code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_, A_ ) -> str: UpperCAmelCase__ =dataset UpperCAmelCase__ =process UpperCAmelCase__ =params def __len__( self ) -> Any: return len(self.dataset ) def __getitem__( self, A_ ) -> Optional[Any]: UpperCAmelCase__ =self.dataset[i] UpperCAmelCase__ =self.process(A_, **self.params ) return processed class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_, A_, A_=None ) -> Dict: UpperCAmelCase__ =loader UpperCAmelCase__ =infer UpperCAmelCase__ =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase__ =None UpperCAmelCase__ =loader_batch_size # Internal bookkeeping UpperCAmelCase__ =None UpperCAmelCase__ =None def __len__( self ) -> Dict: return len(self.loader ) def __iter__( self ) -> Any: UpperCAmelCase__ =iter(self.loader ) return self def __UpperCAmelCase ( self ) -> Optional[Any]: if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase__ =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase__ ={} for k, element in self._loader_batch_data.items(): if isinstance(A_, A_ ): # Convert ModelOutput to tuple first UpperCAmelCase__ =element.to_tuple() if isinstance(element[0], torch.Tensor ): UpperCAmelCase__ =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): UpperCAmelCase__ =tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(A_, A_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): UpperCAmelCase__ =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): UpperCAmelCase__ =tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase__ =None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ =element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ =np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase__ =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase__ =self._loader_batch_data.__class__(A_ ) self._loader_batch_index += 1 return result def __UpperCAmelCase ( self ) -> int: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase__ =next(self.iterator ) UpperCAmelCase__ =self.infer(A_, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(A_, torch.Tensor ): UpperCAmelCase__ =processed else: UpperCAmelCase__ =list(processed.keys() )[0] UpperCAmelCase__ =processed[key] if isinstance(A_, A_ ): UpperCAmelCase__ =len(A_ ) else: UpperCAmelCase__ =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ =observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase__ =processed UpperCAmelCase__ =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_, A_, A_=None ) -> List[Any]: super().__init__(A_, A_, A_ ) def __iter__( self ) -> Tuple: UpperCAmelCase__ =iter(self.loader ) UpperCAmelCase__ =None return self def __UpperCAmelCase ( self ) -> List[Any]: if self.subiterator is None: UpperCAmelCase__ =self.infer(next(self.iterator ), **self.params ) try: # Try to return next item UpperCAmelCase__ =next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase__ =self.infer(next(self.iterator ), **self.params ) UpperCAmelCase__ =next(self.subiterator ) return processed class snake_case_ ( a ): '''simple docstring''' def __iter__( self ) -> str: UpperCAmelCase__ =iter(self.loader ) return self def __UpperCAmelCase ( self ) -> Any: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCAmelCase__ =False UpperCAmelCase__ =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ =self.loader_batch_item() UpperCAmelCase__ =item.pop("is_last" ) accumulator.append(A_ ) if is_last: return accumulator while not is_last: UpperCAmelCase__ =self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(A_, torch.Tensor ): UpperCAmelCase__ =processed else: UpperCAmelCase__ =list(processed.keys() )[0] UpperCAmelCase__ =processed[key] if isinstance(A_, A_ ): UpperCAmelCase__ =len(A_ ) else: UpperCAmelCase__ =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ =observed_batch_size UpperCAmelCase__ =processed UpperCAmelCase__ =0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ =self.loader_batch_item() UpperCAmelCase__ =item.pop("is_last" ) accumulator.append(A_ ) if is_last: return accumulator else: UpperCAmelCase__ =processed UpperCAmelCase__ =item.pop("is_last" ) accumulator.append(A_ ) return accumulator class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_ ) -> List[Any]: UpperCAmelCase__ =dataset UpperCAmelCase__ =key def __len__( self ) -> int: return len(self.dataset ) def __getitem__( self, A_ ) -> Optional[int]: return self.dataset[i][self.key] class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_, A_ ) -> Any: UpperCAmelCase__ =dataset UpperCAmelCase__ =keya UpperCAmelCase__ =keya def __len__( self ) -> Tuple: return len(self.dataset ) def __getitem__( self, A_ ) -> str: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
625
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase_ = get_logger(__name__) def _UpperCAmelCase ( A , A , A , A , A=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase__ =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase__ =F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase__ =os.path.join(A , A ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase__ =( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase__ =os.path.join(A , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(F"""Saving model to {ckpt_dir}""" ) UpperCAmelCase__ ={"model": state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _UpperCAmelCase ( A , A , A , A , A=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return UpperCAmelCase__ =F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCAmelCase__ =torch.load(A ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase__ =( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCAmelCase__ =torch.load(A ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase__ =( os.path.join(A , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) UpperCAmelCase__ ={"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase__ =state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(A ) def _UpperCAmelCase ( A , A , A , A , A , A=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase__ =FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase__ =( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(A , A ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase__ =os.path.join(A , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _UpperCAmelCase ( A , A , A , A , A , A=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase__ =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase__ =( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase__ =os.path.join(A , A ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase__ =torch.load(A ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase__ =( os.path.join(A , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase__ =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase__ =optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase__ =FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
625
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _A = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _A = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' _A = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def UpperCAmelCase ( a_ ): '''simple docstring''' def remove_articles(a_ ): lowerCamelCase : Any = re.compile(r'\b(a|an|the)\b', re.UNICODE ) return re.sub(a_, ' ', a_ ) def white_space_fix(a_ ): return " ".join(text.split() ) def remove_punc(a_ ): lowerCamelCase : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_ ) ) ) ) def UpperCAmelCase ( a_, a_ ): '''simple docstring''' return int(normalize_answer(a_ ) == normalize_answer(a_ ) ) def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : str = [any(compute_exact(a_, a_ ) for ref in refs ) for pred, refs in zip(a_, a_ )] return (sum(a_ ) / len(a_ )) * 100 def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCamelCase : str = Counter(a_ ) lowerCamelCase : List[str] = Counter(a_ ) lowerCamelCase : str = Counter() for sgram, scount in sgramcounter.items(): lowerCamelCase : Tuple = scount * numref lowerCamelCase : Dict = Counter(a_ ) lowerCamelCase : Any = Counter() for cgram, ccount in cgramcounter.items(): lowerCamelCase : int = ccount * numref # KEEP lowerCamelCase : int = sgramcounter_rep & cgramcounter_rep lowerCamelCase : Optional[int] = keepgramcounter_rep & rgramcounter lowerCamelCase : str = sgramcounter_rep & rgramcounter lowerCamelCase : str = 0 lowerCamelCase : Union[str, Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : List[Any] = 1 lowerCamelCase : Dict = 1 if len(a_ ) > 0: lowerCamelCase : Any = keeptmpscorea / len(a_ ) if len(a_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCamelCase : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCamelCase : str = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCamelCase : Optional[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCamelCase : int = sgramcounter_rep - cgramcounter_rep lowerCamelCase : Union[str, Any] = delgramcounter_rep - rgramcounter lowerCamelCase : List[str] = sgramcounter_rep - rgramcounter lowerCamelCase : Optional[int] = 0 lowerCamelCase : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : Tuple = 1 if len(a_ ) > 0: lowerCamelCase : Dict = deltmpscorea / len(a_ ) # ADDITION lowerCamelCase : str = set(a_ ) - set(a_ ) lowerCamelCase : Optional[Any] = set(a_ ) & set(a_ ) lowerCamelCase : List[str] = set(a_ ) - set(a_ ) lowerCamelCase : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : str = 1 lowerCamelCase : str = 1 if len(a_ ) > 0: lowerCamelCase : Any = addtmpscore / len(a_ ) if len(a_ ) > 0: lowerCamelCase : Union[str, Any] = addtmpscore / len(a_ ) lowerCamelCase : List[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCamelCase : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = len(a_ ) lowerCamelCase : Optional[int] = ssent.split(' ' ) lowerCamelCase : Dict = csent.split(' ' ) lowerCamelCase : int = [] lowerCamelCase : str = [] lowerCamelCase : List[Any] = [] lowerCamelCase : Optional[Any] = [] lowerCamelCase : Optional[Any] = [] lowerCamelCase : int = [] lowerCamelCase : Any = [] lowerCamelCase : Optional[Any] = [] lowerCamelCase : Tuple = [] lowerCamelCase : List[Any] = [] for rsent in rsents: lowerCamelCase : List[str] = rsent.split(' ' ) lowerCamelCase : Tuple = [] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : Dict = [] ragramslist.append(a_ ) for i in range(0, len(a_ ) - 1 ): if i < len(a_ ) - 1: lowerCamelCase : List[str] = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(a_ ) if i < len(a_ ) - 2: lowerCamelCase : int = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(a_ ) if i < len(a_ ) - 3: lowerCamelCase : Optional[int] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(a_ ) ragramslist.append(a_ ) ragramslist.append(a_ ) ragramslist.append(a_ ) for i in range(0, len(a_ ) - 1 ): if i < len(a_ ) - 1: lowerCamelCase : int = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(a_ ) if i < len(a_ ) - 2: lowerCamelCase : Union[str, Any] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(a_ ) if i < len(a_ ) - 3: lowerCamelCase : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(a_ ) for i in range(0, len(a_ ) - 1 ): if i < len(a_ ) - 1: lowerCamelCase : Any = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(a_ ) if i < len(a_ ) - 2: lowerCamelCase : int = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(a_ ) if i < len(a_ ) - 3: lowerCamelCase : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(a_ ) (lowerCamelCase) : str = SARIngram(a_, a_, a_, a_ ) (lowerCamelCase) : Union[str, Any] = SARIngram(a_, a_, a_, a_ ) (lowerCamelCase) : int = SARIngram(a_, a_, a_, a_ ) (lowerCamelCase) : Optional[int] = SARIngram(a_, a_, a_, a_ ) lowerCamelCase : Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCamelCase : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCamelCase : Tuple = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCamelCase : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase ( a_, a_ = True, a_ = "13a", a_ = True ): '''simple docstring''' if lowercase: lowerCamelCase : str = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCamelCase : Tuple = sacrebleu.metrics.bleu._get_tokenizer(a_ )()(a_ ) else: lowerCamelCase : Tuple = sacrebleu.TOKENIZERS[tokenizer]()(a_ ) elif tokenizer == "moses": lowerCamelCase : Optional[Any] = sacremoses.MosesTokenizer().tokenize(a_, return_str=a_, escape=a_ ) elif tokenizer == "penn": lowerCamelCase : Dict = sacremoses.MosesTokenizer().penn_tokenize(a_, return_str=a_ ) else: lowerCamelCase : Tuple = sentence if not return_str: lowerCamelCase : Union[str, Any] = normalized_sent.split() return normalized_sent def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' if not (len(a_ ) == len(a_ ) == len(a_ )): raise ValueError('Sources length must match predictions and references lengths.' ) lowerCamelCase : Any = 0 for src, pred, refs in zip(a_, a_, a_ ): sari_score += SARIsent(normalize(a_ ), normalize(a_ ), [normalize(a_ ) for sent in refs] ) lowerCamelCase : Union[str, Any] = sari_score / len(a_ ) return 100 * sari_score def UpperCAmelCase ( a_, a_, a_="exp", a_=None, a_=False, a_=False, a_=False, ): '''simple docstring''' lowerCamelCase : Union[str, Any] = len(references[0] ) if any(len(a_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCamelCase : Dict = [[refs[i] for refs in references] for i in range(a_ )] lowerCamelCase : Any = sacrebleu.corpus_bleu( a_, a_, smooth_method=a_, smooth_value=a_, force=a_, lowercase=a_, use_effective_order=a_, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def _UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> str: lowerCamelCase : str = {} result.update({'sari': compute_sari(sources=UpperCAmelCase_ , predictions=UpperCAmelCase_ , references=UpperCAmelCase_ )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ )} ) result.update({'exact': compute_em(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ )} ) return result
701
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A = 2_5_0_0_0_4 _A = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = MBartaaTokenizer lowercase_ = MBartaaTokenizerFast lowercase_ = True lowercase_ = True def _UpperCamelCase ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : int = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : str = '<s>' lowerCamelCase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCAmelCase_ ) , 1054 ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _UpperCamelCase ( self ) -> str: lowerCamelCase : Optional[int] = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_ ) lowerCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _UpperCamelCase ( self ) -> List[Any]: # fmt: off lowerCamelCase : Optional[Any] = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def _UpperCamelCase ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase : int = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Tuple = tempfile.mkdtemp() lowerCamelCase : Any = tokenizer_r.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : List[str] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase : int = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase : Optional[int] = tempfile.mkdtemp() lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase : List[str] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase : int = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): lowercase_ = 'facebook/mbart-large-50-one-to-many-mmt' lowercase_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase_ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _UpperCamelCase ( cls ) -> int: lowerCamelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase : Union[str, Any] = 1 return cls def _UpperCamelCase ( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 250038 ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCamelCase : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase : Union[str, Any] = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Tuple = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) lowerCamelCase : str = 10 lowerCamelCase : Optional[int] = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250053, 250001] ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = tempfile.mkdtemp() lowerCamelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : str = MBartaaTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt' ) lowerCamelCase : Any = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) lowerCamelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) lowerCamelCase : List[Any] = targets['input_ids'] lowerCamelCase : List[Any] = shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : List[Any] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # en_XX, A, test, EOS 'input_ids': [[250004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
133
0
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _UpperCAmelCase : def __init__( self : Union[str, Any] , a : Tuple , a : int = 1_3 , a : int = 6_4 , a : int = 2 , a : int = 3 , a : int = 3 , a : bool = True , a : bool = True , a : int = 1_2_8 , a : Dict=[1_6, 3_2, 6_4, 1_2_8] , a : int = 7 , a : int = 4 , a : int = 3_7 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 1_0 , a : float = 0.02 , a : int = 2 , a : int = 1 , a : int = 1_2_8 , a : List[int] = [2, 2, 2, 2] , a : int = 2 , a : int = 2 , ): '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : List[Any] = batch_size lowercase_ : Union[str, Any] = image_size lowercase_ : Union[str, Any] = patch_size lowercase_ : Dict = num_channels lowercase_ : Tuple = is_training lowercase_ : List[str] = use_labels lowercase_ : Dict = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : Dict = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : Dict = encoder_stride lowercase_ : Any = num_attention_outputs lowercase_ : List[Any] = embed_dim lowercase_ : List[Any] = embed_dim + 1 lowercase_ : Optional[int] = resolution lowercase_ : List[str] = depths lowercase_ : List[str] = hidden_sizes lowercase_ : Optional[int] = dim lowercase_ : List[Any] = mlp_expansion_ratio def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Any = None if self.use_labels: lowercase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : str ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase__ ( self : str , a : List[Any] , a : Union[str, Any] , a : Any ): '''simple docstring''' lowercase_ : str = TFEfficientFormerModel(config=a ) lowercase_ : int = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , a : str , a : Union[str, Any] , a : int ): '''simple docstring''' lowercase_ : List[str] = self.type_sequence_label_size lowercase_ : Dict = TFEfficientFormerForImageClassification(a ) lowercase_ : Optional[int] = model(a , labels=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : int = 1 lowercase_ : str = TFEfficientFormerForImageClassification(a ) lowercase_ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : str = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Any = config_and_inputs lowercase_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: Optional[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __lowerCamelCase: Tuple = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __lowerCamelCase: List[Any] = False __lowerCamelCase: Tuple = False __lowerCamelCase: int = False __lowerCamelCase: Optional[Any] = False __lowerCamelCase: List[str] = False def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : int = TFEfficientFormerModelTester(self ) lowercase_ : str = ConfigTester( self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(a ) lowercase_ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(a : str , a : List[Any] , a : List[str] ): lowercase_ : int = model_class(a ) lowercase_ : List[Any] = model(**self._prepare_for_class(a , a ) , training=a ) lowercase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) if hasattr(self.model_tester , "encoder_seq_length" ): lowercase_ : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowercase_ : List[Any] = seq_length * self.model_tester.chunk_length else: lowercase_ : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowercase_ : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(a , (list, tuple) ) self.assertEqual(len(a ) , a ) lowercase_ : Optional[Any] = getattr(self.model_tester , "seq_length" , a ) lowercase_ : Dict = getattr(self.model_tester , "decoder_seq_length" , a ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Tuple = True check_hidden_states_output(a , a , a ) def lowerCAmelCase__ ( self : Tuple , a : Optional[Any] , a : Dict , a : str=False ): '''simple docstring''' lowercase_ : str = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Dict = TFEfficientFormerModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Any = True lowercase_ : Tuple = getattr(self.model_tester , "seq_length" , a ) lowercase_ : int = getattr(self.model_tester , "encoder_seq_length" , a ) lowercase_ : List[Any] = getattr(self.model_tester , "key_length" , a ) lowercase_ : Optional[Any] = getattr(self.model_tester , "chunk_length" , a ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowercase_ : List[str] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowercase_ : str = True lowercase_ : List[Any] = False lowercase_ : Dict = True lowercase_ : List[Any] = model_class(a ) lowercase_ : str = model(**self._prepare_for_class(a , a ) , training=a ) lowercase_ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ : Optional[int] = True lowercase_ : int = model_class(a ) lowercase_ : Optional[Any] = model(**self._prepare_for_class(a , a ) , training=a ) lowercase_ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowercase_ : Optional[int] = model_class(a ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowercase_ : Optional[int] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=a ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowercase_ : Optional[int] = model(a ) self.assertTrue(outputs_dict is not None ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Tuple = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowercase_ : Dict = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : Optional[int] = image_processor(images=a , return_tensors="tf" ) # forward pass lowercase_ : Optional[int] = model(**a , training=a ) # verify the logits lowercase_ : Tuple = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase_ : Tuple = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Dict = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowercase_ : Union[str, Any] = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=a , return_tensors="tf" ) # forward pass lowercase_ : Dict = model(**a , training=a ) # verify the logits lowercase_ : Dict = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase_ : Union[str, Any] = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
620
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , a : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = hidden_states.shape lowercase_ : Tuple = jax.image.resize( a , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) lowercase_ : List[Any] = self.conv(a ) return hidden_states class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , a : int ): '''simple docstring''' lowercase_ : Any = self.conv(a ) return hidden_states class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: int = None __lowerCamelCase: float = 0.0 __lowerCamelCase: bool = None __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.in_channels if self.out_channels is None else self.out_channels lowercase_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ : Tuple = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ : List[str] = nn.Dense(a , dtype=self.dtype ) lowercase_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ : Any = nn.Dropout(self.dropout_prob ) lowercase_ : Dict = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase_ : Optional[Any] = None if use_nin_shortcut: lowercase_ : Union[str, Any] = nn.Conv( a , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : List[str] , a : str , a : Dict , a : List[str]=True ): '''simple docstring''' lowercase_ : Dict = hidden_states lowercase_ : int = self.norma(a ) lowercase_ : List[Any] = nn.swish(a ) lowercase_ : Dict = self.conva(a ) lowercase_ : Optional[int] = self.time_emb_proj(nn.swish(a ) ) lowercase_ : Tuple = jnp.expand_dims(jnp.expand_dims(a , 1 ) , 1 ) lowercase_ : List[str] = hidden_states + temb lowercase_ : Optional[Any] = self.norma(a ) lowercase_ : Any = nn.swish(a ) lowercase_ : List[str] = self.dropout(a , a ) lowercase_ : int = self.conva(a ) if self.conv_shortcut is not None: lowercase_ : List[str] = self.conv_shortcut(a ) return hidden_states + residual
620
1
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _A : Tuple ={'''UserAgent''': UserAgent().random} def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> dict: lowerCamelCase__ : List[Any] = script.contents[0] lowerCamelCase__ : str = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowercase : def __init__( self: Optional[Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[str] = F'''https://www.instagram.com/{username}/''' lowerCamelCase__ : Dict = self.get_json() def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Optional[Any] = requests.get(self.url , headers=UpperCamelCase__ ).text lowerCamelCase__ : Tuple = BeautifulSoup(UpperCamelCase__ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Union[str, Any] ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[str] ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["username"] @property def lowerCamelCase_ ( self: Any ): return self.user_data["full_name"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["biography"] @property def lowerCamelCase_ ( self: str ): return self.user_data["business_email"] @property def lowerCamelCase_ ( self: int ): return self.user_data["external_url"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase_ ( self: List[Any] ): return self.user_data["edge_follow"]["count"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase_ ( self: Optional[int] ): return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase_ ( self: Optional[Any] ): return self.user_data["is_verified"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["is_private"] def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "github" ) -> None: import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowerCamelCase__ : int = InstagramUser(UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _A : Dict =InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
631
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """width_multiplier""" ) ) class _lowercase : def __init__( self: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: str=13 , UpperCamelCase__: Any=64 , UpperCamelCase__: Optional[Any]=2 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]="swish" , UpperCamelCase__: Any=3 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: int=0.02 , UpperCamelCase__: Dict=True , UpperCamelCase__: Dict=True , UpperCamelCase__: Any=10 , UpperCamelCase__: int=None , UpperCamelCase__: List[Any]=0.25 , UpperCamelCase__: str=0.0 , UpperCamelCase__: Optional[int]=0.0 , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : str = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Any = conv_kernel_size lowerCamelCase__ : Any = output_stride lowerCamelCase__ : Union[str, Any] = classifier_dropout_prob lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : List[Any] = scope lowerCamelCase__ : Tuple = width_multiplier lowerCamelCase__ : List[Any] = ffn_dropout lowerCamelCase__ : Any = attn_dropout def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Union[str, Any] = MobileViTVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : str = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Dict = MobileViTVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = config_and_inputs lowerCamelCase__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = MobileViTVaModelTester(self ) lowerCamelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: Tuple ): pass def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): def check_hidden_states_output(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = outputs.hidden_states lowerCamelCase__ : List[Any] = 5 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ : int = 2 for i in range(len(UpperCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = MobileViTVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[Any] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Any = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Optional[Any] = model.to(UpperCamelCase__ ) lowerCamelCase__ : Any = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase__ ) lowerCamelCase__ : str = outputs.logits # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Any = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : List[Any] = model.to(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = outputs.logits.detach().cpu() lowerCamelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] ) lowerCamelCase__ : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) lowerCamelCase__ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
631
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ): __a = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' __a = Image.open(requests.get(a_ , stream=a_ ).raw ).convert('RGB' ) return image def SCREAMING_SNAKE_CASE ( a_ : int ): __a = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( a_ : Any , a_ : Dict , a_ : Optional[int] ): __a = dct.pop(a_ ) __a = val def SCREAMING_SNAKE_CASE ( a_ : Optional[Any] , a_ : int ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __a = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) __a = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict __a = torch.cat((q_bias, torch.zeros_like(a_ , requires_grad=a_ ), v_bias) ) __a = qkv_bias def SCREAMING_SNAKE_CASE ( a_ : List[str] ): __a = 364 if 'coco' in model_name else 224 __a = InstructBlipVisionConfig(image_size=a_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __a = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __a = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __a = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: __a = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __a = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() __a = InstructBlipConfig(vision_config=a_ , text_config=a_ , qformer_config=a_ ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( a_ : Union[str, Any] , a_ : str=None , a_ : List[str]=False ): __a = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: __a = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __a = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) __a , __a = get_blipa_config(a_ ) __a = InstructBlipForConditionalGeneration(a_ ).eval() __a = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } __a , __a = model_name_to_original[model_name] # load original model print('Loading original model...' ) __a = 'cuda:1' if torch.cuda.is_available() else 'cpu' __a = 'cuda:2' if torch.cuda.is_available() else 'cpu' __a , __a , __a = load_model_and_preprocess( name=a_ , model_type=a_ , is_eval=a_ , device=a_ ) original_model.eval() print('Done!' ) # update state dict keys __a = original_model.state_dict() __a = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __a = state_dict.pop(a_ ) if key.startswith('Qformer.bert' ): __a = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __a = key.replace('self' , 'attention' ) if "llm_proj" in key: __a = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: __a = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): __a = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): __a = key.replace('t5' , 'language' ) __a = val # read in qv biases read_in_q_v_bias(a_ , a_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(a_ , strict=a_ ) __a = load_demo_image() __a = 'What is unusual about this image?' # create processor __a = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a_ , image_std=a_ ) __a = InstructBlipProcessor( image_processor=a_ , tokenizer=a_ , qformer_tokenizer=a_ , ) __a = processor(images=a_ , text=a_ , return_tensors='pt' ).to(a_ ) # make sure processor creates exact same pixel values __a = vis_processors['eval'](a_ ).unsqueeze(0 ).to(a_ ) __a = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , a_ ) original_model.to(a_ ) hf_model.to(a_ ) with torch.no_grad(): if "vicuna" in model_name: __a = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits __a = hf_model(**a_ ).logits else: __a = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits __a = tokenizer('\n' , return_tensors='pt' ).input_ids.to(a_ ) __a = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) __a = hf_model(**a_ , labels=a_ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __a = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , a_ , atol=a_ ) print('Looks ok!' ) print('Generating with original model...' ) __a = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) __a = hf_model.generate( **a_ , do_sample=a_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __a = 2 print('Original generation:' , a_ ) __a = processor.batch_decode(a_ , skip_special_tokens=a_ ) __a = [text.strip() for text in output_text] print('HF generation:' , a_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}" ) hf_model.push_to_hub(f"Salesforce/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() UpperCAmelCase_ = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCAmelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
539
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a_ = logging.get_logger(__name__) a_ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) a_ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) a_ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) a_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) a_ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) a_ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) a_ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) a_ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) a_ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) a_ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) a_ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) a_ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) a_ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) a_ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Any = FLAX_MODEL_MAPPING a_ = auto_class_update(FlaxAutoModel) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Tuple = FLAX_MODEL_FOR_PRETRAINING_MAPPING a_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : List[str] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Any = FLAX_MODEL_FOR_MASKED_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Any = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : int = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : str = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase__ : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
719
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = AlbertTokenizer lowerCAmelCase__ : int = AlbertTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : int = True def _UpperCAmelCase ( self: Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = AlbertTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = "this is a test" __UpperCAmelCase = "this is a test" return input_text, output_text def _UpperCAmelCase ( self: Dict ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = "<pad>" __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(__lowerCAmelCase ) , 30_000 ) def _UpperCAmelCase ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _UpperCAmelCase ( self: str ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = "I was born in 92000, and this is falsé." __UpperCAmelCase = tokenizer.tokenize(__lowerCAmelCase ) __UpperCAmelCase = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __UpperCAmelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(__lowerCAmelCase ) __UpperCAmelCase = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = AlbertTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) __UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCAmelCase , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [48, 25, 21, 1_289] ) __UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _UpperCAmelCase ( self: str ) -> Dict: '''simple docstring''' __UpperCAmelCase = AlbertTokenizer(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.encode("sequence builders" ) __UpperCAmelCase = tokenizer.encode("multi-sequence build" ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' __UpperCAmelCase = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
286
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
80
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a = 1, __a = 50, __a = None, __a = "pil", __a = True, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = self.unet.config.sample_size _lowerCAmelCase : Optional[Any] = (batch_size, 3, img_size, img_size) _lowerCAmelCase : Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowerCAmelCase : Union[str, Any] = randn_tensor(__a, generator=__a, device=self.device) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a) for t in self.progress_bar(self.scheduler.timesteps): # here sigma_t == t_i from the paper _lowerCAmelCase : Optional[Any] = self.scheduler.schedule[t] _lowerCAmelCase : int = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowerCAmelCase , _lowerCAmelCase : Dict = self.scheduler.add_noise_to_input(__a, __a, generator=__a) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowerCAmelCase : Optional[int] = self.scheduler.step(__a, __a, __a, __a) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : List[str] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample _lowerCAmelCase : List[str] = self.scheduler.step_correct( __a, __a, __a, __a, step_output.prev_sample, step_output["derivative"], ) _lowerCAmelCase : Optional[int] = step_output.prev_sample _lowerCAmelCase : Tuple = (sample / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : int = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : int = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
500
