberta-base" , from_pt=SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE )
649
1
"""simple docstring""" __UpperCamelCase : Tuple = [ (1_0_0_0, "M"), (9_0_0, "CM"), (5_0_0, "D"), (4_0_0, "CD"), (1_0_0, "C"), (9_0, "XC"), (5_0, "L"), (4_0, "XL"), (1_0, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def __UpperCAmelCase ( _snake_case : str ): _lowercase = {"I": 1, "V": 5, "X": 1_0, "L": 5_0, "C": 1_0_0, "D": 5_0_0, "M": 1_0_0_0} _lowercase = 0 _lowercase = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __UpperCAmelCase ( _snake_case : int ): _lowercase = [] for arabic, roman in ROMAN: ((_lowercase) , (_lowercase)) = divmod(_snake_case, _snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[str] = "T5Config" class UpperCAmelCase_ ( lowercase__ ): snake_case_ = """mt5""" snake_case_ = MTaConfig class UpperCAmelCase_ ( lowercase__ ): snake_case_ = """mt5""" snake_case_ = MTaConfig class UpperCAmelCase_ ( lowercase__ ): snake_case_ = """mt5""" snake_case_ = MTaConfig
227
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'luke' def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=50267 , UpperCAmelCase__ : List[Any]=500000 , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : Dict=256 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : List[str]=3072 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Tuple=512 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : List[str]=1E-12 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : List[str]=2 , **UpperCAmelCase__ : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : List[Any] =vocab_size lowercase : Optional[Any] =entity_vocab_size lowercase : Dict =hidden_size lowercase : List[str] =entity_emb_size lowercase : str =num_hidden_layers lowercase : Dict =num_attention_heads lowercase : Any =hidden_act lowercase : str =intermediate_size lowercase : Any =hidden_dropout_prob lowercase : Dict =attention_probs_dropout_prob lowercase : List[str] =max_position_embeddings lowercase : Union[str, Any] =type_vocab_size lowercase : Union[str, Any] =initializer_range lowercase : int =layer_norm_eps lowercase : str =use_entity_aware_attention lowercase : Any =classifier_dropout
92
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=18 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.48145466, 0.4578275, 0.40821073] , _UpperCamelCase=[0.26862954, 0.26130258, 0.27577711] , _UpperCamelCase=True , ) -> Dict: lowerCAmelCase_ = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_convert_rgb def __a ( self ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __a ( self , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ) -> Dict: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase_ = [] for i in range(self.batch_size ): lowerCAmelCase_ , lowerCAmelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase_ = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase_ = [torch.from_numpy(_UpperCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =ChineseCLIPImageProcessor if is_vision_available() else None def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=_UpperCamelCase ) @property def __a ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Any: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_convert_rgb" ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __a ( self ) -> str: pass def __a ( self ) -> Any: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> str: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =ChineseCLIPImageProcessor if is_vision_available() else None def __a ( self ) -> List[Any]: lowerCAmelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_UpperCamelCase ) lowerCAmelCase_ = 3 @property def __a ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_convert_rgb" ) ) def __a ( self ) -> int: pass def __a ( self ) -> str: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
290
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def A( snake_case_ , snake_case_=False , snake_case_=False , snake_case_=False ): """simple docstring""" lowercase__: Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def A( snake_case_ , snake_case_ ): """simple docstring""" for i in range(config.num_hidden_layers ): lowercase__: List[Any] = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__: Dict = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) lowercase__: List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__: str = in_proj_weight[ : config.hidden_size, : ] lowercase__: Dict = in_proj_bias[: config.hidden_size] lowercase__: Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__: Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__: int = in_proj_weight[ -config.hidden_size :, : ] lowercase__: Any = in_proj_bias[-config.hidden_size :] def A( snake_case_ ): """simple docstring""" lowercase__: str = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def A( snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" lowercase__: Dict = dct.pop(snake_case_ ) lowercase__: List[Any] = val @torch.no_grad() def A( snake_case_ , snake_case_ ): """simple docstring""" lowercase__: Optional[int] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=snake_case_ ) lowercase__: List[Any] = False lowercase__: List[Any] = False lowercase__: Any = False lowercase__: Any = False if "vqa" in checkpoint_url: lowercase__: Tuple = True lowercase__: str = 3129 lowercase__: List[str] = "huggingface/label-files" lowercase__: Optional[int] = "vqa2-id2label.json" lowercase__: Optional[int] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) lowercase__: List[str] = {int(snake_case_ ): v for k, v in idalabel.items()} lowercase__: Optional[int] = idalabel lowercase__: List[str] = {v: k for k, v in idalabel.items()} lowercase__: Optional[Any] = ViltForQuestionAnswering(snake_case_ ) elif "nlvr" in checkpoint_url: lowercase__: Union[str, Any] = True lowercase__: List[str] = 2 lowercase__: Any = {0: "False", 1: "True"} lowercase__: Union[str, Any] = {v: k for k, v in config.idalabel.items()} lowercase__: Tuple = 3 lowercase__: List[str] = ViltForImagesAndTextClassification(snake_case_ ) elif "irtr" in checkpoint_url: lowercase__: Optional[Any] = True lowercase__: List[str] = ViltForImageAndTextRetrieval(snake_case_ ) elif "mlm_itm" in checkpoint_url: lowercase__: int = True lowercase__: List[str] = ViltForMaskedLM(snake_case_ ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys lowercase__: Union[str, Any] = torch.hub.load_state_dict_from_url(snake_case_ , map_location="cpu" )["state_dict"] lowercase__: List[Any] = create_rename_keys(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , snake_case_ ) if mlm_model or irtr_model: lowercase__: str = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase__: Optional[int] = model.load_state_dict(snake_case_ , strict=snake_case_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(snake_case_ ) # Define processor lowercase__: Optional[Any] = ViltImageProcessor(size=384 ) lowercase__: Any = BertTokenizer.from_pretrained("bert-base-uncased" ) lowercase__: Any = ViltProcessor(snake_case_ , snake_case_ ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase__: int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=snake_case_ ).raw ) lowercase__: List[Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=snake_case_ ).raw ) lowercase__: Optional[Any] = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) lowercase__: Tuple = processor(snake_case_ , snake_case_ , return_tensors="pt" ) lowercase__: Any = processor(snake_case_ , snake_case_ , return_tensors="pt" ) lowercase__: int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase__: List[Any] = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=snake_case_ ).raw ) if mlm_model: lowercase__: Dict = "a bunch of [MASK] laying on a [MASK]." else: lowercase__: int = "How many cats are there?" lowercase__: List[Any] = processor(snake_case_ , snake_case_ , return_tensors="pt" ) lowercase__: Union[str, Any] = model(**snake_case_ ) # Verify outputs if mlm_model: lowercase__: List[str] = torch.Size([1, 11, 30522] ) lowercase__: List[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , snake_case_ , atol=1E-4 ) # verify masked token prediction equals "cats" lowercase__: str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase__: str = torch.Size([1, 3129] ) lowercase__: List[Any] = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , snake_case_ , atol=1E-4 ) # verify vqa prediction equals "2" lowercase__: Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase__: str = torch.Size([1, 2] ) lowercase__: Optional[int] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
721
"""simple docstring""" from math import factorial def A( snake_case_ = 20 ): """simple docstring""" lowercase__: Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowercase__: int = n // 2 return int(factorial(snake_case_ ) / (factorial(snake_case_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
120
0
'''simple docstring''' import torch from torch import nn class _snake_case (nn.Module): def __init__( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case=1 ,_snake_case=False ): super().__init__() UpperCAmelCase_ : List[Any] = n_token UpperCAmelCase_ : int = d_embed UpperCAmelCase_ : Optional[Any] = d_proj UpperCAmelCase_ : Tuple = cutoffs + [n_token] UpperCAmelCase_ : List[str] = [0] + self.cutoffs UpperCAmelCase_ : str = div_val UpperCAmelCase_ : List[str] = self.cutoffs[0] UpperCAmelCase_ : Optional[int] = len(self.cutoffs ) - 1 UpperCAmelCase_ : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) UpperCAmelCase_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase_ : str = nn.ModuleList() UpperCAmelCase_ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) else: self.out_projs.append(_snake_case ) self.out_layers.append(nn.Linear(_snake_case ,_snake_case ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) self.out_layers.append(nn.Linear(_snake_case ,r_idx - l_idx ) ) UpperCAmelCase_ : Tuple = keep_order def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): if proj is None: UpperCAmelCase_ : int = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase_ : Tuple = nn.functional.linear(_snake_case ,proj.t().contiguous() ) UpperCAmelCase_ : Dict = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase__ ( self ,_snake_case ,_snake_case=None ,_snake_case=False ): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase_ : Optional[Any] = hidden[..., :-1, :].contiguous() UpperCAmelCase_ : Any = labels[..., 1:].contiguous() UpperCAmelCase_ : Dict = hidden.view(-1 ,hidden.size(-1 ) ) UpperCAmelCase_ : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCAmelCase_ : Optional[Any] = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase_ : Any = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: UpperCAmelCase_ : Any = labels != -1_00 UpperCAmelCase_ : Any = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) UpperCAmelCase_ : Union[str, Any] = ( -nn.functional.log_softmax(_snake_case ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase_ : Optional[int] = nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases UpperCAmelCase_ , UpperCAmelCase_ : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Any = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase_ : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase_ : Optional[Any] = self.out_layers[i].weight UpperCAmelCase_ : str = self.out_layers[i].bias if i == 0: UpperCAmelCase_ : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) UpperCAmelCase_ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = weights[0], biases[0], self.out_projs[0] UpperCAmelCase_ : Optional[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = nn.functional.log_softmax(_snake_case ,dim=1 ) if labels is None: UpperCAmelCase_ : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase_ : Any = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Optional[Any] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase_ : int = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase_ : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase_ : Dict = labels.index_select(0 ,_snake_case ) - l_idx UpperCAmelCase_ : List[Any] = head_logprob.index_select(0 ,_snake_case ) UpperCAmelCase_ : Optional[int] = hidden.index_select(0 ,_snake_case ) else: UpperCAmelCase_ : Optional[Any] = hidden if i == 0: if labels is not None: UpperCAmelCase_ : List[str] = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase_ : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = weights[i], biases[i], self.out_projs[i] UpperCAmelCase_ : Union[str, Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : int = nn.functional.log_softmax(_snake_case ,dim=1 ) UpperCAmelCase_ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase_ : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase_ : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase_ : Optional[int] = logprob_i if labels is not None: if (hasattr(self ,"keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 ,_snake_case ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase__ ( self ,_snake_case ): if self.n_clusters == 0: UpperCAmelCase_ : Dict = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Tuple = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase_ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase_ : str = self.out_layers[i].weight UpperCAmelCase_ : str = self.out_layers[i].bias if i == 0: UpperCAmelCase_ : List[Any] = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) UpperCAmelCase_ : List[str] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase_ : List[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase_ : List[Any] = nn.functional.log_softmax(_snake_case ,dim=1 ) UpperCAmelCase_ : Optional[int] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : int = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase_ : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase_ : int = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : int = nn.functional.log_softmax(_snake_case ,dim=1 ) UpperCAmelCase_ : Tuple = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase_ : Union[str, Any] = logprob_i return out
71
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Any =AudioLDMPipeline __A : Dict =TEXT_TO_AUDIO_PARAMS __A : Any =TEXT_TO_AUDIO_BATCH_PARAMS __A : Tuple =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ]) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=(32, 64) ,class_embed_type="simple_projection" ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=_snake_case ,) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,projection_dim=32 ,) UpperCAmelCase_ : Optional[Any] = ClapTextModelWithProjection(_snake_case ) UpperCAmelCase_ : List[Any] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" ,model_max_length=77 ) UpperCAmelCase_ : Optional[int] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_60_00 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=_snake_case ,) UpperCAmelCase_ : Union[str, Any] = SpeechTaHifiGan(_snake_case ) UpperCAmelCase_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): if str(_snake_case ).startswith("mps" ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(_snake_case ) else: UpperCAmelCase_ : List[str] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase_ : Any = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Any = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : Dict = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 2_56 UpperCAmelCase_ : Any = audio[:10] UpperCAmelCase_ : Any = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : int = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : Dict = audioldm_pipe.to(_snake_case ) UpperCAmelCase_ : Tuple = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Tuple = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ : Any = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : List[str] = output.audios[0] UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : str = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ : str = audioldm_pipe.tokenizer( _snake_case ,padding="max_length" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors="pt" ,) UpperCAmelCase_ : Dict = text_inputs["input_ids"].to(_snake_case ) UpperCAmelCase_ : str = audioldm_pipe.text_encoder( _snake_case ,) UpperCAmelCase_ : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase_ : Tuple = F.normalize(_snake_case ,dim=-1 ) UpperCAmelCase_ : int = prompt_embeds # forward UpperCAmelCase_ : int = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Tuple = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = 3 * ["this is a negative prompt"] UpperCAmelCase_ : Any = negative_prompt UpperCAmelCase_ : Union[str, Any] = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ : Dict = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : Dict = output.audios[0] UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[Any] = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ : List[Any] = [] for p in [prompt, negative_prompt]: UpperCAmelCase_ : Any = audioldm_pipe.tokenizer( _snake_case ,padding="max_length" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors="pt" ,) UpperCAmelCase_ : List[Any] = text_inputs["input_ids"].to(_snake_case ) UpperCAmelCase_ : str = audioldm_pipe.text_encoder( _snake_case ,) UpperCAmelCase_ : List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase_ : Any = F.normalize(_snake_case ,dim=-1 ) embeds.append(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = embeds # forward UpperCAmelCase_ : Tuple = audioldm_pipe(**_snake_case ) UpperCAmelCase_ : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=_snake_case ) UpperCAmelCase_ : Optional[Any] = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Any = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : int = "egg cracking" UpperCAmelCase_ : Optional[Any] = audioldm_pipe(**_snake_case ,negative_prompt=_snake_case ) UpperCAmelCase_ : int = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 2_56 UpperCAmelCase_ : List[Any] = audio[:10] UpperCAmelCase_ : Any = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=_snake_case ) UpperCAmelCase_ : Any = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : Any = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Dict = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) UpperCAmelCase_ : Any = audioldm_pipe(_snake_case ,num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Dict = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : List[Any] = audioldm_pipe(_snake_case ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Optional[int] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate UpperCAmelCase_ : Any = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 ,**_snake_case ) UpperCAmelCase_ : str = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 UpperCAmelCase_ : List[Any] = audioldm_pipe(audio_length_in_s=0.032 ,**_snake_case ) UpperCAmelCase_ : Any = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : str = AudioLDMPipeline(**_snake_case ) UpperCAmelCase_ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : int = ["hey"] UpperCAmelCase_ : Dict = audioldm_pipe(_snake_case ,num_inference_steps=1 ) UpperCAmelCase_ : Any = output.audios.shape assert audio_shape == (1, 2_56) UpperCAmelCase_ : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCAmelCase_ : List[Any] = SpeechTaHifiGan(_snake_case ).to(_snake_case ) UpperCAmelCase_ : Tuple = audioldm_pipe(_snake_case ,num_inference_steps=1 ) UpperCAmelCase_ : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def UpperCamelCase__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def UpperCamelCase__ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ,_snake_case ,_snake_case="cpu" ,_snake_case=torch.floataa ,_snake_case=0 ): UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase_ : str = np.random.RandomState(_snake_case ).standard_normal((1, 8, 1_28, 16) ) UpperCAmelCase_ : Optional[Any] = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case ) UpperCAmelCase_ : List[str] = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCAmelCase_ : Optional[int] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : List[Any] = self.get_inputs(_snake_case ) UpperCAmelCase_ : List[Any] = 25 UpperCAmelCase_ : Union[str, Any] = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 8_19_20 UpperCAmelCase_ : Union[str, Any] = audio[7_72_30:7_72_40] UpperCAmelCase_ : Any = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCAmelCase_ : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCAmelCase_ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Tuple = self.get_inputs(_snake_case ) UpperCAmelCase_ : Optional[Any] = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 8_19_20 UpperCAmelCase_ : Any = audio[2_77_80:2_77_90] UpperCAmelCase_ : List[str] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCAmelCase_ : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
71
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
354
from jiwer import compute_measures import datasets SCREAMING_SNAKE_CASE : Tuple = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" SCREAMING_SNAKE_CASE : Optional[Any] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" SCREAMING_SNAKE_CASE : Any = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase( datasets.Metric ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence'), 'references': datasets.Value('string', id='sequence'), }), codebase_urls=['https://github.com/jitsi/jiwer/'], reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ], ) def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=False) -> Optional[Any]: """simple docstring""" if concatenate_texts: return compute_measures(lowerCamelCase, lowerCamelCase)["wer"] else: _lowercase : Dict = 0 _lowercase : Optional[int] = 0 for prediction, reference in zip(lowerCamelCase, lowerCamelCase): _lowercase : List[Any] = compute_measures(lowerCamelCase, lowerCamelCase) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
354
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _UpperCamelCase = """.""" if __name__ == "__main__": _UpperCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") _UpperCamelCase = [] _UpperCamelCase = [] with open(doctest_file_path) as fp: for line in fp: _UpperCamelCase = line.strip() _UpperCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _UpperCamelCase = """\n""".join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
453
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __a ( __magic_name__ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , "width_multiplier" ) ) class __a : """simple docstring""" def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=2 , snake_case=3 , snake_case="swish" , snake_case=3 , snake_case=32 , snake_case=0.1 , snake_case=0.02 , snake_case=True , snake_case=True , snake_case=10 , snake_case=None , snake_case=0.25 , snake_case=0.0 , snake_case=0.0 , ): """simple docstring""" lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Optional[Any] = image_size lowerCAmelCase__ : Tuple = patch_size lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : Tuple = make_divisible(512 * width_multiplier , divisor=8 ) lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = conv_kernel_size lowerCAmelCase__ : List[str] = output_stride lowerCAmelCase__ : List[Any] = classifier_dropout_prob lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : Tuple = is_training lowerCAmelCase__ : Optional[int] = num_labels lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : str = scope lowerCAmelCase__ : Optional[Any] = width_multiplier lowerCAmelCase__ : Union[str, Any] = ffn_dropout lowerCAmelCase__ : Tuple = attn_dropout def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : Any = MobileViTVaModel(config=snake_case ) model.to(snake_case ) model.eval() lowerCAmelCase__ : int = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Any = MobileViTVaForImageClassification(snake_case ) model.to(snake_case ) model.eval() lowerCAmelCase__ : int = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() lowerCAmelCase__ : Any = model(snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase__ : Tuple = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = config_and_inputs lowerCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : List[Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : int = False __UpperCamelCase : Tuple = False __UpperCamelCase : List[str] = False def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Tuple = MobileViTVaModelTester(self ) lowerCAmelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(snake_case ) lowerCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : int = [*signature.parameters.keys()] lowerCAmelCase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" def check_hidden_states_output(snake_case , snake_case , snake_case ): lowerCAmelCase__ : List[str] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : List[Any] = 5 self.assertEqual(len(snake_case ) , snake_case ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ : str = 2 for i in range(len(snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Dict = True check_hidden_states_output(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Dict = MobileViTVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( snake_case ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase__ : str = model(**snake_case ) # verify the logits lowerCAmelCase__ : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) lowerCAmelCase__ : Optional[int] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : Tuple = model.to(snake_case ) lowerCAmelCase__ : Optional[Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : str = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Any = model(**snake_case ) lowerCAmelCase__ : List[str] = outputs.logits # verify the logits lowerCAmelCase__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , snake_case ) lowerCAmelCase__ : Dict = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : List[Any] = model.to(snake_case ) lowerCAmelCase__ : str = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**snake_case ) lowerCAmelCase__ : List[Any] = outputs.logits.detach().cpu() lowerCAmelCase__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=snake_case , target_sizes=[(50, 60)] ) lowerCAmelCase__ : Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , snake_case ) lowerCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case ) lowerCAmelCase__ : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , snake_case )