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = SwinConfig(image_size=192 ) if "base" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 6 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Dict = (4, 8, 16, 32) elif "large" in model_name: __SCREAMING_SNAKE_CASE : str = 12 __SCREAMING_SNAKE_CASE : Union[str, Any] = 192 __SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __SCREAMING_SNAKE_CASE : List[str] = window_size __SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim __SCREAMING_SNAKE_CASE : Dict = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads return config def a__ ( snake_case ): """simple docstring""" if "encoder.mask_token" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __SCREAMING_SNAKE_CASE : List[Any] = '''layernorm.weight''' if name == "encoder.norm.bias": __SCREAMING_SNAKE_CASE : List[str] = '''layernorm.bias''' if "decoder" in name: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = '''swin.''' + name return name def a__ ( snake_case , snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : List[Any] = orig_state_dict.pop(snake_case ) if "attn_mask" in key: pass elif "qkv" in key: __SCREAMING_SNAKE_CASE : Any = key.split('''.''' ) __SCREAMING_SNAKE_CASE : int = int(key_split[2] ) __SCREAMING_SNAKE_CASE : Tuple = int(key_split[4] ) __SCREAMING_SNAKE_CASE : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE : List[str] = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[int] = val[ :dim ] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Any = val[ -dim: ] else: __SCREAMING_SNAKE_CASE : Tuple = val return orig_state_dict def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = torch.load(snake_case , map_location='''cpu''' )['''model'''] __SCREAMING_SNAKE_CASE : int = get_swin_config(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = SwinForMaskedImageModeling(snake_case ) model.eval() __SCREAMING_SNAKE_CASE : int = convert_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case ) __SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) __SCREAMING_SNAKE_CASE : Tuple = image_processor(images=snake_case , return_tensors='''pt''' ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
74
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCAmelCase_ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=2 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=None , _UpperCamelCase=2 , _UpperCamelCase=2 , )-> Tuple: _A = parent _A = batch_size _A = patch_size _A = max_length _A = num_mel_bins _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = frequency_stride _A = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _A = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _A = (self.max_length - self.patch_size) // self.time_stride + 1 _A = frequency_out_dimension * time_out_dimension _A = num_patches + 2 def UpperCamelCase ( self )-> int: _A = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, input_values, labels def UpperCamelCase ( self )-> int: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )-> Optional[Any]: _A = ASTModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _A = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self )-> Any: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_values': input_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __UpperCAmelCase =( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )-> Union[str, Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase ( self )-> List[str]: _A = ASTModelTester(self ) _A = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCamelCase ( self )-> List[Any]: pass def UpperCamelCase ( self )-> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self )-> List[str]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCamelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['input_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase ( self )-> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) @slow def UpperCamelCase ( self )-> Tuple: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ASTModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" _A = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) _A , _A = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self )-> Dict: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCamelCase ( self )-> Any: _A = self.default_feature_extractor _A = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(_UpperCamelCase ) _A = self.default_feature_extractor _A , _A = prepare_audio() _A = audio.squeeze().numpy() _A = feature_extractor(_UpperCamelCase , sampling_rate=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCamelCase ) # verify the logits _A = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _A = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
292
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger a =get_logger(__name__) a =Path(__file__).parent / """model_card_template.md""" a =uuida().hex a =os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES a =os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES a =HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = None ) -> str: __lowerCamelCase : List[Any] = F"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"; torch/{_torch_version}" if is_flax_available(): ua += F"; jax/{_jax_version}" ua += F"; flax/{_flax_version}" if is_onnx_available(): ua += F"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): ua += "; " + "; ".join(F"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> Any: if token is None: __lowerCamelCase : List[Any] = HfFolder.get_token() if organization is None: __lowerCamelCase : List[Any] = whoami(lowerCamelCase__ )['name'] return F"{username}/{model_id}" else: return F"{organization}/{model_id}" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(lowerCamelCase__ , 'local_rank' ) and args.local_rank not in [-1, 0]: return __lowerCamelCase : Union[str, Any] = args.hub_token if hasattr(lowerCamelCase__ , 'hub_token' ) else None __lowerCamelCase : Dict = get_full_repo_name(lowerCamelCase__ , token=lowerCamelCase__ ) __lowerCamelCase : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCamelCase__ , model_name=lowerCamelCase__ , repo_name=lowerCamelCase__ , dataset_name=args.dataset_name if hasattr(lowerCamelCase__ , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCamelCase__ , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCamelCase__ , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(lowerCamelCase__ , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCamelCase__ , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCamelCase__ , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCamelCase__ , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCamelCase__ , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCamelCase__ , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(lowerCamelCase__ , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCamelCase__ , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) __lowerCamelCase : int = os.path.join(args.output_dir , 'README.md' ) model_card.save(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = None ) -> Dict: if resolved_file is None or commit_hash is not None: return commit_hash __lowerCamelCase : str = str(Path(lowerCamelCase__ ).as_posix() ) __lowerCamelCase : List[str] = re.search(R'snapshots/([^/]+)/' , lowerCamelCase__ ) if search is None: return None __lowerCamelCase : Optional[int] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCamelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. a =os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) a =os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = None , lowerCamelCase__ = None ) -> None: if new_cache_dir is None: __lowerCamelCase : List[Any] = DIFFUSERS_CACHE if old_cache_dir is None: __lowerCamelCase : int = old_diffusers_cache __lowerCamelCase : List[str] = Path(lowerCamelCase__ ).expanduser() __lowerCamelCase : int = Path(lowerCamelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __lowerCamelCase : str = new_cache_dir / old_blob_path.relative_to(lowerCamelCase__ ) new_blob_path.parent.mkdir(parents=lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.replace(lowerCamelCase__ , lowerCamelCase__ ) try: os.symlink(lowerCamelCase__ , lowerCamelCase__ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). a =os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): a =0 else: with open(cache_version_file) as f: try: a =int(f.read()) except ValueError: a =0 if cache_version < 1: a =os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: a ="""\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = None ) -> str: if variant is not None: __lowerCamelCase : List[Any] = weights_name.split('.' ) __lowerCamelCase : Union[str, Any] = splits[:-1] + [variant] + splits[-1:] __lowerCamelCase : Tuple = '.'.join(lowerCamelCase__ ) return weights_name def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , *, lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ) -> str: __lowerCamelCase : Union[str, Any] = str(lowerCamelCase__ ) if os.path.isfile(lowerCamelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(lowerCamelCase__ ): if os.path.isfile(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ): # Load from a PyTorch checkpoint __lowerCamelCase : List[Any] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ): __lowerCamelCase : Union[str, Any] = os.path.join(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return model_file else: raise EnvironmentError( F"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCamelCase__ ).base_version ) >= version.parse('0.20.0' ) ): try: __lowerCamelCase : str = hf_hub_download( lowerCamelCase__ , filename=_add_variant(lowerCamelCase__ , lowerCamelCase__ ) , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , proxies=lowerCamelCase__ , resume_download=lowerCamelCase__ , local_files_only=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , user_agent=lowerCamelCase__ , subfolder=lowerCamelCase__ , revision=revision or commit_hash , ) warnings.warn( F"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , lowerCamelCase__ , ) return model_file except: # noqa: E722 warnings.warn( F"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCamelCase__ , lowerCamelCase__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(lowerCamelCase__ , lowerCamelCase__ )}' so that the correct variant file can be added." , lowerCamelCase__ , ) try: # 2. Load model file as usual __lowerCamelCase : int = hf_hub_download( lowerCamelCase__ , filename=lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , proxies=lowerCamelCase__ , resume_download=lowerCamelCase__ , local_files_only=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , user_agent=lowerCamelCase__ , subfolder=lowerCamelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " 'this model name. Check the model page at ' F"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( F"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( F"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" F" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" F" directory containing a file named {weights_name} or" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " F"containing a file named {weights_name}" )
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a ={ """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""MaskFormerFeatureExtractor"""] a =["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] a =[ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
337
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase_ : Optional[int] = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'facebook/nllb-200-distilled-600M' lowerCAmelCase_ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) lowerCAmelCase_ = 'translator' lowerCAmelCase_ = AutoTokenizer lowerCAmelCase_ = AutoModelForSeqaSeqLM lowerCAmelCase_ = LANGUAGE_CODES lowerCAmelCase_ = ['text', 'text', 'text'] lowerCAmelCase_ = ['text'] def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Optional[Any],__A : int ): if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _lowerCamelCase : List[str] = self.lang_to_code[src_lang] _lowerCamelCase : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __A,return_tensors="pt",src_lang=__A,tgt_lang=__A ) def lowerCamelCase_ ( self : Dict,__A : str ): return self.model.generate(**__A ) def lowerCamelCase_ ( self : int,__A : Optional[Any] ): return self.post_processor.decode(outputs[0].tolist(),skip_special_tokens=__A )
44
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Path , __SCREAMING_SNAKE_CASE : Union[str, None] = None , __SCREAMING_SNAKE_CASE : Union[List[str], None] = None , __SCREAMING_SNAKE_CASE : Union[str, List[str], None] = None , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[str]: __UpperCAmelCase =[file for file in os.listdir(__SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )] if identifier is not None: __UpperCAmelCase =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for n_ in n_identifier: __UpperCAmelCase =[file for file in files if n_ not in file] else: __UpperCAmelCase =[file for file in files if n_identifier not in file] __UpperCAmelCase =ignore_files or [] ignore_files.append("""__init__.py""" ) __UpperCAmelCase =[file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __SCREAMING_SNAKE_CASE ) if only_modules: __UpperCAmelCase =file.split(""".""" )[0] try: __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =doctest.DocTestSuite(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =unittest.TextTestRunner().run(__SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __UpperCAmelCase =doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""modeling""" __UpperCAmelCase =[ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""tokenization""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""configuration""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Tuple: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase =["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , n_identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Tuple: __UpperCAmelCase =Path("""docs/source""" ) __UpperCAmelCase =["""favicon.ico"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE , only_modules=__SCREAMING_SNAKE_CASE )
68
0
"""simple docstring""" def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCAmelCase : List[str] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase : Optional[Any] = str(bin(_lowerCamelCase ) )[2:] UpperCAmelCase : Optional[int] = max(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) , b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Any = year % 19 UpperCAmelCase : Any = year % 4 UpperCAmelCase : str = year % 7 UpperCAmelCase : Union[str, Any] = math.floor(year / 100 ) UpperCAmelCase : Optional[Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCAmelCase : int = leap_day_inhibits / 4 UpperCAmelCase : int = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCAmelCase : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase : int = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCAmelCase : Tuple = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase , 4 , 18 ) else: return datetime(UpperCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): A: Any = "will be" if year > datetime.now().year else "was" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
359
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = StableDiffusionXLImgaImgPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'} SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase_ = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) lowerCamelCase_ = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image / 2 + 0.5 if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # forward without prompt embeds lowerCamelCase_ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 3 * ['this is a negative prompt'] lowerCamelCase_ = negative_prompt lowerCamelCase_ = 3 * [inputs['prompt']] lowerCamelCase_ = sd_pipe(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase_ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 3 * ['this is a negative prompt'] lowerCamelCase_ = 3 * [inputs.pop('prompt' )] ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = sd_pipe.encode_prompt(SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = sd_pipe( **SCREAMING_SNAKE_CASE_ , prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 4, 64, 64) ) lowerCamelCase_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.get_inputs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
42
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = False ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = "arrow" ,**__lowerCamelCase ,) -> Dict: """simple docstring""" super().__init__( split=__lowerCamelCase ,features=__lowerCamelCase ,cache_dir=__lowerCamelCase ,keep_in_memory=__lowerCamelCase ,streaming=__lowerCamelCase ,**__lowerCamelCase ,) lowerCAmelCase__ : List[Any] = load_from_cache_file lowerCAmelCase__ : Any = file_format lowerCAmelCase__ : Dict = Spark( df=__lowerCamelCase ,features=__lowerCamelCase ,cache_dir=__lowerCamelCase ,working_dir=__lowerCamelCase ,**__lowerCamelCase ,) def lowerCAmelCase__ (self ) -> str: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase__ : List[str] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCamelCase ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
647
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): for param in module.parameters(): __a : str = False def __UpperCamelCase ( ): __a : Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __a : Union[str, Any] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : List[str] = plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def __UpperCamelCase ( ): __a : Union[str, Any] = datetime.now() __a : Optional[Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
709
def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): return abs(lowerCAmelCase__ ) if a == 0 else greatest_common_divisor(b % a , lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): while y: # --> when y=0 then loop will terminate and return x as final GCD. __a , __a : Any = y, x % y return abs(lowerCAmelCase__ ) def __UpperCamelCase ( ): try: __a : str = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __a : Optional[int] = int(nums[0] ) __a : List[str] = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCAmelCase__ , lowerCAmelCase__ )}" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
326
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: a = FileLock(str(tmpdir / "foo.lock")) a = FileLock(str(tmpdir / "foo.lock")) a = 0.01 with locka.acquire(): with pytest.raises(__UpperCamelCase): a = time.time() locka.acquire(__UpperCamelCase) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[Any]: a = "a" * 10_00 + ".lock" a = FileLock(str(tmpdir / filename)) assert locka._lock_file.endswith(".lock") assert not locka._lock_file.endswith(__UpperCamelCase) assert len(os.path.basename(locka._lock_file)) <= 2_55 a = FileLock(tmpdir / filename) with locka.acquire(): with pytest.raises(__UpperCamelCase): locka.acquire(0)
515
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list: a = False while is_sorted is False: # Until all the indices are traversed keep looping a = True for i in range(0 , len(__UpperCamelCase) - 1 , 2): # iterating over all even indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False for i in range(1 , len(__UpperCamelCase) - 1 , 2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False return input_list if __name__ == "__main__": print("Enter list to be sorted") lowercase__ : Dict = [int(x) for x in input().split()] # inputing elements of the list in one line lowercase__ : Any = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
515
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: UpperCAmelCase__ = 1.5 UpperCAmelCase__ = int(factor * num_class_images ) UpperCAmelCase__ = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase__ = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase__ = int(factor * num_images ) UpperCAmelCase__ = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = tqdm(desc="""downloading real regularization images""" , total=_SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , """w""" ) as fa, open(F'''{class_data_dir}/urls.txt''' , """w""" ) as fa, open( F'''{class_data_dir}/images.txt''' , """w""" ) as fa: while total < num_class_images: UpperCAmelCase__ = class_images[count] count += 1 try: UpperCAmelCase__ = requests.get(images["""url"""] ) if img.status_code == 2_0_0: UpperCAmelCase__ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case__ ( ) ->Optional[int]: UpperCAmelCase__ = argparse.ArgumentParser("""""" , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=2_0_0 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": a : List[str] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
717
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=2 , __lowercase=99 , __lowercase=0 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=2 , __lowercase=0.02 , __lowercase=2 , __lowercase=4 , __lowercase="last" , __lowercase=True , __lowercase=None , __lowercase=0 , ): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_lengths UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = gelu_activation UpperCAmelCase__ = sinusoidal_embeddings UpperCAmelCase__ = causal UpperCAmelCase__ = asm UpperCAmelCase__ = n_langs UpperCAmelCase__ = vocab_size UpperCAmelCase__ = n_special UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = summary_type UpperCAmelCase__ = use_proj UpperCAmelCase__ = scope UpperCAmelCase__ = bos_token_id def A__ ( self ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_input_lengths: UpperCAmelCase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A__ ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = XLMModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , lengths=__lowercase , langs=__lowercase ) UpperCAmelCase__ = model(__lowercase , langs=__lowercase ) UpperCAmelCase__ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = XLMWithLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = XLMForQuestionAnsweringSimple(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase ) UpperCAmelCase__ = model(__lowercase , start_positions=__lowercase , end_positions=__lowercase ) UpperCAmelCase__ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = XLMForQuestionAnswering(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase ) UpperCAmelCase__ = model( __lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , p_mask=__lowercase , ) UpperCAmelCase__ = model( __lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , ) ((UpperCAmelCase__) , ) = result_with_labels.to_tuple() UpperCAmelCase__ = model(__lowercase , start_positions=__lowercase , end_positions=__lowercase ) ((UpperCAmelCase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = XLMForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase ) UpperCAmelCase__ = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = XLMForTokenClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = XLMForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class _UpperCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __lowercase : Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __lowercase : Dict = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A__ ( self , __lowercase , __lowercase , __lowercase=False ): UpperCAmelCase__ = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def A__ ( self ): UpperCAmelCase__ = XLMModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__lowercase , emb_dim=37 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__lowercase ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False , __lowercase=1 ): self.assertIsInstance(__lowercase , __lowercase ) self.assertListEqual( [isinstance(__lowercase , __lowercase ) for iter_attentions in attentions] , [True] * len(__lowercase ) ) self.assertEqual(len(__lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__lowercase ): # adds PAD dummy token UpperCAmelCase__ = min_length + idx + 1 UpperCAmelCase__ = min_length + idx + 1 UpperCAmelCase__ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__lowercase ) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False , __lowercase=1 ): self.assertIsInstance(__lowercase , __lowercase ) self.assertListEqual( [isinstance(__lowercase , __lowercase ) for iter_hidden_states in hidden_states] , [True] * len(__lowercase ) , ) self.assertEqual(len(__lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__lowercase ): # adds PAD dummy token UpperCAmelCase__ = min_length + idx + 1 UpperCAmelCase__ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__lowercase ) , ) pass @slow def A__ ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = XLMModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase__ = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(__lowercase ) UpperCAmelCase__ = torch.tensor([[14, 447]] , dtype=torch.long , device=__lowercase ) # the president UpperCAmelCase__ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase__ = model.generate(__lowercase , do_sample=__lowercase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __lowercase )
422
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE = """bart""" SCREAMING_SNAKE_CASE = True @st.cache(allow_output_mutation=lowercase__ ) def snake_case_ ( ): if LOAD_DENSE_INDEX: UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) UpperCAmelCase__ : Tuple = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) UpperCAmelCase__ : int = qar_model.eval() else: UpperCAmelCase__ , UpperCAmelCase__ : str = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) UpperCAmelCase__ : Any = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) UpperCAmelCase__ : List[Any] = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) UpperCAmelCase__ : List[str] = sas_model.eval() else: UpperCAmelCase__ , UpperCAmelCase__ : str = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowercase__ ) def snake_case_ ( ): if LOAD_DENSE_INDEX: UpperCAmelCase__ : List[Any] = faiss.StandardGpuResources() UpperCAmelCase__ : Any = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] UpperCAmelCase__ : List[Any] = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_2_8) , ) UpperCAmelCase__ : Optional[Any] = faiss.IndexFlatIP(1_2_8 ) UpperCAmelCase__ : Optional[int] = faiss.index_cpu_to_gpu(lowercase__ , 1 , lowercase__ ) wikiaab_gpu_index_flat.add(lowercase__ ) # TODO fix for larger GPU else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (None, None) UpperCAmelCase__ : Any = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowercase__ ) def snake_case_ ( ): UpperCAmelCase__ : Any = datasets.load_dataset("eli5" , name="LFQA_reddit" ) UpperCAmelCase__ : List[Any] = elia["train_eli5"] UpperCAmelCase__ : List[str] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_2_8) ) UpperCAmelCase__ : Dict = faiss.IndexFlatIP(1_2_8 ) eli5_train_q_index.add(lowercase__ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = load_indexes() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = load_models() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = load_train_data() def snake_case_ ( lowercase__ , lowercase__=1_0 ): UpperCAmelCase__ : Dict = embed_questions_for_retrieval([question] , lowercase__ , lowercase__ ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = eli5_train_q_index.search(lowercase__ , lowercase__ ) UpperCAmelCase__ : str = [elia_train[int(lowercase__ )] for i in I[0]] return nn_examples def snake_case_ ( lowercase__ , lowercase__="wiki40b" , lowercase__="dense" , lowercase__=1_0 ): if source == "none": UpperCAmelCase__ , UpperCAmelCase__ : Tuple = (" <P> ".join(["" for _ in range(1_1 )] ).strip(), []) else: if method == "dense": UpperCAmelCase__ , UpperCAmelCase__ : Any = query_qa_dense_index( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: UpperCAmelCase__ , UpperCAmelCase__ : int = query_es_index( lowercase__ , lowercase__ , index_name="english_wiki40b_snippets_100w" , n_results=lowercase__ , ) UpperCAmelCase__ : Union[str, Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] UpperCAmelCase__ : Dict = "question: {} context: {}".format(lowercase__ , lowercase__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase__ : None), } ) def snake_case_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=6_4 , lowercase__=2_5_6 , lowercase__=False , lowercase__=2 , lowercase__=0.95 , lowercase__=0.8 ): with torch.no_grad(): UpperCAmelCase__ : List[Any] = qa_sas_generate( lowercase__ , lowercase__ , lowercase__ , num_answers=1 , num_beams=lowercase__ , min_len=lowercase__ , max_len=lowercase__ , do_sample=lowercase__ , temp=lowercase__ , top_p=lowercase__ , top_k=lowercase__ , max_input_length=1_0_2_4 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar SCREAMING_SNAKE_CASE = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" SCREAMING_SNAKE_CASE = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Demo options""") if demo_options: SCREAMING_SNAKE_CASE = st.sidebar.selectbox( """""", action_list, index=3, ) SCREAMING_SNAKE_CASE = action_list.index(action_st) SCREAMING_SNAKE_CASE = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) SCREAMING_SNAKE_CASE = show_type == """Show full text of passages""" else: SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: SCREAMING_SNAKE_CASE = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: SCREAMING_SNAKE_CASE = """wiki40b""" SCREAMING_SNAKE_CASE = """dense""" SCREAMING_SNAKE_CASE = """beam""" SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 6_4 SCREAMING_SNAKE_CASE = 2_5_6 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Generation options""") if generate_options: SCREAMING_SNAKE_CASE = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) SCREAMING_SNAKE_CASE = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE = None # start main text SCREAMING_SNAKE_CASE = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] SCREAMING_SNAKE_CASE = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE = st.text_input("""Enter your question here:""", """""") else: SCREAMING_SNAKE_CASE = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) SCREAMING_SNAKE_CASE = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE = support_list[:1_0] SCREAMING_SNAKE_CASE = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) SCREAMING_SNAKE_CASE = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE = """[{}]({})""".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE = sec_titles.split(""" & """) SCREAMING_SNAKE_CASE = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE = find_nearest_training(question) SCREAMING_SNAKE_CASE = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) SCREAMING_SNAKE_CASE = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) SCREAMING_SNAKE_CASE = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
199
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : Optional[Any]=7 , snake_case__ : Tuple=3 , snake_case__ : Optional[Any]=18 , snake_case__ : Dict=30 , snake_case__ : Optional[int]=4_00 , snake_case__ : str=True , snake_case__ : str=None , snake_case__ : Optional[int]=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = image_size UpperCAmelCase__ : Tuple = min_resolution UpperCAmelCase__ : Optional[int] = max_resolution UpperCAmelCase__ : Any = do_resize UpperCAmelCase__ : Any = size UpperCAmelCase__ : int = do_normalize def UpperCamelCase ( self : List[str] ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCAmelCase_ ( A , unittest.TestCase ): '''simple docstring''' lowercase_ : Any = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = ImageGPTImageProcessingTester(self ) @property def UpperCamelCase ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "clusters" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : List[str] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case__ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : Union[str, Any] = os.path.join(snake_case__ , "image_processor.json" ) image_processor_first.to_json_file(snake_case__ ) UpperCAmelCase__ : Any = self.image_processing_class.from_json_file(snake_case__ ).to_dict() UpperCAmelCase__ : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case__ ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case__ ) UpperCAmelCase__ : List[str] = self.image_processing_class.from_pretrained(snake_case__ ).to_dict() UpperCAmelCase__ : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case__ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass def snake_case_ ( ): UpperCAmelCase__ : List[str] = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) UpperCAmelCase__ : Tuple = Image.open(dataset[4]["file"] ) UpperCAmelCase__ : List[Any] = Image.open(dataset[5]["file"] ) UpperCAmelCase__ : Optional[Any] = [imagea, imagea] return images @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) UpperCAmelCase__ : Union[str, Any] = prepare_images() # test non-batched UpperCAmelCase__ : Optional[Any] = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) UpperCAmelCase__ : Union[str, Any] = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case__ ) # test batched UpperCAmelCase__ : List[Any] = image_processing(snake_case__ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) UpperCAmelCase__ : List[str] = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case__ )
199
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ): '''simple docstring''' __A = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase__ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase__ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase__ ) return parser.parse_args() def UpperCAmelCase ( ): '''simple docstring''' __A = parse_args() # Import training_script as a module. __A = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A = script_fpath.stem __A = importlib.import_module(lowerCAmelCase__ ) # Patch sys.argv __A = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
205
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case_ : List[str] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case_ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
205
1
"""simple docstring""" import math import sys def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = '''''' try: with open(lowercase_ , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : Dict = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = '''''', '''''' __SCREAMING_SNAKE_CASE : Tuple = len(lowercase_ ) for i in range(len(lowercase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : int = lexicon[curr_string] result += last_match_id __SCREAMING_SNAKE_CASE : str = last_match_id + '''0''' if math.loga(lowercase_ ).is_integer(): __SCREAMING_SNAKE_CASE : Optional[Any] = {} for curr_key in list(lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = lexicon.pop(lowercase_ ) __SCREAMING_SNAKE_CASE : List[Any] = new_lex __SCREAMING_SNAKE_CASE : Dict = last_match_id + '''1''' index += 1 __SCREAMING_SNAKE_CASE : List[Any] = '''''' return result def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : str = 8 try: with open(lowercase_ , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : str = [ to_write[i : i + byte_length] for i in range(0 , len(lowercase_ ) , lowercase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowercase_ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 __SCREAMING_SNAKE_CASE : Tuple = data_bits[counter:] __SCREAMING_SNAKE_CASE : int = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(lowercase_ ) __SCREAMING_SNAKE_CASE : List[Any] = remove_prefix(lowercase_ ) __SCREAMING_SNAKE_CASE : Tuple = decompress_data(lowercase_ ) write_file_binary(lowercase_ , lowercase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
674
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''xlm-prophetnet''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self :List[str] , _lowerCamelCase :Optional[float] = 0.1 , _lowerCamelCase :Optional[Union[str, Callable]] = "gelu" , _lowerCamelCase :Optional[int] = 3_0_5_2_2 , _lowerCamelCase :Optional[int] = 1_0_2_4 , _lowerCamelCase :Optional[int] = 4_0_9_6 , _lowerCamelCase :Optional[int] = 1_2 , _lowerCamelCase :Optional[int] = 1_6 , _lowerCamelCase :Optional[int] = 4_0_9_6 , _lowerCamelCase :Optional[int] = 1_2 , _lowerCamelCase :Optional[int] = 1_6 , _lowerCamelCase :Optional[float] = 0.1 , _lowerCamelCase :Optional[float] = 0.1 , _lowerCamelCase :Optional[int] = 5_1_2 , _lowerCamelCase :Optional[float] = 0.0_2 , _lowerCamelCase :Optional[bool] = True , _lowerCamelCase :Optional[bool] = True , _lowerCamelCase :Optional[int] = 0 , _lowerCamelCase :Optional[int] = 2 , _lowerCamelCase :Optional[int] = 3_2 , _lowerCamelCase :Optional[int] = 1_2_8 , _lowerCamelCase :Optional[bool] = False , _lowerCamelCase :Optional[float] = 0.0 , _lowerCamelCase :Optional[bool] = True , _lowerCamelCase :Optional[int] = 0 , _lowerCamelCase :Optional[int] = 1 , _lowerCamelCase :Optional[int] = 2 , **_lowerCamelCase :int , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : str = num_encoder_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_encoder_attention_heads __SCREAMING_SNAKE_CASE : str = decoder_ffn_dim __SCREAMING_SNAKE_CASE : List[Any] = num_decoder_layers __SCREAMING_SNAKE_CASE : List[str] = num_decoder_attention_heads __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : Any = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE : Any = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE : List[Any] = ngram __SCREAMING_SNAKE_CASE : int = num_buckets __SCREAMING_SNAKE_CASE : List[str] = relative_max_distance __SCREAMING_SNAKE_CASE : str = disable_ngram_loss __SCREAMING_SNAKE_CASE : Optional[int] = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE : int = attention_dropout __SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout __SCREAMING_SNAKE_CASE : Dict = dropout __SCREAMING_SNAKE_CASE : Any = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , add_cross_attention=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) @property def SCREAMING_SNAKE_CASE_ ( self :int ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :List[Any] ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
674