453
1
from random import shuffle import tensorflow as tf from numpy import array def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Any = int(SCREAMING_SNAKE_CASE_ ) assert noofclusters < len(SCREAMING_SNAKE_CASE_ ) # Find out the dimensionality UpperCamelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase : List[Any] = list(range(len(SCREAMING_SNAKE_CASE_ ) ) ) shuffle(SCREAMING_SNAKE_CASE_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase : List[str] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase : List[str] = tf.placeholder('''float64''' , [dim] ) UpperCamelCase : int = [] for centroid in centroids: cent_assigns.append(tf.assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase : int = [tf.Variable(0 ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase : str = tf.placeholder('''int32''' ) UpperCamelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase : Tuple = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase : List[str] = tf.reduce_mean(SCREAMING_SNAKE_CASE_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase : Any = tf.placeholder('''float''' , [dim] ) UpperCamelCase : List[Any] = tf.placeholder('''float''' , [dim] ) UpperCamelCase : Optional[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase : Optional[int] = tf.placeholder('''float''' , [noofclusters] ) UpperCamelCase : Optional[int] = tf.argmin(SCREAMING_SNAKE_CASE_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase : Dict = tf.initialize_all_variables() # Initialize all variables sess.run(SCREAMING_SNAKE_CASE_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase : Optional[int] = 1_0_0 for _ in range(SCREAMING_SNAKE_CASE_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Union[str, Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase : List[Any] = [ sess.run(SCREAMING_SNAKE_CASE_ , feed_dict={va: vect, va: sess.run(SCREAMING_SNAKE_CASE_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase : str = sess.run( SCREAMING_SNAKE_CASE_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(SCREAMING_SNAKE_CASE_ ): # Collect all the vectors assigned to this cluster UpperCamelCase : Optional[int] = [ vectors[i] for i in range(len(SCREAMING_SNAKE_CASE_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase : List[str] = sess.run( SCREAMING_SNAKE_CASE_ , feed_dict={mean_input: array(SCREAMING_SNAKE_CASE_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase : Any = sess.run(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = sess.run(SCREAMING_SNAKE_CASE_ ) return centroids, assignments
643
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
1
from __future__ import annotations import time import numpy as np __UpperCamelCase : Dict = [8, 5, 9, 7] __UpperCamelCase : Any = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __UpperCamelCase : Tuple = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase__ : def __init__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = claim_vector SCREAMING_SNAKE_CASE : Tuple = allocated_resources_table SCREAMING_SNAKE_CASE : List[Any] = maximum_claim_table def __A ( self : Tuple ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __A ( self : List[Any] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __A ( self : Optional[int] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __A ( self : Dict ): '''simple docstring''' return {self.__need().index(UpperCamelCase__ ): i for i in self.__need()} def __A ( self : Any , **UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.__need() SCREAMING_SNAKE_CASE : Dict = self.__allocated_resources_table SCREAMING_SNAKE_CASE : Any = self.__available_resources() SCREAMING_SNAKE_CASE : List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: SCREAMING_SNAKE_CASE : Optional[Any] = False for each_need in need_list: SCREAMING_SNAKE_CASE : List[Any] = True for index, need in enumerate(UpperCamelCase__ ): if need > available_resources[index]: SCREAMING_SNAKE_CASE : int = False break if execution: SCREAMING_SNAKE_CASE : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: SCREAMING_SNAKE_CASE : Optional[int] = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(UpperCamelCase__ ) # update available/freed resources stack SCREAMING_SNAKE_CASE : Optional[int] = np.array(UpperCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(UpperCamelCase__ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __A ( self : Tuple ): '''simple docstring''' print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(UpperCamelCase__ ) + 1}""" + ''' '''.join(f"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(UpperCamelCase__ ) + 1}""" + ''' '''.join(f"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(UpperCamelCase__ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(UpperCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
248
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase :Dict = logging.get_logger(__name__) _lowerCAmelCase :Tuple = {'vocab_file': 'spiece.model'} _lowerCAmelCase :Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCAmelCase :Optional[Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCAmelCase :Optional[Any] = 0 _lowerCAmelCase :Any = 1 _lowerCAmelCase :int = 2 _lowerCAmelCase :List[str] = 3 _lowerCAmelCase :List[Any] = 4 class _UpperCAmelCase ( a ): '''simple docstring''' a__ =VOCAB_FILES_NAMES a__ =PRETRAINED_VOCAB_FILES_MAP a__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ ='''left''' def __init__( self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token _UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Tuple = do_lower_case _UpperCAmelCase : Optional[int] = remove_space _UpperCAmelCase : Union[str, Any] = keep_accents _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def __lowerCAmelCase ( self ) -> Optional[int]: return len(self.sp_model ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: _UpperCAmelCase : List[Any] = self.__dict__.copy() _UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self , A ) -> str: _UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , A ) -> Union[str, Any]: if self.remove_space: _UpperCAmelCase : List[Any] = ''' '''.join(inputs.strip().split() ) else: _UpperCAmelCase : Union[str, Any] = inputs _UpperCAmelCase : Optional[int] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _UpperCAmelCase : Any = unicodedata.normalize('''NFKD''' , A ) _UpperCAmelCase : int = ''''''.join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: _UpperCAmelCase : str = outputs.lower() return outputs def __lowerCAmelCase ( self , A ) -> List[str]: _UpperCAmelCase : Dict = self.preprocess_text(A ) _UpperCAmelCase : Dict = self.sp_model.encode(A , out_type=A ) _UpperCAmelCase : Any = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _UpperCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase : Dict = cur_pieces[1:] else: _UpperCAmelCase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def __lowerCAmelCase ( self , A ) -> str: return self.sp_model.PieceToId(A ) def __lowerCAmelCase ( self , A ) -> Any: return self.sp_model.IdToPiece(A ) def __lowerCAmelCase ( self , A ) -> List[str]: _UpperCAmelCase : Optional[int] = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , A , A = False , A = None , A = True , **A , ) -> str: _UpperCAmelCase : List[Any] = kwargs.pop('''use_source_tokenizer''' , A ) _UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(A , skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCAmelCase : Dict = [] _UpperCAmelCase : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) _UpperCAmelCase : Optional[Any] = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _UpperCAmelCase : Dict = ''''''.join(A ) _UpperCAmelCase : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCAmelCase : List[Any] = self.clean_up_tokenization(A ) return clean_text else: return text def __lowerCAmelCase ( self , A , A = None ) -> List[int]: _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return ([0] * len(A )) + [1] + ([0] * len(A )) + [1, 1] return ([0] * len(A )) + [1, 1] def __lowerCAmelCase ( self , A , A = None ) -> List[int]: _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : List[str] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: _UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
506
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : List[str] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=8 ) -> str: """simple docstring""" UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , a__ : UNetaDConditionModel , a__ : DDPMScheduler , a__ : VQModel , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : int , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] ): if latents is None: UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase = latents.to(a__ ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : Optional[Any] , a__ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __snake_case ( self : Union[str, Any] , a__ : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase, UpperCAmelCase = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[Any] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self : Union[str, Any] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : torch.FloatTensor , a__ : int = 512 , a__ : int = 512 , a__ : int = 100 , a__ : float = 4.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , ): UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = hint.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) UpperCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) self.scheduler.set_timesteps(a__ , device=a__ ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.movq.config.latent_channels UpperCAmelCase, UpperCAmelCase = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a__ , a__ , a__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'''image_embeds''': image_embeds, '''hint''': hint} UpperCAmelCase = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase, UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase, UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing UpperCAmelCase = self.movq.decode(a__ , force_not_quantize=a__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="speech_to_text_2" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , a__ : Any=10000 , a__ : str=6 , a__ : Any=2048 , a__ : Union[str, Any]=4 , a__ : Dict=0.0 , a__ : Any=True , a__ : Tuple="relu" , a__ : Optional[Any]=256 , a__ : Optional[Any]=0.1 , a__ : Any=0.0 , a__ : List[Any]=0.0 , a__ : str=0.02 , a__ : int=2 , a__ : Dict=True , a__ : Union[str, Any]=1 , a__ : List[str]=0 , a__ : Any=2 , a__ : List[Any]=1024 , **a__ : Optional[int] , ): UpperCAmelCase = vocab_size UpperCAmelCase = d_model UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = decoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_target_positions super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , decoder_start_token_id=a__ , **a__ , )
570
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" @register_to_config def __init__( self : List[str], *, lowerCamelCase : int = 4, lowerCamelCase : int = 768, lowerCamelCase : int, lowerCamelCase : Tuple, ): '''simple docstring''' super().__init__() lowercase__ = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings lowercase__ = nn.Linear(lowerCamelCase, lowerCamelCase ) lowercase__ = nn.Linear(lowerCamelCase, lowerCamelCase ) # parameters for encoder hidden states lowercase__ = clip_extra_context_tokens lowercase__ = nn.Linear( lowerCamelCase, self.clip_extra_context_tokens * cross_attention_dim ) lowercase__ = nn.Linear(lowerCamelCase, lowerCamelCase ) lowercase__ = nn.LayerNorm(lowerCamelCase ) def lowercase__ ( self : Any, *, lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : Tuple, lowerCamelCase : Dict ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowercase__ = image_embeddings.shape[0] lowercase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowercase__ = classifier_free_guidance_embeddings.expand( lowerCamelCase, -1 ) lowercase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowercase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowercase__ = self.embedding_proj(lowerCamelCase ) lowercase__ = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) lowercase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowercase__ = self.clip_extra_context_tokens_proj(lowerCamelCase ) lowercase__ = clip_extra_context_tokens.reshape(lowerCamelCase, -1, self.clip_extra_context_tokens ) lowercase__ = clip_extra_context_tokens.permute(0, 2, 1 ) lowercase__ = self.encoder_hidden_states_proj(lowerCamelCase ) lowercase__ = self.text_encoder_hidden_states_norm(lowerCamelCase ) lowercase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
183
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A__ : int = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a ( lowerCamelCase_ ): '''simple docstring''' if "://" in dataset_path: lowercase__ = dataset_path.split('''://''' )[1] return dataset_path def a ( lowerCamelCase_ ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = not is_remote_filesystem(lowerCamelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase_ ) , fs._strip_protocol(lowerCamelCase_ ) ) else: fs.mv(lowerCamelCase_ , lowerCamelCase_ , recursive=lowerCamelCase_ ) def a ( ): '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase__ = None lowercase__ = None lowercase__ = threading.Lock()
183
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Union[str, Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = ['''PoolFormerFeatureExtractor'''] UpperCamelCase__ : Any = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
178
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Dict = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = '''beit''' def __init__( self : Tuple , lowerCAmelCase__ : List[Any]=8_1_9_2 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Dict=3_0_7_2 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Any=1E-12 , lowerCAmelCase__ : Dict=2_2_4 , lowerCAmelCase__ : List[str]=1_6 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=[3, 5, 7, 1_1] , lowerCAmelCase__ : str=[1, 2, 3, 6] , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=0.4 , lowerCAmelCase__ : int=2_5_6 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Union[str, Any]=2_5_5 , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = image_size __SCREAMING_SNAKE_CASE : Optional[int] = patch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : Tuple = use_mask_token __SCREAMING_SNAKE_CASE : Union[str, Any] = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = use_relative_position_bias __SCREAMING_SNAKE_CASE : Optional[Any] = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE : Optional[int] = layer_scale_init_value __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : Any = out_indices __SCREAMING_SNAKE_CASE : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : List[Any] = use_auxiliary_head __SCREAMING_SNAKE_CASE : str = auxiliary_loss_weight __SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_channels __SCREAMING_SNAKE_CASE : str = auxiliary_num_convs __SCREAMING_SNAKE_CASE : int = auxiliary_concat_input __SCREAMING_SNAKE_CASE : Dict = semantic_loss_ignore_index class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self : Any ): """simple docstring""" return 1E-4
178
1
import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase__ ( __lowerCAmelCase : Iterable[str] , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = iter(__lowerCAmelCase ) while True: lowerCAmelCase_ = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase_ = "" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = generate_table(__lowerCAmelCase ) lowerCAmelCase_ = prepare_input(__lowerCAmelCase ) lowerCAmelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = generate_table(__lowerCAmelCase ) lowerCAmelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
290
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _A = logging.get_logger(__name__) _A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''bloom''' _lowercase =['''past_key_values'''] _lowercase ={ '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , _UpperCamelCase=250_880 , _UpperCamelCase=64 , _UpperCamelCase=2 , _UpperCamelCase=8 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=False , **_UpperCamelCase , ) -> str: lowerCAmelCase_ = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase_ = kwargs.pop("n_embed" , _UpperCamelCase ) lowerCAmelCase_ = hidden_size if n_embed is None else n_embed lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = pretraining_tp lowerCAmelCase_ = apply_residual_connection_post_layernorm lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = slow_but_exact super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) class _lowerCAmelCase ( __a ): _lowercase =version.parse('''1.12''' ) def __init__( self , _UpperCamelCase , _UpperCamelCase = "default" , _UpperCamelCase = None , _UpperCamelCase = False , ) -> int: super().__init__(_UpperCamelCase , task=_UpperCamelCase , patching_specs=_UpperCamelCase , use_past=_UpperCamelCase ) if not getattr(self._config , "pad_token_id" , _UpperCamelCase ): # TODO: how to do that better? lowerCAmelCase_ = 0 @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCamelCase , direction="inputs" , inverted_values_shape=_UpperCamelCase ) lowerCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return common_inputs @property def __a ( self ) -> int: return self._config.n_layer @property def __a ( self ) -> int: return self._config.n_head @property def __a ( self ) -> float: return 1e-3 def __a ( self , _UpperCamelCase , _UpperCamelCase = -1 , _UpperCamelCase = -1 , _UpperCamelCase = False , _UpperCamelCase = None , ) -> Mapping[str, Any]: lowerCAmelCase_ = super(_UpperCamelCase , self ).generate_dummy_inputs( _UpperCamelCase , batch_size=_UpperCamelCase , seq_length=_UpperCamelCase , is_pair=_UpperCamelCase , framework=_UpperCamelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = self._config.hidden_size // self.num_attention_heads lowerCAmelCase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase_ = [ (torch.zeros(_UpperCamelCase ), torch.zeros(_UpperCamelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCamelCase , _UpperCamelCase , dtype=_UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> int: return 13
290
1
__snake_case :Optional[Any] =0 # The first color of the flag. __snake_case :List[str] =1 # The second color of the flag. __snake_case :Any =2 # The third color of the flag. __snake_case :str =(red, white, blue) def lowerCamelCase_ ( lowerCAmelCase__ : list ) -> list: '''simple docstring''' if not sequence: return [] if len(lowerCAmelCase__ ) == 1: return list(lowerCAmelCase__ ) A = 0 A = len(lowerCAmelCase__ ) - 1 A = 0 while mid <= high: if sequence[mid] == colors[0]: A , A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A , A = sequence[high], sequence[mid] high -= 1 else: A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(lowerCAmelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __snake_case :Dict =input('Enter numbers separated by commas:\n').strip() __snake_case :Optional[Any] =[int(item.strip()) for item in user_input.split(',')] print(F'''{dutch_national_flag_sort(unsorted)}''')
224
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : def __init__( self : str , __UpperCamelCase : Any , __UpperCamelCase : Dict=13 , __UpperCamelCase : Tuple=30 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str=True , __UpperCamelCase : Dict=32 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : str=37 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : int=10 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Any=0.6 , __UpperCamelCase : List[Any]=None , ) -> List[str]: A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = mask_ratio A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __UpperCamelCase ( self : Tuple ) -> str: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : int ) -> List[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ) -> Union[str, Any]: A = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[str] ) -> Optional[int]: A = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) A = (self.image_size // self.patch_size) ** 2 A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A = 1 A = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A_ : List[str] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} A_ : Tuple = False A_ : str = False A_ : Tuple = False A_ : Union[str, Any] = False def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: A = ViTMAEModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __UpperCamelCase ( self : Any ) -> List[Any]: pass def __UpperCamelCase ( self : Tuple ) -> int: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __UpperCamelCase ( self : Any ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ) -> int: # make masks reproducible np.random.seed(2 ) A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A = outputs[0].cpu().numpy() A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) A = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans A = after_outputs[0].cpu().numpy() A = 0 A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __UpperCamelCase ( self : Optional[Any] ) -> int: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __UpperCamelCase ( self : List[Any] ) -> int: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __UpperCamelCase ( self : int ) -> Dict: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __UpperCamelCase ( self : List[Any] ) -> Any: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @slow def __UpperCamelCase ( self : Tuple ) -> Tuple: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Any ) -> Any: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A = ViTMAEConfig() A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits A = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1e-4 ) )
224
1
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 4_00_00_00 ) -> int: lowerCamelCase_ = [0, 1] lowerCamelCase_ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase_ = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
42
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def __magic_name__( *__UpperCAmelCase , **__UpperCAmelCase ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def __magic_name__( self ): lowerCAmelCase__ : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_classifier(__UpperCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__UpperCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCAmelCase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : List[Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : str = image_classifier(__UpperCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCAmelCase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], ] , ) @slow @require_torch def __magic_name__( self ): lowerCAmelCase__ : str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : str = image_classifier(__UpperCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase__ : Tuple = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : Union[str, Any] = image_classifier(__UpperCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase__ : Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
678
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowercase ( A ): '''simple docstring''' _A : Any = '''cvt''' def __init__( self : Optional[int] , _a : Any=3 , _a : Optional[Any]=[7, 3, 3] , _a : Any=[4, 2, 2] , _a : Tuple=[2, 1, 1] , _a : Any=[64, 192, 384] , _a : List[Any]=[1, 3, 6] , _a : Dict=[1, 2, 10] , _a : int=[4.0, 4.0, 4.0] , _a : int=[0.0, 0.0, 0.0] , _a : Dict=[0.0, 0.0, 0.0] , _a : Union[str, Any]=[0.0, 0.0, 0.1] , _a : List[Any]=[True, True, True] , _a : Dict=[False, False, True] , _a : List[str]=["dw_bn", "dw_bn", "dw_bn"] , _a : str=[3, 3, 3] , _a : int=[1, 1, 1] , _a : int=[2, 2, 2] , _a : Dict=[1, 1, 1] , _a : Union[str, Any]=[1, 1, 1] , _a : List[str]=0.02 , _a : Any=1E-12 , **_a : Optional[int] , ): super().__init__(**_a ) UpperCamelCase__ = num_channels UpperCamelCase__ = patch_sizes UpperCamelCase__ = patch_stride UpperCamelCase__ = patch_padding UpperCamelCase__ = embed_dim UpperCamelCase__ = num_heads UpperCamelCase__ = depth UpperCamelCase__ = mlp_ratio UpperCamelCase__ = attention_drop_rate UpperCamelCase__ = drop_rate UpperCamelCase__ = drop_path_rate UpperCamelCase__ = qkv_bias UpperCamelCase__ = cls_token UpperCamelCase__ = qkv_projection_method UpperCamelCase__ = kernel_qkv UpperCamelCase__ = padding_kv UpperCamelCase__ = stride_kv UpperCamelCase__ = padding_q UpperCamelCase__ = stride_q UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps
591
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : str, UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[str] ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCamelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ) if weight_type is not None: UpperCamelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, hf_model.config.feat_extract_norm == '''group''', ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] UpperCamelCase__ = mapped_key.replace('''*''', UpperCamelCase__ ) if "weight_g" in name: UpperCamelCase__ = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ = '''weight_v''' elif "bias" in name: UpperCamelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ = '''weight''' else: UpperCamelCase__ = None set_recursively(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ = name.split('''.''' ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : List[Any]=True ): '''simple docstring''' if config_path is not None: UpperCamelCase__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) else: UpperCamelCase__ = UniSpeechSatConfig() UpperCamelCase__ = '''''' if is_finetuned: UpperCamelCase__ = UniSpeechSatForCTC(UpperCamelCase__ ) else: UpperCamelCase__ = UniSpeechSatForPreTraining(UpperCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCamelCase__ = model[0].eval() recursively_load_weights(UpperCamelCase__, UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
591
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : str = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = ["""MobileNetV2FeatureExtractor"""] __snake_case : Dict = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __snake_case : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
540
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase__ : def __init__( self ,A = None ): if components is None: UpperCAmelCase = [] UpperCAmelCase = list(A ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(A ,self.__components ) ) + ")" def __add__( self ,A ): UpperCAmelCase = len(self ) if size == len(A ): UpperCAmelCase = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception("""must have the same size""" ) def __sub__( self ,A ): UpperCAmelCase = len(self ) if size == len(A ): UpperCAmelCase = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(A ,(float, int) ): UpperCAmelCase = [c * other for c in self.__components] return Vector(A ) elif isinstance(A ,A ) and len(self ) == len(A ): UpperCAmelCase = len(self ) UpperCAmelCase = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception("""invalid operand!""" ) def _UpperCamelCase ( self ): return Vector(self.__components ) def _UpperCamelCase ( self ,A ): if isinstance(A ,A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _UpperCamelCase ( self ,A ,A ): assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase = value def _UpperCamelCase ( self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) UpperCAmelCase = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def _UpperCamelCase ( self ,A ,A = False ): UpperCAmelCase = self * other UpperCAmelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _snake_case ): """simple docstring""" assert isinstance(_snake_case , _snake_case ) return Vector([0] * dimension ) def _a ( _snake_case , _snake_case ): """simple docstring""" assert isinstance(_snake_case , _snake_case ) and (isinstance(_snake_case , _snake_case )) UpperCAmelCase = [0] * dimension UpperCAmelCase = 1 return Vector(_snake_case ) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (isinstance(_snake_case , (int, float) )) ) return x * scalar + y def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(_snake_case ) UpperCAmelCase = [random.randint(_snake_case , _snake_case ) for _ in range(_snake_case )] return Vector(_snake_case ) class lowerCamelCase__ : def __init__( self ,A ,A ,A ): UpperCAmelCase = matrix UpperCAmelCase = w UpperCAmelCase = h def __str__( self ): UpperCAmelCase = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] + other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] - other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(A ,A ): # matrix-vector if len(A ) == self.__width: UpperCAmelCase = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A ,sum(A ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(A ,(int, float) ): # matrix-scalar UpperCAmelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A ,self.__width ,self.__height ) return None def _UpperCamelCase ( self ): return self.__height def _UpperCamelCase ( self ): return self.__width def _UpperCamelCase ( self ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase = value else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(A ,self.__width - 1 ,self.__height - 1 ).determinant() def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A ,A ) else: raise Exception("""Indices out of bounds""" ) def _UpperCamelCase ( self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase = [ self.__matrix[0][y] * self.cofactor(0 ,A ) for y in range(self.__width ) ] return sum(A ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [[0] * n for _ in range(_snake_case )] return Matrix(_snake_case , _snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(_snake_case ) UpperCAmelCase = [ [random.randint(_snake_case , _snake_case ) for _ in range(_snake_case )] for _ in range(_snake_case ) ] return Matrix(_snake_case , _snake_case , _snake_case )
341
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A_ = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") A_ = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A_ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A_ = sorted(arg_to_scheduler.keys()) A_ = "{" + ", ".join(arg_to_scheduler_choices) + "}" class SCREAMING_SNAKE_CASE_ ( pl.LightningModule ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="base" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_lowerCAmelCase ) lowerCamelCase__ = 0 lowerCamelCase__ = Path(self.hparams.output_dir ) lowerCamelCase__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=_lowerCAmelCase , **_lowerCAmelCase , ) else: lowerCamelCase__ = config lowerCamelCase__ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(self.config , _lowerCAmelCase ), F"model config doesn't have a `{p}` attribute" setattr(self.config , _lowerCAmelCase , getattr(self.hparams , _lowerCAmelCase ) ) if tokenizer is None: lowerCamelCase__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_lowerCAmelCase , ) else: lowerCamelCase__ = tokenizer lowerCamelCase__ = MODEL_MODES[mode] if model is None: lowerCamelCase__ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_lowerCAmelCase , ) else: lowerCamelCase__ = model def __magic_name__ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): lowerCamelCase__ = self.model_type.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase__ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowerCamelCase__ = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __magic_name__ ( self ): lowerCamelCase__ = self.model lowerCamelCase__ = ["bias", "LayerNorm.weight"] lowerCamelCase__ = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: lowerCamelCase__ = Adafactor( _lowerCAmelCase , lr=self.hparams.learning_rate , scale_parameter=_lowerCAmelCase , relative_step=_lowerCAmelCase ) else: lowerCamelCase__ = AdamW( _lowerCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowerCamelCase__ = optimizer lowerCamelCase__ = self.get_lr_scheduler() return [optimizer], [scheduler] def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): return self.validation_step(_lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( self , _lowerCAmelCase ): return self.validation_end(_lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __magic_name__ ( self , _lowerCAmelCase ): if stage == "test": lowerCamelCase__ = len(self.test_dataloader().dataset ) else: lowerCamelCase__ = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=_lowerCAmelCase ) lowerCamelCase__ = len(self.train_dataloader().dataset ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ): raise NotImplementedError("You must implement this for your task" ) def __magic_name__ ( self ): return self.train_loader def __magic_name__ ( self ): return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=_lowerCAmelCase ) def __magic_name__ ( self ): return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=_lowerCAmelCase ) def __magic_name__ ( self , _lowerCAmelCase ): return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( _lowerCAmelCase , list(filter(_lowerCAmelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __magic_name__ ( self , _lowerCAmelCase ): lowerCamelCase__ = self.output_dir.joinpath("best_tfmr" ) lowerCamelCase__ = self.step_count self.model.save_pretrained(_lowerCAmelCase ) self.tokenizer.save_pretrained(_lowerCAmelCase ) @staticmethod def __magic_name__ ( _lowerCAmelCase , _lowerCAmelCase ): parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=_lowerCAmelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(_lowerCAmelCase ).parent / "test_run" / "cache" ) , type=_lowerCAmelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=_lowerCAmelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=_lowerCAmelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=_lowerCAmelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=_lowerCAmelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=_lowerCAmelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=_lowerCAmelCase , metavar=_lowerCAmelCase , type=_lowerCAmelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=_lowerCAmelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=_lowerCAmelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=_lowerCAmelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=_lowerCAmelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=_lowerCAmelCase ) parser.add_argument("--train_batch_size" , default=32 , type=_lowerCAmelCase ) parser.add_argument("--eval_batch_size" , default=32 , type=_lowerCAmelCase ) parser.add_argument("--adafactor" , action="store_true" ) class SCREAMING_SNAKE_CASE_ ( pl.Callback ): """simple docstring""" def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class SCREAMING_SNAKE_CASE_ ( pl.Callback ): """simple docstring""" def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_lowerCAmelCase ) class SCREAMING_SNAKE_CASE_ ( pl.Callback ): """simple docstring""" def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = trainer.lr_schedulers[0]["scheduler"] lowerCamelCase__ = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_lowerCAmelCase ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): rank_zero_info("***** Validation results *****" ) lowerCamelCase__ = trainer.callback_metrics # Log results for key in sorted(_lowerCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_lowerCAmelCase , str(metrics[key] ) ) ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): rank_zero_info("***** Test results *****" ) lowerCamelCase__ = trainer.callback_metrics # Log and save results to file lowerCamelCase__ = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(_lowerCAmelCase , "w" ) as writer: for key in sorted(_lowerCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_lowerCAmelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(_lowerCAmelCase , str(metrics[key] ) ) ) def __UpperCamelCase ( a, a) ->None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir", default=str(Path(a).parent / "test_run" / "model_checkpoints"), type=a, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=a, default="O2", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=a) parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=a, help="Max gradient norm") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--gradient_accumulation_steps", dest="accumulate_grad_batches", type=a, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--seed", type=a, default=42, help="random seed for initialization") parser.add_argument( "--data_dir", default=str(Path(a).parent / "test_run" / "dummy-train-data"), type=a, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) def __UpperCamelCase ( a, a, a=None, a=True, a=[], a=None, a=None, **a, ) ->Union[str, Any]: pl.seed_everything(args.seed) # init model lowerCamelCase__ = Path(model.hparams.output_dir) odir.mkdir(exist_ok=a) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1) if early_stopping_callback: extra_callbacks.append(a) if logging_callback is None: lowerCamelCase__ = LoggingCallback() lowerCamelCase__ = {} if args.fpaa: lowerCamelCase__ = 16 if args.gpus > 1: lowerCamelCase__ = "auto" lowerCamelCase__ = "ddp" lowerCamelCase__ = args.accumulate_grad_batches lowerCamelCase__ = None lowerCamelCase__ = "auto" lowerCamelCase__ = pl.Trainer.from_argparse_args( a, weights_summary=a, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=a, val_check_interval=1, num_sanity_val_steps=2, **a, ) if args.do_train: trainer.fit(a) else: print("RAG modeling tests with new set functions successfuly executed!") return trainer
360
from typing import TYPE_CHECKING from ...utils import _LazyModule A_ = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
1
def _a ( SCREAMING_SNAKE_CASE = 10_00 ): """simple docstring""" lowercase__ = 2**power lowercase__ = str(SCREAMING_SNAKE_CASE ) lowercase__ = list(SCREAMING_SNAKE_CASE ) lowercase__ = 0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) lowerCAmelCase = solution(power) print('Sum of the digits is: ', result)
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case__ : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]="resnet50" , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int=True , ) -> int: UpperCAmelCase_ = parent UpperCAmelCase_ = out_indices if out_indices is not None else [4] UpperCAmelCase_ = stage_names UpperCAmelCase_ = out_features UpperCAmelCase_ = backbone UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = is_training def UpperCamelCase ( self : Any ) -> Dict: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = self.get_config() return config, pixel_values def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __A = (TimmBackbone,) if is_torch_available() else () __A = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} __A = False __A = False __A = False __A = False def UpperCamelCase ( self : str ) -> Optional[Any]: UpperCAmelCase_ = TimmBackboneModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def UpperCamelCase ( self : str ) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase_ = '''resnet18''' UpperCAmelCase_ = '''microsoft/resnet-18''' UpperCAmelCase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) UpperCAmelCase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCAmelCase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) UpperCAmelCase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def UpperCamelCase ( self : List[Any] ) -> List[str]: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def UpperCamelCase ( self : str ) -> str: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCamelCase ( self : Any ) -> str: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Any: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def UpperCamelCase ( self : Tuple ) -> List[str]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCamelCase ( self : Tuple ) -> int: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCamelCase ( self : Union[str, Any] ) -> int: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def UpperCamelCase ( self : List[str] ) -> Any: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def UpperCamelCase ( self : str ) -> Optional[int]: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def UpperCamelCase ( self : Any ) -> Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase ( self : int ) -> int: pass def UpperCamelCase ( self : Optional[int] ) -> str: UpperCAmelCase_, UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase_ ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def UpperCamelCase ( self : int ) -> List[Any]: UpperCAmelCase_, UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True UpperCAmelCase_ = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCAmelCase_ = self.all_model_classes[0] UpperCAmelCase_ = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ = model(**lowerCAmelCase_ ) UpperCAmelCase_ = outputs[0][-1] # Encoder-/Decoder-only models UpperCAmelCase_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCAmelCase_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCamelCase ( self : List[Any] ) -> Dict: UpperCAmelCase_, UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase_ ) UpperCAmelCase_ = None UpperCAmelCase_ = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase_ ) UpperCAmelCase_ = False UpperCAmelCase_ = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ = model(**lowerCAmelCase_ )
407
def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :int ): return int((input_a, input_a).count(0 ) == 0 ) def _lowerCAmelCase ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
407
1
"""simple docstring""" snake_case_ : str = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} snake_case_ : Optional[int] = ["""a""", """b""", """c""", """d""", """e"""] def lowercase_ ( _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Any = start # add current to visited visited.append(_lowercase ) UpperCAmelCase : Optional[int] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase : str = topological_sort(_lowercase , _lowercase , _lowercase ) # if all neighbors visited add current to sort sort.append(_lowercase ) # if all vertices haven't been visited select a new one to visit if len(_lowercase ) != len(_lowercase ): for vertice in vertices: if vertice not in visited: UpperCAmelCase : Tuple = topological_sort(_lowercase , _lowercase , _lowercase ) # return sort return sort if __name__ == "__main__": snake_case_ : Dict = topological_sort("""a""", [], []) print(sort)
595
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : Optional[int] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase : int = text_generator("This is a test" , do_sample=lowercase ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) UpperCAmelCase : List[Any] = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( lowercase , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) UpperCAmelCase : Any = text_generator("This is a test" , do_sample=lowercase , num_return_sequences=2 , return_tensors=lowercase ) self.assertEqual( lowercase , [ {"generated_token_ids": ANY(lowercase )}, {"generated_token_ids": ANY(lowercase )}, ] , ) UpperCAmelCase : Dict = text_generator.model.config.eos_token_id UpperCAmelCase : List[str] = "<pad>" UpperCAmelCase : List[str] = text_generator( ["This is a test", "This is a second test"] , do_sample=lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase , ) self.assertEqual( lowercase , [ [ {"generated_token_ids": ANY(lowercase )}, {"generated_token_ids": ANY(lowercase )}, ], [ {"generated_token_ids": ANY(lowercase )}, {"generated_token_ids": ANY(lowercase )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase : Union[str, Any] = text_generator("This is a test" , do_sample=lowercase ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) UpperCAmelCase : List[str] = text_generator(["This is a test", "This is a second test"] , do_sample=lowercase ) self.assertEqual( lowercase , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __lowerCAmelCase ( self : str , lowercase : str , lowercase : str , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[int] = TextGenerationPipeline(model=lowercase , tokenizer=lowercase ) return text_generator, ["This is a test", "Another test"] def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Tuple = "Hello I believe in" UpperCAmelCase : Dict = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) UpperCAmelCase : Union[str, Any] = text_generator(lowercase ) self.assertEqual( lowercase , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) UpperCAmelCase : Optional[int] = text_generator(lowercase , stop_sequence=" fe" ) self.assertEqual(lowercase , [{"generated_text": "Hello I believe in fe"}] ) def __lowerCAmelCase ( self : str , lowercase : int , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[int] = text_generator.model UpperCAmelCase : Tuple = text_generator.tokenizer UpperCAmelCase : Tuple = text_generator("This is a test" ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCAmelCase : int = text_generator("This is a test" , return_full_text=lowercase ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCAmelCase : Tuple = pipeline(task="text-generation" , model=lowercase , tokenizer=lowercase , return_full_text=lowercase ) UpperCAmelCase : Any = text_generator("This is a test" ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCAmelCase : int = text_generator("This is a test" , return_full_text=lowercase ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCAmelCase : Union[str, Any] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowercase ) self.assertEqual( lowercase , [ [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCAmelCase : int = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase ) self.assertEqual( lowercase , [ [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], ] , ) with self.assertRaises(lowercase ): UpperCAmelCase : Optional[int] = text_generator("test" , return_full_text=lowercase , return_text=lowercase ) with self.assertRaises(lowercase ): UpperCAmelCase : Tuple = text_generator("test" , return_full_text=lowercase , return_tensors=lowercase ) with self.assertRaises(lowercase ): UpperCAmelCase : List[Any] = text_generator("test" , return_text=lowercase , return_tensors=lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCAmelCase : List[str] = text_generator("" ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCAmelCase : Dict = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCAmelCase : Union[str, Any] = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 5_00 , max_new_tokens=20 ) UpperCAmelCase : Tuple = text_generator("This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowercase ): text_generator( "This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' import torch # Classic `model_kwargs` UpperCAmelCase : List[Any] = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase : Union[str, Any] = pipe("This is a test" ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCAmelCase : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase : Optional[int] = pipe("This is a test" ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCAmelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCAmelCase : List[Any] = pipe("This is a test" ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __lowerCAmelCase ( self : str ): '''simple docstring''' import torch UpperCAmelCase : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=lowercase , top_p=0.5 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "Hello world" UpperCAmelCase : Optional[int] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": UpperCAmelCase : Optional[int] = logging.get_logger("transformers.generation.tf_utils" ) else: UpperCAmelCase : List[str] = logging.get_logger("transformers.generation.utils" ) UpperCAmelCase : List[Any] = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowercase ) as cl: UpperCAmelCase : str = text_generator(lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowercase ) as cl: UpperCAmelCase : List[str] = text_generator(lowercase , max_new_tokens=1 ) self.assertNotIn(lowercase , cl.out ) with CaptureLogger(lowercase ) as cl: UpperCAmelCase : int = text_generator(lowercase , max_length=10 ) self.assertNotIn(lowercase , cl.out )