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> Tuple: if config_name_or_path is None: lowerCamelCase : Optional[int] ='''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: lowerCamelCase : int =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase : Optional[int] =question_encoder_name_or_path lowerCamelCase : Tuple =RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. lowerCamelCase : List[str] =RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] =gen_config lowerCamelCase : Optional[Any] =question_encoder_config lowerCamelCase : Any =model_class.from_pretrained_question_encoder_generator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) rag_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Sanity check. model_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Save tokenizers. lowerCamelCase : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) lowerCamelCase : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) snake_case_ = parser.parse_args() snake_case_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
262
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case_ ( _A): def __lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__lowercase , '''depth_multiplier''' ) ) class snake_case_ : def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=3 , __lowercase=3_2 , __lowercase=0.2_5 , __lowercase=8 , __lowercase=8 , __lowercase=6 , __lowercase=3_2 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase="relu6" , __lowercase=1_2_8_0 , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=1_0 , __lowercase=None , ) -> int: lowerCamelCase : Union[str, Any] =parent lowerCamelCase : Union[str, Any] =batch_size lowerCamelCase : int =num_channels lowerCamelCase : str =image_size lowerCamelCase : List[Any] =depth_multiplier lowerCamelCase : Dict =depth_divisible_by lowerCamelCase : Optional[Any] =min_depth lowerCamelCase : Optional[Any] =expand_ratio lowerCamelCase : List[str] =tf_padding lowerCamelCase : int =output_stride lowerCamelCase : Optional[Any] =first_layer_is_expansion lowerCamelCase : List[Any] =finegrained_output lowerCamelCase : int =hidden_act lowerCamelCase : List[str] =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowerCamelCase : str =classifier_dropout_prob lowerCamelCase : int =use_labels lowerCamelCase : Optional[int] =is_training lowerCamelCase : int =num_labels lowerCamelCase : Dict =initializer_range lowerCamelCase : Tuple =scope def __lowercase ( self ) -> List[str]: lowerCamelCase : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Tuple =None lowerCamelCase : Any =None if self.use_labels: lowerCamelCase : int =ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : List[str] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: lowerCamelCase : Optional[Any] =MobileNetVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase : int =model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: lowerCamelCase : Optional[Any] =self.num_labels lowerCamelCase : Optional[int] =MobileNetVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase : Any =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> str: lowerCamelCase : int =self.num_labels lowerCamelCase : List[Any] =MobileNetVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase : List[str] =model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase : Union[str, Any] =model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self ) -> Optional[Any]: lowerCamelCase : Any =self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : str =config_and_inputs lowerCamelCase : Dict ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( _A , _A , unittest.TestCase): lowerCamelCase :Union[str, Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase :Any = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase :List[str] = False lowerCamelCase :Dict = False lowerCamelCase :Any = False lowerCamelCase :Dict = False def __lowercase ( self ) -> Any: lowerCamelCase : Union[str, Any] =MobileNetVaModelTester(self ) lowerCamelCase : List[str] =MobileNetVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> List[Any]: lowerCamelCase , lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int =model_class(__lowercase ) lowerCamelCase : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : str =[*signature.parameters.keys()] lowerCamelCase : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowercase ( self ) -> str: def check_hidden_states_output(__lowercase , __lowercase , __lowercase ): lowerCamelCase : Dict =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowerCamelCase : Tuple =model(**self._prepare_for_class(__lowercase , __lowercase ) ) lowerCamelCase : Union[str, Any] =outputs.hidden_states lowerCamelCase : Tuple =1_6 self.assertEqual(len(__lowercase ) , __lowercase ) lowerCamelCase , lowerCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Optional[int] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def __lowercase ( self ) -> List[Any]: lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def __lowercase ( self ) -> int: lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def __lowercase ( self ) -> List[Any]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Dict =MobileNetVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def A__ ( ) -> List[Any]: lowerCamelCase : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase): @cached_property def __lowercase ( self ) -> int: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> int: lowerCamelCase : Tuple =MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__lowercase ) lowerCamelCase : Dict =self.default_image_processor lowerCamelCase : Dict =prepare_img() lowerCamelCase : List[Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): lowerCamelCase : Any =model(**__lowercase ) # verify the logits lowerCamelCase : Optional[Any] =torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __lowercase ) lowerCamelCase : Optional[Any] =torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) ) @slow def __lowercase ( self ) -> List[Any]: lowerCamelCase : Optional[Any] =MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowerCamelCase : Union[str, Any] =model.to(__lowercase ) lowerCamelCase : List[Any] =MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowerCamelCase : Any =prepare_img() lowerCamelCase : Dict =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): lowerCamelCase : Optional[Any] =model(**__lowercase ) lowerCamelCase : List[str] =outputs.logits # verify the logits lowerCamelCase : int =torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , __lowercase ) lowerCamelCase : List[Any] =torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1e-4 ) )
262
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : int = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : Dict = { """yjernite/retribert-base-uncased""": 512, } __lowerCamelCase : List[str] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["input_ids", "attention_mask"] def __init__( self : Dict , __A : Tuple=None , __A : List[Any]=None , __A : Optional[Any]=True , __A : List[Any]="[UNK]" , __A : Any="[SEP]" , __A : str="[PAD]" , __A : List[str]="[CLS]" , __A : str="[MASK]" , __A : Tuple=True , __A : str=None , **__A : Tuple , ): super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) snake_case__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __A ) != do_lower_case or normalizer_state.get("strip_accents" , __A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __A ) != tokenize_chinese_chars ): snake_case__ : List[str] = getattr(__A , normalizer_state.pop("type" ) ) snake_case__ : List[str] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Any = tokenize_chinese_chars snake_case__ : Any = normalizer_class(**__A ) snake_case__ : List[Any] = do_lower_case def _lowercase ( self : Any , __A : Any , __A : str=None ): snake_case__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[int] = [self.sep_token_id] snake_case__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): snake_case__ : int = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
297
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Dict , __A : str=1_3 , __A : str=7 , __A : Optional[int]=True , __A : int=True , __A : str=True , __A : Tuple=True , __A : Optional[int]=9_9 , __A : Optional[int]=3_2 , __A : Any=5 , __A : List[Any]=4 , __A : str=3_7 , __A : Union[str, Any]="gelu" , __A : str=0.1 , __A : Dict=0.1 , __A : Union[str, Any]=5_1_2 , __A : str=1_6 , __A : Optional[int]=2 , __A : List[Any]=0.0_2 , __A : Union[str, Any]=3 , __A : Optional[Any]=4 , __A : Optional[int]=None , ): snake_case__ : int = parent snake_case__ : str = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Dict = use_input_mask snake_case__ : Any = use_token_type_ids snake_case__ : Optional[Any] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : int = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : Union[str, Any] = initializer_range snake_case__ : str = num_labels snake_case__ : List[Any] = num_choices snake_case__ : Union[str, Any] = scope def _lowercase ( self : int ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = None snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Optional[Any] ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def _lowercase ( self : Tuple , __A : Optional[Any] , __A : Optional[int] , __A : List[str] , __A : Optional[int] , __A : Union[str, Any] , __A : List[Any] , __A : Tuple ): snake_case__ : List[str] = NystromformerModel(config=__A ) model.to(__A ) model.eval() snake_case__ : str = model(__A , attention_mask=__A , token_type_ids=__A ) snake_case__ : Optional[int] = model(__A , token_type_ids=__A ) snake_case__ : Any = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __A : Tuple , __A : Tuple , __A : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Union[str, Any] , __A : Tuple ): snake_case__ : Dict = NystromformerForMaskedLM(config=__A ) model.to(__A ) model.eval() snake_case__ : Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , __A : List[str] , __A : Tuple , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Union[str, Any] ): snake_case__ : Any = NystromformerForQuestionAnswering(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : str , __A : str , __A : Any , __A : str , __A : Optional[int] , __A : str , __A : Optional[Any] , __A : Union[str, Any] ): snake_case__ : List[str] = self.num_labels snake_case__ : Dict = NystromformerForSequenceClassification(__A ) model.to(__A ) model.eval() snake_case__ : Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] , __A : Optional[Any] , __A : Any , __A : Optional[Any] , __A : int , __A : Union[str, Any] , __A : List[str] , __A : Any ): snake_case__ : int = self.num_labels snake_case__ : Tuple = NystromformerForTokenClassification(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Union[str, Any] , __A : List[str] , __A : Union[str, Any] , __A : List[str] , __A : Dict , __A : List[Any] , __A : str , __A : Optional[int] ): snake_case__ : str = self.num_choices snake_case__ : Optional[int] = NystromformerForMultipleChoice(config=__A ) model.to(__A ) model.eval() snake_case__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[int] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : str = config_and_inputs snake_case__ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def _lowercase ( self : Any ): snake_case__ : int = NystromformerModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : str ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : str = type self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Tuple ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : int ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Any ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def _lowercase ( self : int ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = NystromformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : List[Any] ): snake_case__ : str = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case__ : Any = model(__A )[0] snake_case__ : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __A ) snake_case__ : Union[str, Any] = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) ) @slow def _lowercase ( self : Optional[int] ): snake_case__ : Union[str, Any] = "the [MASK] of Belgium is Brussels" snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ : Tuple = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ : List[Any] = tokenizer(__A , return_tensors="pt" ) with torch.no_grad(): snake_case__ : List[str] = model(encoding.input_ids ).logits snake_case__ : Optional[int] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__A ) , "capital" )
297
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def lowerCAmelCase ( UpperCamelCase_: Accelerator , UpperCamelCase_: int = 16 ) -> Dict: '''simple docstring''' _a = AutoTokenizer.from_pretrained("bert-base-cased" ) _a = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCamelCase_: Optional[int] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCamelCase_: int ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( UpperCamelCase_ , padding="longest" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets["train"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) _a = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] ) -> Optional[int]: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCamelCase_ ) == "1": _a = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _a = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: _a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config["lr"] _a = int(config["num_epochs"] ) _a = int(config["seed"] ) _a = int(config["batch_size"] ) set_seed(UpperCamelCase_ ) _a , _a = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) _a = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a = batch_size // MAX_GPU_BATCH_SIZE _a = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _a = os.path.split(UpperCamelCase_ )[-1].split("." )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _a = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a = model(**UpperCamelCase_ ) _a = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _a = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _a = model(**UpperCamelCase_ ) _a = outputs.logits.argmax(dim=-1 ) _a , _a = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(UpperCamelCase_ ), "epoch": epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ) -> int: '''simple docstring''' _a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=UpperCamelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) _a = parser.parse_args() _a = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
612
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Any: '''simple docstring''' _a = os.path.join(args.tf_model_dir , "parameters.json" ) _a = json.loads(open(UpperCamelCase_ ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(".pt" ): _a = args.output + ".pt" _a = OrderedDict() with tf.device("/CPU:0" ): _a = tf.train.load_checkpoint(args.tf_model_dir ) _a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _a = reader.get_tensor(UpperCamelCase_ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _a = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _a = 8 _a = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/moe" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/softmlp/kernel" ): _a = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _a = key_name[-9:-7] for i in range(16 ): _a = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/mlp" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p1/bias" ): _a = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p2/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p2/bias" ): _a = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/ln" ): _a = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _a = "model.blocks.%d.feed_forward.norm.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/g" ): _a = "model.blocks.%d.feed_forward.norm.weight" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/att" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _a = state[:, 0, :, :] _a = state[:, 1, :, :] _a = state[:, 2, :, :] _a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) _a = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) _a = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/o/kernel" ): _a = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/an" ): _a = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _a = "model.blocks.%d.self_attn.norm.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/g" ): _a = "model.blocks.%d.self_attn.norm.weight" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _a = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _a = "model.%s.weight" % nlayer _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase_ ) if key_name.startswith("model/wte" ): _a = "lm_head.weight" _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/wob" ): _a = "final_logits_bias" _a = vnp.copy() # same in embedded _a = state.reshape((1, -1) ) _a = torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense/kernel": _a = "model.last_project.weight" _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense_1/bias": _a = "model.last_project.bias" _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) torch.save(UpperCamelCase_ , args.output ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") UpperCamelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
612
1
"""simple docstring""" import torch from transformers import AutoModel class a ( torch.nn.Module ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() lowerCamelCase_ = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.nn.CosineSimilarity(3 , 1e-0_8 ) lowerCamelCase_ = torch.nn.Softmax(dim=1 ) def UpperCamelCase ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=1 ) -> Optional[Any]: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: lowerCamelCase_ = W_supports['sizes'].tolist() lowerCamelCase_ = W_supports['start_token_id'].item() lowerCamelCase_ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCamelCase_ = self.BERT(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.BERT(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = W_supports['input_ids'] == start_token_id lowerCamelCase_ = W_supports['input_ids'] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: lowerCamelCase_ = 0 else: lowerCamelCase_ = support_sizes[i - 1] lowerCamelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCamelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCamelCase_ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCamelCase_ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCamelCase_ = torch.vstack((p_starts, p_start) ) lowerCamelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCamelCase_ = p_start lowerCamelCase_ = p_end return p_starts, p_ends
549
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _SCREAMING_SNAKE_CASE : int = re.compile(R'''\s+''') def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> List[str]: return {"hash": hashlib.mda(re.sub(_lowerCamelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase__ ( _lowerCamelCase : Tuple ) -> int: lowerCamelCase_ = [len(_lowerCamelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def lowerCamelCase__ ( _lowerCamelCase : List[str] ) -> int: lowerCamelCase_ = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int] ) -> Optional[Any]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase__ ( _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=5 ) -> int: lowerCamelCase_ = ['auto-generated', 'autogenerated', 'automatically generated'] lowerCamelCase_ = example['content'].splitlines() for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict=5 , _lowerCamelCase : List[str]=0.05 ) -> Tuple: lowerCamelCase_ = ['unit tests', 'test file', 'configuration file'] lowerCamelCase_ = example['content'].splitlines() lowerCamelCase_ = 0 lowerCamelCase_ = 0 # first test for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase_ = example['content'].count('\n' ) lowerCamelCase_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase__ ( _lowerCamelCase : Any ) -> List[str]: lowerCamelCase_ = ['def ', 'class ', 'for ', 'while '] lowerCamelCase_ = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : Dict=4 ) -> Optional[Any]: lowerCamelCase_ = example['content'].splitlines() lowerCamelCase_ = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> List[str]: lowerCamelCase_ = tokenizer(example['content'] , truncation=_lowerCamelCase )['input_ids'] lowerCamelCase_ = len(example['content'] ) / len(_lowerCamelCase ) return {"ratio": ratio} def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] ) -> List[Any]: lowerCamelCase_ = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def lowerCamelCase__ ( _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ) -> Any: if not check_uniques(_lowerCamelCase , _lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase__ ( _lowerCamelCase : str ) -> int: with open(_lowerCamelCase , 'rb' ) as f_in: with gzip.open(str(_lowerCamelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase , _lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings _SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser(PreprocessingArguments) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() if args.num_workers is None: _SCREAMING_SNAKE_CASE : List[str] = multiprocessing.cpu_count() _SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _SCREAMING_SNAKE_CASE : Optional[Any] = time.time() _SCREAMING_SNAKE_CASE : int = load_dataset(args.dataset_name, split='''train''') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _SCREAMING_SNAKE_CASE : Optional[Any] = time.time() _SCREAMING_SNAKE_CASE : Tuple = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _SCREAMING_SNAKE_CASE : List[Any] = set(ds.unique('''hash''')) _SCREAMING_SNAKE_CASE : Optional[int] = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _SCREAMING_SNAKE_CASE : Dict = time.time() _SCREAMING_SNAKE_CASE : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _SCREAMING_SNAKE_CASE : Optional[Any] = time.time() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _SCREAMING_SNAKE_CASE : Dict = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _SCREAMING_SNAKE_CASE : Optional[Any] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _SCREAMING_SNAKE_CASE : Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _SCREAMING_SNAKE_CASE : Dict = str(data_dir / F'''file-{file_number+1:012}.json''') _SCREAMING_SNAKE_CASE : Any = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
549
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''ViTFeatureExtractor'''] __lowerCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __a ( __UpperCamelCase ): __lowercase : Optional[Any] = 'beit' def __init__( self , lowerCAmelCase__=8_192 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=224 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=True , lowerCAmelCase__=[3, 5, 7, 11] , lowerCAmelCase__=[1, 2, 3, 6] , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=256 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=255 , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowercase__: Optional[Any] = vocab_size lowercase__: Dict = hidden_size lowercase__: int = num_hidden_layers lowercase__: List[Any] = num_attention_heads lowercase__: List[str] = intermediate_size lowercase__: Any = hidden_act lowercase__: List[str] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[Any] = initializer_range lowercase__: Tuple = layer_norm_eps lowercase__: Optional[Any] = image_size lowercase__: List[str] = patch_size lowercase__: List[str] = num_channels lowercase__: List[Any] = use_mask_token lowercase__: Tuple = use_absolute_position_embeddings lowercase__: Tuple = use_relative_position_bias lowercase__: int = use_shared_relative_position_bias lowercase__: Dict = layer_scale_init_value lowercase__: List[Any] = drop_path_rate lowercase__: Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Optional[Any] = out_indices lowercase__: Tuple = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: Dict = use_auxiliary_head lowercase__: Union[str, Any] = auxiliary_loss_weight lowercase__: Tuple = auxiliary_channels lowercase__: Any = auxiliary_num_convs lowercase__: Optional[Any] = auxiliary_concat_input lowercase__: Optional[int] = semantic_loss_ignore_index class __a ( __UpperCamelCase ): __lowercase : Optional[int] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: '''simple docstring''' return 1E-4
335
1
def __lowerCAmelCase ( a__ ) -> str: if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __a = '''''' while len(a__ ) % 3 != 0: __a = '''0''' + bin_string __a = [ bin_string[index : index + 3] for index in range(len(a__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __a = 0 for index, val in enumerate(a__ ): oct_val += int(2 ** (2 - index) * int(a__ ) ) oct_string += str(a__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
219
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 A_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") A_ = get_tests_dir("fixtures/vocab.json") A_ = get_tests_dir("fixtures") class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def _lowercase ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaConfig() SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , '''vocab.json''' ) ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) # save in new folder processor.save_pretrained(lowerCAmelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as f: f.write(json.dumps(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Any ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) # save in new folder processor.save_pretrained(lowerCAmelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as f: f.write(json.dumps(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(lowerCAmelCase_ ) # copy relevant files copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as f: f.write('''{}''' ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) SCREAMING_SNAKE_CASE_ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) SCREAMING_SNAKE_CASE_ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = CustomTokenizer(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = CustomProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self : Dict ) -> int: """simple docstring""" class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Dict = False class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : List[Any] = False class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : List[Any] = """AutoFeatureExtractor""" UpperCAmelCase : Tuple = """AutoTokenizer""" UpperCAmelCase : List[Any] = False try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def _lowercase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def _lowercase ( cls : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def _lowercase ( cls : Dict ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def _lowercase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase_ , '''test-processor''' ) , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(new_processor.feature_extractor , lowerCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowercase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase_ , '''test-processor-org''' ) , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(new_processor.feature_extractor , lowerCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = CustomTokenizer(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = CustomProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) SCREAMING_SNAKE_CASE_ = Repository(lowerCAmelCase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowerCAmelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCAmelCase_ , '''tokenizer_config.json''' ) ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , '''custom_processing.py''' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
393
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : List[str] = 32 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 16 ) -> str: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Any = load_dataset('glue' , 'mrpc' ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : Optional[int] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : Tuple = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ : Any = 8 else: lowerCamelCase__ : List[str] = None return tokenizer.pad( _UpperCAmelCase , padding='longest' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. lowerCamelCase__ : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase__ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase : str = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , _UpperCAmelCase ) == "1": lowerCamelCase__ : str = 2 # New Code # lowerCamelCase__ : List[Any] = int(args.gradient_accumulation_steps ) lowerCamelCase__ : Optional[Any] = int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase__ : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : List[Any] = config['lr'] lowerCamelCase__ : int = int(config['num_epochs'] ) lowerCamelCase__ : List[Any] = int(config['seed'] ) lowerCamelCase__ : List[Any] = int(config['batch_size'] ) lowerCamelCase__ : str = evaluate.load('glue' , 'mrpc' ) set_seed(_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : Dict = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : int = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase__ : Dict = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): lowerCamelCase__ : str = model(**_UpperCAmelCase ) lowerCamelCase__ : List[str] = output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**_UpperCAmelCase ) lowerCamelCase__ : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=_UpperCAmelCase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=_UpperCAmelCase , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCamelCase__ : str = parser.parse_args() lowerCamelCase__ : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
188
import enum import shutil import sys _UpperCAmelCase ,_UpperCAmelCase : List[Any] = shutil.get_terminal_size() _UpperCAmelCase : Union[str, Any] = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class lowerCAmelCase ( enum.Enum ): UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="" ) -> int: sys.stdout.write(str(_UpperCAmelCase ) + end ) sys.stdout.flush() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="" ) -> Union[str, Any]: forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Dict: forceWrite('\r' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def SCREAMING_SNAKE_CASE ( ) -> int: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
188
1
import os import sys __a: Union[str, Any] = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __a: Union[str, Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Union[str, Any]: return AutoConfig.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Any: return AutoTokenizer.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Tuple: return AutoModel.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Tuple: return AutoModelForCausalLM.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Optional[Any]: return AutoModelForMaskedLM.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> List[Any]: return AutoModelForQuestionAnswering.from_pretrained(*__snake_case , **__snake_case )
108
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , a : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = hidden_states.shape lowercase_ : Tuple = jax.image.resize( a , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) lowercase_ : List[Any] = self.conv(a ) return hidden_states class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , a : int ): '''simple docstring''' lowercase_ : Any = self.conv(a ) return hidden_states class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: int = None __lowerCamelCase: float = 0.0 __lowerCamelCase: bool = None __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.in_channels if self.out_channels is None else self.out_channels lowercase_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ : Tuple = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ : List[str] = nn.Dense(a , dtype=self.dtype ) lowercase_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ : Any = nn.Dropout(self.dropout_prob ) lowercase_ : Dict = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase_ : Optional[Any] = None if use_nin_shortcut: lowercase_ : Union[str, Any] = nn.Conv( a , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : List[str] , a : str , a : Dict , a : List[str]=True ): '''simple docstring''' lowercase_ : Dict = hidden_states lowercase_ : int = self.norma(a ) lowercase_ : List[Any] = nn.swish(a ) lowercase_ : Dict = self.conva(a ) lowercase_ : Optional[int] = self.time_emb_proj(nn.swish(a ) ) lowercase_ : Tuple = jnp.expand_dims(jnp.expand_dims(a , 1 ) , 1 ) lowercase_ : List[str] = hidden_states + temb lowercase_ : Optional[Any] = self.norma(a ) lowercase_ : Any = nn.swish(a ) lowercase_ : List[str] = self.dropout(a , a ) lowercase_ : int = self.conva(a ) if self.conv_shortcut is not None: lowercase_ : List[str] = self.conv_shortcut(a ) return hidden_states + residual
620
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) def _a ( ) -> Any: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=UpperCamelCase_ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=UpperCamelCase_ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=UpperCamelCase_ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=UpperCamelCase_ , default="data/dump" , help="The dump file prefix." ) lowerCAmelCase__ = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": lowerCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(UpperCamelCase_ )} examples to process." ) lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 10_000 lowerCAmelCase__ = time.time() for text in data: lowerCAmelCase__ = F"{bos} {text.strip()} {sep}" lowerCAmelCase__ = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) rslt.append(UpperCamelCase_ ) iter += 1 if iter % interval == 0: lowerCAmelCase__ = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) lowerCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(F"{len(UpperCamelCase_ )} examples processed." ) lowerCAmelCase__ = F"{args.dump_file}.{args.tokenizer_name}.pickle" lowerCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase__ = [np.uintaa(UpperCamelCase_ ) for d in rslt] else: lowerCAmelCase__ = [np.intaa(UpperCamelCase_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(UpperCamelCase_ , "wb" ) as handle: pickle.dump(rslt_ , UpperCamelCase_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
115
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType a_, a_, a_ = False, False, False @dataclass class lowercase__ : a_ =None a_ =True a_ =True a_ =None # Automatically constructed a_ ="dict" a_ =pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) a_ =field(default="""Audio""", init=_UpperCAmelCase, repr=_UpperCAmelCase ) def __call__( self )-> Optional[int]: '''simple docstring''' return self.pa_type def UpperCAmelCase ( self , __UpperCAmelCase )-> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase__ = BytesIO() sf.write(__UpperCAmelCase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase__ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowerCAmelCase__ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767 lowerCAmelCase__ = BytesIO(bytes() ) sf.write(__UpperCAmelCase , __UpperCAmelCase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> dict: '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) lowerCAmelCase__ , lowerCAmelCase__ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err lowerCAmelCase__ = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: lowerCAmelCase__ = token_per_repo_id or {} lowerCAmelCase__ = path.split("::" )[-1] try: lowerCAmelCase__ = string_to_dict(__UpperCAmelCase , config.HUB_DATASETS_URL )["repo_id"] lowerCAmelCase__ = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase__ = None with xopen(__UpperCAmelCase , "rb" , use_auth_token=__UpperCAmelCase ) as f: lowerCAmelCase__ , lowerCAmelCase__ = sf.read(__UpperCAmelCase ) else: lowerCAmelCase__ , lowerCAmelCase__ = sf.read(__UpperCAmelCase ) lowerCAmelCase__ = array.T if self.mono: lowerCAmelCase__ = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase__ = librosa.resample(__UpperCAmelCase , orig_sr=__UpperCAmelCase , target_sr=self.sampling_rate ) lowerCAmelCase__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def UpperCAmelCase ( self , __UpperCAmelCase )-> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) lowerCAmelCase__ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): lowerCAmelCase__ = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowerCAmelCase__ = storage.field("bytes" ) else: lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowerCAmelCase__ = storage.field("path" ) else: lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type ) def UpperCAmelCase ( self , __UpperCAmelCase )-> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase ): with xopen(__UpperCAmelCase , "rb" ) as f: lowerCAmelCase__ = f.read() return bytes_ lowerCAmelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase__ = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type )
115