595
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case (UpperCamelCase : str , UpperCamelCase : Union[str, Any] ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def snake_case (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__ = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def snake_case (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int ): '''simple docstring''' lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase__ = features.copy() if features else default_expected_features lowerCamelCase__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__ = ParquetDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def snake_case (UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase__ = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , split=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def snake_case (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' if issubclass(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ = parquet_path elif issubclass(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ = [parquet_path] lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase__ = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) def snake_case (UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=("train",) ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) for split in splits: lowerCamelCase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def snake_case (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__ = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def snake_case (UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase__ = features.copy() if features else default_expected_features lowerCamelCase__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__ = ParquetDatasetReader({"""train""": parquet_path} , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def snake_case (UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' if split: lowerCamelCase__ = {split: parquet_path} else: lowerCamelCase__ = """train""" lowerCamelCase__ = {"""train""": parquet_path, """test""": parquet_path} lowerCamelCase__ = tmp_path / """cache""" lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase__ = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case (UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ = ParquetDatasetWriter(UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 lowerCamelCase__ = pq.ParquetFile(tmp_path / """foo.parquet""" ) lowerCamelCase__ = pf.read() assert dataset.data.table == output_table def snake_case (UpperCamelCase : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ = str(shared_datadir / """test_image_rgb.jpg""" ) lowerCamelCase__ = {"""image""": [image_path]} lowerCamelCase__ = Features({"""image""": Image()} ) lowerCamelCase__ = Dataset.from_dict(UpperCamelCase , features=UpperCamelCase ) lowerCamelCase__ = ParquetDatasetWriter(UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 lowerCamelCase__ = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__ = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def snake_case (UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' assert get_writer_batch_size(UpperCamelCase ) == expected
235
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" @property def _UpperCamelCase ( self : Tuple ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = ort.SessionOptions() lowerCamelCase__ = False return options def _UpperCamelCase ( self : Any ): """simple docstring""" lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowerCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default lowerCamelCase__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase__ = """A red cat sitting on a park bench""" lowerCamelCase__ = np.random.RandomState(0 ) lowerCamelCase__ = pipe( prompt=a_ , image=a_ , mask_image=a_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=a_ , output_type="""np""" , ) lowerCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-2
235
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : int , a_ : Any , a_ : Tuple=7 , a_ : Dict=3 , a_ : Any=18 , a_ : Tuple=30 , a_ : Optional[Any]=400 , a_ : Union[str, Any]=True , a_ : List[Any]=32 , a_ : int=True , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size_divisor __snake_case = do_rescale def A ( self : Tuple ): """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = GLPNImageProcessor if is_vision_available() else None def A ( self : Any ): """simple docstring""" __snake_case = GLPNImageProcessingTester(self ) @property def A ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size_divisor" ) ) self.assertTrue(hasattr(a_ , "resample" ) ) self.assertTrue(hasattr(a_ , "do_rescale" ) ) def A ( self : List[str] ): """simple docstring""" pass def A ( self : Dict ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
69
'''simple docstring''' import collections import os import re from pathlib import Path _UpperCamelCase : Optional[int] = 'src/transformers' # Matches is_xxx_available() _UpperCamelCase : int = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _UpperCamelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _UpperCamelCase : List[str] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _UpperCamelCase : Any = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _UpperCamelCase : Dict = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _UpperCamelCase : Tuple = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _UpperCamelCase : Union[str, Any] = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _UpperCamelCase : str = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _UpperCamelCase : Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _UpperCamelCase : Optional[int] = re.compile(R'^\s*try:') # Catches a line with else: _UpperCamelCase : List[Any] = re.compile(R'^\s*else:') def __UpperCAmelCase ( A : Any ) -> Tuple: if _re_test_backend.search(A ) is None: return None UpperCAmelCase_ : str = [b[0] for b in _re_backend.findall(A )] backends.sort() return "_and_".join(A ) def __UpperCAmelCase ( A : List[Any] ) -> Optional[int]: with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ : str = f.readlines() UpperCAmelCase_ : List[str] = 0 while line_index < len(A ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ : Tuple = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A ): UpperCAmelCase_ : str = _re_one_line_import_struct.search(A ).groups()[0] UpperCAmelCase_ : Any = re.findall(r'''\[([^\]]+)\]''' , A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue UpperCAmelCase_ : Dict = _re_import_struct_key_value.search(A ) if single_line_import_search is not None: UpperCAmelCase_ : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A ) > 0] objects.extend(A ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ : int = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): UpperCAmelCase_ : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(A ) is not None: objects.append(_re_import_struct_add_one.search(A ).groups()[0] ) elif _re_import_struct_add_many.search(A ) is not None: UpperCAmelCase_ : Dict = _re_import_struct_add_many.search(A ).groups()[0].split(''', ''' ) UpperCAmelCase_ : Dict = [obj[1:-1] for obj in imports if len(A ) > 0] objects.extend(A ) elif _re_between_brackets.search(A ) is not None: UpperCAmelCase_ : int = _re_between_brackets.search(A ).groups()[0].split(''', ''' ) UpperCAmelCase_ : List[Any] = [obj[1:-1] for obj in imports if len(A ) > 0] objects.extend(A ) elif _re_quote_object.search(A ) is not None: objects.append(_re_quote_object.search(A ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 UpperCAmelCase_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ : Union[str, Any] = [] while ( line_index < len(A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): UpperCAmelCase_ : int = lines[line_index] UpperCAmelCase_ : int = _re_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ : int = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): UpperCAmelCase_ : Tuple = lines[line_index] UpperCAmelCase_ : Tuple = _re_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 UpperCAmelCase_ : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( A : Dict , A : Union[str, Any] ) -> Optional[Any]: def find_duplicates(A : Optional[int] ): return [k for k, v in collections.Counter(A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ : str = [] for key in import_dict_objects.keys(): UpperCAmelCase_ : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCAmelCase_ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ : Optional[int] = '''base imports''' if key == '''none''' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = [] for root, _, files in os.walk(A ): if "__init__.py" in files: UpperCAmelCase_ : List[Any] = os.path.join(A , '''__init__.py''' ) UpperCAmelCase_ : str = parse_init(A ) if objects is not None: UpperCAmelCase_ : List[str] = analyze_results(*A ) if len(A ) > 0: UpperCAmelCase_ : Optional[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(A ) ) if len(A ) > 0: raise ValueError('''\n\n'''.join(A ) ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Any = [] for path, directories, files in os.walk(A ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A ) / folder).glob('''*.py''' ) ) ) == 0: continue UpperCAmelCase_ : Union[str, Any] = str((Path(A ) / folder).relative_to(A ) ) UpperCAmelCase_ : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(A ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ : Optional[Any] = str((Path(A ) / fname).relative_to(A ) ) UpperCAmelCase_ : Union[str, Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(A ) return submodules _UpperCamelCase : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def __UpperCAmelCase ( ) -> int: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import UpperCAmelCase_ : Dict = direct_transformers_import(A ) UpperCAmelCase_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(A , '''__init__.py''' ) , '''r''' ) as f: UpperCAmelCase_ : Dict = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , A ) ) ) UpperCAmelCase_ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(A ) > 0: UpperCAmelCase_ : Optional[Any] = '''\n'''.join(F"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
541
0
"""simple docstring""" import pytest _lowerCAmelCase = """__dummy_dataset1__""" _lowerCAmelCase = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = dataset_loading_script_name _lowerCAmelCase : Union[str, Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=_lowerCamelCase ) _lowerCAmelCase : Any = script_dir / f"""{script_name}.py""" with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase )
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :List[str] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.dummy_uncond_unet lowerCAmelCase__ :int = PNDMScheduler() lowerCAmelCase__ :Any = PNDMPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pndm.to(__UpperCAmelCase ) pndm.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ :List[str] = pndm(generator=__UpperCAmelCase , num_inference_steps=2_0 , output_type='numpy' ).images lowerCAmelCase__ :str = torch.manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = pndm(generator=__UpperCAmelCase , num_inference_steps=2_0 , output_type='numpy' , return_dict=__UpperCAmelCase )[0] lowerCAmelCase__ :List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase__ :Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = 'google/ddpm-cifar10-32' lowerCAmelCase__ :Optional[Any] = UNetaDModel.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = PNDMScheduler() lowerCAmelCase__ :Dict = PNDMPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pndm.to(__UpperCAmelCase ) pndm.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase__ :str = pndm(generator=__UpperCAmelCase , output_type='numpy' ).images lowerCAmelCase__ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase__ :int = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : Union[str, Any] = 3_84 lowercase_ : Union[str, Any] = 7 if "tiny" in model_name: lowercase_ : int = 96 lowercase_ : List[Any] = (2, 2, 6, 2) lowercase_ : Union[str, Any] = (3, 6, 12, 24) elif "small" in model_name: lowercase_ : Optional[int] = 96 lowercase_ : List[Any] = (2, 2, 18, 2) lowercase_ : List[Any] = (3, 6, 12, 24) elif "base" in model_name: lowercase_ : Any = 1_28 lowercase_ : Tuple = (2, 2, 18, 2) lowercase_ : Optional[int] = (4, 8, 16, 32) lowercase_ : Union[str, Any] = 12 lowercase_ : Optional[int] = 5_12 elif "large" in model_name: lowercase_ : Union[str, Any] = 1_92 lowercase_ : Any = (2, 2, 18, 2) lowercase_ : int = (6, 12, 24, 48) lowercase_ : Optional[Any] = 12 lowercase_ : Union[str, Any] = 7_68 # set label information lowercase_ : Union[str, Any] = 1_50 lowercase_ : Union[str, Any] = 'huggingface/label-files' lowercase_ : Any = 'ade20k-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : Any = {v: k for k, v in idalabel.items()} lowercase_ : Any = SwinConfig( embed_dim=__SCREAMING_SNAKE_CASE , depths=__SCREAMING_SNAKE_CASE , num_heads=__SCREAMING_SNAKE_CASE , window_size=__SCREAMING_SNAKE_CASE , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowercase_ : int = UperNetConfig( backbone_config=__SCREAMING_SNAKE_CASE , auxiliary_in_channels=__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE , ) return config def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : str = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ : Dict = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Union[str, Any] = in_proj_weight[:dim, :] lowercase_ : List[str] = in_proj_bias[: dim] lowercase_ : int = in_proj_weight[ dim : dim * 2, : ] lowercase_ : List[Any] = in_proj_bias[ dim : dim * 2 ] lowercase_ : Optional[Any] = in_proj_weight[ -dim :, : ] lowercase_ : Optional[Any] = in_proj_bias[-dim :] # fmt: on def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ , lowercase_ : List[Any] = x.shape lowercase_ : str = x.reshape(__SCREAMING_SNAKE_CASE , 4 , in_channel // 4 ) lowercase_ : Tuple = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ , lowercase_ : List[str] = x.shape lowercase_ : List[str] = x.reshape(__SCREAMING_SNAKE_CASE , in_channel // 4 , 4 ) lowercase_ : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[str] = x.shape[0] lowercase_ : List[str] = x.reshape(4 , in_channel // 4 ) lowercase_ : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = x.shape[0] lowercase_ : List[str] = x.reshape(in_channel // 4 , 4 ) lowercase_ : Tuple = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowercase_ : List[Any] = model_name_to_url[model_name] lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' , file_name=__SCREAMING_SNAKE_CASE )[ 'state_dict' ] for name, param in state_dict.items(): print(__SCREAMING_SNAKE_CASE , param.shape ) lowercase_ : int = get_upernet_config(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = UperNetForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ : Any = state_dict.pop(__SCREAMING_SNAKE_CASE ) if "bn" in key: lowercase_ : List[Any] = key.replace('bn' , 'batch_norm' ) lowercase_ : Optional[Any] = val # rename keys lowercase_ : Tuple = create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase_ : List[str] = reverse_correct_unfold_reduction_order(__SCREAMING_SNAKE_CASE ) if "norm" in key: lowercase_ : str = reverse_correct_unfold_norm_order(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) # verify on image lowercase_ : Optional[int] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowercase_ : Union[str, Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) lowercase_ : Any = SegformerImageProcessor() lowercase_ : str = processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values with torch.no_grad(): lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase_ : Any = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowercase_ : Tuple = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowercase_ : Tuple = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowercase_ : Tuple = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
425
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ : List[str] = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = ['MobileNetV2FeatureExtractor'] __magic_name__ : Optional[int] = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __magic_name__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
608
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase_ = Features({"""text""": Value("""string""" )} ) lowerCAmelCase_ = Features({"""labels""": ClassLabel} ) lowerCAmelCase_ = "text" lowerCAmelCase_ = "labels" def lowercase_ ( self , __UpperCamelCase ): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def lowercase_ ( self ): return { self.text_column: "text", self.label_column: "labels", }
608
1
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a__ : pass
361
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ): # ===== initialization ===== snake_case__ : str = Mock() snake_case__ : Dict = conn, Mock() snake_case__ : List[str] = iter([1, None] ) snake_case__ : Tuple = lambda snake_case_ : next(snake_case_ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=snake_case_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
297
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase_ : Any = 50_003 UpperCamelCase_ : Any = 50_002 @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = PLBartTokenizer UpperCamelCase__ = None UpperCamelCase__ = False def lowerCAmelCase_ ( self : str ): super().setUp() # We have a SentencePiece fixture for testing a__ = PLBartTokenizer(UpperCAmelCase__ ,language_codes="base" ,keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : int ): a__ = PLBartTokenizer(UpperCAmelCase__ ,language_codes="base" ,keep_accents=UpperCAmelCase__ ) a__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) a__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) a__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) a__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) a__ = tokenizer.vocab_size a__ = [tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) for x in range(end - 4 ,UpperCAmelCase__ )] self.assertListEqual(UpperCAmelCase__ ,["__java__", "__python__", "__en_XX__", "<mask>"] ) a__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" a__ = tokenizer(UpperCAmelCase__ ).input_ids self.assertEqual( tokenizer.decode(UpperCAmelCase__ ,skip_special_tokens=UpperCAmelCase__ ,clean_up_tokenization_spaces=UpperCAmelCase__ ) ,UpperCAmelCase__ ,) def lowerCAmelCase_ ( self : str ): a__ = PLBartTokenizer(UpperCAmelCase__ ,language_codes="multi" ,keep_accents=UpperCAmelCase__ ) a__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) a__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) a__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) a__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) a__ = tokenizer.vocab_size a__ = [tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) for x in range(end - 7 ,UpperCAmelCase__ )] self.assertListEqual( UpperCAmelCase__ ,["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) a__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" a__ = tokenizer(UpperCAmelCase__ ).input_ids self.assertEqual( tokenizer.decode(UpperCAmelCase__ ,skip_special_tokens=UpperCAmelCase__ ,clean_up_tokenization_spaces=UpperCAmelCase__ ) ,UpperCAmelCase__ ,) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase__ = '''uclanlp/plbart-python-en_XX''' UpperCamelCase__ = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase__ = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase__ = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] ): a__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes="base" ,src_lang="python" ,tgt_lang="en_XX" ) a__ = 1 return cls def lowerCAmelCase_ ( self : int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] ,5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] ,5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] ,5_00_03 ) def lowerCAmelCase_ ( self : List[str] ): a__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,UpperCAmelCase__ ) def lowerCAmelCase_ ( self : List[Any] ): self.assertIn(UpperCAmelCase__ ,self.tokenizer.all_special_ids ) a__ = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] a__ = self.tokenizer.decode(UpperCAmelCase__ ,skip_special_tokens=UpperCAmelCase__ ) a__ = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token ,UpperCAmelCase__ ) def lowerCAmelCase_ ( self : List[str] ): a__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] ,UpperCAmelCase__ ) a__ = 10 a__ = self.tokenizer(UpperCAmelCase__ ,max_length=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,UpperCAmelCase__ ) self.assertEqual(len(UpperCAmelCase__ ) ,UpperCAmelCase__ ) def lowerCAmelCase_ ( self : Any ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) ,[5_00_04, 5_00_01] ) def lowerCAmelCase_ ( self : Optional[int] ): a__ = tempfile.mkdtemp() a__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase__ ) a__ = PLBartTokenizer.from_pretrained(UpperCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,UpperCAmelCase__ ) @require_torch def lowerCAmelCase_ ( self : Any ): a__ = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=UpperCAmelCase__ ,return_tensors="pt" ) a__ = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,UpperCAmelCase__ ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,max_length=len(self.expected_src_tokens ) ,return_tensors="pt" ,) a__ = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertEqual((2, 26) ,batch.input_ids.shape ) self.assertEqual((2, 26) ,batch.attention_mask.shape ) a__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,UpperCAmelCase__ ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase_ ( self : Optional[Any] ): a__ = self.tokenizer(self.src_text ,padding=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,max_length=3 ,return_tensors="pt" ) a__ = self.tokenizer( text_target=self.tgt_text ,padding=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,max_length=10 ,return_tensors="pt" ) a__ = targets["input_ids"] a__ = shift_tokens_right(UpperCAmelCase__ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def lowerCAmelCase_ ( self : Dict ): a__ = self.tokenizer._build_translation_inputs( "A test" ,return_tensors="pt" ,src_lang="en_XX" ,tgt_lang="java" ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) ,{ # A, test, EOS, en_XX "input_ids": [[1_50, 2_42, 2, 5_00_03]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_00_01, } ,)
721
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCamelCase_ : str = logging.get_logger(__name__) UpperCamelCase_ : Optional[Any] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(_lowercase , tokenizer_name + "Fast" )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(_lowercase , force_download=_lowercase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split("/" ) a__ = os.path.join(_lowercase , _lowercase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(_lowercase )[-1][0] if next_char == "/": a__ = os.path.join(_lowercase , _lowercase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( _lowercase , legacy_format=_lowercase , filename_prefix=_lowercase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_lowercase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": UpperCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) UpperCamelCase_ : List[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
394
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase (SCREAMING_SNAKE_CASE ): return data[1:] + data[0] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = """""" for i in range(len(SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = int("""0b""" + data[0] + data[-1] , 2 ) UpperCamelCase : Any = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = message[:4] UpperCamelCase : int = message[4:] UpperCamelCase : int = apply_table(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : str = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = apply_sbox(SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 UpperCamelCase : str = apply_sbox(SCREAMING_SNAKE_CASE , temp[4:] ) UpperCamelCase : Union[str, Any] = """0""" * (2 - len(SCREAMING_SNAKE_CASE )) + l # noqa: E741 UpperCamelCase : Union[str, Any] = """0""" * (2 - len(SCREAMING_SNAKE_CASE )) + r UpperCamelCase : int = apply_table(l + r , SCREAMING_SNAKE_CASE ) UpperCamelCase : int = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": __magic_name__ : Union[str, Any] = input("""Enter 10 bit key: """) __magic_name__ : Union[str, Any] = input("""Enter 8 bit message: """) __magic_name__ : Dict = [6, 3, 7, 4, 8, 5, 1_0, 9] __magic_name__ : str = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __magic_name__ : Optional[Any] = [2, 4, 3, 1] __magic_name__ : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] __magic_name__ : str = [4, 1, 3, 5, 7, 2, 8, 6] __magic_name__ : str = [4, 1, 2, 3, 2, 3, 4, 1] __magic_name__ : Any = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __magic_name__ : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __magic_name__ : Dict = apply_table(key, paa_table) __magic_name__ : Union[str, Any] = temp[:5] __magic_name__ : Optional[Any] = temp[5:] __magic_name__ : str = left_shift(left) __magic_name__ : List[str] = left_shift(right) __magic_name__ : Tuple = apply_table(left + right, pa_table) __magic_name__ : Dict = left_shift(left) __magic_name__ : Union[str, Any] = left_shift(right) __magic_name__ : List[Any] = left_shift(left) __magic_name__ : str = left_shift(right) __magic_name__ : List[str] = apply_table(left + right, pa_table) # encryption __magic_name__ : List[str] = apply_table(message, IP) __magic_name__ : str = function(expansion, sa, sa, keya, temp) __magic_name__ : str = temp[4:] + temp[:4] __magic_name__ : Optional[Any] = function(expansion, sa, sa, keya, temp) __magic_name__ : Any = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption __magic_name__ : Tuple = apply_table(CT, IP) __magic_name__ : List[str] = function(expansion, sa, sa, keya, temp) __magic_name__ : Dict = temp[4:] + temp[:4] __magic_name__ : int = function(expansion, sa, sa, keya, temp) __magic_name__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
102
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
0
"""simple docstring""" def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Tuple = word.split() def justify(A__ ,A__ ,A__ ) -> str: UpperCAmelCase_ : int = max_width - width UpperCAmelCase_ : Any = len(A__ ) if len(A__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase_ : Union[str, Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase_ : Tuple = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase_ : Dict = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(A__ ): num_spaces_between_words_list[i] += 1 UpperCAmelCase_ : int = [] for i in range(A__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(A__ ) UpperCAmelCase_ : int = [] UpperCAmelCase_ : list[str] = [] UpperCAmelCase_ : Optional[Any] = 0 for word in words: if width + len(A__ ) + len(A__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(A__ ) width += len(A__ ) else: # justify the line and add it to result answer.append(justify(A__ ,A__ ,A__ ) ) # reset new line and new width UpperCAmelCase_ , UpperCAmelCase_ : Dict = [word], len(A__ ) UpperCAmelCase_ : Union[str, Any] = max_width - width - len(A__ ) answer.append(" ".join(A__ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
463
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ : Tuple = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ : Any = model(lowerCAmelCase_ )["last_hidden_state"] UpperCAmelCase_ : str = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice. UpperCAmelCase_ : Tuple = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
463
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = FlaxAutoencoderKL @property def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = (3_2, 3_2) _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = jax.random.uniform(__lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict
418
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
551
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase :Tuple = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :str = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowercase :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase :List[Any] = logging.get_logger(__name__) __lowercase :Optional[int] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "longformer" def __init__( self : List[str] , a : Union[List[int], int] = 5_12 , a : int = 2 , a : int = 1 , a : int = 0 , a : int = 2 , a : int = 3_05_22 , a : int = 7_68 , a : int = 12 , a : int = 12 , a : int = 30_72 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 5_12 , a : int = 2 , a : float = 0.02 , a : float = 1E-12 , a : bool = False , **a : Dict , ) ->Tuple: super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE__ : int = attention_window SCREAMING_SNAKE_CASE__ : Any = sep_token_id SCREAMING_SNAKE_CASE__ : str = bos_token_id SCREAMING_SNAKE_CASE__ : List[str] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = onnx_export class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , a : "PretrainedConfig" , a : str = "default" , a : "List[PatchingSpec]" = None ) ->str: super().__init__(a , a , a ) SCREAMING_SNAKE_CASE__ : Any = True @property def A_ ( self : int ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def A_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ : List[str] = {0: "batch"} return outputs @property def A_ ( self : str ) ->float: return 1E-4 @property def A_ ( self : Any ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : str , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = super().generate_dummy_inputs( preprocessor=a , batch_size=a , seq_length=a , is_pair=a , framework=a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ : Any = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE__ : str = 1 return inputs
26
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ (unittest.TestCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Union[str, Any]=224 , lowerCAmelCase_ : List[Any]=30 , lowerCAmelCase_ : Any=400 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase_ : str=[0.5, 0.5, 0.5] , ) -> Dict: UpperCAmelCase_ : int = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : List[str] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : List[str] = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "size" ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : str = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # Initialize image_processor UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: # Initialize image_processor UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : Optional[int] = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
95
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_a , ) lowerCamelCase = AutoencoderKL() lowerCamelCase = DDIMScheduler() lowerCamelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _lowerCAmelCase ( self , _a , _a=0 ): """simple docstring""" if str(_a ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(_a ) else: lowerCamelCase = torch.Generator(device=_a ).manual_seed(_a ) lowerCamelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCamelCase = self.get_dummy_inputs(_a ) lowerCamelCase = pipe(**_a ).images lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowerCamelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowerCamelCase = pipe.get_label_ids(_a ) lowerCamelCase = pipe(_a , generator=_a , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_a , _a ): lowerCamelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowerCamelCase = ["""vase""", """umbrella"""] lowerCamelCase = pipe.get_label_ids(_a ) lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe(_a , generator=_a , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_a , _a ): lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
543
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Tuple ={ 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) snake_case = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''ViTFeatureExtractor'''] snake_case = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
def _UpperCAmelCase ( ): """simple docstring""" for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _UpperCAmelCase ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_SCREAMING_SNAKE_CASE ) > 500 ) if __name__ == "__main__": print(solution())
620
def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index == number_of_items: return 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
620
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : """simple docstring""" def __init__( self , _A , _A=3 , _A=3_2 , _A=3 , _A=1_0 , _A=[1_0, 2_0, 3_0, 4_0] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ): '''simple docstring''' UpperCamelCase : List[str] = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Any = image_size UpperCamelCase : List[str] = num_channels UpperCamelCase : str = embeddings_size UpperCamelCase : Union[str, Any] = hidden_sizes UpperCamelCase : str = depths UpperCamelCase : Dict = is_training UpperCamelCase : Any = use_labels UpperCamelCase : Any = hidden_act UpperCamelCase : Tuple = num_labels UpperCamelCase : Any = scope UpperCamelCase : Union[str, Any] = len(_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Tuple = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase : Tuple = self.get_config() return config, pixel_values, labels def _a ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Tuple = TFRegNetModel(config=_A ) UpperCamelCase : Optional[Any] = model(_A , training=_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Tuple = self.num_labels UpperCamelCase : Any = TFRegNetForImageClassification(_A ) UpperCamelCase : Any = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = config_and_inputs UpperCamelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : int = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowerCAmelCase : Tuple = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase : int = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : str = False def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = TFRegNetModelTester(self ) UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _a ( self ): '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _a ( self ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _a ( self ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[str] = model_class(_A ) UpperCamelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[int] = [*signature.parameters.keys()] UpperCamelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _a ( self ): '''simple docstring''' def check_hidden_states_output(_A , _A , _A ): UpperCamelCase : int = model_class(_A ) UpperCamelCase : Dict = model(**self._prepare_for_class(_A , _A ) , training=_A ) UpperCamelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase : Dict = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCamelCase , UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Dict = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase : Tuple = layer_type UpperCamelCase : Dict = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_A , _A , _A , _A={} ): UpperCamelCase : Tuple = model(_A , return_dict=_A , **_A ) UpperCamelCase : int = model(_A , return_dict=_A , **_A ).to_tuple() def recursive_check(_A , _A ): if isinstance(_A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A , _A ): recursive_check(_A , _A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_A , _A ) ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(_A , _A ) for model_class in self.all_model_classes: UpperCamelCase : Any = model_class(_A ) UpperCamelCase : Union[str, Any] = self._prepare_for_class(_A , _A ) UpperCamelCase : str = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A ) UpperCamelCase : Union[str, Any] = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCamelCase : Any = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A ) UpperCamelCase : Any = self._prepare_for_class(_A , _A ) UpperCamelCase : str = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A , {"""output_hidden_states""": True} ) UpperCamelCase : List[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCamelCase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A , {"""output_hidden_states""": True} ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def _a ( self ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : int = TFRegNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase (): UpperCamelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : List[Any] = prepare_img() UpperCamelCase : Any = image_processor(images=_A , return_tensors="""tf""" ) # forward pass UpperCamelCase : Optional[int] = model(**_A , training=_A ) # verify the logits UpperCamelCase : List[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) UpperCamelCase : int = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1e-4 )
102
from datetime import datetime import requests def __a ( __lowerCAmelCase ) -> bytes: SCREAMING_SNAKE_CASE : int = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' SCREAMING_SNAKE_CASE : Any = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": _lowerCamelCase : List[Any] = input("""Enter Video/IGTV url: """).strip() _lowerCamelCase : int = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
352
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=6_4 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =embedding_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =MegatronBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =MegatronBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_choices _SCREAMING_SNAKE_CASE =MegatronBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowercase : int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase : List[Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Union[str, Any] = True # test_resize_embeddings = False lowercase : List[Any] = False def UpperCamelCase_ ( self , _A , _A , _A=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE =super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _SCREAMING_SNAKE_CASE =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MegatronBertModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCAmelCase ) def _lowerCAmelCase(a : Optional[int] ) -> str: return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase_ : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: _SCREAMING_SNAKE_CASE =os.path.join(os.environ['''MYDIR'''] , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE =MegatronBertModel.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.half() _SCREAMING_SNAKE_CASE =_long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(_lowerCAmelCase )[0] _SCREAMING_SNAKE_CASE =torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE =[-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): _SCREAMING_SNAKE_CASE =output[0, ii, jj] _SCREAMING_SNAKE_CASE =expected[3 * ii + jj] _SCREAMING_SNAKE_CASE ='''ii={} jj={} a={} b={}'''.format(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(math.isclose(_lowerCAmelCase , _lowerCAmelCase , rel_tol=_lowerCAmelCase , abs_tol=_lowerCAmelCase ) , msg=_lowerCAmelCase )
709
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self , **_A ): '''simple docstring''' super().__init__(**_A ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _A , **_A ): '''simple docstring''' return super().__call__(_A , **_A ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if "candidate_labels" in kwargs: _SCREAMING_SNAKE_CASE =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _SCREAMING_SNAKE_CASE =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase_ ( self , _A , _A=None , _A="This is a photo of {}." ): '''simple docstring''' _SCREAMING_SNAKE_CASE =load_image(_A ) _SCREAMING_SNAKE_CASE =self.image_processor(images=[image] , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE =candidate_labels _SCREAMING_SNAKE_CASE =[hypothesis_template.format(_A ) for x in candidate_labels] _SCREAMING_SNAKE_CASE =self.tokenizer(_A , return_tensors=self.framework , padding=_A ) _SCREAMING_SNAKE_CASE =[text_inputs] return inputs def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =model_inputs.pop('''candidate_labels''' ) _SCREAMING_SNAKE_CASE =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _A ): _SCREAMING_SNAKE_CASE =text_inputs[0] else: # Batching case. _SCREAMING_SNAKE_CASE =text_inputs[0][0] _SCREAMING_SNAKE_CASE =self.model(**_A , **_A ) _SCREAMING_SNAKE_CASE ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =model_outputs.pop('''candidate_labels''' ) _SCREAMING_SNAKE_CASE =model_outputs['''logits'''][0] if self.framework == "pt": _SCREAMING_SNAKE_CASE =logits.softmax(dim=-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE =probs.tolist() if not isinstance(_A , _A ): _SCREAMING_SNAKE_CASE =[scores] elif self.framework == "tf": _SCREAMING_SNAKE_CASE =stable_softmax(_A , axis=-1 ) _SCREAMING_SNAKE_CASE =probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) _SCREAMING_SNAKE_CASE =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
165
0
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : int , *, lowercase__ : Any = 4 , lowercase__ : Dict = 768 , lowercase__ : List[str] , lowercase__ : Union[str, Any] , ) ->Any: '''simple docstring''' super().__init__() _UpperCamelCase : Any = nn.Parameter(torch.zeros(_UpperCAmelCase ) ) # parameters for additional clip time embeddings _UpperCamelCase : List[Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) _UpperCamelCase : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) # parameters for encoder hidden states _UpperCamelCase : str = clip_extra_context_tokens _UpperCamelCase : Union[str, Any] = nn.Linear( _UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCamelCase : int = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) _UpperCamelCase : int = nn.LayerNorm(_UpperCAmelCase ) def snake_case__ ( self : Optional[int] , *, lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] ) ->Dict: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCamelCase : Tuple = image_embeddings.shape[0] _UpperCamelCase : Optional[int] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCamelCase : int = classifier_free_guidance_embeddings.expand( _UpperCAmelCase , -1 ) _UpperCamelCase : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCamelCase : Any = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCamelCase : Dict = self.embedding_proj(_UpperCAmelCase ) _UpperCamelCase : Optional[Any] = self.clip_image_embeddings_project_to_time_embeddings(_UpperCAmelCase ) _UpperCamelCase : Optional[Any] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCamelCase : Dict = self.clip_extra_context_tokens_proj(_UpperCAmelCase ) _UpperCamelCase : Optional[int] = clip_extra_context_tokens.reshape(_UpperCAmelCase , -1 , self.clip_extra_context_tokens ) _UpperCamelCase : str = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCamelCase : Any = self.encoder_hidden_states_proj(_UpperCAmelCase ) _UpperCamelCase : Tuple = self.text_encoder_hidden_states_norm(_UpperCAmelCase ) _UpperCamelCase : str = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
435
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
719
def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __lowercase = len(_UpperCamelCase ) if (len(_UpperCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(_UpperCamelCase ) , '''Postfix'''.center(_UpperCamelCase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCamelCase ) == 0: stack.append(_UpperCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_UpperCamelCase ) # push x to stack print( x.center(8 ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , sep=''' | ''' , ) # Output in tabular format while len(_UpperCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , sep=''' | ''' , ) # Output in tabular format return "".join(_UpperCamelCase ) # return Postfix as str def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = list(infix[::-1] ) # reverse the infix equation for i in range(len(_UpperCamelCase ) ): if infix[i] == "(": __lowercase = ''')''' # change "(" to ")" elif infix[i] == ")": __lowercase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_UpperCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a : Union[str, Any] = input('''\nEnter an Infix Equation = ''') # Input an Infix equation a : Optional[Any] = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
527
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCamelCase : int =16 _UpperCamelCase : List[Any] =32 def a__ (__lowercase :int ) -> List[Any]: return int(x / 2**20 ) class UpperCAmelCase__ : def __enter__( self ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _A : List[Any] = torch.cuda.memory_allocated() return self def __exit__( self ,*A__ ): gc.collect() torch.cuda.empty_cache() _A : Any = torch.cuda.memory_allocated() _A : Dict = torch.cuda.max_memory_allocated() _A : Optional[int] = bamb(self.end - self.begin ) _A : Optional[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a__ (__lowercase :Tuple , __lowercase :List[Any] = 16 , __lowercase :Union[str, Any] = "bert-base-cased" , __lowercase :Any = 320 , __lowercase :List[Any] = 160 , ) -> Tuple: _A : List[str] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _A : Any = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} ) def tokenize_function(__lowercase :List[str] ): # max_length=None => use the model max length (it's actually the default) _A : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A : Optional[int] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. _A : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) _A : Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a__ (__lowercase :int , __lowercase :Any ) -> Optional[int]: # Initialize accelerator _A : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A : int = config['''lr'''] _A : Optional[Any] = int(config['''num_epochs'''] ) _A : List[Any] = int(config['''seed'''] ) _A : List[Any] = int(config['''batch_size'''] ) _A : List[Any] = args.model_name_or_path set_seed(_lowerCAmelCase ) _A , _A : Optional[Any] = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A : Dict = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer _A : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _A : Dict = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: _A : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: _A : Optional[Any] = 1 _A : str = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _A : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: _A : Optional[int] = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A : str = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over _A : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly _A : Dict = 0 # Now we train the model _A : Optional[int] = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): _A : int = model(**_lowerCAmelCase ) _A : List[Any] = outputs.loss _A : Tuple = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _A : Optional[int] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a__ () -> int: _A : Tuple = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_lowerCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowerCAmelCase , ) parser.add_argument( '''--output_dir''' , type=_lowerCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=_lowerCAmelCase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=_lowerCAmelCase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowerCAmelCase , default=1 , help='''Number of train epochs.''' , ) _A : str = parser.parse_args() _A : str = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
206
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _lowerCAmelCase ( _lowerCAmelCase="ro" , _lowerCAmelCase="en" , _lowerCAmelCase="wmt16" , _lowerCAmelCase=None )-> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) __UpperCAmelCase = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) __UpperCAmelCase = datasets.load_dataset(_lowerCAmelCase , _lowerCAmelCase ) if save_dir is None: __UpperCAmelCase = F'{dataset}-{pair}' __UpperCAmelCase = Path(_lowerCAmelCase ) save_dir.mkdir(exist_ok=_lowerCAmelCase ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets __UpperCAmelCase = 'val' if split == 'validation' else split __UpperCAmelCase = save_dir.joinpath(F'{fn}.source' ) __UpperCAmelCase = save_dir.joinpath(F'{fn}.target' ) __UpperCAmelCase = src_path.open('w+' ) __UpperCAmelCase = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __UpperCAmelCase = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