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Union[str, Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Optional[Any] = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def _lowercase ( __lowerCamelCase : int ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[Any] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=__lowerCamelCase )[0] @deprecated(__lowerCamelCase ,'''Please use tf.data to implement this functionality.''' ) def _lowercase ( __lowerCamelCase : int ) -> Dict: '''simple docstring''' print('''Extracting''' ,f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: UpperCamelCase__ : Tuple = _readaa(__lowerCamelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) UpperCamelCase__ : Tuple = _readaa(__lowerCamelCase ) UpperCamelCase__ : List[Any] = _readaa(__lowerCamelCase ) UpperCamelCase__ : Dict = _readaa(__lowerCamelCase ) UpperCamelCase__ : str = bytestream.read(rows * cols * num_images ) UpperCamelCase__ : List[Any] = numpy.frombuffer(__lowerCamelCase ,dtype=numpy.uinta ) UpperCamelCase__ : Union[str, Any] = data.reshape(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,1 ) return data @deprecated(__lowerCamelCase ,'''Please use tf.one_hot on tensors.''' ) def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[Any] = labels_dense.shape[0] UpperCamelCase__ : Union[str, Any] = numpy.arange(__lowerCamelCase ) * num_classes UpperCamelCase__ : int = numpy.zeros((num_labels, num_classes) ) UpperCamelCase__ : Optional[int] = 1 return labels_one_hot @deprecated(__lowerCamelCase ,'''Please use tf.data to implement this functionality.''' ) def _lowercase ( __lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple=False ,__lowerCamelCase : Dict=10 ) -> Optional[int]: '''simple docstring''' print('''Extracting''' ,f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: UpperCamelCase__ : str = _readaa(__lowerCamelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) UpperCamelCase__ : Optional[Any] = _readaa(__lowerCamelCase ) UpperCamelCase__ : Optional[int] = bytestream.read(__lowerCamelCase ) UpperCamelCase__ : List[str] = numpy.frombuffer(__lowerCamelCase ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCamelCase ,__lowerCamelCase ) return labels class UpperCamelCase__ : @deprecated( __lowerCamelCase, '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''', ) def __init__( self : Optional[Any], __lowerCamelCase : int, __lowerCamelCase : Dict, __lowerCamelCase : List[Any]=False, __lowerCamelCase : List[str]=False, __lowerCamelCase : List[str]=dtypes.floataa, __lowerCamelCase : Union[str, Any]=True, __lowerCamelCase : Optional[int]=None, ) -> Dict: UpperCamelCase__ ,UpperCamelCase__ : Any = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase__ : Tuple = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: UpperCamelCase__ : Dict = 1_00_00 UpperCamelCase__ : Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' UpperCamelCase__ : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase__ : Any = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase__ : str = images.astype(numpy.floataa ) UpperCamelCase__ : Any = numpy.multiply(__lowerCamelCase, 1.0 / 255.0 ) UpperCamelCase__ : List[Any] = images UpperCamelCase__ : Any = labels UpperCamelCase__ : Any = 0 UpperCamelCase__ : List[Any] = 0 @property def __lowercase( self : Optional[Any] ) -> str: return self._images @property def __lowercase( self : int ) -> str: return self._labels @property def __lowercase( self : Tuple ) -> Dict: return self._num_examples @property def __lowercase( self : List[str] ) -> Optional[int]: return self._epochs_completed def __lowercase( self : Union[str, Any], __lowerCamelCase : List[str], __lowerCamelCase : Tuple=False, __lowerCamelCase : List[str]=True ) -> List[Any]: if fake_data: UpperCamelCase__ : int = [1] * 7_84 UpperCamelCase__ : List[str] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) UpperCamelCase__ : int = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase__ : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) UpperCamelCase__ : List[Any] = self.images[perma] UpperCamelCase__ : List[Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase__ : List[str] = self._num_examples - start UpperCamelCase__ : Dict = self._images[start : self._num_examples] UpperCamelCase__ : Dict = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase__ : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) UpperCamelCase__ : Tuple = self.images[perm] UpperCamelCase__ : Tuple = self.labels[perm] # Start next epoch UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : str = batch_size - rest_num_examples UpperCamelCase__ : Tuple = self._index_in_epoch UpperCamelCase__ : str = self._images[start:end] UpperCamelCase__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase__ : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCamelCase ,'''Please write your own downloading logic.''' ) def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : Any ) -> Optional[Any]: '''simple docstring''' if not gfile.Exists(__lowerCamelCase ): gfile.MakeDirs(__lowerCamelCase ) UpperCamelCase__ : str = os.path.join(__lowerCamelCase ,__lowerCamelCase ) if not gfile.Exists(__lowerCamelCase ): urllib.request.urlretrieve(__lowerCamelCase ,__lowerCamelCase ) # noqa: S310 with gfile.GFile(__lowerCamelCase ) as f: UpperCamelCase__ : List[str] = f.size() print('''Successfully downloaded''' ,__lowerCamelCase ,__lowerCamelCase ,'''bytes.''' ) return filepath @deprecated( __lowerCamelCase ,'''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def _lowercase ( __lowerCamelCase : List[Any] ,__lowerCamelCase : str=False ,__lowerCamelCase : Optional[int]=False ,__lowerCamelCase : int=dtypes.floataa ,__lowerCamelCase : int=True ,__lowerCamelCase : Dict=5000 ,__lowerCamelCase : Union[str, Any]=None ,__lowerCamelCase : int=DEFAULT_SOURCE_URL ,) -> List[str]: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=__lowerCamelCase ,one_hot=__lowerCamelCase ,dtype=__lowerCamelCase ,seed=__lowerCamelCase ) UpperCamelCase__ : List[str] = fake() UpperCamelCase__ : Tuple = fake() UpperCamelCase__ : int = fake() return _Datasets(train=__lowerCamelCase ,validation=__lowerCamelCase ,test=__lowerCamelCase ) if not source_url: # empty string check UpperCamelCase__ : Dict = DEFAULT_SOURCE_URL UpperCamelCase__ : Tuple = '''train-images-idx3-ubyte.gz''' UpperCamelCase__ : Optional[int] = '''train-labels-idx1-ubyte.gz''' UpperCamelCase__ : Dict = '''t10k-images-idx3-ubyte.gz''' UpperCamelCase__ : Any = '''t10k-labels-idx1-ubyte.gz''' UpperCamelCase__ : Union[str, Any] = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + train_images_file ) with gfile.Open(__lowerCamelCase ,'''rb''' ) as f: UpperCamelCase__ : Union[str, Any] = _extract_images(__lowerCamelCase ) UpperCamelCase__ : str = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + train_labels_file ) with gfile.Open(__lowerCamelCase ,'''rb''' ) as f: UpperCamelCase__ : Optional[Any] = _extract_labels(__lowerCamelCase ,one_hot=__lowerCamelCase ) UpperCamelCase__ : int = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + test_images_file ) with gfile.Open(__lowerCamelCase ,'''rb''' ) as f: UpperCamelCase__ : Tuple = _extract_images(__lowerCamelCase ) UpperCamelCase__ : List[Any] = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + test_labels_file ) with gfile.Open(__lowerCamelCase ,'''rb''' ) as f: UpperCamelCase__ : Tuple = _extract_labels(__lowerCamelCase ,one_hot=__lowerCamelCase ) if not 0 <= validation_size <= len(__lowerCamelCase ): UpperCamelCase__ : Any = ( '''Validation size should be between 0 and ''' F'{len(__lowerCamelCase )}. Received: {validation_size}.' ) raise ValueError(__lowerCamelCase ) UpperCamelCase__ : int = train_images[:validation_size] UpperCamelCase__ : Optional[Any] = train_labels[:validation_size] UpperCamelCase__ : Tuple = train_images[validation_size:] UpperCamelCase__ : Optional[int] = train_labels[validation_size:] UpperCamelCase__ : Dict = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} UpperCamelCase__ : int = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) UpperCamelCase__ : Any = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) UpperCamelCase__ : str = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) return _Datasets(train=__lowerCamelCase ,validation=__lowerCamelCase ,test=__lowerCamelCase )
344
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : a__ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__ : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class UpperCamelCase__ : a__ : str = field( default=__lowerCamelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__ : str = field( default=__lowerCamelCase , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) a__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Train language if it is different from the evaluation language.'} ) a__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__ : Optional[bool] = field( default=__lowerCamelCase , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) a__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__ : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) a__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _lowercase ( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' ,__lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. UpperCamelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCamelCase__ : Optional[int] = load_dataset( '''xnli''' ,model_args.language ,split='''train''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: UpperCamelCase__ : Any = load_dataset( '''xnli''' ,model_args.train_language ,split='''train''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCamelCase__ : Union[str, Any] = train_dataset.features['''label'''].names if training_args.do_eval: UpperCamelCase__ : Optional[int] = load_dataset( '''xnli''' ,model_args.language ,split='''validation''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCamelCase__ : int = eval_dataset.features['''label'''].names if training_args.do_predict: UpperCamelCase__ : Union[str, Any] = load_dataset( '''xnli''' ,model_args.language ,split='''test''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCamelCase__ : List[Any] = predict_dataset.features['''label'''].names # Labels UpperCamelCase__ : Dict = len(__lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__lowerCamelCase ,idalabel={str(__lowerCamelCase ): label for i, label in enumerate(__lowerCamelCase )} ,labelaid={label: i for i, label in enumerate(__lowerCamelCase )} ,finetuning_task='''xnli''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCamelCase__ : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__lowerCamelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCamelCase__ : int = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCamelCase__ : Any = False def preprocess_function(__lowerCamelCase : Dict ): # Tokenize the texts return tokenizer( examples['''premise'''] ,examples['''hypothesis'''] ,padding=__lowerCamelCase ,max_length=data_args.max_seq_length ,truncation=__lowerCamelCase ,) if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ : Tuple = min(len(__lowerCamelCase ) ,data_args.max_train_samples ) UpperCamelCase__ : str = train_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCamelCase__ : Union[str, Any] = train_dataset.map( __lowerCamelCase ,batched=__lowerCamelCase ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on train dataset''' ,) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCamelCase ) ) ,3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ : Optional[Any] = min(len(__lowerCamelCase ) ,data_args.max_eval_samples ) UpperCamelCase__ : Dict = eval_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCamelCase__ : Optional[int] = eval_dataset.map( __lowerCamelCase ,batched=__lowerCamelCase ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on validation dataset''' ,) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCamelCase__ : int = min(len(__lowerCamelCase ) ,data_args.max_predict_samples ) UpperCamelCase__ : List[Any] = predict_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): UpperCamelCase__ : int = predict_dataset.map( __lowerCamelCase ,batched=__lowerCamelCase ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on prediction dataset''' ,) # Get the metric function UpperCamelCase__ : Union[str, Any] = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCamelCase : EvalPrediction ): UpperCamelCase__ : str = p.predictions[0] if isinstance(p.predictions ,__lowerCamelCase ) else p.predictions UpperCamelCase__ : Optional[int] = np.argmax(__lowerCamelCase ,axis=1 ) return metric.compute(predictions=__lowerCamelCase ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCamelCase__ : List[Any] = default_data_collator elif training_args.fpaa: UpperCamelCase__ : List[str] = DataCollatorWithPadding(__lowerCamelCase ,pad_to_multiple_of=8 ) else: UpperCamelCase__ : List[str] = None # Initialize our Trainer UpperCamelCase__ : Any = Trainer( model=__lowerCamelCase ,args=__lowerCamelCase ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=__lowerCamelCase ,tokenizer=__lowerCamelCase ,data_collator=__lowerCamelCase ,) # Training if training_args.do_train: UpperCamelCase__ : Dict = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ : Union[str, Any] = last_checkpoint UpperCamelCase__ : Any = trainer.train(resume_from_checkpoint=__lowerCamelCase ) UpperCamelCase__ : Optional[int] = train_result.metrics UpperCamelCase__ : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) UpperCamelCase__ : int = min(__lowerCamelCase ,len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,__lowerCamelCase ) trainer.save_metrics('''train''' ,__lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase__ : Tuple = trainer.evaluate(eval_dataset=__lowerCamelCase ) UpperCamelCase__ : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = min(__lowerCamelCase ,len(__lowerCamelCase ) ) trainer.log_metrics('''eval''' ,__lowerCamelCase ) trainer.save_metrics('''eval''' ,__lowerCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = trainer.predict(__lowerCamelCase ,metric_key_prefix='''predict''' ) UpperCamelCase__ : Optional[int] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCamelCase ) ) UpperCamelCase__ : List[Any] = min(__lowerCamelCase ,len(__lowerCamelCase ) ) trainer.log_metrics('''predict''' ,__lowerCamelCase ) trainer.save_metrics('''predict''' ,__lowerCamelCase ) UpperCamelCase__ : Dict = np.argmax(__lowerCamelCase ,axis=1 ) UpperCamelCase__ : List[Any] = os.path.join(training_args.output_dir ,'''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase ,'''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__lowerCamelCase ): UpperCamelCase__ : Tuple = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
344
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _a ( unittest.TestCase ): '''simple docstring''' def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ): """simple docstring""" a__ : Dict = None a__ : str = os.path.abspath(os.path.join("examples" , "by_feature" ) ) a__ : Union[str, Any] = os.path.abspath("examples" ) for item in os.listdir(__UpperCamelCase ): if item not in EXCLUDE_EXAMPLES: a__ : Any = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCamelCase , feature_script=__UpperCamelCase , tested_section="main()" if parser_only else "training_function()" , ): a__ : Tuple = compare_against_test( os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) a__ : List[Any] = "\n".join(__UpperCamelCase ) if special_strings is not None: for string in special_strings: a__ : Optional[Any] = diff.replace(__UpperCamelCase , "" ) self.assertEqual(__UpperCamelCase , "" ) def _A ( self ): """simple docstring""" self.one_complete_example("complete_nlp_example.py" , __UpperCamelCase ) self.one_complete_example("complete_nlp_example.py" , __UpperCamelCase ) def _A ( self ): """simple docstring""" a__ : Tuple = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) a__ : Dict = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.one_complete_example("complete_cv_example.py" , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Union[str, Any] = False @classmethod def _A ( cls ): """simple docstring""" super().setUpClass() a__ : Dict = tempfile.mkdtemp() a__ : Optional[int] = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) a__ : Dict = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _A ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _A ( self ): """simple docstring""" a__ : Dict = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def _A ( self ): """simple docstring""" a__ : Tuple = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() a__ : Dict = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def _A ( self ): """simple docstring""" a__ : int = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() a__ : Optional[int] = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) self.assertNotIn("epoch 0:" , __UpperCamelCase ) self.assertIn("epoch 1:" , __UpperCamelCase ) def _A ( self ): """simple docstring""" a__ : Optional[int] = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() a__ : Optional[int] = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) if torch.cuda.is_available(): a__ : Any = torch.cuda.device_count() else: a__ : Optional[Any] = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __UpperCamelCase ) self.assertIn("epoch 1:" , __UpperCamelCase ) else: self.assertIn("epoch 0:" , __UpperCamelCase ) self.assertIn("epoch 1:" , __UpperCamelCase ) @slow def _A ( self ): """simple docstring""" a__ : Any = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): a__ : Tuple = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) a__ : Optional[Any] = re.findall("({.+})" , __UpperCamelCase ) a__ : Any = [r for r in results if "accuracy" in r][-1] a__ : int = ast.literal_eval(__UpperCamelCase ) self.assertGreaterEqual(results["accuracy"] , 0.7_5 ) def _A ( self ): """simple docstring""" a__ : Dict = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _A ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: a__ : int = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , "tracking" ) ) ) def _A ( self ): """simple docstring""" a__ : Tuple = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def _A ( self ): """simple docstring""" a__ : Optional[int] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
707
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } lowerCamelCase = {"""mobilebert-uncased""": 5_12} lowerCamelCase = {} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Union[str, Any] = VOCAB_FILES_NAMES A :Tuple = PRETRAINED_VOCAB_FILES_MAP A :int = PRETRAINED_INIT_CONFIGURATION A :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A :Optional[Any] = MobileBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): a__ : Any = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) a__ : Optional[int] = do_lower_case a__ : Optional[Any] = strip_accents a__ : List[Any] = tokenize_chinese_chars a__ : Optional[Any] = normalizer_class(**__UpperCAmelCase ) a__ : Optional[Any] = do_lower_case def _A ( self , __UpperCAmelCase , __UpperCAmelCase=None ): """simple docstring""" a__ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" a__ : List[str] = [self.sep_token_id] a__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" a__ : Dict = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
207
0
'''simple docstring''' def A ( UpperCamelCase_ : bytes ) -> str: '''simple docstring''' return "".join([hex(UpperCamelCase_ )[2:].zfill(2 ).upper() for byte in list(UpperCamelCase_ )] ) def A ( UpperCamelCase_ : str ) -> bytes: '''simple docstring''' if (len(UpperCamelCase_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCamelCase_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(UpperCamelCase_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( UpperCAmelCase__ ): def __init__( self : List[str] , __lowerCAmelCase : TransformeraDModel , __lowerCAmelCase : AutoencoderKL , __lowerCAmelCase : KarrasDiffusionSchedulers , __lowerCAmelCase : Optional[Dict[int, str]] = None , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(transformer=__lowerCAmelCase , vae=__lowerCAmelCase , scheduler=__lowerCAmelCase ) # create a imagenet -> id dictionary for easier use a = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): a = int(__lowerCAmelCase ) a = dict(sorted(self.labels.items() ) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a = list(__lowerCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[int] , __lowerCAmelCase : List[int] , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : int = 50 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" a = len(__lowerCAmelCase ) a = self.transformer.config.sample_size a = self.transformer.config.in_channels a = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCAmelCase , device=self.device , dtype=self.transformer.dtype , ) a = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a = torch.tensor(__lowerCAmelCase , device=self.device ).reshape(-1 ) a = torch.tensor([1000] * batch_size , device=self.device ) a = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a = latent_model_input[: len(__lowerCAmelCase ) // 2] a = torch.cat([half, half] , dim=0 ) a = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) a = t if not torch.is_tensor(__lowerCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a = latent_model_input.device.type == "mps" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a = torch.floataa if is_mps else torch.floataa else: a = torch.intaa if is_mps else torch.intaa a = torch.tensor([timesteps] , dtype=__lowerCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a = self.transformer( __lowerCAmelCase , timestep=__lowerCAmelCase , class_labels=__lowerCAmelCase ).sample # perform guidance if guidance_scale > 1: a , a = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a , a = torch.split(__lowerCAmelCase , len(__lowerCAmelCase ) // 2 , dim=0 ) a = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a = torch.cat([half_eps, half_eps] , dim=0 ) a = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a , a = torch.split(__lowerCAmelCase , __lowerCAmelCase , dim=1 ) else: a = noise_pred # compute previous image: x_t -> x_t-1 a = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample if guidance_scale > 1: a , a = latent_model_input.chunk(2 , dim=0 ) else: a = latent_model_input a = 1 / self.vae.config.scaling_factor * latents a = self.vae.decode(__lowerCAmelCase ).sample a = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCAmelCase )
32
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase__ ), '''Tatoeba directory does not exist.''' ) class _lowercase ( unittest.TestCase ): @cached_property def A ( self : List[str] ) -> int: """simple docstring""" a = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCAmelCase ) @slow def A ( self : Optional[int] ) -> List[str]: """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def A ( self : Dict ) -> Any: """simple docstring""" a , a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
32
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a ( __UpperCAmelCase : List[Any] ) -> str: __magic_name__: Union[str, Any] = args.pruning_method __magic_name__: Tuple = args.threshold __magic_name__: Dict = args.model_name_or_path.rstrip("""/""" ) __magic_name__: str = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) __magic_name__: Optional[Any] = torch.load(os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ) __magic_name__: int = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __magic_name__: List[Any] = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: __magic_name__: List[str] = tensor print(f'Copied layer {name}' ) elif "bias" in name: __magic_name__: Union[str, Any] = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": __magic_name__: str = MagnitudeBinarizer.apply(inputs=__UpperCAmelCase , threshold=__UpperCAmelCase ) __magic_name__: Tuple = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue __magic_name__: str = name[:-6] __magic_name__: Dict = model[f'{prefix_}mask_scores'] __magic_name__: Any = TopKBinarizer.apply(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: List[Any] = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __magic_name__: List[Any] = name[:-6] __magic_name__: List[Any] = model[f'{prefix_}mask_scores'] __magic_name__: Tuple = ThresholdBinarizer.apply(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __magic_name__: int = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue __magic_name__: Dict = name[:-6] __magic_name__: int = model[f'{prefix_}mask_scores'] __magic_name__, __magic_name__: Tuple = -0.1, 1.1 __magic_name__: Tuple = torch.sigmoid(__UpperCAmelCase ) __magic_name__: Any = s * (r - l) + l __magic_name__: Optional[int] = s_bar.clamp(min=0.0 , max=1.0 ) __magic_name__: Union[str, Any] = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __magic_name__: List[str] = os.path.join( os.path.dirname(__UpperCAmelCase ) , f'bertarized_{os.path.basename(__UpperCAmelCase )}' ) if not os.path.isdir(__UpperCAmelCase ): shutil.copytree(__UpperCAmelCase , __UpperCAmelCase ) print(f'\nCreated folder {target_model_path}' ) torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __lowerCamelCase = parser.parse_args() main(args)
96
from typing import TYPE_CHECKING from ....utils import _LazyModule SCREAMING_SNAKE_CASE_:int = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys SCREAMING_SNAKE_CASE_:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
662
0
from random import shuffle import tensorflow as tf from numpy import array def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = int(snake_case ) assert noofclusters < len(snake_case ) # Find out the dimensionality __SCREAMING_SNAKE_CASE : Dict = len(vectors[0] ) # Will help select random centroids from among the available vectors __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(len(snake_case ) ) ) shuffle(snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __SCREAMING_SNAKE_CASE : Optional[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __SCREAMING_SNAKE_CASE : Dict = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __SCREAMING_SNAKE_CASE : Tuple = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values __SCREAMING_SNAKE_CASE : Tuple = tf.placeholder('''float64''' , [dim] ) __SCREAMING_SNAKE_CASE : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(snake_case , snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __SCREAMING_SNAKE_CASE : Optional[int] = [tf.Variable(0 ) for i in range(len(snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value __SCREAMING_SNAKE_CASE : Optional[int] = tf.placeholder('''int32''' ) __SCREAMING_SNAKE_CASE : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(snake_case , snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __SCREAMING_SNAKE_CASE : List[Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __SCREAMING_SNAKE_CASE : List[str] = tf.reduce_mean(snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input __SCREAMING_SNAKE_CASE : str = tf.placeholder('''float''' , [dim] ) __SCREAMING_SNAKE_CASE : Any = tf.placeholder('''float''' , [dim] ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(snake_case , snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __SCREAMING_SNAKE_CASE : str = tf.placeholder('''float''' , [noofclusters] ) __SCREAMING_SNAKE_CASE : str = tf.argmin(snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __SCREAMING_SNAKE_CASE : str = tf.initialize_all_variables() # Initialize all variables sess.run(snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __SCREAMING_SNAKE_CASE : Union[str, Any] = 100 for _ in range(snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : Optional[int] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __SCREAMING_SNAKE_CASE : Optional[Any] = [ sess.run(snake_case , feed_dict={va: vect, va: sess.run(snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __SCREAMING_SNAKE_CASE : str = sess.run( snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(snake_case ): # Collect all the vectors assigned to this cluster __SCREAMING_SNAKE_CASE : List[Any] = [ vectors[i] for i in range(len(snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __SCREAMING_SNAKE_CASE : str = sess.run( snake_case , feed_dict={mean_input: array(snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __SCREAMING_SNAKE_CASE : List[Any] = sess.run(snake_case ) __SCREAMING_SNAKE_CASE : str = sess.run(snake_case ) return centroids, assignments
131
def a__ ( snake_case , snake_case , snake_case=False ): """simple docstring""" if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : Dict = len(set_a.intersection(snake_case ) ) if alternative_union: __SCREAMING_SNAKE_CASE : str = len(snake_case ) + len(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = len(set_a.union(snake_case ) ) return intersection / union if isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : int = len(snake_case ) + len(snake_case ) return len(snake_case ) / union else: __SCREAMING_SNAKE_CASE : List[str] = set_a + [element for element in set_b if element not in set_a] return len(snake_case ) / len(snake_case ) return len(snake_case ) / len(snake_case ) return None if __name__ == "__main__": lowercase_ = {"""a""", """b""", """c""", """d""", """e"""} lowercase_ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
131
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE_ = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' SCREAMING_SNAKE_CASE_ = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def _UpperCAmelCase ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _UpperCAmelCase ( self , A_ , A_ , A_ = False , A_ = False , A_ = False , A_ = False , ): '''simple docstring''' _UpperCAmelCase : Dict = len(references[0] ) if any(len(A_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _UpperCAmelCase : List[Any] = [[refs[i] for refs in references] for i in range(A_ )] _UpperCAmelCase : Tuple = TER( normalized=A_ , no_punct=A_ , asian_support=A_ , case_sensitive=A_ , ) _UpperCAmelCase : Tuple = sb_ter.corpus_score(A_ , A_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Tuple = min(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = max(lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Union[str, Any] = mean(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = stdev(lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
300
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """lilt""" def __init__( self : Optional[Any] , _lowercase : Dict=30_522 , _lowercase : Any=768 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : str=3_072 , _lowercase : int="gelu" , _lowercase : Union[str, Any]=0.1 , _lowercase : Dict=0.1 , _lowercase : Optional[Any]=512 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=0.0_2 , _lowercase : int=1e-12 , _lowercase : Any=0 , _lowercase : List[str]="absolute" , _lowercase : Dict=None , _lowercase : Optional[int]=4 , _lowercase : Optional[int]=1_024 , **_lowercase : Union[str, Any] , ): super().__init__(pad_token_id=_lowercase , **_lowercase ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = classifier_dropout A = channel_shrink_ratio A = max_ad_position_embeddings
91
"""simple docstring""" from math import factorial def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) A = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
91
1
"""simple docstring""" class lowerCamelCase__ : def __init__( self ,A ,A=None ,A=None ): UpperCAmelCase = data UpperCAmelCase = previous UpperCAmelCase = next_node def __str__( self ): return F'''{self.data}''' def _UpperCamelCase ( self ): return self.data def _UpperCamelCase ( self ): return self.next def _UpperCamelCase ( self ): return self.previous class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = head def __iter__( self ): return self def _UpperCamelCase ( self ): if not self.current: raise StopIteration else: UpperCAmelCase = self.current.get_data() UpperCAmelCase = self.current.get_next() return value class lowerCamelCase__ : def __init__( self ): UpperCAmelCase = None # First node in list UpperCAmelCase = None # Last node in list def __str__( self ): UpperCAmelCase = self.head UpperCAmelCase = [] while current is not None: nodes.append(current.get_data() ) UpperCAmelCase = current.get_next() return " ".join(str(A ) for node in nodes ) def __contains__( self ,A ): UpperCAmelCase = self.head while current: if current.get_data() == value: return True UpperCAmelCase = current.get_next() return False def __iter__( self ): return LinkedListIterator(self.head ) def _UpperCamelCase ( self ): if self.head: return self.head.get_data() return None def _UpperCamelCase ( self ): if self.tail: return self.tail.get_data() return None def _UpperCamelCase ( self ,A ): if self.head is None: UpperCAmelCase = node UpperCAmelCase = node else: self.insert_before_node(self.head ,A ) def _UpperCamelCase ( self ,A ): if self.head is None: self.set_head(A ) else: self.insert_after_node(self.tail ,A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = Node(A ) if self.head is None: self.set_head(A ) else: self.set_tail(A ) def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = node UpperCAmelCase = node.previous if node.get_previous() is None: UpperCAmelCase = node_to_insert else: UpperCAmelCase = node_to_insert UpperCAmelCase = node_to_insert def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = node UpperCAmelCase = node.next if node.get_next() is None: UpperCAmelCase = node_to_insert else: UpperCAmelCase = node_to_insert UpperCAmelCase = node_to_insert def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = 1 UpperCAmelCase = Node(A ) UpperCAmelCase = self.head while node: if current_position == position: self.insert_before_node(A ,A ) return current_position += 1 UpperCAmelCase = node.next self.insert_after_node(self.tail ,A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.head while node: if node.get_data() == item: return node UpperCAmelCase = node.get_next() raise Exception("""Node not found""" ) def _UpperCamelCase ( self ,A ): if (node := self.get_node(A )) is not None: if node == self.head: UpperCAmelCase = self.head.get_next() if node == self.tail: UpperCAmelCase = self.tail.get_previous() self.remove_node_pointers(A ) @staticmethod def _UpperCamelCase ( A ): if node.get_next(): UpperCAmelCase = node.previous if node.get_previous(): UpperCAmelCase = node.next UpperCAmelCase = None UpperCAmelCase = None def _UpperCamelCase ( self ): return self.head is None def _a ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
341
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase__ : def __init__( self ,A ,A=13 ,A=7 ,A=True ,A=True ,A=True ,A=99 ,A=32 ,A=5 ,A=4 ,A=37 ,A="gelu" ,A=0.1 ,A=0.1 ,A=512 ,A=16 ,A=2 ,A=0.02 ,A=3 ,A=4 ,A=None ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _UpperCamelCase ( self ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTModel(config=A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,head_mask=A ) UpperCAmelCase = model(A ,token_type_ids=A ) UpperCAmelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = self.num_labels UpperCAmelCase = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case , snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _UpperCamelCase ( self ,A ,A ,A=False ): UpperCAmelCase = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=A ,) UpperCAmelCase = inputs_dict["""labels"""] UpperCAmelCase = inputs_dict["""labels"""] UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=A ,) UpperCAmelCase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) return inputs_dict def _UpperCamelCase ( self ): UpperCAmelCase = OpenAIGPTModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,n_embd=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def _UpperCamelCase ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(A ) UpperCAmelCase = torch.tensor([[481, 4_735, 544]] ,dtype=torch.long ,device=A ) # the president is UpperCAmelCase = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase = model.generate(A ,do_sample=A ) self.assertListEqual(output_ids[0].tolist() ,A )
341
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Dict = """linear""" __a : str = """cosine""" __a : int = """cosine_with_restarts""" __a : List[str] = """polynomial""" __a : Dict = """constant""" __a : Optional[int] = """constant_with_warmup""" __a : List[str] = """piecewise_constant""" def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ): """simple docstring""" return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ): """simple docstring""" def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ): """simple docstring""" UpperCAmelCase__ :Optional[Any] = {} UpperCAmelCase__ :Tuple = step_rules.split(',' ) for rule_str in rule_list[:-1]: UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = rule_str.split(':' ) UpperCAmelCase__ :str = int(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = float(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = value UpperCAmelCase__ :Optional[Any] = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: UpperCAmelCase__ :Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase__ :Union[str, Any] = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ): """simple docstring""" def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ): """simple docstring""" def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ :Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ): """simple docstring""" def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ :List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1E-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ): """simple docstring""" UpperCAmelCase__ :str = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase__ :Union[str, Any] = lr_init - lr_end UpperCAmelCase__ :int = num_training_steps - num_warmup_steps UpperCAmelCase__ :Any = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase__ :Optional[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case : List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ): """simple docstring""" UpperCAmelCase__ :Tuple = SchedulerType(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
433
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __snake_case : List[str] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCAmelCase__ :List[str] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE , id=SCREAMING_SNAKE_CASE )
433
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : Dict = {"vocab_file": "sentencepiece.model"} snake_case : Optional[int] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } snake_case : Optional[Any] = { "google/rembert": 256, } class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a=False , _a=True , _a=True , _a="[CLS]" , _a="[SEP]" , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , **_a , ): super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) __magic_name__ : Any = do_lower_case __magic_name__ : List[Any] = remove_space __magic_name__ : Dict = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(_a ) @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __magic_name__ : Dict = self.__dict__.copy() __magic_name__ : Dict = None return state def __setstate__( self , _a ): __magic_name__ : Union[str, Any] = d __magic_name__ : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _a , _a=False ): __magic_name__ : List[str] = self.sp_model.EncodeAsPieces(_a ) return pieces def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.IdToPiece(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = self.sp_model.decode_pieces(_a ) return out_string def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : str = [self.sep_token_id] __magic_name__ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _a , _a = None , _a = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : List[Any] = [self.sep_token_id] __magic_name__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return __magic_name__ : int = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
124
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _snake_case : def __init__( self , _a , _a=13 , _a=7 , _a=False , _a=True , _a=False , _a=True , _a=33 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __magic_name__ : Dict = parent __magic_name__ : List[str] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : int = is_training __magic_name__ : Union[str, Any] = use_input_mask __magic_name__ : str = use_token_type_ids __magic_name__ : Dict = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Tuple = hidden_size __magic_name__ : Union[str, Any] = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Tuple = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : int = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Optional[int] = type_vocab_size __magic_name__ : Optional[int] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Optional[Any] = scope def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Union[str, Any] = None if self.use_input_mask: __magic_name__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None __magic_name__ : List[Any] = None __magic_name__ : List[str] = None if self.use_labels: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): __magic_name__ : Dict = EsmModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : str = model(_a , attention_mask=_a ) __magic_name__ : List[str] = model(_a ) __magic_name__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): __magic_name__ : int = EsmForMaskedLM(config=_a ) model.to(_a ) model.eval() __magic_name__ : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): __magic_name__ : int = self.num_labels __magic_name__ : int = EsmForTokenClassification(config=_a ) model.to(_a ) model.eval() __magic_name__ : Tuple = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[int] = config_and_inputs __magic_name__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = False UpperCamelCase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = () UpperCamelCase__ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = EsmModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ : str = type self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[Any] = EsmModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()[0] __magic_name__ : List[str] = EsmEmbeddings(config=_a ) __magic_name__ : Dict = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __magic_name__ : Tuple = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __magic_name__ : Dict = create_position_ids_from_input_ids(_a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_a , _a ) ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()[0] __magic_name__ : str = EsmEmbeddings(config=_a ) __magic_name__ : Optional[Any] = torch.empty(2 , 4 , 30 ) __magic_name__ : str = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __magic_name__ : Tuple = torch.as_tensor([expected_single_positions, expected_single_positions] ) __magic_name__ : List[str] = embeddings.create_position_ids_from_inputs_embeds(_a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_a , _a ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip("Esm does not support embedding resizing" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self ): pass @require_torch class _snake_case ( snake_case ): @slow def SCREAMING_SNAKE_CASE ( self ): with torch.no_grad(): __magic_name__ : Dict = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() __magic_name__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Dict = model(_a )[0] __magic_name__ : Optional[Any] = 33 __magic_name__ : Optional[int] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _a ) __magic_name__ : List[Any] = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): with torch.no_grad(): __magic_name__ : Optional[int] = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() __magic_name__ : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __magic_name__ : Tuple = model(_a )[0] # compare the actual values for a slice. __magic_name__ : Optional[Any] = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
124
1
"""simple docstring""" import pprint import requests SCREAMING_SNAKE_CASE_ : Optional[int] = 'https://zenquotes.io/api' def _snake_case ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _snake_case ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = random_quotes() pprint.pprint(response)
500
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): A__ = [0 for i in range(r + 1 )] # nc0 = 1 A__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A__ = min(UpperCAmelCase_ , UpperCAmelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
500
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Any=32 , UpperCAmelCase : Dict=3 , UpperCAmelCase : List[str]=10 , UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , UpperCAmelCase : int=[1, 1, 2, 1] , UpperCAmelCase : Tuple=True , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]="relu" , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : int=None , ): A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = embeddings_size A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = hidden_act A_ = num_labels A_ = scope A_ = len(UpperCAmelCase ) def __A ( self : str ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = self.get_config() return config, pixel_values def __A ( self : Union[str, Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = FlaxRegNetModel(config=UpperCAmelCase ) A_ = model(UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple ): A_ = self.num_labels A_ = FlaxRegNetForImageClassification(config=UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Union[str, Any] ): A_ = self.prepare_config_and_inputs() A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _lowerCamelCase : Dict = False _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = False def __A ( self : Optional[int] ): A_ = FlaxRegNetModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def __A ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Dict ): return def __A ( self : Optional[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __A ( self : str ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __A ( self : int ): pass def __A ( self : Optional[Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : List[str] ): def check_hidden_states_output(UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ): A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase : Tuple , **UpperCAmelCase : List[str] ): return model(pixel_values=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): A_ = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Dict ): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def __A ( self : int ): A_ = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="np" ) A_ = model(**UpperCAmelCase ) # verify the logits A_ = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
86
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Dict = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Tuple = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
86
1
import collections import importlib.util import os import re from pathlib import Path __lowerCamelCase : Dict = '''src/transformers''' # Matches is_xxx_available() __lowerCamelCase : Optional[Any] = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __lowerCamelCase : Dict = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCamelCase : List[str] = re.compile(R'''\s+\"\S*\":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __lowerCamelCase : List[str] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __lowerCamelCase : Tuple = re.compile(R'''^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCamelCase : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCamelCase : Dict = re.compile('''^\s+\"([^\"]+)\",''') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCamelCase : List[str] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __lowerCamelCase : Dict = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __lowerCamelCase : Optional[Any] = re.compile(R'''^\s*try:''') # Catches a line with else: __lowerCamelCase : Optional[Any] = re.compile(R'''^\s*else:''') def lowercase__ ( __A: Optional[Any] ): '''simple docstring''' if _re_test_backend.search(lowercase_ ) is None: return None __magic_name__ : Any = [b[0] for b in _re_backend.findall(lowercase_ )] backends.sort() return "_and_".join(lowercase_ ) def lowercase__ ( __A: Optional[Any] ): '''simple docstring''' with open(lowercase_ ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: __magic_name__ : int = f.readlines() __magic_name__ : Any = 0 while line_index < len(lowercase_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase_ ): return None # First grab the objects without a specific backend in _import_structure __magic_name__ : int = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __magic_name__ : Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase_ ): __magic_name__ : Tuple = _re_one_line_import_struct.search(lowercase_ ).groups()[0] __magic_name__ : Optional[Any] = re.findall('''\[([^\]]+)\]''' ,lowercase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __magic_name__ : str = _re_import_struct_key_value.search(lowercase_ ) if single_line_import_search is not None: __magic_name__ : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) line_index += 1 __magic_name__ : Union[str, Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __magic_name__ : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __magic_name__ : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(lowercase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase_ ) is not None: __magic_name__ : Optional[int] = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(''', ''' ) __magic_name__ : int = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_between_brackets.search(lowercase_ ) is not None: __magic_name__ : List[str] = _re_between_brackets.search(lowercase_ ).groups()[0].split(''', ''' ) __magic_name__ : str = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_quote_object.search(lowercase_ ) is not None: objects.append(_re_quote_object.search(lowercase_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''\"''' ): objects.append(line[1_3:-3] ) line_index += 1 __magic_name__ : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __magic_name__ : int = [] while ( line_index < len(lowercase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __magic_name__ : str = lines[line_index] __magic_name__ : Tuple = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __magic_name__ : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(lowercase_ ): # If the line is an if is_backend_available, we grab all objects associated. __magic_name__ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __magic_name__ : int = lines[line_index] __magic_name__ : Union[str, Any] = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 __magic_name__ : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase__ ( __A: Optional[Any] ,__A: List[str] ): '''simple docstring''' def find_duplicates(__A: List[str] ): return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __magic_name__ : Tuple = [] for key in import_dict_objects.keys(): __magic_name__ : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __magic_name__ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __magic_name__ : Dict = "base imports" if key == "none" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowercase__ ( ): '''simple docstring''' __magic_name__ : int = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: __magic_name__ : Any = os.path.join(lowercase_ ,'''__init__.py''' ) __magic_name__ : List[Any] = parse_init(lowercase_ ) if objects is not None: __magic_name__ : List[str] = analyze_results(*lowercase_ ) if len(lowercase_ ) > 0: __magic_name__ : Optional[int] = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(lowercase_ ) ) if len(lowercase_ ) > 0: raise ValueError('''\n\n'''.join(lowercase_ ) ) def lowercase__ ( ): '''simple docstring''' __magic_name__ : Union[str, Any] = [] for path, directories, files in os.walk(lowercase_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(lowercase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase_ ) / folder).glob('''*.py''' ) ) ) == 0: continue __magic_name__ : Optional[int] = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) ) __magic_name__ : Any = short_path.replace(os.path.sep ,'''.''' ) submodules.append(lowercase_ ) for fname in files: if fname == "__init__.py": continue __magic_name__ : int = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) ) __magic_name__ : Union[str, Any] = short_path.replace('''.py''' ,'''''' ).replace(os.path.sep ,'''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(lowercase_ ) return submodules __lowerCamelCase : List[Any] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def lowercase__ ( ): '''simple docstring''' __magic_name__ : Tuple = importlib.util.spec_from_file_location( '''transformers''' ,os.path.join(lowercase_ ,'''__init__.py''' ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) __magic_name__ : str = spec.loader.load_module() __magic_name__ : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase_ ) > 0: __magic_name__ : List[Any] = "\n".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
707
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowercase__ ( __A: str ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowercase__ ( __A: str ): '''simple docstring''' __magic_name__ : List[str] = np.max(_outputs ,axis=-1 ,keepdims=__A ) __magic_name__ : int = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__A ) class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ ='''sigmoid''' UpperCamelCase__ ='''softmax''' UpperCamelCase__ ='''none''' @add_end_docstrings( _lowerCamelCase ,R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' ,) class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =False UpperCamelCase__ =ClassificationFunction.NONE def __init__( self : Tuple , **lowerCamelCase_ : Tuple ) -> List[Any]: super().__init__(**lowerCamelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]="" , **lowerCamelCase_ : int ) -> str: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __magic_name__ : Dict = tokenizer_kwargs __magic_name__ : Dict = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: __magic_name__ : List[str] = self.model.config.return_all_scores if isinstance(lowerCamelCase_ , lowerCamelCase_ ) or top_k is None: __magic_name__ : Dict = top_k __magic_name__ : List[Any] = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , lowerCamelCase_ , ) if return_all_scores: __magic_name__ : str = None else: __magic_name__ : int = 1 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __magic_name__ : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[int] = super().__call__(*lowerCamelCase_ , **lowerCamelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __magic_name__ : int = '''top_k''' not in kwargs if isinstance(args[0] , lowerCamelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Any , **lowerCamelCase_ : int ) -> Dict[str, GenericTensor]: __magic_name__ : Union[str, Any] = self.framework if isinstance(lowerCamelCase_ , lowerCamelCase_ ): return self.tokenizer(**lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) == 1 and isinstance(inputs[0] , lowerCamelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : str , lowerCamelCase_ : Dict ) -> Union[str, Any]: return self.model(**lowerCamelCase_ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Any=True ) -> int: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __magic_name__ : Union[str, Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __magic_name__ : str = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: __magic_name__ : Dict = self.model.config.function_to_apply else: __magic_name__ : Optional[Any] = ClassificationFunction.NONE __magic_name__ : Any = model_outputs['''logits'''][0] __magic_name__ : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __magic_name__ : List[str] = sigmoid(lowerCamelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __magic_name__ : Optional[int] = softmax(lowerCamelCase_ ) elif function_to_apply == ClassificationFunction.NONE: __magic_name__ : Optional[int] = outputs else: raise ValueError(F'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __magic_name__ : Union[str, Any] = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(lowerCamelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda lowerCamelCase_ : x["score"] , reverse=lowerCamelCase_ ) if top_k is not None: __magic_name__ : Dict = dict_scores[:top_k] return dict_scores
501
0
'''simple docstring''' __lowerCAmelCase = 0 # The first color of the flag. __lowerCAmelCase = 1 # The second color of the flag. __lowerCAmelCase = 2 # The third color of the flag. __lowerCAmelCase = (red, white, blue) def __UpperCamelCase ( lowercase_ : list ): """simple docstring""" if not sequence: return [] if len(_UpperCamelCase ) == 1: return list(_UpperCamelCase ) a_ = 0 a_ = len(_UpperCamelCase ) - 1 a_ = 0 while mid <= high: if sequence[mid] == colors[0]: a_ , a_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: a_ , a_ = sequence[high], sequence[mid] high -= 1 else: a_ = F'The elements inside the sequence must contains only {colors} values' raise ValueError(_UpperCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input("Enter numbers separated by commas:\n").strip() __lowerCAmelCase = [int(item.strip()) for item in user_input.split(",")] print(f"""{dutch_national_flag_sort(unsorted)}""")
536
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowercase__ : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" lowercase__ : Dict = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" lowercase__ : int = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ) ->Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def lowerCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[Any]="uniform_average" , UpperCAmelCase__ : int=True ) ->Any: UpperCAmelCase_ = mean_squared_error( UpperCAmelCase__ , UpperCAmelCase__ , sample_weight=UpperCAmelCase__ , multioutput=UpperCAmelCase__ , squared=UpperCAmelCase__ ) return {"mse": mse}
390
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _lowercase (nn.Module ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__() UpperCamelCase_ = nn.Linear(3 , 4 ) UpperCamelCase_ = nn.BatchNormad(4 ) UpperCamelCase_ = nn.Linear(4 , 5 ) def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , model.state_dict() ) UpperCamelCase_ = os.path.join(lowercase_ , "index.json" ) self.assertTrue(os.path.isfile(lowercase_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase_ = os.path.join(lowercase_ , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(lowercase_ ) ) # TODO: add tests on the fact weights are properly loaded def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase_ = torch.randn(2 , 3 , dtype=lowercase_ ) with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = offload_weight(lowercase_ , "weight" , lowercase_ , {} ) UpperCamelCase_ = os.path.join(lowercase_ , "weight.dat" ) self.assertTrue(os.path.isfile(lowercase_ ) ) self.assertDictEqual(lowercase_ , {"weight": {"shape": [2, 3], "dtype": str(lowercase_ ).split("." )[1]}} ) UpperCamelCase_ = load_offloaded_weight(lowercase_ , index["weight"] ) self.assertTrue(torch.equal(lowercase_ , lowercase_ ) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ModelForTest() UpperCamelCase_ = model.state_dict() UpperCamelCase_ = {k: v for k, v in state_dict.items() if """linear2""" not in k} UpperCamelCase_ = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , lowercase_ ) UpperCamelCase_ = OffloadedWeightsLoader(state_dict=lowercase_ , save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_ , weight_map[key] ) ) UpperCamelCase_ = {k: v for k, v in state_dict.items() if """weight""" in k} UpperCamelCase_ = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , lowercase_ ) UpperCamelCase_ = OffloadedWeightsLoader(state_dict=lowercase_ , save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_ , lowercase_ ) # Duplicates are removed UpperCamelCase_ = OffloadedWeightsLoader(state_dict=lowercase_ , save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_ , weight_map[key] ) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} UpperCamelCase_ = extract_submodules_state_dict(lowercase_ , ["a.1", "a.2"] ) self.assertDictEqual(lowercase_ , {"a.1": 0, "a.2": 2} ) UpperCamelCase_ = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} UpperCamelCase_ = extract_submodules_state_dict(lowercase_ , ["a.1", "a.2"] ) self.assertDictEqual(lowercase_ , {"a.1.a": 0, "a.2.a": 2} )
708
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict =logging.get_logger(__name__) class _lowercase (a_ ): '''simple docstring''' lowercase__ = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = size if size is not None else {"shortest_edge": 256} UpperCamelCase_ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase_ = get_resize_output_image_size(snake_case__ , size=size["shortest_edge"] , default_to_square=snake_case__ ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ ) return center_crop(snake_case__ , size=(size["height"], size["width"]) , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ ): '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCamelCase_ = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
504
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any , _A : str ): _UpperCamelCase = 3 _UpperCamelCase = 250 _UpperCamelCase = ids_tensor((batch_size, length) , _A ) _UpperCamelCase = torch.ones((batch_size, length) , device=_A , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase_ ( self : Any ): _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = MaxLengthCriteria(max_length=10 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) _UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : Any ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_A ) , 1 )
10
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowerCamelCase = 6_378_137.0 lowerCamelCase = 6_356_752.314_245 lowerCamelCase = 6_378_137 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase_ = atan((1 - flattening) * tan(radians(lowerCAmelCase__ ) ) ) UpperCAmelCase_ = atan((1 - flattening) * tan(radians(lowerCAmelCase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase_ = haversine_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase_ = (b_lata + b_lata) / 2 UpperCAmelCase_ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase_ = (sin(lowerCAmelCase__ ) ** 2) * (cos(lowerCAmelCase__ ) ** 2) UpperCAmelCase_ = cos(sigma / 2 ) ** 2 UpperCAmelCase_ = (sigma - sin(lowerCAmelCase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase_ = (cos(lowerCAmelCase__ ) ** 2) * (sin(lowerCAmelCase__ ) ** 2) UpperCAmelCase_ = sin(sigma / 2 ) ** 2 UpperCAmelCase_ = (sigma + sin(lowerCAmelCase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
82
0
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase ( lowercase_ : Tuple , lowercase_ : int , lowercase_ : Dict ) -> Any: '''simple docstring''' lowercase =AlbertConfig.from_json_file(lowercase_ ) print(f'Building PyTorch model from configuration: {config}' ) lowercase =AlbertForPreTraining(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _UpperCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
145
'''simple docstring''' from __future__ import annotations _UpperCAmelCase : str = 10 def UpperCamelCase ( lowercase_ : list[int] ) -> list[int]: '''simple docstring''' lowercase =1 lowercase =max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets lowercase =[[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: lowercase =int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints lowercase =0 for b in range(lowercase_ ): for i in buckets[b]: lowercase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
145
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCAmelCase = Lock() def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[Any] ) -> Optional[int]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase : str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase : Any = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase : int = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> List[str]: UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase : Union[str, Any] = Pipe() UpperCamelCase : Tuple = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCamelCase : int = temp_rs UpperCamelCase : Optional[int] = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCamelCase : str = Pipe() UpperCamelCase : str = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCamelCase : Optional[int] = temp_rs UpperCamelCase : List[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCamelCase : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : int = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCamelCase : Optional[Any] = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
40
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Dict = VQModel __magic_name__ : Tuple = "sample" @property def a__( self : List[str] , lowerCAmelCase : Optional[int]=(32, 32) )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def a__( self : Optional[int] )-> List[Any]: """simple docstring""" return (3, 32, 32) @property def a__( self : Dict )-> List[str]: """simple docstring""" return (3, 32, 32) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" pass def a__( self : List[str] )-> Tuple: """simple docstring""" pass def a__( self : int )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCAmelCase ) UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase = image.to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase ).sample UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) )
210
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = analyze_text(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _lowerCAmelCase = sum(single_char_strings.values() ) # one length string _lowerCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowerCAmelCase = single_char_strings[ch] _lowerCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(SCREAMING_SNAKE_CASE_ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowerCAmelCase = sum(two_char_strings.values() ) _lowerCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowerCAmelCase = cha + cha if sequence in two_char_strings: _lowerCAmelCase = two_char_strings[sequence] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) / all_sum my_sec_sum += prob * math.loga(SCREAMING_SNAKE_CASE_ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = Counter() # type: ignore _lowerCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __a(): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
717
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "▁" _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _SCREAMING_SNAKE_CASE = { "facebook/xglm-564M": 20_48, } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowerCAmelCase = 7 _lowerCAmelCase = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _lowerCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCAmelCase ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowerCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ) -> str: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ) -> Any: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _lowerCAmelCase ) -> List[str]: return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
489
0
'''simple docstring''' from __future__ import annotations import numpy as np def __A ( _SCREAMING_SNAKE_CASE : np.ndarray ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: __SCREAMING_SNAKE_CASE : int = ( "'table' has to be of square shaped array but got a " f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = np.zeros((rows, columns) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Tuple = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) __SCREAMING_SNAKE_CASE : int = (table[i][j] - total) / upper[j][j] __SCREAMING_SNAKE_CASE : str = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : int = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE : Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
211
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger() @dataclass class __lowerCamelCase : '''simple docstring''' snake_case__ : nn.Module snake_case__ : List[nn.Module] = field(default_factory=__SCREAMING_SNAKE_CASE ) snake_case__ : list = field(default_factory=__SCREAMING_SNAKE_CASE ) def a_ ( self , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : str = len(list(m.modules() ) ) == 1 or isinstance(a__ , nn.Convad ) or isinstance(a__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a__ ) def __call__( self , a__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a__ ) [x.remove() for x in self.handles] return self @property def a_ ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __lowerCamelCase : '''simple docstring''' snake_case__ : nn.Module snake_case__ : nn.Module snake_case__ : int = 1 snake_case__ : List = field(default_factory=__SCREAMING_SNAKE_CASE ) snake_case__ : List = field(default_factory=__SCREAMING_SNAKE_CASE ) snake_case__ : bool = True def __call__( self , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = Tracker(self.dest )(a__ ).parametrized __SCREAMING_SNAKE_CASE : str = Tracker(self.src )(a__ ).parametrized __SCREAMING_SNAKE_CASE : Tuple = list(filter(lambda a__ : type(a__ ) not in self.src_skip , a__ ) ) __SCREAMING_SNAKE_CASE : List[Any] = list(filter(lambda a__ : type(a__ ) not in self.dest_skip , a__ ) ) if len(a__ ) != len(a__ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(a__ )} operations while' f' destination module has {len(a__ )}.' ) for dest_m, src_m in zip(a__ , a__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , a__ ): super().__init__() __SCREAMING_SNAKE_CASE : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f'Unexpected layer name {k}' __SCREAMING_SNAKE_CASE : str = len(a__ ) + 1 feature_blocks.append((f'res{block_index}', v) ) __SCREAMING_SNAKE_CASE : Tuple = nn.ModuleDict(a__ ) def a_ ( self , a__ ): return get_trunk_forward_outputs( a__ , out_feat_keys=a__ , feature_blocks=self._feature_blocks , ) class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : List[str] = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , a__ ): # default to timm! if x not in self: __SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_name_to_timm(a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = partial(lambda: (timm.create_model(a__ , pretrained=a__ ).eval(), None) ) else: __SCREAMING_SNAKE_CASE : List[Any] = super().__getitem__(a__ ) return val class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __getitem__( self , a__ ): if "seer" in x and "in1k" not in x: __SCREAMING_SNAKE_CASE : Any = RegNetModel else: __SCREAMING_SNAKE_CASE : Union[str, Any] = RegNetForImageClassification return val def __A ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: __SCREAMING_SNAKE_CASE : Optional[int] = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def __A ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = from_model_func() __SCREAMING_SNAKE_CASE : Any = our_model_func(_SCREAMING_SNAKE_CASE ).eval() __SCREAMING_SNAKE_CASE : Any = ModuleTransfer(src=_SCREAMING_SNAKE_CASE , dest=_SCREAMING_SNAKE_CASE , raise_if_mismatch=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(_SCREAMING_SNAKE_CASE ) if from_state_dict is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __SCREAMING_SNAKE_CASE : Tuple = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] __SCREAMING_SNAKE_CASE : str = manually_copy_vissl_head(_SCREAMING_SNAKE_CASE , our_model.state_dict() , _SCREAMING_SNAKE_CASE ) our_model.load_state_dict(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = our_model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[str] = ( our_outputs.logits if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) __SCREAMING_SNAKE_CASE : Dict = from_model(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = from_output[-1] if type(_SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __SCREAMING_SNAKE_CASE : str = our_outputs.hidden_states[-1] assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE : Optional[int] = 2_2_4 if "seer" not in name else 3_8_4 # we can use the convnext one __SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) print(f'Pushed {name}' ) def __A ( _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : str = None , _SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = "imagenet-1k-id2label.json" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_0_0_0 __SCREAMING_SNAKE_CASE : Optional[int] = (1, num_labels) __SCREAMING_SNAKE_CASE : Tuple = "huggingface/label-files" __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : List[str] = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) __SCREAMING_SNAKE_CASE : Any = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = partial(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : str = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } __SCREAMING_SNAKE_CASE : Optional[int] = NameToOurModelFuncMap() __SCREAMING_SNAKE_CASE : List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , model_dir=str(_SCREAMING_SNAKE_CASE ) , map_location="cpu" ) __SCREAMING_SNAKE_CASE : Dict = model_func() # check if we have a head, if yes add it __SCREAMING_SNAKE_CASE : Optional[Any] = files["classy_state_dict"]["base_model"]["model"] __SCREAMING_SNAKE_CASE : int = model_state_dict["trunk"] model.load_state_dict(_SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained __SCREAMING_SNAKE_CASE : Any = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __SCREAMING_SNAKE_CASE : int = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __SCREAMING_SNAKE_CASE : str = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __SCREAMING_SNAKE_CASE : Tuple = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned __SCREAMING_SNAKE_CASE : int = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __SCREAMING_SNAKE_CASE : int = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __SCREAMING_SNAKE_CASE : Optional[int] = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __SCREAMING_SNAKE_CASE : Tuple = partial( _SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowercase = parser.parse_args() lowercase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
211
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline UpperCAmelCase__ = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCAmelCase__ = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCAmelCase__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ = False @property def __lowercase( self ) -> Any: return 32 @property def __lowercase( self ) -> Any: return 32 @property def __lowercase( self ) -> Tuple: return self.time_input_dim @property def __lowercase( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def __lowercase( self ) -> List[str]: return 100 @property def __lowercase( self ) -> Tuple: torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def __lowercase( self ) -> List[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowercase( self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __UpperCamelCase = DDIMScheduler(**_SCREAMING_SNAKE_CASE ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Tuple: __UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((256, 256) ) # create hint __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __UpperCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __lowercase( self ) -> str: __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __UpperCamelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self ) -> List[str]: __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = init_image.resize((512, 512) ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __UpperCamelCase = torch.from_numpy(np.array(_SCREAMING_SNAKE_CASE ) ).float() / 255.0 __UpperCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __UpperCamelCase = 'A robot, 4k photo' __UpperCamelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( _SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.8_5 , generator=_SCREAMING_SNAKE_CASE , negative_prompt='' , ).to_tuple() __UpperCamelCase = pipeline( image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , hint=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) __UpperCamelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
721
def _a ( __lowercase ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
567