126
0
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" return 10 - x * x def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if equation(_UpperCamelCase ) * equation(_UpperCamelCase ) >= 0: raise ValueError('''Wrong space!''' ) _lowercase: Any = a while (b - a) >= 0.01: # Find middle point _lowercase: Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(_UpperCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_UpperCamelCase ) * equation(_UpperCamelCase ) < 0: _lowercase: Optional[Any] = c else: _lowercase: Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
272
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] = logging.get_logger() def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True ): """simple docstring""" print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _lowercase: int = timm.create_model('''levit_128s''' , pretrained=_UpperCamelCase ) else: _lowercase: int = timm.create_model('''levit_128''' , pretrained=_UpperCamelCase ) if hidden_sizes == 192: _lowercase: str = timm.create_model('''levit_192''' , pretrained=_UpperCamelCase ) if hidden_sizes == 256: _lowercase: int = timm.create_model('''levit_256''' , pretrained=_UpperCamelCase ) if hidden_sizes == 384: _lowercase: Dict = timm.create_model('''levit_384''' , pretrained=_UpperCamelCase ) from_model.eval() _lowercase: Any = LevitForImageClassificationWithTeacher(_UpperCamelCase ).eval() _lowercase: Union[str, Any] = OrderedDict() _lowercase: Optional[Any] = from_model.state_dict() _lowercase: List[Any] = list(from_model.state_dict().keys() ) _lowercase: int = list(our_model.state_dict().keys() ) print(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for i in range(len(_UpperCamelCase ) ): _lowercase: Any = weights[og_keys[i]] our_model.load_state_dict(_UpperCamelCase ) _lowercase: int = torch.randn((2, 3, 224, 224) ) _lowercase: List[str] = from_model(_UpperCamelCase ) _lowercase: Optional[int] = our_model(_UpperCamelCase ).logits assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), "The model logits don't match the original one." _lowercase: Union[str, Any] = name print(_UpperCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _lowercase: Dict = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True ): """simple docstring""" _lowercase: int = '''imagenet-1k-id2label.json''' _lowercase: int = 1_000 _lowercase: Tuple = (1, num_labels) _lowercase: Dict = '''huggingface/label-files''' _lowercase: Optional[int] = num_labels _lowercase: List[str] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowercase: List[str] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _lowercase: int = idalabel _lowercase: Tuple = {v: k for k, v in idalabel.items()} _lowercase: Tuple = partial(_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase ) _lowercase: Union[str, Any] = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } _lowercase: int = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _UpperCamelCase , names_to_config[model_name] , _UpperCamelCase , _UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, expected_shape if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) A__ : Optional[Any] = parser.parse_args() A__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
272
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowercase ( __snake_case ): UpperCamelCase = '''M-CLIP''' def __init__( self : Optional[Any] , __lowerCamelCase : Optional[Any]=1_0_2_4 , __lowerCamelCase : List[str]=7_6_8 , **__lowerCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = transformerDimSize UpperCAmelCase = imageDimSize super().__init__(**__lowerCamelCase ) class __lowercase ( __snake_case ): UpperCamelCase = MCLIPConfig def __init__( self : List[str] , __lowerCamelCase : Dict , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ) -> List[str]: """simple docstring""" super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase = XLMRobertaModel(__lowerCamelCase ) UpperCAmelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowercase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int ) -> str: """simple docstring""" UpperCAmelCase = self.transformer(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase )[0] UpperCAmelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__lowerCamelCase ), embs
377
def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: UpperCAmelCase = 0 UpperCAmelCase = len(lowerCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: if len(lowerCAmelCase_ ) <= 1: return arr, 0 UpperCAmelCase = len(lowerCAmelCase_ ) // 2 UpperCAmelCase = arr[0:mid] UpperCAmelCase = arr[mid:] UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = _count_cross_inversions(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: UpperCAmelCase = [] UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = 0 while i < len(lowerCAmelCase_ ) and j < len(lowerCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _UpperCamelCase ( ) ->int: UpperCAmelCase = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , lowerCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase_ ) # an empty list should also have zero inversions UpperCAmelCase = [] UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase_ ) if __name__ == "__main__": main()
377
1
def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' _A= 1 for i in range(1 , num + 1 ): fact *= i return fact def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' _A= 0 while number > 0: _A= number % 10 sum_of_digits += last_digit _A= number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCamelCase ( lowerCAmelCase_ = 1_00 ) -> int: '''simple docstring''' _A= factorial(lowerCAmelCase_ ) _A= split_and_add(lowerCAmelCase_ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
476
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[Any] ="""bridgetower_vision_model""" def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=288 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _A= hidden_size _A= num_hidden_layers _A= num_channels _A= patch_size _A= image_size _A= initializer_factor _A= layer_norm_eps _A= stop_gradient _A= share_layernorm _A= remove_last_layer @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): _A, _A= cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": _A= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[Any] ="""bridgetower_text_model""" def __init__( self , lowerCAmelCase__=50265 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=514 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _A= vocab_size _A= hidden_size _A= num_hidden_layers _A= num_attention_heads _A= hidden_act _A= initializer_factor _A= intermediate_size _A= hidden_dropout_prob _A= attention_probs_dropout_prob _A= max_position_embeddings _A= type_vocab_size _A= layer_norm_eps _A= position_embedding_type _A= use_cache _A= pad_token_id _A= bos_token_id _A= eos_token_id @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): _A, _A= cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": _A= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : Dict ="""bridgetower""" def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=768 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__="add" , lowerCAmelCase__=12 , lowerCAmelCase__=6 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): # TODO: remove this once the Hub files are updated. _A= kwargs.pop('text_config_dict' , lowerCAmelCase__ ) _A= kwargs.pop('vision_config_dict' , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) _A= share_cross_modal_transformer_layers _A= hidden_act _A= hidden_size _A= initializer_factor _A= layer_norm_eps _A= share_link_tower_layers _A= link_tower_type _A= num_attention_heads _A= num_hidden_layers _A= tie_word_embeddings _A= init_layernorm_from_vision_encoder if text_config is None: _A= {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: _A= {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) _A= BridgeTowerTextConfig(**lowerCAmelCase__ ) _A= BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def a__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def a__ ( self ): _A= copy.deepcopy(self.__dict__ ) _A= self.text_config.to_dict() _A= self.vision_config.to_dict() _A= self.__class__.model_type return output
476
1
from __future__ import annotations def _a ( lowerCAmelCase , lowerCAmelCase )-> Dict: if nth_term == "": return [""] SCREAMING_SNAKE_CASE_ = int(lowercase_ ) SCREAMING_SNAKE_CASE_ = int(lowercase_ ) SCREAMING_SNAKE_CASE_ = [] for temp in range(int(lowercase_ ) ): series.append(F'''1 / {pow(temp + 1 , int(lowercase_ ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE: Dict = int(input('''Enter the last number (nth term) of the P-Series''')) SCREAMING_SNAKE_CASE: Optional[Any] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
360
'''simple docstring''' def __UpperCamelCase ( lowercase_ : list[int] , lowercase_ : list[int] , lowercase_ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowercase_ ) ) def __UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): """simple docstring""" if index == len(lowercase_ ): return True # Recursive Step for i in range(lowercase_ ): if valid_coloring(graph[index] , lowercase_ , lowercase_ ): # Color current vertex a_ = i # Validate coloring if util_color(lowercase_ , lowercase_ , lowercase_ , index + 1 ): return True # Backtrack a_ = -1 return False def __UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int ): """simple docstring""" a_ = [-1] * len(lowercase_ ) if util_color(lowercase_ , lowercase_ , lowercase_ , 0 ): return colored_vertices return []
536
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase_ : Union[str, Any] = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class lowercase ( unittest.TestCase , __lowerCamelCase ): def __UpperCAmelCase ( self : Union[str, Any]) -> int: lowercase_ = load_tool("text-question-answering") self.tool.setup() lowercase_ = load_tool("text-question-answering" , remote=__lowerCAmelCase) def __UpperCAmelCase ( self : Dict) -> int: lowercase_ = self.tool(__lowerCAmelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop") def __UpperCAmelCase ( self : int) -> Dict: lowercase_ = self.remote_tool(__lowerCAmelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop") def __UpperCAmelCase ( self : Optional[int]) -> int: lowercase_ = self.tool(text=__lowerCAmelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop") def __UpperCAmelCase ( self : List[Any]) -> str: lowercase_ = self.remote_tool(text=__lowerCAmelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop")
461
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase_ : Any = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class lowercase : lowerCamelCase_ =True lowerCamelCase_ =None # Automatically constructed lowerCamelCase_ ="PIL.Image.Image" lowerCamelCase_ =pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCamelCase_ =field(default='Image' , init=__lowerCamelCase , repr=__lowerCamelCase ) def __call__( self : List[Any]) -> List[Any]: return self.pa_type def __UpperCAmelCase ( self : Any , __lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if isinstance(__lowerCAmelCase , __lowerCAmelCase): lowercase_ = np.array(__lowerCAmelCase) if isinstance(__lowerCAmelCase , __lowerCAmelCase): return {"path": value, "bytes": None} elif isinstance(__lowerCAmelCase , __lowerCAmelCase): return {"path": None, "bytes": value} elif isinstance(__lowerCAmelCase , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCAmelCase) elif isinstance(__lowerCAmelCase , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCAmelCase) elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def __UpperCAmelCase ( self : Union[str, Any] , __lowerCAmelCase : dict , __lowerCAmelCase : Dict=None) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.") if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'.") if token_per_repo_id is None: lowercase_ = {} lowercase_ , lowercase_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.') else: if is_local_path(__lowerCAmelCase): lowercase_ = PIL.Image.open(__lowerCAmelCase) else: lowercase_ = path.split("::")[-1] try: lowercase_ = string_to_dict(__lowerCAmelCase , config.HUB_DATASETS_URL)["repo_id"] lowercase_ = token_per_repo_id.get(__lowerCAmelCase) except ValueError: lowercase_ = None with xopen(__lowerCAmelCase , "rb" , use_auth_token=__lowerCAmelCase) as f: lowercase_ = BytesIO(f.read()) lowercase_ = PIL.Image.open(bytes_) else: lowercase_ = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __UpperCAmelCase ( self : Tuple) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("binary"), "path": Value("string"), } ) def __UpperCAmelCase ( self : str , __lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: if pa.types.is_string(storage.type): lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.binary()) lowercase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: lowercase_ = storage.field("bytes") else: lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.binary()) if storage.type.get_field_index("path") >= 0: lowercase_ = storage.field("path") else: lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_list(storage.type): lowercase_ = pa.array( [encode_np_array(np.array(__lowerCAmelCase))["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(__lowerCAmelCase , self.pa_type) def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase : int): with xopen(__lowerCAmelCase , "rb") as f: lowercase_ = f.read() return bytes_ lowercase_ = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ = pa.array( [os.path.basename(__lowerCAmelCase) if path is not None else None for path in storage.field("path").to_pylist()] , type=pa.string() , ) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(__lowerCAmelCase , self.pa_type) def __a ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __a ( __lowerCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' lowercase_ = BytesIO() if image.format in list_image_compression_formats(): lowercase_ = image.format else: lowercase_ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__lowerCamelCase , format=__lowerCamelCase ) return buffer.getvalue() def __a ( __lowerCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(__lowerCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def __a ( __lowerCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) lowercase_ = array.dtype lowercase_ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowercase_ = dtype.kind lowercase_ = dtype.itemsize lowercase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ = dtype_byteorder + dtype_kind + str(__lowerCamelCase ) lowercase_ = np.dtype(__lowerCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) lowercase_ = PIL.Image.fromarray(array.astype(__lowerCamelCase ) ) return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def __a ( __lowerCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: lowercase_ , lowercase_ = first_non_null_value(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__lowerCamelCase , np.ndarray ): lowercase_ = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] elif isinstance(__lowerCamelCase , PIL.Image.Image ): lowercase_ = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] else: return objs else: return objs
461
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig snake_case = logging.get_logger(__name__) # General docstring snake_case = "RegNetConfig" # Base docstring snake_case = "facebook/regnet-y-040" snake_case = [1, 1_0_8_8, 7, 7] # Image classification docstring snake_case = "facebook/regnet-y-040" snake_case = "tabby, tabby cat" snake_case = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int ,__A : Optional[int] ,__A : Optional[Any] = 3 ,__A : List[Any] = 1 ,__A : List[Any] = 1 ,__A : Dict = "relu" ,**__A : Optional[int] ,) -> Union[str, Any]: super().__init__(**a__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowercase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowercase = tf.keras.layers.ConvaD( filters=a__ ,kernel_size=a__ ,strides=a__ ,padding='VALID' ,groups=a__ ,use_bias=a__ ,name='convolution' ,) _lowercase = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='normalization' ) _lowercase = ACTaFN[activation] if activation is not None else tf.identity def __UpperCAmelCase ( self : Union[str, Any] ,__A : List[Any] ) -> Union[str, Any]: _lowercase = self.convolution(self.padding(a__ ) ) _lowercase = self.normalization(a__ ) _lowercase = self.activation(a__ ) return hidden_state class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str ,__A : Optional[int] ,**__A : Tuple ) -> Dict: super().__init__(**a__ ) _lowercase = config.num_channels _lowercase = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='embedder' ,) def __UpperCAmelCase ( self : str ,__A : int ) -> List[Any]: _lowercase = shape_list(a__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowercase = tf.transpose(a__ ,perm=(0, 2, 3, 1) ) _lowercase = self.embedder(a__ ) return hidden_state class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : Optional[int] ,__A : int = 2 ,**__A : List[Any] ) -> Optional[Any]: super().__init__(**a__ ) _lowercase = tf.keras.layers.ConvaD( filters=a__ ,kernel_size=1 ,strides=a__ ,use_bias=a__ ,name='convolution' ) _lowercase = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='normalization' ) def __UpperCAmelCase ( self : str ,__A : Optional[Any] ,__A : Dict = False ) -> tf.Tensor: return self.normalization(self.convolution(a__ ) ,training=a__ ) class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : Optional[Any] ,__A : List[Any] ,**__A : Tuple ) -> Tuple: super().__init__(**a__ ) _lowercase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a__ ,name='pooler' ) _lowercase = [ tf.keras.layers.ConvaD(filters=a__ ,kernel_size=1 ,activation='relu' ,name='attention.0' ), tf.keras.layers.ConvaD(filters=a__ ,kernel_size=1 ,activation='sigmoid' ,name='attention.2' ), ] def __UpperCAmelCase ( self : Tuple ,__A : str ) -> Optional[Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _lowercase = self.pooler(a__ ) for layer_module in self.attention: _lowercase = layer_module(a__ ) _lowercase = hidden_state * pooled return hidden_state class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple ,__A : Optional[int] ,__A : int ,__A : Union[str, Any] ,__A : Union[str, Any] = 1 ,**__A : Dict ) -> List[Any]: super().__init__(**a__ ) _lowercase = in_channels != out_channels or stride != 1 _lowercase = max(1 ,out_channels // config.groups_width ) _lowercase = ( TFRegNetShortCut(a__ ,stride=a__ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowercase = [ TFRegNetConvLayer(a__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( a__ ,stride=a__ ,groups=a__ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetConvLayer(a__ ,kernel_size=1 ,activation=a__ ,name='layer.2' ), ] _lowercase = ACTaFN[config.hidden_act] def __UpperCAmelCase ( self : int ,__A : Tuple ) -> Dict: _lowercase = hidden_state for layer_module in self.layers: _lowercase = layer_module(a__ ) _lowercase = self.shortcut(a__ ) hidden_state += residual _lowercase = self.activation(a__ ) return hidden_state class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int ,__A : Optional[Any] ,__A : Union[str, Any] ,__A : List[Any] ,__A : Dict = 1 ,**__A : Dict ) -> Tuple: super().__init__(**a__ ) _lowercase = in_channels != out_channels or stride != 1 _lowercase = max(1 ,out_channels // config.groups_width ) _lowercase = ( TFRegNetShortCut(a__ ,stride=a__ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) _lowercase = [ TFRegNetConvLayer(a__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( a__ ,stride=a__ ,groups=a__ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetSELayer(a__ ,reduced_channels=int(round(in_channels / 4 ) ) ,name='layer.2' ), TFRegNetConvLayer(a__ ,kernel_size=1 ,activation=a__ ,name='layer.3' ), ] _lowercase = ACTaFN[config.hidden_act] def __UpperCAmelCase ( self : List[str] ,__A : str ) -> List[str]: _lowercase = hidden_state for layer_module in self.layers: _lowercase = layer_module(a__ ) _lowercase = self.shortcut(a__ ) hidden_state += residual _lowercase = self.activation(a__ ) return hidden_state class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : Optional[int] ,__A : Any ,__A : Dict ,__A : Optional[Any] = 2 ,__A : Dict = 2 ,**__A : int ) -> Union[str, Any]: super().__init__(**a__ ) _lowercase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _lowercase = [ # downsampling is done in the first layer with stride of 2 layer(a__ ,a__ ,a__ ,stride=a__ ,name='layers.0' ), *[layer(a__ ,a__ ,a__ ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __UpperCAmelCase ( self : List[str] ,__A : Optional[Any] ) -> Dict: for layer_module in self.layers: _lowercase = layer_module(a__ ) return hidden_state class A_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple ,__A : int ,**__A : Optional[Any] ) -> Dict: super().__init__(**a__ ) _lowercase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='stages.0' ,) ) _lowercase = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a__ ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(a__ ,a__ ,a__ ,depth=a__ ,name=F"""stages.{i+1}""" ) ) def __UpperCAmelCase ( self : Dict ,__A : Tuple ,__A : int = False ,__A : Union[str, Any] = True ) -> TFBaseModelOutputWithNoAttention: _lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowercase = hidden_states + (hidden_state,) _lowercase = stage_module(a__ ) if output_hidden_states: _lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a__ ,hidden_states=a__ ) @keras_serializable class A_ ( tf.keras.layers.Layer ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = RegNetConfig def __init__( self : int ,__A : int ,**__A : str ) -> str: super().__init__(**a__ ) _lowercase = config _lowercase = TFRegNetEmbeddings(a__ ,name='embedder' ) _lowercase = TFRegNetEncoder(a__ ,name='encoder' ) _lowercase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a__ ,name='pooler' ) @unpack_inputs def __UpperCAmelCase ( self : str ,__A : Optional[int] ,__A : Tuple = None ,__A : str = None ,__A : Union[str, Any] = False ,) -> TFBaseModelOutputWithPoolingAndNoAttention: _lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase = return_dict if return_dict is not None else self.config.use_return_dict _lowercase = self.embedder(a__ ,training=a__ ) _lowercase = self.encoder( a__ ,output_hidden_states=a__ ,return_dict=a__ ,training=a__ ) _lowercase = encoder_outputs[0] _lowercase = self.pooler(a__ ) # Change to NCHW output format have uniformity in the modules _lowercase = tf.transpose(a__ ,perm=(0, 3, 1, 2) ) _lowercase = tf.transpose(a__ ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowercase = tuple([tf.transpose(a__ ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a__ ,pooler_output=a__ ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class A_ ( __snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = RegNetConfig SCREAMING_SNAKE_CASE_ : Any = '''regnet''' SCREAMING_SNAKE_CASE_ : List[Any] = '''pixel_values''' @property def __UpperCAmelCase ( self : List[Any] ) -> int: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} snake_case = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" snake_case = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __snake_case , ) class A_ ( __snake_case ): """simple docstring""" def __init__( self : List[str] ,__A : Union[str, Any] ,*__A : List[Any] ,**__A : List[str] ) -> Optional[Any]: super().__init__(a__ ,*a__ ,**a__ ) _lowercase = TFRegNetMainLayer(a__ ,name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=a__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __UpperCAmelCase ( self : Optional[int] ,__A : Tuple ,__A : Union[str, Any] = None ,__A : Dict = None ,__A : int=False ,) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: _lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase = return_dict if return_dict is not None else self.config.use_return_dict _lowercase = self.regnet( pixel_values=a__ ,output_hidden_states=a__ ,return_dict=a__ ,training=a__ ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , __snake_case , ) class A_ ( __snake_case , __snake_case ): """simple docstring""" def __init__( self : Dict ,__A : Dict ,*__A : List[Any] ,**__A : List[str] ) -> str: super().__init__(a__ ,*a__ ,**a__ ) _lowercase = config.num_labels _lowercase = TFRegNetMainLayer(a__ ,name='regnet' ) # classification head _lowercase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=a__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __UpperCAmelCase ( self : List[Any] ,__A : Tuple = None ,__A : str = None ,__A : Optional[int] = None ,__A : str = None ,__A : List[str]=False ,) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: _lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase = return_dict if return_dict is not None else self.config.use_return_dict _lowercase = self.regnet( a__ ,output_hidden_states=a__ ,return_dict=a__ ,training=a__ ) _lowercase = outputs.pooler_output if return_dict else outputs[1] _lowercase = self.classifier[0](a__ ) _lowercase = self.classifier[1](a__ ) _lowercase = None if labels is None else self.hf_compute_loss(labels=a__ ,logits=a__ ) if not return_dict: _lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a__ ,logits=a__ ,hidden_states=outputs.hidden_states )