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : str = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _lowerCAmelCase : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _lowerCAmelCase : Union[str, Any] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _lowerCAmelCase : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _lowerCAmelCase : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _lowerCAmelCase : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class A_ ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class A_ ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : List[Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _lowerCAmelCase : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _lowerCAmelCase : Tuple = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_a ) class A_ : def __call__( self: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Union[bool, str] = False ,__lowerCAmelCase: Union[bool, str] = False ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,__lowerCAmelCase: Optional[bool] = None ,**__lowerCAmelCase: Any ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( __lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,**__lowerCAmelCase ,) elif titles is None or texts is None: _lowerCamelCase : int = titles if texts is None else texts return super().__call__( __lowerCAmelCase ,__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Dict = titles if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else [titles] _lowerCamelCase : List[Any] = texts if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else [texts] _lowerCamelCase : Optional[int] = len(__lowerCAmelCase ) _lowerCamelCase : Tuple = questions if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else [questions] * n_passages if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( F"""There should be as many titles than texts but got {len(__lowerCAmelCase )} titles and {len(__lowerCAmelCase )} texts.""" ) _lowerCamelCase : Dict = super().__call__(__lowerCAmelCase ,__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase )["input_ids"] _lowerCamelCase : List[str] = super().__call__(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase )["input_ids"] _lowerCamelCase : List[Any] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] } if return_attention_mask is not False: _lowerCamelCase : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCamelCase : Union[str, Any] = attention_mask return self.pad(__lowerCAmelCase ,padding=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: BatchEncoding ,__lowerCAmelCase: DPRReaderOutput ,__lowerCAmelCase: int = 16 ,__lowerCAmelCase: int = 64 ,__lowerCAmelCase: int = 4 ,): '''simple docstring''' _lowerCamelCase : List[Any] = reader_input["input_ids"] _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = reader_output[:3] _lowerCamelCase : Optional[int] = len(__lowerCAmelCase ) _lowerCamelCase : Any = sorted(range(__lowerCAmelCase ) ,reverse=__lowerCAmelCase ,key=relevance_logits.__getitem__ ) _lowerCamelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCamelCase : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCamelCase : Optional[Any] = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCamelCase : str = sequence_ids.index(self.pad_token_id ) else: _lowerCamelCase : Any = len(__lowerCAmelCase ) _lowerCamelCase : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=__lowerCAmelCase ,top_spans=__lowerCAmelCase ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=__lowerCAmelCase ,start_index=__lowerCAmelCase ,end_index=__lowerCAmelCase ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(__lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self: List[str] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : int = [] for start_index, start_score in enumerate(__lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCamelCase : Optional[int] = sorted(__lowerCAmelCase ,key=lambda __lowerCAmelCase : x[1] ,reverse=__lowerCAmelCase ) _lowerCamelCase : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCamelCase : Any = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class A_ ( _a , _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ['input_ids', 'attention_mask']
46
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=12 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=0.02 , lowerCAmelCase_=0 , lowerCAmelCase_=None , ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = projection_dim __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = scope __lowercase = bos_token_id def snake_case__ ( self ): __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __lowercase = input_mask.numpy() __lowercase , __lowercase = input_mask.shape __lowercase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase_ ): __lowercase = 1 __lowercase = 0 __lowercase = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCAmelCase_ ) def snake_case__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = TFBlipTextModel(config=lowerCAmelCase_ ) __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowercase = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (TFBlipTextModel,) if is_tf_available() else () __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def snake_case__ ( self ): __lowercase = BlipTextModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def snake_case__ ( self ): pass def snake_case__ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def snake_case__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def snake_case__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def snake_case__ ( self ): pass @slow def snake_case__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFBlipTextModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCAmelCase_ )
321
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # Initialise PyTorch model _a : Tuple = FunnelConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : List[str] = FunnelBaseModel(UpperCamelCase_ ) if base_model else FunnelModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) __UpperCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
249
import requests from bsa import BeautifulSoup def lowerCamelCase_ ( UpperCamelCase_ = "AAPL" ): _a : List[str] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _a : Any = BeautifulSoup(requests.get(UpperCamelCase_ ).text , '''html.parser''' ) _a : Optional[int] = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
249
1
from __future__ import annotations def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : list[list[str]] = [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print('''''' ) print(len(lowercase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
1
from functools import lru_cache def _a ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" _lowerCAmelCase = 2 _lowerCAmelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__SCREAMING_SNAKE_CASE ) if n > 1: factors.add(__SCREAMING_SNAKE_CASE ) return factors @lru_cache def _a ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(__SCREAMING_SNAKE_CASE ) ) def _a ( __SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(__SCREAMING_SNAKE_CASE ) ) in (0, 1) def _a ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" _lowerCAmelCase = 2 while True: # Increment each value of a generated range _lowerCAmelCase = [base + i for i in range(__SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. _lowerCAmelCase = [upf_len(__SCREAMING_SNAKE_CASE ) for x in group] checker.append(__SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(__SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def _a ( __SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" _lowerCAmelCase = run(__SCREAMING_SNAKE_CASE ) return results[0] if len(__SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
585
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __lowercase( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : int=30 , _lowerCAmelCase : Optional[Any]=400 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Dict=1 / 255 , _lowerCAmelCase : int=True , ) -> Union[str, Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_pad def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Dict=False ) -> Dict: if not batched: _lowerCAmelCase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase = int(self.size['shortest_edge'] * h / w ) _lowerCAmelCase = self.size['shortest_edge'] elif w > h: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = self.size['shortest_edge'] else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: _lowerCAmelCase = ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) _lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: # prepare image and target _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'image_id': 3_9769, 'annotations': target} # encode them _lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: # prepare image, target and masks_path _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _lowerCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCAmelCase = ConditionalDetrImageProcessor(format='coco_panoptic' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify masks _lowerCAmelCase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _lowerCAmelCase ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) )
585
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self , lowercase_ , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=10 , lowercase_=[10, 20, 30, 40] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ) -> Optional[int]: a__ =parent a__ =batch_size a__ =image_size a__ =num_channels a__ =embeddings_size a__ =hidden_sizes a__ =depths a__ =is_training a__ =use_labels a__ =hidden_act a__ =num_labels a__ =scope a__ =len(UpperCAmelCase__) def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.num_labels) a__ =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self) -> Union[str, Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =RegNetModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() a__ =model(UpperCAmelCase__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =self.num_labels a__ =RegNetForImageClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() a__ =model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self) -> List[Any]: a__ =self.prepare_config_and_inputs() a__ , a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case =( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> str: a__ =RegNetModelTester(self) a__ =ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__) def __UpperCamelCase ( self) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> List[Any]: return @unittest.skip(reason='RegNet does not use inputs_embeds') def __UpperCamelCase ( self) -> str: pass @unittest.skip(reason='RegNet does not support input and output embeddings') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Optional[int]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(UpperCAmelCase__) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def __UpperCamelCase ( self) -> Any: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def __UpperCamelCase ( self) -> str: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(config=UpperCAmelCase__) for name, module in model.named_modules(): if isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __UpperCamelCase ( self) -> str: def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_): a__ =model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() with torch.no_grad(): a__ =model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)) a__ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a__ =layer_type a__ =True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ =True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def __UpperCamelCase ( self) -> Any: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def __UpperCamelCase ( self) -> Optional[Any]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =RegNetModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> List[Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __UpperCamelCase ( self) -> Union[str, Any]: a__ =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(UpperCAmelCase__) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=UpperCAmelCase__ , return_tensors='pt').to(UpperCAmelCase__) # forward pass with torch.no_grad(): a__ =model(**UpperCAmelCase__) # verify the logits a__ =torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) a__ =torch.tensor([-0.41_80, -1.50_51, -3.48_36]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
20
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : List[Any] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] = None ) -> Optional[int]: __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = max_position_embeddings @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : Optional[int] ) -> bool: __SCREAMING_SNAKE_CASE = input_ids.shape[-1] __SCREAMING_SNAKE_CASE = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = start_length __SCREAMING_SNAKE_CASE = max_new_tokens __SCREAMING_SNAKE_CASE = start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Union[str, Any] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : Tuple ) -> bool: return input_ids.shape[-1] >= self.max_length class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[float] = None ) -> Dict: __SCREAMING_SNAKE_CASE = max_time __SCREAMING_SNAKE_CASE = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : str ) -> bool: return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Dict , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : List[str] ) -> bool: return any(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) for criteria in self ) @property def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for stopping_criterium in self: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return stopping_criterium.max_length return None def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = stopping_criteria.max_length __SCREAMING_SNAKE_CASE = deepcopy(lowerCAmelCase_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , lowerCAmelCase_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCAmelCase_ ) ) return new_stopping_criteria
682
0
import logging import os from .state import PartialState class _lowerCamelCase (logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): __snake_case = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __snake_case = kwargs.pop('main_process_only' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('in_order' , SCREAMING_SNAKE_CASE_ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE_ ): if self._should_log(SCREAMING_SNAKE_CASE_ ): __snake_case , __snake_case = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif in_order: __snake_case = PartialState() for i in range(state.num_processes ): if i == state.process_index: __snake_case , __snake_case = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) state.wait_for_everyone() def __lowercase( __snake_case : str ,__snake_case : str = None ) -> Union[str, Any]: if log_level is None: __snake_case = os.environ.get('ACCELERATE_LOG_LEVEL' ,__snake_case ) __snake_case = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case ,{} )
345
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowercase( __snake_case : List[str] ,__snake_case : Optional[int] ,__snake_case : Dict ,__snake_case : List[str] ,__snake_case : Optional[int] ) -> int: # Load configuration defined in the metadata file with open(__snake_case ) as metadata_file: __snake_case = json.load(__snake_case ) __snake_case = LukeConfig(use_entity_aware_attention=__snake_case ,**metadata['model_config'] ) # Load in the weights from the checkpoint_path __snake_case = torch.load(__snake_case ,map_location='cpu' )['module'] # Load the entity vocab file __snake_case = load_original_entity_vocab(__snake_case ) # add an entry for [MASK2] __snake_case = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case = AddedToken('<ent>' ,lstrip=__snake_case ,rstrip=__snake_case ) __snake_case = AddedToken('<ent2>' ,lstrip=__snake_case ,rstrip=__snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__snake_case ) with open(os.path.join(__snake_case ,'tokenizer_config.json' ) ,'r' ) as f: __snake_case = json.load(__snake_case ) __snake_case = 'MLukeTokenizer' with open(os.path.join(__snake_case ,'tokenizer_config.json' ) ,'w' ) as f: json.dump(__snake_case ,__snake_case ) with open(os.path.join(__snake_case ,MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) ,'w' ) as f: json.dump(__snake_case ,__snake_case ) __snake_case = MLukeTokenizer.from_pretrained(__snake_case ) # Initialize the embeddings of the special tokens __snake_case = tokenizer.convert_tokens_to_ids(['@'] )[0] __snake_case = tokenizer.convert_tokens_to_ids(['#'] )[0] __snake_case = state_dict['embeddings.word_embeddings.weight'] __snake_case = word_emb[ent_init_index].unsqueeze(0 ) __snake_case = word_emb[enta_init_index].unsqueeze(0 ) __snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case = state_dict[bias_name] __snake_case = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case = f'''encoder.layer.{layer_index}.attention.self.''' __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] __snake_case = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) __snake_case = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case = state_dict['entity_predictions.bias'] __snake_case = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) __snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case = LukeForMaskedLM(config=__snake_case ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) __snake_case = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): __snake_case = state_dict[key] else: __snake_case = state_dict[key] __snake_case , __snake_case = model.load_state_dict(__snake_case ,strict=__snake_case ) if set(__snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(__snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case = MLukeTokenizer.from_pretrained(__snake_case ,task='entity_classification' ) __snake_case = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' __snake_case = (0, 9) __snake_case = tokenizer(__snake_case ,entity_spans=[span] ,return_tensors='pt' ) __snake_case = model(**__snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case = torch.Size((1, 33, 7_68) ) __snake_case = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__snake_case ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case = torch.Size((1, 1, 7_68) ) __snake_case = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__snake_case ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __snake_case = MLukeTokenizer.from_pretrained(__snake_case ) __snake_case = 'Tokyo is the capital of <mask>.' __snake_case = (24, 30) __snake_case = tokenizer(__snake_case ,entity_spans=[span] ,return_tensors='pt' ) __snake_case = model(**__snake_case ) __snake_case = encoding['input_ids'][0].tolist() __snake_case = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) __snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__snake_case ) __snake_case = outputs.entity_logits[0][0].argmax().item() __snake_case = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__snake_case ) ) model.save_pretrained(__snake_case ) def __lowercase( __snake_case : int ) -> Any: __snake_case = ['[MASK]', '[PAD]', '[UNK]'] __snake_case = [json.loads(__snake_case ) for line in open(__snake_case )] __snake_case = {} for entry in data: __snake_case = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case = entity_id break __snake_case = f'''{language}:{entity_name}''' __snake_case = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase_ : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
345
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A_ = logging.get_logger("transformers.models.encodec") A_ = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } A_ = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } A_ = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } A_ = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } A_ = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } A_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A_ = [] A_ = [] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: for attribute in key.split('.' ): lowerCamelCase_ = getattr(__UpperCamelCase ,__UpperCamelCase ) if weight_type is not None: lowerCamelCase_ = getattr(__UpperCamelCase ,__UpperCamelCase ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "running_mean": lowerCamelCase_ = value elif weight_type == "running_var": lowerCamelCase_ = value elif weight_type == "num_batches_tracked": lowerCamelCase_ = value elif weight_type == "weight_ih_l0": lowerCamelCase_ = value elif weight_type == "weight_hh_l0": lowerCamelCase_ = value elif weight_type == "bias_ih_l0": lowerCamelCase_ = value elif weight_type == "bias_hh_l0": lowerCamelCase_ = value elif weight_type == "weight_ih_l1": lowerCamelCase_ = value elif weight_type == "weight_hh_l1": lowerCamelCase_ = value elif weight_type == "bias_ih_l1": lowerCamelCase_ = value elif weight_type == "bias_hh_l1": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase_ ,lowerCamelCase_ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: lowerCamelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase_ = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase_ = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__UpperCamelCase ,__UpperCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCamelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase_ ,lowerCamelCase_ = key.split('.*.' ) if prefix in name and suffix in name: lowerCamelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(__UpperCamelCase )[0].split('.' )[-2] lowerCamelCase_ = mapped_key.replace('*' ,__UpperCamelCase ) if "weight_g" in name: lowerCamelCase_ = 'weight_g' elif "weight_v" in name: lowerCamelCase_ = 'weight_v' elif "weight_ih_l0" in name: lowerCamelCase_ = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCamelCase_ = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCamelCase_ = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCamelCase_ = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCamelCase_ = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCamelCase_ = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCamelCase_ = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCamelCase_ = 'bias_hh_l1' elif "bias" in name: lowerCamelCase_ = 'bias' elif "weight" in name: lowerCamelCase_ = 'weight' elif "running_mean" in name: lowerCamelCase_ = 'running_mean' elif "running_var" in name: lowerCamelCase_ = 'running_var' elif "num_batches_tracked" in name: lowerCamelCase_ = 'num_batches_tracked' else: lowerCamelCase_ = None set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=None ,) -> Any: if config_path is not None: lowerCamelCase_ = EncodecConfig.from_pretrained(__UpperCamelCase ) else: lowerCamelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase_ = [8, 5, 4, 4] lowerCamelCase_ = [2.2] lowerCamelCase_ = 64 lowerCamelCase_ = 3_20_00 lowerCamelCase_ = 20_48 lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False elif model_name == "encodec_48khz": lowerCamelCase_ = [8, 5, 4, 2] lowerCamelCase_ = [3.0, 6.0, 12.0, 24.0] lowerCamelCase_ = 4_80_00 lowerCamelCase_ = 2 lowerCamelCase_ = False lowerCamelCase_ = 'time_group_norm' lowerCamelCase_ = True lowerCamelCase_ = 1.0 lowerCamelCase_ = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCamelCase_ = EncodecModel(__UpperCamelCase ) lowerCamelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels ,sampling_rate=config.sampling_rate ,chunk_length_s=config.chunk_length_s ,overlap=config.overlap ,) feature_extractor.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = torch.load(__UpperCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase_ = original_checkpoint['best_state'] recursively_load_weights(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
42
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = 8 # DPR tok _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(A__ , exist_ok=A__ ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _SCREAMING_SNAKE_CASE = dict(zip(A__ , range(len(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(A__ , exist_ok=A__ ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A__ ) ) def UpperCamelCase ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def UpperCamelCase ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def UpperCamelCase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _SCREAMING_SNAKE_CASE = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _SCREAMING_SNAKE_CASE = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(A__ ) rag_tokenizer.save_pretrained(A__ ) _SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(A__ , config=A__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , A__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , A__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _SCREAMING_SNAKE_CASE = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _SCREAMING_SNAKE_CASE = tokenizer(A__ ) self.assertIsNotNone(A__ ) @slow def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _SCREAMING_SNAKE_CASE = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _SCREAMING_SNAKE_CASE = tokenizer(A__ ) self.assertIsNotNone(A__ )
591
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( __UpperCAmelCase ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self , UpperCAmelCase_ = 1 , UpperCAmelCase_ = None , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 50 , UpperCAmelCase_ = "pil" , UpperCAmelCase_ = True , **UpperCAmelCase_ , ) -> Union[Tuple, ImagePipelineOutput]: lowerCamelCase : List[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase_ , ) lowerCamelCase : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCamelCase : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase : Union[str, Any] = {} if accepts_eta: lowerCamelCase : List[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCamelCase : str = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual lowerCamelCase : List[str] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase : Optional[int] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # decode the image latents with the VAE lowerCamelCase : List[str] = self.vqvae.decode(UpperCAmelCase_ ).sample lowerCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase : List[str] = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
133
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): '''simple docstring''' if num <= 0: lowerCamelCase : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) lowerCamelCase : Optional[Any] = [True] * (num + 1) lowerCamelCase : int = [] lowerCamelCase : Dict = 2 lowerCamelCase : List[str] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: lowerCamelCase : Optional[int] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
133
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase__ = logging.get_logger(__name__) class _UpperCamelCase ( __snake_case): __lowerCamelCase = "vision-encoder-decoder" __lowerCamelCase = True def __init__(self , **lowerCamelCase__ ): """simple docstring""" super().__init__(**lowerCamelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) A__ = kwargs.pop("""encoder""" ) A__ = encoder_config.pop("""model_type""" ) A__ = kwargs.pop("""decoder""" ) A__ = decoder_config.pop("""model_type""" ) A__ = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) A__ = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) A__ = True @classmethod def A (cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def A (self ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output class _UpperCamelCase ( __snake_case): __lowerCamelCase = version.parse("1.11") @property def A (self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self ): """simple docstring""" return 1E-4 @property def A (self ): """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _UpperCamelCase ( __snake_case): @property def A (self ): """simple docstring""" A__ = OrderedDict() A__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A__ = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def A (self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ): """simple docstring""" import torch A__ = OrderedDict() A__ = super().generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) A__ ,A__ = dummy_input["""input_ids"""].shape A__ = (batch, encoder_sequence, self._config.encoder_hidden_size) A__ = dummy_input.pop("""input_ids""" ) A__ = dummy_input.pop("""attention_mask""" ) A__ = torch.zeros(lowerCamelCase__ ) return common_inputs class _UpperCamelCase ( __snake_case): @property def A (self ): """simple docstring""" pass def A (self , lowerCamelCase__ ): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase__ ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = "default" ): """simple docstring""" A__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase__ , lowerCamelCase__ )
574
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Any ): A__ = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } A__ = F"""{src_lang}-{tgt_lang}""" A__ = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) A__ = os.path.join(UpperCamelCase , """README.md""" ) print(F"""Generating {path}""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(UpperCamelCase ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split("-") lowerCamelCase__ = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
574
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Tuple = '''sew-d''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=2 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2_5_6 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=("p2c", "c2p") , UpperCAmelCase="layer_norm" , UpperCAmelCase="gelu_python" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=0 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) __UpperCAmelCase =hidden_size __UpperCAmelCase =feat_extract_norm __UpperCAmelCase =feat_extract_activation __UpperCAmelCase =list(__a) __UpperCAmelCase =list(__a) __UpperCAmelCase =list(__a) __UpperCAmelCase =conv_bias __UpperCAmelCase =num_conv_pos_embeddings __UpperCAmelCase =num_conv_pos_embedding_groups __UpperCAmelCase =len(self.conv_dim) __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =intermediate_size __UpperCAmelCase =squeeze_factor __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =position_buckets __UpperCAmelCase =share_att_key __UpperCAmelCase =relative_attention __UpperCAmelCase =norm_rel_ebd __UpperCAmelCase =list(__a) __UpperCAmelCase =hidden_act __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_dropout __UpperCAmelCase =attention_dropout __UpperCAmelCase =activation_dropout __UpperCAmelCase =feat_proj_dropout __UpperCAmelCase =final_dropout __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =feature_layer_norm_eps __UpperCAmelCase =initializer_range __UpperCAmelCase =vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f"""but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase =apply_spec_augment __UpperCAmelCase =mask_time_prob __UpperCAmelCase =mask_time_length __UpperCAmelCase =mask_time_min_masks __UpperCAmelCase =mask_feature_prob __UpperCAmelCase =mask_feature_length __UpperCAmelCase =mask_feature_min_masks # ctc loss __UpperCAmelCase =ctc_loss_reduction __UpperCAmelCase =ctc_zero_infinity # sequence classification __UpperCAmelCase =use_weighted_layer_sum __UpperCAmelCase =classifier_proj_size @property def A__ (self): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
712
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase_ = get_logger() UpperCamelCase_ = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' super().__init__(features=UpperCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCAmelCase)}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''') __UpperCAmelCase =device if isinstance(UpperCAmelCase , UpperCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default """ f"""device: {str(jax.devices()[0])}.""") __UpperCAmelCase =str(jax.devices()[0]) __UpperCAmelCase =jnp_array_kwargs @staticmethod def A__ (): '''simple docstring''' import jax return {str(UpperCAmelCase): device for device in jax.devices()} def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase) and column: if all( isinstance(UpperCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(UpperCAmelCase , axis=0) return column def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase))): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __UpperCAmelCase ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __UpperCAmelCase ={'''dtype''': jnp.intaa} else: __UpperCAmelCase ={'''dtype''': jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __UpperCAmelCase ={'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image): __UpperCAmelCase =np.asarray(UpperCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def A__ (self , UpperCAmelCase): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(UpperCAmelCase , '''__array__''') and not isinstance(UpperCAmelCase , jax.Array): __UpperCAmelCase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) elif isinstance(UpperCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) return self._tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_row(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_row(UpperCAmelCase) return self.recursive_tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_column(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0]) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) __UpperCAmelCase =self._consolidate(UpperCAmelCase) return column def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_batch(UpperCAmelCase) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) for column_name in batch: __UpperCAmelCase =self._consolidate(batch[column_name]) return batch
142
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE = TypeVar('T') class A_ ( Generic[T] ): '''simple docstring''' def __init__( self , _A = True) -> str: """simple docstring""" _UpperCAmelCase : dict[T, list[T]] = {} # dictionary of lists _UpperCAmelCase : int = directed def snake_case__ ( self , _A , _A) -> Tuple: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) self.adj_list[destination_vertex].append(_UpperCAmelCase) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) _UpperCAmelCase : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_UpperCAmelCase) _UpperCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _UpperCAmelCase : Tuple = [destination_vertex] _UpperCAmelCase : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) _UpperCAmelCase : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _UpperCAmelCase : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _UpperCAmelCase : Any = [destination_vertex] _UpperCAmelCase : List[Any] = [] return self def __repr__( self) -> int: """simple docstring""" return pformat(self.adj_list)
485
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
'''simple docstring''' class a : """simple docstring""" def __init__( self : Tuple , snake_case_ : Dict ): '''simple docstring''' snake_case__ : Any = set_counts snake_case__ : int = max(UpperCamelCase_ ) snake_case__ : List[str] = len(UpperCamelCase_ ) snake_case__ : Any = [1] * num_sets snake_case__ : Any = list(range(UpperCamelCase_ ) ) def __magic_name__ ( self : int , snake_case_ : List[Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Optional[int] = self.get_parent(UpperCamelCase_ ) snake_case__ : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] snake_case__ : Optional[Any] = 0 snake_case__ : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 snake_case__ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = src_parent snake_case__ : Dict = self.set_counts[src_parent] snake_case__ : Dict = max(self.max_set , UpperCamelCase_ ) return True def __magic_name__ ( self : Optional[Any] , snake_case_ : Union[str, Any] ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set snake_case__ : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
710
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , '''width_multiplier''' ) ) class a : """simple docstring""" def __init__( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Dict=1_3 , snake_case_ : Any=6_4 , snake_case_ : Dict=2 , snake_case_ : Optional[int]=3 , snake_case_ : str="swish" , snake_case_ : str=3 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.0_2 , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : Dict=1_0 , snake_case_ : Optional[int]=None , snake_case_ : str=0.2_5 , snake_case_ : List[Any]=0.0 , snake_case_ : Optional[Any]=0.0 , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : Dict = batch_size snake_case__ : Dict = image_size snake_case__ : Tuple = patch_size snake_case__ : Tuple = num_channels snake_case__ : Tuple = make_divisible(5_1_2 * width_multiplier , divisor=8 ) snake_case__ : Optional[int] = hidden_act snake_case__ : int = conv_kernel_size snake_case__ : Optional[int] = output_stride snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = use_labels snake_case__ : Optional[Any] = is_training snake_case__ : int = num_labels snake_case__ : str = initializer_range snake_case__ : Dict = scope snake_case__ : Tuple = width_multiplier snake_case__ : Optional[Any] = ffn_dropout snake_case__ : Dict = attn_dropout def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Optional[Any] = MobileViTVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Optional[int] = self.num_labels snake_case__ : Optional[Any] = MobileViTVaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : int = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : int , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : Any = MobileViTVaForSemanticSegmentation(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : str = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : str = MobileViTVaModelTester(self ) snake_case__ : Union[str, Any] = MobileViTVaConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __magic_name__ ( self : int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __magic_name__ ( self : int ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(snake_case_ ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Any = [*signature.parameters.keys()] snake_case__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple ): snake_case__ : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Union[str, Any] = outputs.hidden_states snake_case__ : Any = 5 self.assertEqual(len(snake_case_ ) , snake_case_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Dict = 2 for i in range(len(snake_case_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : int = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = MobileViTVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _a ( ): """simple docstring""" snake_case__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( snake_case_ ) snake_case__ : Any = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : str = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**snake_case_ ) # verify the logits snake_case__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : Tuple = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : Any = model.to(snake_case_ ) snake_case__ : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : str = prepare_img() snake_case__ : Union[str, Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Union[str, Any] = model(**snake_case_ ) snake_case__ : Tuple = outputs.logits # verify the logits snake_case__ : Optional[Any] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , snake_case_ ) snake_case__ : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=snake_case_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : List[str] = model.to(snake_case_ ) snake_case__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : str = prepare_img() snake_case__ : str = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**snake_case_ ) snake_case__ : str = outputs.logits.detach().cpu() snake_case__ : int = image_processor.post_process_semantic_segmentation(outputs=snake_case_ , target_sizes=[(5_0, 6_0)] ) snake_case__ : int = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , snake_case_ ) snake_case__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case_ ) snake_case__ : Any = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , snake_case_ )
502
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCamelCase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A__ ( __lowerCAmelCase : Optional[int] ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): lowerCamelCase__ = [image] lowerCamelCase__ = [trans(img.convert("""RGB""" ) ) for img in image] lowerCamelCase__ = torch.stack(__lowerCAmelCase ) return image class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # get the original timestep using init_timestep lowerCamelCase__ = min(int(num_inference_steps * strength ) ,_lowerCAmelCase ) lowerCamelCase__ = max(num_inference_steps - init_timestep ,0 ) lowerCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ): if not isinstance(_lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowerCAmelCase )}''' ) lowerCamelCase__ = image.to(device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ = init_latents.shape lowerCamelCase__ = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) # get latents print("""add noise to latents at timestep""" ,_lowerCAmelCase ) lowerCamelCase__ = self.scheduler.add_noise(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = init_latents return latents @torch.no_grad() def __call__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = 0.8 ,_lowerCAmelCase = 1 ,_lowerCAmelCase = None ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,): self.check_inputs(_lowerCAmelCase ) # 2. Preprocess image lowerCamelCase__ = preprocess(_lowerCAmelCase ) # 3. set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ,device=self.device ) lowerCamelCase__ , lowerCamelCase__ = self.get_timesteps(_lowerCAmelCase ,_lowerCAmelCase ,self.device ) lowerCamelCase__ = timesteps[:1].repeat(_lowerCAmelCase ) # 4. Prepare latent variables lowerCamelCase__ = self.prepare_latents(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,self.unet.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = latents # 5. Denoising loop for t in self.progress_bar(_lowerCAmelCase ): # 1. predict noise model_output lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,eta=_lowerCAmelCase ,use_clipped_model_output=_lowerCAmelCase ,generator=_lowerCAmelCase ,).prev_sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowerCAmelCase )
50
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'codegen' _UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_ctx lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
50
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = OpenAIGPTTokenizer a_ = OpenAIGPTTokenizerFast a_ = True a_ = False def snake_case__ ( self : Dict ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def snake_case__ ( self : Optional[Any] , __a : Optional[Any] ) -> List[Any]: return "lower newer", "lower newer" def snake_case__ ( self : Any ) -> Optional[int]: __UpperCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCAmelCase = '''lower''' __UpperCAmelCase = ['''low''', '''er</w>'''] __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + ['''<unk>'''] __UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def snake_case__ ( self : Tuple , __a : int=1_5 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __UpperCAmelCase = '''This is a simple input''' __UpperCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: pass @require_ftfy @require_spacy @require_tokenizers class A ( UpperCAmelCase ): pass
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
0
from __future__ import annotations import math def _snake_case ( __snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _UpperCamelCase = [] for num in range(len(__snake_case ) ): _UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: _UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def _snake_case ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'{solution() = }')
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase =logging.get_logger(__name__) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : int ,*snake_case : Dict ,**snake_case : List[Any] ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' ,snake_case ,) super().__init__(*snake_case ,**snake_case )
252
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class a_ : """simple docstring""" def __init__( self : Tuple ,snake_case : List[str] ,snake_case : List[str]=13 ,snake_case : Optional[Any]=7 ,snake_case : Union[str, Any]=False ,snake_case : str=True ,snake_case : Tuple=False ,snake_case : List[Any]=True ,snake_case : Tuple=33 ,snake_case : Dict=32 ,snake_case : str=5 ,snake_case : str=4 ,snake_case : int=37 ,snake_case : int="gelu" ,snake_case : int=0.1 ,snake_case : Dict=0.1 ,snake_case : int=512 ,snake_case : Optional[Any]=16 ,snake_case : List[Any]=2 ,snake_case : Tuple=0.02 ,snake_case : int=3 ,snake_case : Tuple=4 ,snake_case : List[str]=None ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : str ): return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Union[str, Any] ,snake_case : Tuple ,snake_case : List[Any] ,snake_case : List[str] ,snake_case : str ): SCREAMING_SNAKE_CASE =EsmModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : int ,snake_case : str ,snake_case : Tuple ,snake_case : List[str] ,snake_case : Any ,snake_case : Any ): SCREAMING_SNAKE_CASE =EsmForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : str ,snake_case : str ,snake_case : Optional[Any] ,snake_case : Any ,snake_case : List[Any] ,snake_case : Dict ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =EsmForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = False __UpperCAmelCase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = () __UpperCAmelCase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =EsmModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : str ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _lowerCAmelCase ( self : Any ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =EsmModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE =EsmEmbeddings(config=snake_case ) SCREAMING_SNAKE_CASE =torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE =torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE =create_position_ids_from_input_ids(snake_case ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case ,snake_case ) ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE =EsmEmbeddings(config=snake_case ) SCREAMING_SNAKE_CASE =torch.empty(2 ,4 ,30 ) SCREAMING_SNAKE_CASE =[ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE =torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE =embeddings.create_position_ids_from_inputs_embeds(snake_case ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case ,snake_case ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _lowerCAmelCase ( self : List[str] ): pass @unittest.skip('Esm does not support embedding resizing' ) def _lowerCAmelCase ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCAmelCase ( self : Optional[int] ): pass @require_torch class a_ ( lowerCamelCase_ ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] ): with torch.no_grad(): SCREAMING_SNAKE_CASE =EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() SCREAMING_SNAKE_CASE =torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =33 SCREAMING_SNAKE_CASE =torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): with torch.no_grad(): SCREAMING_SNAKE_CASE =EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() SCREAMING_SNAKE_CASE =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE =torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case ,atol=1e-4 ) )
252
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor snake_case_ : Tuple = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
595
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py snake_case_ : Any = """.""" if __name__ == "__main__": snake_case_ : List[str] = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") snake_case_ : Any = [] snake_case_ : Tuple = [] with open(doctest_file_path) as fp: for line in fp: snake_case_ : List[Any] = line.strip() snake_case_ : List[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: snake_case_ : Union[str, Any] = """\n""".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
595
1
"""simple docstring""" def A_ (__a ): '''simple docstring''' def merge(__a , __a ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__a ) <= 1: return collection A_ = len(__a ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ : Optional[int] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
482
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase_ : Optional[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase_ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase_ : str = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') UpperCamelCase_ : Dict = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def A_ (__a ): '''simple docstring''' A_ = None # source code of `config_class` A_ = inspect.getsource(__a ) A_ = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): A_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link A_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: A_ = ckpt_name break return checkpoint def A_ (): '''simple docstring''' A_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue A_ = get_checkpoint_from_config_class(__a ) A_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: A_ = "\n".join(sorted(__a ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
482
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
584
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A ( _A, _A, _A, _A, _A ): """simple docstring""" # Load configuration defined in the metadata file with open(_A ) as metadata_file: snake_case_ :Union[str, Any] = json.load(_A ) snake_case_ :List[Any] = LukeConfig(use_entity_aware_attention=_A, **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case_ :List[Any] = torch.load(_A, map_location="cpu" ) # Load the entity vocab file snake_case_ :str = load_entity_vocab(_A ) snake_case_ :List[str] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case_ :Tuple = AddedToken("<ent>", lstrip=_A, rstrip=_A ) snake_case_ :int = AddedToken("<ent2>", lstrip=_A, rstrip=_A ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_A ) with open(os.path.join(_A, LukeTokenizer.vocab_files_names["entity_vocab_file"] ), "w" ) as f: json.dump(_A, _A ) snake_case_ :Tuple = LukeTokenizer.from_pretrained(_A ) # Initialize the embeddings of the special tokens snake_case_ :Dict = state_dict["embeddings.word_embeddings.weight"] snake_case_ :Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) snake_case_ :Tuple = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) snake_case_ :Any = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case_ :Any = F'''encoder.layer.{layer_index}.attention.self.''' snake_case_ :Optional[int] = state_dict[prefix + matrix_name] snake_case_ :Dict = state_dict[prefix + matrix_name] snake_case_ :Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case_ :Union[str, Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case_ :List[str] = entity_emb[entity_vocab["[MASK]"]] snake_case_ :int = LukeModel(config=_A ).eval() snake_case_ , snake_case_ :int = model.load_state_dict(_A, strict=_A ) if not (len(_A ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {', '.join(_A )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs snake_case_ :Any = LukeTokenizer.from_pretrained(_A, task="entity_classification" ) snake_case_ :Tuple = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) snake_case_ :Dict = (39, 42) snake_case_ :Any = tokenizer(_A, entity_spans=[span], add_prefix_space=_A, return_tensors="pt" ) snake_case_ :Tuple = model(**_A ) # Verify word hidden states if model_size == "large": snake_case_ :Tuple = torch.Size((1, 42, 1_024) ) snake_case_ :Dict = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base snake_case_ :Tuple = torch.Size((1, 42, 768) ) snake_case_ :Dict = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], _A, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": snake_case_ :List[str] = torch.Size((1, 1, 1_024) ) snake_case_ :Dict = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base snake_case_ :Optional[int] = torch.Size((1, 1, 768) ) snake_case_ :List[str] = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], _A, atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_A ) ) model.save_pretrained(_A ) def A ( _A ): """simple docstring""" snake_case_ :List[Any] = {} with open(_A, "r", encoding="utf-8" ) as f: for index, line in enumerate(_A ): snake_case_ , snake_case_ :Tuple = line.rstrip().split("\t" ) snake_case_ :Dict = index return entity_vocab if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
584
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig A__ : Dict = logging.get_logger(__name__) A__ : int = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = '''dpt''' def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-12 , A_=384 , A_=16 , A_=3 , A_=False , A_=True , A_=[2, 5, 8, 11] , A_="project" , A_=[4, 2, 1, 0.5] , A_=[96, 192, 384, 768] , A_=256 , A_=-1 , A_=False , A_=True , A_=0.4 , A_=255 , A_=0.1 , A_=[1, 1024, 24, 24] , A_=[0, 1] , A_=None , **A_ , ) -> int: """simple docstring""" super().__init__(**A_ ) _lowercase: Union[str, Any] = hidden_size _lowercase: str = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _lowercase: Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _lowercase: List[str] = BitConfig(**A_ ) elif isinstance(A_ , A_ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _lowercase: Dict = BitConfig(**A_ ) elif isinstance(A_ , A_ ): _lowercase: str = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _lowercase: Dict = backbone_featmap_shape _lowercase: Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _lowercase: Any = None _lowercase: str = None _lowercase: Optional[Any] = [] _lowercase: Tuple = num_hidden_layers _lowercase: Optional[int] = num_attention_heads _lowercase: Any = intermediate_size _lowercase: List[Any] = hidden_act _lowercase: Union[str, Any] = hidden_dropout_prob _lowercase: Tuple = attention_probs_dropout_prob _lowercase: Dict = initializer_range _lowercase: Dict = layer_norm_eps _lowercase: Any = image_size _lowercase: Optional[int] = patch_size _lowercase: Optional[int] = num_channels _lowercase: int = qkv_bias _lowercase: List[str] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _lowercase: Union[str, Any] = readout_type _lowercase: Optional[Any] = reassemble_factors _lowercase: List[str] = neck_hidden_sizes _lowercase: Tuple = fusion_hidden_size _lowercase: int = head_in_index _lowercase: Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowercase: int = use_auxiliary_head _lowercase: Dict = auxiliary_loss_weight _lowercase: List[Any] = semantic_loss_ignore_index _lowercase: Dict = semantic_classifier_dropout def lowercase_ ( self ) -> str: """simple docstring""" _lowercase: Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowercase: List[str] = self.backbone_config.to_dict() _lowercase: List[Any] = self.__class__.model_type return output
272
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } A__ : List[Any] = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } A__ : Any = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Optional[int] = set() _lowercase: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase: Tuple = char _lowercase: Optional[Any] = set(_UpperCamelCase ) return pairs class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , **A_ , ) -> Dict: """simple docstring""" super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , **A_ , ) _lowercase: List[Any] = vocab_file _lowercase: Union[str, Any] = merges_file _lowercase: int = {} _lowercase: Optional[int] = 0 _lowercase: Optional[Any] = 1 _lowercase: List[str] = 2 _lowercase: List[Any] = 3 self.add_from_file(A_ ) _lowercase: Tuple = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: _lowercase: int = merges_handle.read().split('''\n''' )[:-1] _lowercase: Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] _lowercase: List[str] = dict(zip(A_ , range(len(A_ ) ) ) ) _lowercase: Union[str, Any] = {} def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase: Optional[Any] = [self.cls_token_id] _lowercase: Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowercase: Tuple = [self.sep_token_id] _lowercase: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self ) -> int: """simple docstring""" return len(self.encoder ) def lowercase_ ( self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] _lowercase: List[Any] = tuple(A_ ) _lowercase: Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _lowercase: List[Any] = get_pairs(A_ ) if not pairs: return token while True: _lowercase: List[str] = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase: Optional[int] = bigram _lowercase: Tuple = [] _lowercase: List[str] = 0 while i < len(A_ ): try: _lowercase: Tuple = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase: List[Any] = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase: Union[str, Any] = tuple(A_ ) _lowercase: int = new_word if len(A_ ) == 1: break else: _lowercase: List[Any] = get_pairs(A_ ) _lowercase: Tuple = '''@@ '''.join(A_ ) _lowercase: Dict = word[:-4] _lowercase: Tuple = word return word def lowercase_ ( self , A_ ) -> List[Any]: """simple docstring""" _lowercase: Dict = [] _lowercase: str = re.findall(R'''\S+\n?''' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , A_ ) -> Tuple: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def lowercase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowercase: Union[str, Any] = ''' '''.join(A_ ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase: List[Any] = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase: str = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(A_ ): copyfile(self.merges_file , A_ ) return out_vocab_file, out_merge_file def lowercase_ ( self , A_ ) -> str: """simple docstring""" if isinstance(A_ , A_ ): try: with open(A_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _lowercase: Dict = f.readlines() for lineTmp in lines: _lowercase: List[Any] = lineTmp.strip() _lowercase: Optional[Any] = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) _lowercase: List[str] = line[:idx] _lowercase: List[str] = len(self.encoder )
272
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _lowerCAmelCase = '' _lowerCAmelCase = '' _lowerCAmelCase = '' _lowerCAmelCase = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase ( ) -> None: lowercase , lowercase : int = get_dataset(_A , _A ) print("""Processing...""" ) lowercase , lowercase , lowercase : int = update_image_and_anno(_A , _A , _A ) for index, image in enumerate(_A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase : Union[str, Any] = random_chars(32 ) lowercase : List[Any] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase : Tuple = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , _A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Success {index+1}/{len(_A )} with {file_name}""" ) lowercase : Union[str, Any] = [] for anno in new_annos[index]: lowercase : Dict = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(_A ) with open(F"""/{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCamelCase ( _A , _A ) -> tuple[list, list]: lowercase : List[str] = [] lowercase : List[str] = [] for label_file in glob.glob(os.path.join(_A , """*.txt""" ) ): lowercase : Optional[int] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(_A ) as in_file: lowercase : Dict = in_file.readlines() lowercase : str = os.path.join(_A , F"""{label_name}.jpg""" ) lowercase : Union[str, Any] = [] for obj_list in obj_lists: lowercase : Dict = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_A ) labels.append(_A ) return img_paths, labels def UpperCamelCase ( _A , _A , _A = 1 ) -> tuple[list, list, list]: lowercase : Optional[Any] = [] lowercase : Optional[Any] = [] lowercase : Optional[int] = [] for idx in range(len(_A ) ): lowercase : int = [] lowercase : Any = img_list[idx] path_list.append(_A ) lowercase : List[str] = anno_list[idx] lowercase : int = cva.imread(_A ) if flip_type == 1: lowercase : Optional[Any] = cva.flip(_A , _A ) for bbox in img_annos: lowercase : Optional[int] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowercase : Optional[int] = cva.flip(_A , _A ) for bbox in img_annos: lowercase : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_A ) new_imgs_list.append(_A ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase ( _A = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" lowercase : List[str] = ascii_lowercase + digits return "".join(random.choice(_A ) for _ in range(_A ) ) if __name__ == "__main__": main() print('DONE ✅')
264
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class UpperCamelCase : def __init__( self :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :Union[str, Any]=None , __magic_name__ :List[Any]=None , __magic_name__ :Dict=None , __magic_name__ :List[Any]="resnet50" , __magic_name__ :Tuple=3 , __magic_name__ :Optional[Any]=32 , __magic_name__ :str=3 , __magic_name__ :str=True , __magic_name__ :Optional[Any]=True , ) ->str: lowercase : Tuple = parent lowercase : Tuple = out_indices if out_indices is not None else [4] lowercase : Union[str, Any] = stage_names lowercase : Tuple = out_features lowercase : Optional[int] = backbone lowercase : Optional[Any] = batch_size lowercase : Tuple = image_size lowercase : Union[str, Any] = num_channels lowercase : List[Any] = use_pretrained_backbone lowercase : str = is_training def __snake_case ( self :List[Any] ) ->Optional[Any]: lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Optional[int] = self.get_config() return config, pixel_values def __snake_case ( self :Tuple ) ->int: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __snake_case ( self :Any , __magic_name__ :List[str] , __magic_name__ :Optional[int] ) ->Tuple: lowercase : List[str] = TimmBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowercase : str = model(__magic_name__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __snake_case ( self :str ) ->Dict: lowercase : Tuple = self.prepare_config_and_inputs() lowercase , lowercase : List[Any] = config_and_inputs lowercase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class UpperCamelCase (__snake_case , __snake_case , __snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (TimmBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : str = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : List[str] = False def __snake_case ( self :Dict ) ->List[str]: lowercase : List[str] = TimmBackboneModelTester(self ) lowercase : Any = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def __snake_case ( self :Optional[Any] ) ->List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self :Union[str, Any] ) ->Optional[Any]: lowercase : Dict = """resnet18""" lowercase : int = """microsoft/resnet-18""" lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ ) lowercase : int = AutoBackbone.from_pretrained(__magic_name__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowercase : Tuple = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ , out_indices=[1, 2, 3] ) lowercase : Any = AutoBackbone.from_pretrained(__magic_name__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def __snake_case ( self :Tuple ) ->Optional[int]: pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def __snake_case ( self :Optional[Any] ) ->int: pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def __snake_case ( self :Optional[Any] ) ->Optional[Any]: pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __snake_case ( self :int ) ->List[Any]: pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __snake_case ( self :int ) ->Tuple: pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def __snake_case ( self :List[Any] ) ->List[str]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __snake_case ( self :int ) ->Any: pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __snake_case ( self :int ) ->int: pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __snake_case ( self :str ) ->Union[str, Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __snake_case ( self :int ) ->Optional[int]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __snake_case ( self :List[Any] ) ->Optional[Any]: pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def __snake_case ( self :Union[str, Any] ) ->List[Any]: pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def __snake_case ( self :Tuple ) ->List[Any]: pass @unittest.skip("""Safetensors is not supported by timm.""" ) def __snake_case ( self :List[Any] ) ->int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case ( self :Optional[Any] ) ->Optional[int]: pass def __snake_case ( self :Union[str, Any] ) ->Union[str, Any]: lowercase , lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(__magic_name__ ) lowercase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Any = [*signature.parameters.keys()] lowercase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __snake_case ( self :Any ) ->List[str]: lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = True lowercase : int = self.has_attentions # no need to test all models as different heads yield the same functionality lowercase : Union[str, Any] = self.all_model_classes[0] lowercase : Tuple = model_class(__magic_name__ ) model.to(__magic_name__ ) lowercase : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ ) lowercase : Dict = model(**__magic_name__ ) lowercase : List[str] = outputs[0][-1] # Encoder-/Decoder-only models lowercase : str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowercase : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__magic_name__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __snake_case ( self :Any ) ->List[Any]: lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowercase : Any = model(**__magic_name__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowercase : List[Any] = copy.deepcopy(__magic_name__ ) lowercase : Dict = None lowercase : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowercase : Optional[Any] = model(**__magic_name__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowercase : str = copy.deepcopy(__magic_name__ ) lowercase : int = False lowercase : List[str] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowercase : Dict = model(**__magic_name__ )
264
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __lowerCamelCase : List[Any] = logging.getLogger(__name__) __lowerCamelCase : Union[str, Any] = """Hello world! cécé herlolip""" __lowerCamelCase : Optional[Any] = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = BertAbsConfig( temp_dir='''.''' , finetune_bert=SCREAMING_SNAKE_CASE_ , large=SCREAMING_SNAKE_CASE_ , share_emb=SCREAMING_SNAKE_CASE_ , use_bert_emb=SCREAMING_SNAKE_CASE_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCamelCase_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE_ , lambda __UpperCAmelCase , __UpperCAmelCase : storage ) lowerCamelCase_ : int = AbsSummarizer(SCREAMING_SNAKE_CASE_ , torch.device('''cpu''' ) , SCREAMING_SNAKE_CASE_ ) original.eval() lowerCamelCase_ : str = BertAbsSummarizer(SCREAMING_SNAKE_CASE_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) lowerCamelCase_ : Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs lowerCamelCase_ : int = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE_ )) ) lowerCamelCase_ : Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) lowerCamelCase_ : Dict = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE_ )) ) lowerCamelCase_ : Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCamelCase_ : List[str] = encoder_input_ids lowerCamelCase_ : Optional[Any] = decoder_input_ids lowerCamelCase_ : Any = None lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : int = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCamelCase_ : List[Any] = original(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ : Optional[Any] = original.generator(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ : Dict = new_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ : str = new_model.generator(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ : Any = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ : List[Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ : Any = torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) __lowerCamelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
703
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __lowerCamelCase : Any = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowerCamelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(UpperCamelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ : List[str] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ : List[str] = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) lowerCamelCase_ : Any = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(UpperCamelCase_ , '''w''' , newline='''\n''' ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , '''r''' ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , UpperCamelCase_ ) , ) # Copy consistency with a really long name lowerCamelCase_ : Optional[int] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , UpperCamelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , UpperCamelCase_ ) , )
418
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase : List[Any] = logging.get_logger(__name__) class _a (a__ ): '''simple docstring''' def __init__( self ,*__a ,**__a ) -> None: warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" ,__a ,) super().__init__(*__a ,**__a )
116
'''simple docstring''' from __future__ import annotations class _a : '''simple docstring''' def __init__( self ,__a = 0 ) -> str: snake_case : List[Any] = key def snake_case_ ( self ,__a ,__a ) -> list[str]: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__a ) ^ key ) for ch in content] def snake_case_ ( self ,__a ,__a ) -> list[str]: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__a ) ^ key ) for ch in content] def snake_case_ ( self ,__a ,__a = 0 ) -> str: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case : List[str] = """""" for ch in content: ans += chr(ord(__a ) ^ key ) return ans def snake_case_ ( self ,__a ,__a = 0 ) -> str: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case : List[str] = """""" for ch in content: ans += chr(ord(__a ) ^ key ) return ans def snake_case_ ( self ,__a ,__a = 0 ) -> bool: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) try: with open(__a ) as fin, open("""encrypt.out""" ,"""w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__a ,__a ) ) except OSError: return False return True def snake_case_ ( self ,__a ,__a ) -> bool: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) try: with open(__a ) as fin, open("""decrypt.out""" ,"""w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__a ,__a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
116
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float: lowerCamelCase__ : Dict = sorted(numsa + numsa ) lowerCamelCase__ : Dict = divmod(len(lowerCamelCase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Tuple = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase : str = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
706
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Tuple ) -> int: lowerCamelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : Dict = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase ) , torch_builtin(UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase ) , gelu_new(UpperCAmelCase ) ) ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : str = get_activation('gelu' ) lowerCamelCase__ : Tuple = get_activation('gelu_10' ) lowerCamelCase__ : Tuple = torch_builtin(UpperCAmelCase ) lowerCamelCase__ : List[str] = geluaa(UpperCAmelCase ) lowerCamelCase__ : Tuple = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self : str ) -> List[str]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(UpperCAmelCase ): get_activation('bogus' ) with self.assertRaises(UpperCAmelCase ): get_activation(UpperCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : str = acta.a
188
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def lowercase__ ( __lowercase : Optional[int] , __lowercase : str ) -> str: """simple docstring""" __UpperCamelCase = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) __UpperCamelCase = DatasetInfosDict.from_directory(__lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def lowercase__ ( __lowercase : Optional[int] , __lowercase : DatasetInfo ) -> Tuple: """simple docstring""" __UpperCamelCase = str(__lowercase ) dataset_info.write_to_directory(__lowercase ) __UpperCamelCase = DatasetInfo.from_directory(__lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowercase , 'dataset_info.json' ) ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) __UpperCamelCase = dataset_info._to_yaml_dict() assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __UpperCamelCase = yaml.safe_dump(__lowercase ) __UpperCamelCase = yaml.safe_load(__lowercase ) assert dataset_info_yaml_dict == reloaded def lowercase__ ( ) -> str: """simple docstring""" __UpperCamelCase = DatasetInfo() __UpperCamelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def lowercase__ ( __lowercase : int , __lowercase : DatasetInfosDict ) -> List[Any]: """simple docstring""" __UpperCamelCase = str(__lowercase ) dataset_infos_dict.write_to_directory(__lowercase ) __UpperCamelCase = DatasetInfosDict.from_directory(__lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __UpperCamelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __UpperCamelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowercase , 'README.md' ) )
399
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] ={ '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] =['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] =['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] =[ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str =[ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
399
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2 , UpperCamelCase_=99 , UpperCamelCase_=0 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_="last" , UpperCamelCase_=None , UpperCamelCase_=None , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Any = use_input_lengths __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Union[str, Any] = gelu_activation __UpperCAmelCase : Tuple = sinusoidal_embeddings __UpperCAmelCase : str = causal __UpperCAmelCase : Union[str, Any] = asm __UpperCAmelCase : Optional[int] = n_langs __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = n_special __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Union[str, Any] = num_choices __UpperCAmelCase : Union[str, Any] = summary_type __UpperCAmelCase : Dict = use_proj __UpperCAmelCase : Dict = scope def _snake_case ( self ): __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_lengths: __UpperCAmelCase : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase : str = None __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ ) __UpperCAmelCase : int = model(UpperCamelCase_ , langs=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : List[str] = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Union[str, Any] = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase_ ) __UpperCAmelCase : Dict = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Dict = model(UpperCamelCase_ ) __UpperCAmelCase : str = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , ) __UpperCAmelCase : Dict = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , ) ((__UpperCAmelCase) , ) : str = result_with_labels.to_tuple() __UpperCAmelCase : List[Any] = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) ((__UpperCAmelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Any = model(UpperCamelCase_ ) __UpperCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : Optional[Any] = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = self.num_choices __UpperCAmelCase : Dict = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Tuple = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case :Optional[Any] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): __UpperCAmelCase : Tuple = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) __UpperCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def _snake_case ( self ): __UpperCAmelCase : Optional[int] = FlaubertModelTester(self ) __UpperCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def _snake_case ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = model_class(config=UpperCamelCase_ ) __UpperCAmelCase : Dict = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.jit.trace( UpperCamelCase_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , "traced_model.pt" ) ) __UpperCAmelCase : Dict = torch.jit.load(os.path.join(UpperCamelCase_ , "traced_model.pt" ) , map_location=UpperCamelCase_ ) loaded(inputs_dict["input_ids"].to(UpperCamelCase_ ) , inputs_dict["attention_mask"].to(UpperCamelCase_ ) ) @require_torch class __A (unittest.TestCase ): @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __UpperCAmelCase : int = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __UpperCAmelCase : Any = model(UpperCamelCase_ )[0] __UpperCAmelCase : List[Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCamelCase_ ) __UpperCAmelCase : int = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _A ( __lowercase ): lowercase__: Any = (EulerDiscreteScheduler,) lowercase__: Optional[Any] = 10 def lowercase__ ( self : str , **__magic_name__ : str ) -> Any: """simple docstring""" __snake_case : List[Any] = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__magic_name__ ) return config def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : List[str] = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : Union[str, Any] = self.dummy_model() __snake_case : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Dict = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Union[str, Any] = output.prev_sample __snake_case : Union[str, Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : str = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __snake_case : Optional[int] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : List[str] = self.dummy_model() __snake_case : int = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Union[str, Any] = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : str = model(__magic_name__ , __magic_name__ ) __snake_case : Any = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Optional[int] = output.prev_sample __snake_case : List[Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : int = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : int = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Union[str, Any] = self.dummy_model() __snake_case : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : Any = sample.to(__magic_name__ ) for t in scheduler.timesteps: __snake_case : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Optional[int] = output.prev_sample __snake_case : List[Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : List[Any] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__magic_name__ , use_karras_sigmas=__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) __snake_case : Dict = torch.manual_seed(0 ) __snake_case : int = self.dummy_model() __snake_case : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : int = sample.to(__magic_name__ ) for t in scheduler.timesteps: __snake_case : Any = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , __magic_name__ ) __snake_case : int = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Tuple = output.prev_sample __snake_case : str = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : Tuple = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