67
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Optional[int] = False @skip_mps class _UpperCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase = StableDiffusionAttendAndExcitePipeline lowerCAmelCase = False lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _UpperCAmelCase ( cls ) -> List[Any]: super().setUpClass() torch.use_deterministic_algorithms(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(a__ ) def _UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A = CLIPTextModel(a__ ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self , a__ , a__=0 ) -> Optional[Any]: if str(a__ ).startswith("""mps""" ): A = torch.manual_seed(a__ ) else: A = torch.Generator(device=a__ ).manual_seed(a__ ) A = A = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def _UpperCAmelCase ( self ) -> Union[str, Any]: A = """cpu""" A = self.get_dummy_components() A = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs(a__ ) A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) A = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def _UpperCAmelCase ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ) -> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> int: super().test_save_load_local(expected_max_difference=5e-4 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Dict: super().tearDownClass() torch.use_deterministic_algorithms(a__ ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: A = torch.manual_seed(51 ) A = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=a__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) A = """a painting of an elephant with glasses""" A = [5, 7] A = pipe( prompt=a__ , token_indices=a__ , guidance_scale=7.5 , generator=a__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
641
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def _lowercase ( __snake_case ) -> list[str]: if not isinstance(__snake_case ,__snake_case ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__snake_case ) )] def _lowercase ( __snake_case ) -> BWTTransformDict: if not isinstance(__snake_case ,__snake_case ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) __lowerCAmelCase : List[str] = all_rotations(__snake_case ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __lowerCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__snake_case ), } return response def _lowercase ( __snake_case ,__snake_case ) -> str: if not isinstance(__snake_case ,__snake_case ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: __lowerCAmelCase : List[str] = int(__snake_case ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__snake_case ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) __lowerCAmelCase : Any = [""] * len(__snake_case ) for _ in range(len(__snake_case ) ): for i in range(len(__snake_case ) ): __lowerCAmelCase : List[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __snake_case : str = 'Provide a string that I will generate its BWT transform: ' __snake_case : List[Any] = input(entry_msg).strip() __snake_case : Optional[Any] = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) __snake_case : List[Any] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
615
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> list: __lowerCAmelCase : List[str] = len(__snake_case ) __lowerCAmelCase : Dict = [] for i in range(len(__snake_case ) - pat_len + 1 ): __lowerCAmelCase : List[Any] = True for j in range(__snake_case ): if s[i + j] != pattern[j]: __lowerCAmelCase : Union[str, Any] = False break if match_found: position.append(__snake_case ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
615
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = KandinskyVaaControlnetImgaImgPipeline _lowercase : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : str = False @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowercase ( self ): """simple docstring""" return 100 @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**_lowercase ) return model @property def _lowercase ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**_lowercase ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) # create hint _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) _lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = init_image.resize((512, 512) ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _lowerCAmelCase = torch.from_numpy(np.array(_lowercase ) ).float() / 255.0 _lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowerCAmelCase = """A robot, 4k photo""" _lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( _lowercase , image=_lowercase , strength=0.85 , generator=_lowercase , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , hint=_lowercase , generator=_lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
5
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Any =get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : int = GPTSwaTokenizer lowercase : Union[str, Any] = False lowercase : Dict = True lowercase : int = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing A : Dict =GPTSwaTokenizer(SCREAMING_SNAKE_CASE__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: A : Union[str, Any] ='This is a test' A : str ='This is a test' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: A : int ='<s>' A : Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: A : Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 20_00 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: A : Union[str, Any] =GPTSwaTokenizer(SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) A : Dict =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on A : int =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) A : List[str] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: A : Dict =GPTSwaTokenizer(SCREAMING_SNAKE_CASE__ ) A : Tuple =['This is a test', 'I was born in 92000, and this is falsé.'] A : int =[ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # Test that decode_fast returns the input text for text, token_ids in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: A : Optional[int] =[ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off A : Any ={'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=SCREAMING_SNAKE_CASE__ , )
305
0
def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def lowerCAmelCase_ ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
710
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: Tuple = """funnel""" __A: Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , _lowerCamelCase : Optional[Any]=3_05_22 , _lowerCamelCase : Any=[4, 4, 4] , _lowerCamelCase : Dict=None , _lowerCamelCase : List[str]=2 , _lowerCamelCase : int=7_68 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : Any=64 , _lowerCamelCase : Union[str, Any]=30_72 , _lowerCamelCase : Optional[Any]="gelu_new" , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Any=None , _lowerCamelCase : Any=1E-9 , _lowerCamelCase : str="mean" , _lowerCamelCase : str="relative_shift" , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Dict=True , _lowerCamelCase : int=True , **_lowerCamelCase : Union[str, Any] , ): _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[Any] = block_sizes _UpperCAmelCase : str = [1] * len(_lowerCamelCase ) if block_repeats is None else block_repeats assert len(_lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _UpperCAmelCase : List[str] = num_decoder_layers _UpperCAmelCase : str = d_model _UpperCAmelCase : int = n_head _UpperCAmelCase : str = d_head _UpperCAmelCase : List[Any] = d_inner _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Any = hidden_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = initializer_std _UpperCAmelCase : List[str] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _UpperCAmelCase : Union[str, Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _UpperCAmelCase : str = attention_type _UpperCAmelCase : Union[str, Any] = separate_cls _UpperCAmelCase : List[str] = truncate_seq _UpperCAmelCase : Optional[int] = pool_q_only super().__init__(**_lowerCamelCase ) @property def a__ ( self : Dict ): return sum(self.block_sizes ) @num_hidden_layers.setter def a__ ( self : List[Any] , _lowerCamelCase : Any ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def a__ ( self : Optional[int] ): return len(self.block_sizes ) @num_blocks.setter def a__ ( self : List[str] , _lowerCamelCase : Any ): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
328
0
"""simple docstring""" import argparse import os import re lowerCamelCase__ : Union[str, Any] = "src/transformers" # Pattern that looks at the indentation in a line. lowerCamelCase__ : Tuple = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase__ : Union[str, Any] = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase__ : Optional[Any] = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase__ : str = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase__ : List[str] = re.compile(r"\[([^\]]+)\]") def __A ( a_ : Tuple )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = _re_indent.search(a_ ) return "" if search is None else search.groups()[0] def __A ( a_ : Union[str, Any] , a_ : Dict="" , a_ : Dict=None , a_ : List[Any]=None )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Any = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(a_ ): index += 1 SCREAMING_SNAKE_CASE : int = ['''\n'''.join(lines[:index] )] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). SCREAMING_SNAKE_CASE : List[str] = [lines[index]] index += 1 while index < len(a_ ) and (end_prompt is None or not lines[index].startswith(a_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(a_ ) ) if index < len(a_ ) - 1: SCREAMING_SNAKE_CASE : List[Any] = [lines[index + 1]] index += 1 else: SCREAMING_SNAKE_CASE : Optional[Any] = [] else: blocks.append('''\n'''.join(a_ ) ) SCREAMING_SNAKE_CASE : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a_ ) > 0: blocks.append('''\n'''.join(a_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def __A ( a_ : Any )-> Optional[Any]: '''simple docstring''' def _inner(a_ : List[str] ): return key(a_ ).lower().replace('''_''' , '''''' ) return _inner def __A ( a_ : Union[str, Any] , a_ : Optional[int]=None )-> Optional[int]: '''simple docstring''' def noop(a_ : Any ): return x if key is None: SCREAMING_SNAKE_CASE : Any = noop # Constants are all uppercase, they go first. SCREAMING_SNAKE_CASE : Tuple = [obj for obj in objects if key(a_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. SCREAMING_SNAKE_CASE : Union[str, Any] = [obj for obj in objects if key(a_ )[0].isupper() and not key(a_ ).isupper()] # Functions begin with a lowercase, they go last. SCREAMING_SNAKE_CASE : Optional[Any] = [obj for obj in objects if not key(a_ )[0].isupper()] SCREAMING_SNAKE_CASE : Union[str, Any] = ignore_underscore(a_ ) return sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) def __A ( a_ : Any )-> Optional[Any]: '''simple docstring''' def _replace(a_ : Tuple ): SCREAMING_SNAKE_CASE : int = match.groups()[0] if "," not in imports: return F"[{imports}]" SCREAMING_SNAKE_CASE : Dict = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE : List[str] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(a_ )] ) + "]" SCREAMING_SNAKE_CASE : Union[str, Any] = import_statement.split('''\n''' ) if len(a_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. SCREAMING_SNAKE_CASE : List[str] = 2 if lines[1].strip() == '''[''' else 1 SCREAMING_SNAKE_CASE : Union[str, Any] = [(i, _re_strip_line.search(a_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] SCREAMING_SNAKE_CASE : Optional[Any] = sort_objects(a_ , key=lambda a_ : x[1] ) SCREAMING_SNAKE_CASE : str = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: SCREAMING_SNAKE_CASE : Any = _re_bracket_content.sub(_replace , lines[1] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = keys[:-1] SCREAMING_SNAKE_CASE : str = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(a_ )] ) return "\n".join(a_ ) else: # Finally we have to deal with imports fitting on one line SCREAMING_SNAKE_CASE : int = _re_bracket_content.sub(_replace , a_ ) return import_statement def __A ( a_ : List[Any] , a_ : Tuple=True )-> Optional[int]: '''simple docstring''' with open(a_ , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 SCREAMING_SNAKE_CASE : List[str] = split_code_in_indented_blocks( a_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. SCREAMING_SNAKE_CASE : List[Any] = main_blocks[block_idx] SCREAMING_SNAKE_CASE : str = block.split('''\n''' ) # Get to the start of the imports. SCREAMING_SNAKE_CASE : List[str] = 0 while line_idx < len(a_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: SCREAMING_SNAKE_CASE : Dict = len(a_ ) else: line_idx += 1 if line_idx >= len(a_ ): continue # Ignore beginning and last line: they don't contain anything. SCREAMING_SNAKE_CASE : List[Any] = '''\n'''.join(block_lines[line_idx:-1] ) SCREAMING_SNAKE_CASE : Optional[int] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. SCREAMING_SNAKE_CASE : Union[str, Any] = split_code_in_indented_blocks(a_ , indent_level=a_ ) # We have two categories of import key: list or _import_structure[key].append/extend SCREAMING_SNAKE_CASE : List[str] = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. SCREAMING_SNAKE_CASE : List[str] = [(pattern.search(a_ ).groups()[0] if pattern.search(a_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. SCREAMING_SNAKE_CASE : Dict = [(i, key) for i, key in enumerate(a_ ) if key is not None] SCREAMING_SNAKE_CASE : List[str] = [x[0] for x in sorted(a_ , key=lambda a_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(a_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(a_ ) count += 1 # And we put our main block back together with its first and last line. SCREAMING_SNAKE_CASE : int = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(a_ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(a_ ) ) def __A ( a_ : Optional[int]=True )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE : Optional[Any] = sort_imports(os.path.join(a_ , '''__init__.py''' ) , check_only=a_ ) if result: SCREAMING_SNAKE_CASE : List[str] = [os.path.join(a_ , '''__init__.py''' )] if len(a_ ) > 0: raise ValueError(F"Would overwrite {len(a_ )} files, run `make style`." ) if __name__ == "__main__": lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase__ : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
698
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = len(matrix[0] ) lowerCAmelCase__ = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): lowerCAmelCase__ = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase__ = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: lowerCAmelCase__ , lowerCAmelCase__ = matrix[i], matrix[row] lowerCAmelCase__ = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): lowerCAmelCase__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import pprint import requests __lowerCAmelCase : Union[str, Any] = "https://zenquotes.io/api" def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
674
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=1_3 , _A=3 , _A=2_2_4 , _A=3_0 , _A=4_0_0 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCamelCase : int = size if size is not None else {"""height""": 1_8, """width""": 1_8} UpperCamelCase : int = parent UpperCamelCase : Any = batch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : List[str] = image_size UpperCamelCase : Optional[int] = min_resolution UpperCamelCase : List[str] = max_resolution UpperCamelCase : List[Any] = do_resize UpperCamelCase : int = size UpperCamelCase : Optional[Any] = do_normalize UpperCamelCase : int = image_mean UpperCamelCase : int = image_std def _a ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : str = ViTImageProcessor if is_vision_available() else None def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def _a ( self ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """image_mean""" ) ) self.assertTrue(hasattr(_A , """image_std""" ) ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) self.assertTrue(hasattr(_A , """do_resize""" ) ) self.assertTrue(hasattr(_A , """size""" ) ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCamelCase : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase : Union[str, Any] = image_processor(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCamelCase : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase : Tuple = image_processor(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCamelCase : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase : Any = image_processor(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
102
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Tuple = 'xmod' def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[int]=30_522 , lowerCamelCase__ : Union[str, Any]=768 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Any=12 , lowerCamelCase__ : Optional[Any]=3_072 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : List[str]=512 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Dict=1e-1_2 , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : List[str]="absolute" , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Tuple=("en_XX",) , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : Optional[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout __lowercase = pre_norm __lowercase = adapter_reduction_factor __lowercase = adapter_layer_norm __lowercase = adapter_reuse_layer_norm __lowercase = ln_before_adapter __lowercase = list(lowerCamelCase__ ) __lowercase = default_language class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
332
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,*_snake_case ,**_snake_case ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""DeiTFeatureExtractor"""] _lowerCamelCase = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , _snake_case : Optional[int] , _snake_case : Any=7 , _snake_case : int=3 , _snake_case : Tuple=18 , _snake_case : Tuple=30 , _snake_case : Tuple=4_00 , _snake_case : List[str]=True , _snake_case : str=None , _snake_case : int=True , _snake_case : Tuple=None , _snake_case : Tuple=True , _snake_case : Optional[int]=[0.5, 0.5, 0.5] , _snake_case : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" A__ = size if size is not None else {'shortest_edge': 18} A__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std def _a ( self : Any ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Dict = LevitImageProcessor if is_vision_available() else None def _a ( self : str ): """simple docstring""" A__ = LevitImageProcessingTester(self ) @property def _a ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[int] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'image_mean' ) ) self.assertTrue(hasattr(_snake_case , 'image_std' ) ) self.assertTrue(hasattr(_snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) def _a ( self : int ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _a ( self : str ): """simple docstring""" pass def _a ( self : Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _a ( self : Dict ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _a ( self : Any ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Union[str, Any]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = np.full((len(lowerCAmelCase__ ), sequence_length, 2) , lowerCAmelCase__ ) else: __a = np.full((len(lowerCAmelCase__ ), sequence_length) , lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] return out_tensor.tolist() def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: __a = ord(lowerCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __a = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : PreTrainedTokenizerBase __UpperCAmelCase : Union[bool, str, PaddingStrategy] = True __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = -1_0_0 __UpperCAmelCase : str = "pt" def __UpperCAmelCase ( self , _a ): import torch __a = '''label''' if '''label''' in features[0].keys() else '''labels''' __a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a = torch.tensor(batch['''entity_ids'''] ).shape[1] __a = self.tokenizer.padding_side if padding_side == "right": __a = [ list(_a ) + [self.label_pad_token_id] * (sequence_length - len(_a )) for label in labels ] else: __a = [ [self.label_pad_token_id] * (sequence_length - len(_a )) + list(_a ) for label in labels ] __a = [feature['''ner_tags'''] for feature in features] __a = padding_tensor(_a , -1 , _a , _a ) __a = [feature['''original_entity_spans'''] for feature in features] __a = padding_tensor(_a , (-1, -1) , _a , _a ) __a = {k: torch.tensor(_a , dtype=torch.intaa ) for k, v in batch.items()} return batch
700
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase ( lowerCAmelCase__ : Optional[int] ) -> int: monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def lowercase ( lowerCAmelCase__ : Any ) -> Any: class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a ): __a = metric_id class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Any = [MetricMock(__SCREAMING_SNAKE_CASE ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def __UpperCAmelCase ( self ): return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ) -> Optional[int]: if "tmp_path" in args: __a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase__ , match='''https://huggingface.co/docs/evaluate''' ): func(*lowerCAmelCase__ )
65
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCAmelCase : Optional[int] = TypeVar('T') class lowerCamelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : list[T] , UpperCamelCase : Callable[[T, T], T] ): '''simple docstring''' __UpperCAmelCase : Any | T = None __UpperCAmelCase : int = len(UpperCamelCase ) __UpperCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr __UpperCAmelCase : List[str] = fnc self.build() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __UpperCAmelCase : Union[str, Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : T ): '''simple docstring''' p += self.N __UpperCAmelCase : int = v while p > 1: __UpperCAmelCase : Any = p // 2 __UpperCAmelCase : Union[str, Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : int ): # noqa: E741 '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = l + self.N, r + self.N __UpperCAmelCase : T | None = None while l <= r: if l % 2 == 1: __UpperCAmelCase : List[str] = self.st[l] if res is None else self.fn(UpperCamelCase , self.st[l] ) if r % 2 == 0: __UpperCAmelCase : Dict = self.st[r] if res is None else self.fn(UpperCamelCase , self.st[r] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCAmelCase : Optional[Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCAmelCase : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCAmelCase : Union[str, Any] = SegmentTree(test_array, min) UpperCAmelCase : List[Any] = SegmentTree(test_array, max) UpperCAmelCase : Any = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase ( ) -> None: '''simple docstring''' for i in range(len(_UpperCamelCase ) ): for j in range(_UpperCamelCase , len(_UpperCamelCase ) ): __UpperCAmelCase : Optional[Any] = reduce(_UpperCamelCase , test_array[i : j + 1] ) __UpperCAmelCase : str = reduce(_UpperCamelCase , test_array[i : j + 1] ) __UpperCAmelCase : Optional[Any] = reduce(lambda _UpperCamelCase , _UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCamelCase , _UpperCamelCase ) assert max_range == max_segment_tree.query(_UpperCamelCase , _UpperCamelCase ) assert sum_range == sum_segment_tree.query(_UpperCamelCase , _UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): UpperCAmelCase : str = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
139
"""simple docstring""" from math import pow def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , ) -> tuple[int, int]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __UpperCAmelCase : List[str] = int(pow(_UpperCamelCase , _UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = backtrack( _UpperCamelCase , _UpperCamelCase , current_number + 1 , _UpperCamelCase , _UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __UpperCAmelCase ,__UpperCAmelCase : List[Any] = backtrack( _UpperCamelCase , _UpperCamelCase , current_number + 1 , _UpperCamelCase , _UpperCamelCase ) return current_sum, solutions_count def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(_UpperCamelCase , _UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Dict , snake_case_ : Dict ): '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : List[str] ): '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ): '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ): '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ): '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Any =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: Optional[int] =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
715
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __A ( UpperCamelCase__ ): a__ : Optional[int] = """Wav2Vec2FeatureExtractor""" a__ : Dict = """AutoTokenizer""" def __init__(self : Any , __a : Union[str, Any] , __a : List[str] ): super().__init__(__a , __a ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False @classmethod def _lowercase (cls : List[str] , __a : Dict , **__a : int ): try: return super().from_pretrained(__a , **__a ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __a , ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(__a , **__a ) UpperCAmelCase_ = WavaVecaCTCTokenizer.from_pretrained(__a , **__a ) return cls(feature_extractor=__a , tokenizer=__a ) def __call__(self : Optional[int] , *__a : int , **__a : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ = kwargs.pop("audio" , __a ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , __a ) UpperCAmelCase_ = kwargs.pop("text" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: UpperCAmelCase_ = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings["input_ids"] return inputs def _lowercase (self : List[Any] , *__a : Optional[Any] , **__a : Dict ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a ) UpperCAmelCase_ = kwargs.pop("input_features" , __a ) UpperCAmelCase_ = kwargs.pop("labels" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(__a , *__a , **__a ) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(__a , **__a ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels["input_ids"] return input_features def _lowercase (self : Tuple , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Any , *__a : Any , **__a : str ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def _lowercase (self : Optional[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
415
0
from ..utils import DummyObject, requires_backends class a_ ( metaclass=a_ ): '''simple docstring''' __a: Union[str, Any] = ['''speech'''] def __init__( self , *lowercase_ , **lowercase_ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['speech'] ) class a_ ( metaclass=a_ ): '''simple docstring''' __a: str = ['''speech'''] def __init__( self , *lowercase_ , **lowercase_ ) -> Dict: '''simple docstring''' requires_backends(self , ['speech'] )
318
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a_ ( a_ ): '''simple docstring''' __a: jnp.ndarray __a: jnp.ndarray class a_ ( nn.Module ): '''simple docstring''' __a: int __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) __a: jnp.dtype = jnp.floataa def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase_ = self.block_out_channels[i] lowerCAmelCase_ = self.block_out_channels[i + 1] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = blocks lowerCAmelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) for block in self.blocks: lowerCAmelCase_ = block(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) lowerCAmelCase_ = self.conv_out(lowercase_ ) return embedding @flax_register_to_config class a_ ( nn.Module , a_ , a_ ): '''simple docstring''' __a: int = 3_2 __a: int = 4 __a: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a: Union[bool, Tuple[bool]] = False __a: Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __a: int = 2 __a: Union[int, Tuple[int]] = 8 __a: Optional[Union[int, Tuple[int]]] = None __a: int = 1_2_8_0 __a: float = 0.0 __a: bool = False __a: jnp.dtype = jnp.floataa __a: bool = True __a: int = 0 __a: str = "rgb" __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _lowercase ( self , lowercase_ ) -> FrozenDict: '''simple docstring''' lowerCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ , lowerCAmelCase_ = jax.random.split(lowercase_ ) lowerCAmelCase_ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.block_out_channels lowerCAmelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) lowerCAmelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase_ = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = block_out_channels[0] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ = output_channel lowerCAmelCase_ = block_out_channels[i] lowerCAmelCase_ = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase_ = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) for _ in range(self.layers_per_block ): lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) if not is_final_block: lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) lowerCAmelCase_ = down_blocks lowerCAmelCase_ = controlnet_down_blocks # mid lowerCAmelCase_ = block_out_channels[-1] lowerCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' lowerCAmelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase_ = jnp.flip(lowercase_ , axis=1 ) # 1. time if not isinstance(lowercase_ , jnp.ndarray ): lowerCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ = jnp.expand_dims(lowercase_ , 0 ) lowerCAmelCase_ = self.time_proj(lowercase_ ) lowerCAmelCase_ = self.time_embedding(lowercase_ ) # 2. pre-process lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.controlnet_cond_embedding(lowercase_ ) sample += controlnet_cond # 3. down lowerCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase_ = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase_ = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks ): lowerCAmelCase_ = controlnet_block(lowercase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ = controlnet_down_block_res_samples lowerCAmelCase_ = self.controlnet_mid_block(lowercase_ ) # 6. scaling lowerCAmelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_ )
318
1
'''simple docstring''' from math import factorial def _snake_case ( lowercase = 1_0_0 ) -> int: return sum(int(lowercase ) for x in str(factorial(lowercase ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
697
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): def __init__( self: List[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> None: warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
382
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
382
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) # TODO Update this A__ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Tuple = "esm" def __init__( self: Optional[Any] , __UpperCamelCase: Optional[int]=None , __UpperCamelCase: Optional[Any]=None , __UpperCamelCase: Dict=None , __UpperCamelCase: Any=7_68 , __UpperCamelCase: List[str]=12 , __UpperCamelCase: Dict=12 , __UpperCamelCase: List[Any]=30_72 , __UpperCamelCase: Any=0.1 , __UpperCamelCase: Tuple=0.1 , __UpperCamelCase: Any=10_26 , __UpperCamelCase: Optional[Any]=0.02 , __UpperCamelCase: Optional[int]=1E-12 , __UpperCamelCase: List[str]="absolute" , __UpperCamelCase: int=True , __UpperCamelCase: Optional[int]=None , __UpperCamelCase: List[Any]=False , __UpperCamelCase: Optional[int]=False , __UpperCamelCase: Optional[Any]=None , __UpperCamelCase: Dict=None , **__UpperCamelCase: Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , mask_token_id=__UpperCamelCase , **__UpperCamelCase ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = use_cache __magic_name__ = emb_layer_norm_before __magic_name__ = token_dropout __magic_name__ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __magic_name__ = EsmFoldConfig() elif isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ = EsmFoldConfig(**__UpperCamelCase ) __magic_name__ = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __magic_name__ = get_default_vocab_list() else: __magic_name__ = vocab_list else: __magic_name__ = None __magic_name__ = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , __UpperCamelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = super().to_dict() if isinstance(self.esmfold_config , __UpperCamelCase ): __magic_name__ = self.esmfold_config.to_dict() return output @dataclass class __UpperCamelCase : _lowercase : str = None _lowercase : bool = True _lowercase : bool = False _lowercase : bool = False _lowercase : bool = False _lowercase : float = 0 _lowercase : bool = True _lowercase : bool = False _lowercase : int = 1_2_8 _lowercase : "TrunkConfig" = None def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' if self.trunk is None: __magic_name__ = TrunkConfig() elif isinstance(self.trunk , __UpperCamelCase ): __magic_name__ = TrunkConfig(**self.trunk ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = asdict(self ) __magic_name__ = self.trunk.to_dict() return output @dataclass class __UpperCamelCase : _lowercase : int = 4_8 _lowercase : int = 1_0_2_4 _lowercase : int = 1_2_8 _lowercase : int = 3_2 _lowercase : int = 3_2 _lowercase : int = 3_2 _lowercase : float = 0 _lowercase : float = 0 _lowercase : bool = False _lowercase : int = 4 _lowercase : Optional[int] = 1_2_8 _lowercase : "StructureModuleConfig" = None def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' if self.structure_module is None: __magic_name__ = StructureModuleConfig() elif isinstance(self.structure_module , __UpperCamelCase ): __magic_name__ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __magic_name__ = self.sequence_state_dim // self.sequence_head_width __magic_name__ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = asdict(self ) __magic_name__ = self.structure_module.to_dict() return output @dataclass class __UpperCamelCase : _lowercase : int = 3_8_4 _lowercase : int = 1_2_8 _lowercase : int = 1_6 _lowercase : int = 1_2_8 _lowercase : int = 1_2 _lowercase : int = 4 _lowercase : int = 8 _lowercase : float = 0.1 _lowercase : int = 8 _lowercase : int = 1 _lowercase : int = 2 _lowercase : int = 7 _lowercase : int = 1_0 _lowercase : float = 1E-8 _lowercase : float = 1E5 def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' return asdict(self ) def _lowercase ( ) -> List[str]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
706
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained('google/mt5-small' ) __magic_name__ = tokenizer('Hello there' , return_tensors='pt' ).input_ids __magic_name__ = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __magic_name__ = model(input_ids.to(__UpperCamelCase ) , labels=labels.to(__UpperCamelCase ) ).loss __magic_name__ = -(labels.shape[-1] * loss.item()) __magic_name__ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
184
0
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :str , __lowerCamelCase :list[str] | None = None , __lowerCamelCase :dict[str, float] | None = None , __lowerCamelCase :bool = False , ): _lowerCAmelCase = cipher_alphabet or [chr(__lowerCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _lowerCAmelCase = { """a""": 0.08_497, """b""": 0.01_492, """c""": 0.02_202, """d""": 0.04_253, """e""": 0.11_162, """f""": 0.02_228, """g""": 0.02_015, """h""": 0.06_094, """i""": 0.07_546, """j""": 0.00_153, """k""": 0.01_292, """l""": 0.04_025, """m""": 0.02_406, """n""": 0.06_749, """o""": 0.07_507, """p""": 0.01_929, """q""": 0.00_095, """r""": 0.07_587, """s""": 0.06_327, """t""": 0.09_356, """u""": 0.02_758, """v""": 0.00_978, """w""": 0.02_560, """x""": 0.00_150, """y""": 0.01_994, """z""": 0.00_077, } else: # Custom frequencies dictionary _lowerCAmelCase = frequencies_dict if not case_sensitive: _lowerCAmelCase = ciphertext.lower() # Chi squared statistic values _lowerCAmelCase = {} # cycle through all of the shifts for shift in range(len(__lowerCamelCase ) ): _lowerCAmelCase = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _lowerCAmelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( __lowerCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _lowerCAmelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _lowerCAmelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _lowerCAmelCase = decrypted_with_shift.lower().count(__lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _lowerCAmelCase = decrypted_with_shift.count(__lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _lowerCAmelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__lowerCamelCase :int ) -> tuple[float, str]: return chi_squared_statistic_values[key] _lowerCAmelCase = min( __lowerCamelCase , key=__lowerCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> Dict: __snake_case = 0 def lowercase ( self : Tuple ) -> str: __snake_case = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : Tuple ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : List[str] ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case = AutoImageProcessor.from_pretrained(A_ ).to_dict() config_dict.pop('''image_processor_type''' ) __snake_case = CLIPImageProcessor(**A_ ) # save in new folder model_config.save_pretrained(A_ ) config.save_pretrained(A_ ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) # make sure private variable is not incorrectly saved __snake_case = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : str ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: with self.assertRaisesRegex( A_ , '''clip-base is not a local folder and is not a valid model identifier''' ): __snake_case = AutoImageProcessor.from_pretrained('''clip-base''' ) def lowercase ( self : str ) -> Any: with self.assertRaisesRegex( A_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case = AutoImageProcessor.from_pretrained(A_ , revision='''aaaaaa''' ) def lowercase ( self : int ) -> Any: with self.assertRaisesRegex( A_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase ( self : Dict ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A_ ): __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) __snake_case = AutoImageProcessor.from_pretrained(A_ , trust_remote_code=A_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def lowercase ( self : List[str] ) -> Union[str, Any]: try: AutoConfig.register('''custom''' , A_ ) AutoImageProcessor.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoImageProcessor.register(A_ , A_ ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(A_ ) / '''preprocessor_config.json''' __snake_case = Path(A_ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A_ , '''w''' ) ) __snake_case = CustomImageProcessor.from_pretrained(A_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) __snake_case = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase ( self : int ) -> List[Any]: class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : str = True try: AutoConfig.register('''custom''' , A_ ) AutoImageProcessor.register(A_ , A_ ) # If remote code is not set, the default is to use local __snake_case = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __snake_case = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
564
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _a : Union[str, Any] = '' _a : Optional[Any] = '' _a : List[str] = '' _a : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def SCREAMING_SNAKE_CASE ( ) -> None: _lowerCAmelCase , _lowerCAmelCase : int = get_dataset(_lowerCamelCase ,_lowerCamelCase ) print("""Processing...""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = update_image_and_anno(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase : Tuple = random_chars(32 ) _lowerCAmelCase : Union[str, Any] = paths[index].split(os.sep )[-1].rsplit(""".""" ,1 )[0] _lowerCAmelCase : List[str] = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" ,_lowerCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(_lowerCamelCase )} with {file_name}" ) _lowerCAmelCase : Tuple = [] for anno in new_annos[index]: _lowerCAmelCase : str = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_lowerCamelCase ) with open(f"/{file_root}.txt" ,"""w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> tuple[list, list]: _lowerCAmelCase : Dict = [] _lowerCAmelCase : Optional[Any] = [] for label_file in glob.glob(os.path.join(_lowerCamelCase ,"""*.txt""" ) ): _lowerCAmelCase : Optional[int] = label_file.split(os.sep )[-1].rsplit(""".""" ,1 )[0] with open(_lowerCamelCase ) as in_file: _lowerCAmelCase : Union[str, Any] = in_file.readlines() _lowerCAmelCase : str = os.path.join(_lowerCamelCase ,f"{label_name}.jpg" ) _lowerCAmelCase : Dict = [] for obj_list in obj_lists: _lowerCAmelCase : Dict = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int = 1 ) -> tuple[list, list, list]: _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] _lowerCAmelCase : Tuple = [] for idx in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Dict = img_list[idx] path_list.append(_lowerCamelCase ) _lowerCAmelCase : Any = anno_list[idx] _lowerCAmelCase : Any = cva.imread(_lowerCamelCase ) if flip_type == 1: _lowerCAmelCase : List[Any] = cva.flip(_lowerCamelCase ,_lowerCamelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase : str = cva.flip(_lowerCamelCase ,_lowerCamelCase ) for bbox in img_annos: _lowerCAmelCase : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
663
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
1
'''simple docstring''' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): return [sentence[i : i + ngram_size] for i in range(len(__lowerCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
50
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: str ) -> bool: return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def _UpperCamelCase ( lowerCAmelCase__: str ) -> bool: SCREAMING_SNAKE_CASE_ = credit_card_number SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ ,-1 ,-2 ): # double the value of every second digit SCREAMING_SNAKE_CASE_ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 SCREAMING_SNAKE_CASE_ = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 ,-1 ,-2 ): total += int(cc_number[i] ) return total % 10 == 0 def _UpperCamelCase ( lowerCAmelCase__: str ) -> bool: SCREAMING_SNAKE_CASE_ = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(lowerCAmelCase__ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(lowerCAmelCase__ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
294
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ) -> list: __a = len(lowerCAmelCase__ ) __a = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): __a = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ['input_features', 'attention_mask'] def __init__( self , _a=80 , _a=16_000 , _a=0.0 , _a=10 , _a=25 , _a="hamming_window" , _a=3_2768.0 , _a=0.97 , _a=1.0 , _a=True , _a=True , _a=False , **_a , ): super().__init__(feature_size=_a , sampling_rate=_a , padding_value=_a , **_a ) __a = feature_size __a = sampling_rate __a = padding_value __a = hop_length __a = win_length __a = frame_signal_scale __a = preemphasis_coeff __a = mel_floor __a = normalize_means __a = normalize_vars __a = win_function __a = return_attention_mask __a = win_length * sampling_rate // 1_000 __a = hop_length * sampling_rate // 1_000 __a = optimal_fft_length(self.sample_size ) __a = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self , _a ): if self.win_function == "hamming_window": __a = window_function(window_length=self.sample_size , name=self.win_function , periodic=_a ) else: __a = window_function(window_length=self.sample_size , name=self.win_function ) __a = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __a = spectrogram( one_waveform * self.frame_signal_scale , window=_a , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_a , preemphasis=self.preemphasis_coeff , mel_filters=_a , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def __UpperCAmelCase ( self , _a , _a , _a ): # make sure we normalize float32 arrays if self.normalize_means: __a = x[:input_length].mean(axis=0 ) __a = np.subtract(_a , _a ) if self.normalize_vars: __a = x[:input_length].std(axis=0 ) __a = np.divide(_a , _a ) if input_length < x.shape[0]: __a = padding_value # make sure array is in float32 __a = x.astype(np.floataa ) return x def __UpperCAmelCase ( self , _a , _a = None ): __a = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_a , _a , self.padding_value ) for x, n in zip(_a , _a )] def __call__( self , _a , _a = False , _a = None , _a = False , _a = None , _a = None , _a = None , _a = None , **_a , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __a = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __a = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a = [np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): __a = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a = [raw_speech] # extract fbank features __a = [self._extract_mfsc_features(_a ) for one_waveform in raw_speech] # convert into correct format for padding __a = BatchFeature({'''input_features''': features} ) __a = self.pad( _a , padding=_a , max_length=_a , truncation=_a , pad_to_multiple_of=_a , return_attention_mask=_a , **_a , ) # make sure list is in array format __a = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _a ): __a = [np.asarray(_a , dtype=np.floataa ) for feature in input_features] __a = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __a = [np.asarray(_a , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __a = ( np.array(_a , dtype=np.intaa ) if self._get_padding_strategies(_a , max_length=_a ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __a = self.normalize( padded_inputs['''input_features'''] , attention_mask=_a ) if return_tensors is not None: __a = padded_inputs.convert_to_tensors(_a ) return padded_inputs
65
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
401
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: _A = tempfile.mkdtemp() # fmt: off _A = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _A = {"""unk_token""": """<unk>"""} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) _A = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _A = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _A = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A = self.get_image_processor(do_normalize=lowerCAmelCase_ ) _A = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = """lower newer""" _A = processor(text=lowerCAmelCase_ , return_tensors="""np""" ) _A = tokenizer(lowerCAmelCase_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> List[Any]: _A = """google/owlvit-base-patch32""" _A = OwlViTProcessor.from_pretrained(lowerCAmelCase_ ) _A = ["""cat""", """nasa badge"""] _A = processor(text=lowerCAmelCase_ ) _A = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> Optional[int]: _A = """google/owlvit-base-patch32""" _A = OwlViTProcessor.from_pretrained(lowerCAmelCase_ ) _A = [["""cat""", """nasa badge"""], ["""person"""]] _A = processor(text=lowerCAmelCase_ ) _A = 16 _A = len(lowerCAmelCase_ ) _A = max([len(lowerCAmelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> Tuple: _A = """google/owlvit-base-patch32""" _A = OwlViTProcessor.from_pretrained(lowerCAmelCase_ ) _A = ["""cat""", """nasa badge"""] _A = processor(text=lowerCAmelCase_ ) _A = 16 _A = inputs["""input_ids"""] _A = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = self.prepare_image_inputs() _A = processor(images=lowerCAmelCase_ , query_images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
401
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , ) -> int: '''simple docstring''' if config_name_or_path is None: __lowerCAmelCase = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: __lowerCAmelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCAmelCase = question_encoder_name_or_path __lowerCAmelCase = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. __lowerCAmelCase = RagConfig.from_pretrained(_A ) __lowerCAmelCase = AutoConfig.from_pretrained(_A ) __lowerCAmelCase = AutoConfig.from_pretrained(_A ) __lowerCAmelCase = gen_config __lowerCAmelCase = question_encoder_config __lowerCAmelCase = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. __lowerCAmelCase = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __lowerCAmelCase = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) __A : Tuple = parser.parse_args() __A : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
705
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
334
0