26
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = torch.load(_UpperCamelCase , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(_UpperCamelCase , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(_UpperCamelCase ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(_UpperCamelCase , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = load_checkpoint(_UpperCamelCase ) if config is not None: __lowercase = OPTConfig.from_pretrained(_UpperCamelCase ) else: __lowercase = OPTConfig() __lowercase = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') a : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
639
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def snake_case_ ( A_ : Iterable[str], A_ : int ): '''simple docstring''' _lowerCamelCase : Optional[int] = iter(A_ ) while True: _lowerCamelCase : Any = tuple(itertools.islice(A_, A_ ) ) if not chunk: return yield chunk def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _lowerCamelCase : Any = '''''' if len(A_ ) < 2: return dirty for i in range(len(A_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(A_ ) & 1: clean += "X" return clean def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _lowerCamelCase : Tuple = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(A_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(A_ ) return table def snake_case_ ( A_ : str, A_ : str ): '''simple docstring''' _lowerCamelCase : List[Any] = generate_table(A_ ) _lowerCamelCase : Any = prepare_input(A_ ) _lowerCamelCase : Tuple = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A_, 2 ): _lowerCamelCase : Optional[Any] = divmod(table.index(A_ ), 5 ) _lowerCamelCase : Tuple = divmod(table.index(A_ ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def snake_case_ ( A_ : str, A_ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] = generate_table(A_ ) _lowerCamelCase : Any = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A_, 2 ): _lowerCamelCase : Optional[int] = divmod(table.index(A_ ), 5 ) _lowerCamelCase : Union[str, Any] = divmod(table.index(A_ ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
708
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __snake_case ( unittest.TestCase): @parameterized.expand([(None,), ('''foo.json''',)] ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Dict = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase ) _lowerCamelCase : int = GenerationConfig.from_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = AutoConfig.from_pretrained('''gpt2''' ) _lowerCamelCase : List[Any] = GenerationConfig.from_model_config(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = GenerationConfig() _lowerCamelCase : Any = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } _lowerCamelCase : Optional[Any] = copy.deepcopy(__lowerCAmelCase ) _lowerCamelCase : List[str] = generation_config.update(**__lowerCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCAmelCase , {'''foo''': '''bar'''} ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = GenerationConfig() _lowerCamelCase : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = GenerationConfig.from_pretrained(__lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) _lowerCamelCase : Any = GenerationConfig.from_model_config(__lowerCAmelCase ) assert not hasattr(__lowerCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __lowerCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) _lowerCamelCase : int = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __lowerCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = GenerationConfig.from_pretrained(__lowerCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __lowerCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __snake_case ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE ( cls : Any ): """simple docstring""" _lowerCamelCase : Dict = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) _lowerCamelCase : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase , repo_id='''test-generation-config''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : Optional[int] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) _lowerCamelCase : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : str = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
598
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self : List[Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig( do_sample=_A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_A , config_name=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = GenerationConfig.from_pretrained(_A , config_name=_A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained('''gpt2''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = GenerationConfig.from_model_config(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_A , _A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = GenerationConfig() __SCREAMING_SNAKE_CASE : Any = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } __SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(_A ) __SCREAMING_SNAKE_CASE : Any = generation_config.update(**_A ) # update_kwargs was not modified (no side effects) self.assertEqual(_A , _A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = GenerationConfig() __SCREAMING_SNAKE_CASE : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : Dict = GenerationConfig.from_pretrained(_A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) __SCREAMING_SNAKE_CASE : List[Any] = GenerationConfig.from_model_config(_A ) assert not hasattr(_A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _A ) self.assertEqual(default_config.num_beams , 1 ) __SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig( do_sample=_A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = GenerationConfig.from_pretrained(_A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase__ ( cls : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = TOKEN HfFolder.save_token(_A ) @classmethod def UpperCAmelCase__ ( cls : List[str] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = GenerationConfig( do_sample=_A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _A , repo_id='''test-generation-config''' , push_to_hub=_A , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Dict = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = GenerationConfig( do_sample=_A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : str = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=_A , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) )
74
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( A__ : float , A__ : float , A__ : float ) -> tuple: lowerCamelCase_ : Dict = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
278
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase : Any = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def __a ( A__ ) -> str: for pegasus_name, hf_name in PATTERNS: lowerCAmelCase = k.replace(A__ , A__ ) return k def __a ( A__ , A__ ) -> PegasusForConditionalGeneration: lowerCAmelCase = DEFAULTS.copy() cfg_kwargs.update(A__ ) lowerCAmelCase = PegasusConfig(**A__ ) lowerCAmelCase = PegasusForConditionalGeneration(A__ ) lowerCAmelCase = torch_model.model.state_dict() lowerCAmelCase = {} for k, v in tf_weights.items(): lowerCAmelCase = rename_state_dict_key(A__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: lowerCAmelCase = v.T lowerCAmelCase = torch.tensor(A__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected lowerCAmelCase = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) lowerCAmelCase = mapping["shared.weight"] lowerCAmelCase = mapping["shared.weight"] lowerCAmelCase = {k: torch.zeros_like(A__ ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**A__ ) lowerCAmelCase , lowerCAmelCase = torch_model.model.load_state_dict(A__ , strict=A__ ) lowerCAmelCase = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def __a ( A__="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: lowerCAmelCase = tf.train.list_variables(A__ ) lowerCAmelCase = {} lowerCAmelCase = ["Adafactor", "global_step"] for name, shape in tqdm(A__ , desc="converting tf checkpoint to dict" ): lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase = tf.train.load_variable(A__ , A__ ) lowerCAmelCase = array return tf_weights def __a ( A__ , A__ ) -> Dict: # save tokenizer first lowerCAmelCase = Path(A__ ).parent.name lowerCAmelCase = task_specific_params[f"summarization_{dataset}"]["max_position_embeddings"] lowerCAmelCase = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=A__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(A__ ) # convert model lowerCAmelCase = get_tf_weights_as_numpy(A__ ) lowerCAmelCase = task_specific_params[f"summarization_{dataset}"] if dataset == "large": lowerCAmelCase = task_specific_params lowerCAmelCase = convert_pegasus(A__ , A__ ) torch_model.save_pretrained(A__ ) lowerCAmelCase = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(A__ , Path(A__ ) / "pytorch_model.bin" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowercase : Optional[int] = parser.parse_args() if args.save_dir is None: lowercase : Tuple = Path(args.tf_ckpt_path).parent.name lowercase : Tuple = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
703
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase : Optional[int] = random.Random() def __a ( A__ , A__=1.0 , A__=None , A__=None ) -> Any: if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int=7 , SCREAMING_SNAKE_CASE : Optional[Any]=4_0_0 , SCREAMING_SNAKE_CASE : Optional[Any]=2_0_0_0 , SCREAMING_SNAKE_CASE : Union[str, Any]=1 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=1_6_0_0_0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[Any]=8_0 , SCREAMING_SNAKE_CASE : int=1_6 , SCREAMING_SNAKE_CASE : Any=6_4 , SCREAMING_SNAKE_CASE : List[Any]="hann_window" , SCREAMING_SNAKE_CASE : Dict=8_0 , SCREAMING_SNAKE_CASE : Any=7_6_0_0 , SCREAMING_SNAKE_CASE : Optional[Any]=1E-10 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , ) -> Any: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = do_normalize lowerCAmelCase = num_mel_bins lowerCAmelCase = hop_length lowerCAmelCase = win_length lowerCAmelCase = win_function lowerCAmelCase = fmin lowerCAmelCase = fmax lowerCAmelCase = mel_floor lowerCAmelCase = return_attention_mask def __A ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __A ( self : List[str] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> str: """simple docstring""" def _flatten(SCREAMING_SNAKE_CASE : List[Any] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs def __A ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Optional[int]=False ) -> str: """simple docstring""" if equal_length: lowerCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractor def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractionTester(self ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = ["longest", "max_length", "do_not_pad"] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ["longest", "max_length", "do_not_pad"] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __A ( self : str ) -> Any: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def __A ( self : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE ) lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , processed_features[input_name] ) ) ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = min(SCREAMING_SNAKE_CASE ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad( SCREAMING_SNAKE_CASE , padding="max_length" , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors="np" ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase = ds.sort("id" ).select(range(SCREAMING_SNAKE_CASE ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self : List[Any] ) -> int: """simple docstring""" lowerCAmelCase = torch.tensor( [2.38_04E-03, 2.07_52E-03, 1.98_36E-03, 2.10_57E-03, 1.61_74E-03, 3.05_18E-04, 9.15_53E-05, 3.35_69E-04, 9.76_56E-04, 1.83_11E-03, 2.01_42E-03, 2.10_57E-03, 1.73_95E-03, 4.57_76E-04, -3.96_73E-04, 4.57_76E-04, 1.00_71E-03, 9.15_53E-05, 4.88_28E-04, 1.15_97E-03, 7.32_42E-04, 9.46_04E-04, 1.80_05E-03, 1.83_11E-03, 8.85_01E-04, 4.27_25E-04, 4.88_28E-04, 7.32_42E-04, 1.09_86E-03, 2.10_57E-03] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = SpeechTaFeatureExtractor() lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , SCREAMING_SNAKE_CASE , atol=1E-6 ) ) def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = SpeechTaFeatureExtractor() lowerCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
159
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCAmelCase__ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} lowerCAmelCase__ = '''>>zh<<''' lowerCAmelCase__ = '''Helsinki-NLP/''' if is_torch_available(): lowerCAmelCase__ = '''pt''' elif is_tf_available(): lowerCAmelCase__ = '''tf''' else: lowerCAmelCase__ = '''jax''' @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : List[Any] =MarianTokenizer a : Union[str, Any] =False a : Optional[int] =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Tuple = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCAmelCase : int = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[str] = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowerCAmelCase : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return ( "This is a test", "This is a test", ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "</s>" lowerCAmelCase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(snake_case__ ) , 9 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) lowerCAmelCase : List[str] = en_de_tokenizer(["I am a small frog"] , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[Any] = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(snake_case__ , batch.input_ids[0] ) lowerCAmelCase : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[str] = [x.name for x in Path(snake_case__ ).glob("*" )] self.assertIn("source.spm" , snake_case__ ) MarianTokenizer.from_pretrained(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Optional[int] = tok( ["I am a small frog" * 1_000, "I am a small frog"] , padding=snake_case__ , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : str = tok(["I am a tiny frog", "I am a small frog"] , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = {"input_ids": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowerCAmelCase : Tuple = "Tämä on testi" lowerCAmelCase : List[str] = "This is a test" lowerCAmelCase : str = [76, 7, 2_047, 2] lowerCAmelCase : List[str] = [69, 12, 11, 940, 2] lowerCAmelCase : Optional[int] = tokenizer(snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = tokenizer(text_target=snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
645
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCAmelCase__ = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' lowerCAmelCase__ = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' lowerCAmelCase__ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=1 , snake_case__="binary" , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = fa_score( snake_case__ , snake_case__ , labels=snake_case__ , pos_label=snake_case__ , average=snake_case__ , sample_weight=snake_case__ ) return {"f1": float(snake_case__ ) if score.size == 1 else score}
645
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase ( a_, a_, a_, a_=1024 ): '''simple docstring''' lowerCamelCase , lowerCamelCase : int = [], [] lowerCamelCase : List[str] = list(zip(a_, a_ ) ) lowerCamelCase , lowerCamelCase : Optional[int] = sorted_examples[0] def is_too_big(a_ ): return tok(a_, return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowerCamelCase : Any = new_src + ' ' + src lowerCamelCase : Optional[int] = new_tgt + ' ' + tgt if is_too_big(a_ ) or is_too_big(a_ ): # cant fit, finalize example finished_src.append(a_ ) finished_tgt.append(a_ ) lowerCamelCase , lowerCamelCase : Union[str, Any] = src, tgt else: # can fit, keep adding lowerCamelCase , lowerCamelCase : str = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a_ ) finished_tgt.append(a_ ) return finished_src, finished_tgt def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Optional[int] = Path(a_ ) save_path.mkdir(exist_ok=a_ ) for split in ["train"]: lowerCamelCase , lowerCamelCase : str = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" lowerCamelCase : str = [x.rstrip() for x in Path(a_ ).open().readlines()] lowerCamelCase : str = [x.rstrip() for x in Path(a_ ).open().readlines()] lowerCamelCase , lowerCamelCase : Union[str, Any] = pack_examples(a_, a_, a_, a_ ) print(F"""packed {split} split from {len(a_ )} examples -> {len(a_ )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(a_ ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(a_ ) ) for split in ["val", "test"]: lowerCamelCase , lowerCamelCase : Optional[int] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(a_, save_path / F"""{split}.source""" ) shutil.copyfile(a_, save_path / F"""{split}.target""" ) def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--tok_name', type=a_, help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len', type=a_, default=128 ) parser.add_argument('--data_dir', type=a_ ) parser.add_argument('--save_path', type=a_ ) lowerCamelCase : List[Any] = parser.parse_args() lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(a_, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
133
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase , lowerCamelCase : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase , lowerCamelCase : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase_ , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase : Optional[Any] = controlnet_params lowerCamelCase : Dict = 'bird' lowerCamelCase : Optional[int] = jax.device_count() lowerCamelCase : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCamelCase : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase : int = jax.random.split(UpperCAmelCase_ , jax.device_count() ) lowerCamelCase : Union[str, Any] = replicate(UpperCAmelCase_ ) lowerCamelCase : Tuple = shard(UpperCAmelCase_ ) lowerCamelCase : Tuple = shard(UpperCAmelCase_ ) lowerCamelCase : Tuple = pipe( prompt_ids=UpperCAmelCase_ , image=UpperCAmelCase_ , params=UpperCAmelCase_ , prng_seed=UpperCAmelCase_ , num_inference_steps=50 , jit=UpperCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase : Any = images[0, 253:256, 253:256, -1] lowerCamelCase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase : List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase , lowerCamelCase : Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase , lowerCamelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase_ , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase : int = controlnet_params lowerCamelCase : Dict = 'Chef in the kitchen' lowerCamelCase : Dict = jax.device_count() lowerCamelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCamelCase : int = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase : int = jax.random.PRNGKey(0 ) lowerCamelCase : str = jax.random.split(UpperCAmelCase_ , jax.device_count() ) lowerCamelCase : int = replicate(UpperCAmelCase_ ) lowerCamelCase : int = shard(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = shard(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = pipe( prompt_ids=UpperCAmelCase_ , image=UpperCAmelCase_ , params=UpperCAmelCase_ , prng_seed=UpperCAmelCase_ , num_inference_steps=50 , jit=UpperCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase : Optional[Any] = images[0, 253:256, 253:256, -1] lowerCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase : List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
133
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowercase , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[int]: __lowerCAmelCase = _distribute_shards(**lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Dict: __lowerCAmelCase = _split_gen_kwargs(lowercase , lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( lowercase , lowercase ) -> int: if expected is RuntimeError: with pytest.raises(lowercase ): _number_of_shards_in_gen_kwargs(lowercase ) else: __lowerCAmelCase = _number_of_shards_in_gen_kwargs(lowercase ) assert out == expected
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCamelCase__ ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : int=13 , lowercase_ : str=7 , lowercase_ : Any=True , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : List[Any]=True , lowercase_ : List[str]=99 , lowercase_ : Optional[Any]=32 , lowercase_ : List[str]=5 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=64 , lowercase_ : List[Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : int=512 , lowercase_ : Tuple=16 , lowercase_ : List[str]=2 , lowercase_ : int=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : Any=4 , lowercase_ : Union[str, Any]=None , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=2 , lowercase_ : int=2 , lowercase_ : Dict=2 , lowercase_ : List[str]=4 , lowercase_ : str=1 , ) -> Any: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = q_groups _UpperCamelCase = k_groups _UpperCamelCase = v_groups _UpperCamelCase = post_attention_groups _UpperCamelCase = intermediate_groups _UpperCamelCase = output_groups def __UpperCAmelCase ( self : Any) -> Dict: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[str]) -> Tuple: """simple docstring""" _UpperCamelCase = SqueezeBertModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCAmelCase ( self : str , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any) -> Optional[Any]: """simple docstring""" _UpperCamelCase = SqueezeBertForMaskedLM(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int) -> str: """simple docstring""" _UpperCamelCase = SqueezeBertForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCAmelCase ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = SqueezeBertForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Any , lowercase_ : int , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Tuple) -> List[Any]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = SqueezeBertForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __UpperCAmelCase ( self : str , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict) -> int: """simple docstring""" _UpperCamelCase = self.num_choices _UpperCamelCase = SqueezeBertForMultipleChoice(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() (_UpperCamelCase) = config_and_inputs _UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __A = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __A = False __A = True __A = False def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCamelCase = SqueezeBertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , dim=37) def __UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase_) def __UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase_) def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase_) def __UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase_) @slow def __UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = SqueezeBertModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCamelCase = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") _UpperCamelCase = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]]) _UpperCamelCase = model(lowercase_)[0] _UpperCamelCase = torch.Size((1, 3)) self.assertEqual(output.shape , lowercase_) _UpperCamelCase = torch.tensor([[0.64_01, -0.03_49, -0.60_41]]) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-4))
703
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''bertabs''' def __init__( self : List[str] , lowercase_ : int=30522 , lowercase_ : str=512 , lowercase_ : int=6 , lowercase_ : Optional[Any]=512 , lowercase_ : Optional[Any]=8 , lowercase_ : Optional[int]=512 , lowercase_ : Tuple=0.2 , lowercase_ : Union[str, Any]=6 , lowercase_ : List[Any]=768 , lowercase_ : List[str]=8 , lowercase_ : int=2048 , lowercase_ : Tuple=0.2 , **lowercase_ : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowercase_) _UpperCamelCase = vocab_size _UpperCamelCase = max_pos _UpperCamelCase = enc_layers _UpperCamelCase = enc_hidden_size _UpperCamelCase = enc_heads _UpperCamelCase = enc_ff_size _UpperCamelCase = enc_dropout _UpperCamelCase = dec_layers _UpperCamelCase = dec_hidden_size _UpperCamelCase = dec_heads _UpperCamelCase = dec_ff_size _UpperCamelCase = dec_dropout
82
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "facebook/bart-large-mnli" lowerCamelCase_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase_ = "text_classifier" lowerCamelCase_ = AutoTokenizer lowerCamelCase_ = AutoModelForSequenceClassification lowerCamelCase_ = ["text", ["text"]] lowerCamelCase_ = ["text"] def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = self.model.config SCREAMING_SNAKE_CASE__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): SCREAMING_SNAKE_CASE__ = int(__A ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = labels return self.pre_processor( [text] * len(__A ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def _snake_case ( self :str , __A :Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
6
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin a_ : Optional[int] = False @skip_mps class __UpperCamelCase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : List[Any] = StableDiffusionAttendAndExcitePipeline _lowercase : str = False _lowercase : List[str] = TEXT_TO_IMAGE_PARAMS _lowercase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) _lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _UpperCAmelCase ( cls ) -> Dict: super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE , ) a__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) a__ = CLIPTextModel(SCREAMING_SNAKE_CASE ) a__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> Dict: if str(SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a__ = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: a__ = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) a__ = a__ = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def _UpperCAmelCase ( self ) -> str: a__ = '''cpu''' a__ = self.get_dummy_components() a__ = self.pipeline_class(**SCREAMING_SNAKE_CASE ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) a__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) a__ = pipe(**SCREAMING_SNAKE_CASE ).images a__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) a__ = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-3 ) def _UpperCAmelCase ( self ) -> str: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCAmelCase ( self ) -> List[Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _UpperCAmelCase ( self ) -> int: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> Dict: super().test_save_load_local(expected_max_difference=5e-4 ) def _UpperCAmelCase ( self ) -> str: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCAmelCase ( cls ) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) @classmethod def _UpperCAmelCase ( cls ) -> str: super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: a__ = torch.manual_seed(5_1 ) a__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) a__ = '''a painting of an elephant with glasses''' a__ = [5, 7] a__ = pipe( prompt=SCREAMING_SNAKE_CASE , token_indices=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] a__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-1
194
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __a : List[Any] = logging.get_logger(__name__) __a : Any = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """layoutlmv3""" def __init__( self , SCREAMING_SNAKE_CASE=50265 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__( vocab_size=SCREAMING_SNAKE_CASE , hidden_size=SCREAMING_SNAKE_CASE , num_hidden_layers=SCREAMING_SNAKE_CASE , num_attention_heads=SCREAMING_SNAKE_CASE , intermediate_size=SCREAMING_SNAKE_CASE , hidden_act=SCREAMING_SNAKE_CASE , hidden_dropout_prob=SCREAMING_SNAKE_CASE , attention_probs_dropout_prob=SCREAMING_SNAKE_CASE , max_position_embeddings=SCREAMING_SNAKE_CASE , type_vocab_size=SCREAMING_SNAKE_CASE , initializer_range=SCREAMING_SNAKE_CASE , layer_norm_eps=SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase = max_ad_position_embeddings UpperCamelCase = coordinate_size UpperCamelCase = shape_size UpperCamelCase = has_relative_attention_bias UpperCamelCase = rel_pos_bins UpperCamelCase = max_rel_pos UpperCamelCase = has_spatial_attention_bias UpperCamelCase = rel_ad_pos_bins UpperCamelCase = max_rel_ad_pos UpperCamelCase = text_embed UpperCamelCase = visual_embed UpperCamelCase = input_size UpperCamelCase = num_channels UpperCamelCase = patch_size UpperCamelCase = classifier_dropout class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = version.parse("""1.12""" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def __lowerCAmelCase ( self ) -> float: """simple docstring""" return 1e-5 @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return 12 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 40 , SCREAMING_SNAKE_CASE = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , "apply_ocr" , SCREAMING_SNAKE_CASE ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = processor.tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE ) UpperCamelCase = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase = self._generate_dummy_images(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = dict( processor( SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE , boxes=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , ) ) return inputs
705
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def __lowerCAmelCase ( self ) -> str: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = FalconModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) UpperCamelCase = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = True UpperCamelCase = FalconModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) UpperCamelCase = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = FalconForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = FalconForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCamelCase = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )["hidden_states"][0] UpperCamelCase = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowercase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowercase = (FalconForCausalLM,) if is_torch_available() else () lowercase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = FalconModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase , *UpperCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase = alibi self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict["input_ids"] UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = "single_label_classification" UpperCamelCase = input_dict["input_ids"] UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = input_dict["input_ids"] UpperCamelCase = FalconForCausalLM(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE ) UpperCamelCase = input_ids.shape[0] UpperCamelCase = model._convert_to_rw_cache(result.past_key_values ) UpperCamelCase = model._convert_cache_to_standard_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for layer in range(len(SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = "multi_label_classification" UpperCamelCase = input_dict["input_ids"] UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(SCREAMING_SNAKE_CASE , "use_cache" ): return UpperCamelCase = model_class(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: UpperCamelCase = True UpperCamelCase = model(**SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase = ( getattr(SCREAMING_SNAKE_CASE , "decoder_layers" , SCREAMING_SNAKE_CASE ) or getattr(SCREAMING_SNAKE_CASE , "num_decoder_layers" , SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) UpperCamelCase = getattr(SCREAMING_SNAKE_CASE , "num_kv_heads" , config.num_attention_heads ) UpperCamelCase = getattr(SCREAMING_SNAKE_CASE , "d_model" , config.hidden_size ) UpperCamelCase = embed_dim // num_attention_heads UpperCamelCase = outputs["past_key_values"] self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = inputs["input_ids"].shape for i in range(SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: UpperCamelCase = config.num_attention_heads elif config.multi_query: UpperCamelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCamelCase = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCamelCase = model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=19 ) UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE )[0] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE ) model.eval() model.to(SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE ) model.eval() model.to(device=SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache UpperCamelCase = model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=SCREAMING_SNAKE_CASE ) UpperCamelCase = model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
414
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _UpperCAmelCase = logging.getLogger(__name__) class a ( UpperCAmelCase__ ): def __init__( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str]=None ) -> Tuple: '''simple docstring''' super().__init__( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: str =None def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually SCREAMING_SNAKE_CASE_: Optional[Any] =self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE_: List[Any] =str(distributed_port + 1 ) SCREAMING_SNAKE_CASE_: List[Any] =dist.new_group(ranks=lowerCAmelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase__ ( self : int ) -> List[Any]: '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]=torch.floataa ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =torch.empty(lowerCAmelCase , dtype=lowerCAmelCase ) dist.scatter(lowerCAmelCase , src=0 , scatter_list=lowerCAmelCase , group=self.process_group ) return target_tensor def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE_: Optional[int] =next((addr for addr in addrs if addr.startswith("""e""" )) , lowerCAmelCase ) return ifname def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]: '''simple docstring''' if not dist.is_initialized(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase ) # distributed training SCREAMING_SNAKE_CASE_: List[str] =dist.get_world_size(group=self.process_group ) # gather logic SCREAMING_SNAKE_CASE_: Dict =None if self._is_main(): SCREAMING_SNAKE_CASE_: Optional[Any] =[torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase )] dist.gather(torch.tensor(lowerCAmelCase ) , dst=0 , gather_list=lowerCAmelCase , group=self.process_group ) # scatter logic SCREAMING_SNAKE_CASE_: int =question_hidden_states.shape[0] SCREAMING_SNAKE_CASE_: int =[] SCREAMING_SNAKE_CASE_: Optional[Any] =[] if self._is_main(): assert len(lowerCAmelCase ) == world_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self._main_retrieve(torch.cat(lowerCAmelCase ).numpy() , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =torch.tensor(lowerCAmelCase ), torch.tensor(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =self._chunk_tensor(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self._chunk_tensor(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self._scattered(lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) SCREAMING_SNAKE_CASE_: int =self._scattered(lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase )
409
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE_: List[Any] =128 elif "12-12" in model_name: SCREAMING_SNAKE_CASE_: Union[str, Any] =12 SCREAMING_SNAKE_CASE_: Optional[Any] =12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE_: List[Any] =14 SCREAMING_SNAKE_CASE_: Any =14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE_: Dict =16 SCREAMING_SNAKE_CASE_: Optional[int] =16 else: raise ValueError("""Model not supported""" ) SCREAMING_SNAKE_CASE_: Optional[int] ="""huggingface/label-files""" if "speech-commands" in model_name: SCREAMING_SNAKE_CASE_: Tuple =35 SCREAMING_SNAKE_CASE_: Tuple ="""speech-commands-v2-id2label.json""" else: SCREAMING_SNAKE_CASE_: Union[str, Any] =527 SCREAMING_SNAKE_CASE_: Optional[Any] ="""audioset-id2label.json""" SCREAMING_SNAKE_CASE_: int =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Dict ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Union[str, Any] =idalabel SCREAMING_SNAKE_CASE_: Optional[int] ={v: k for k, v in idalabel.items()} return config def __magic_name__ ( lowercase ): if "module.v" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[Any] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Any =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[int] =int(key_split[3] ) SCREAMING_SNAKE_CASE_: Any =config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[int] =val[:dim, :] SCREAMING_SNAKE_CASE_: str =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: int =val[-dim:, :] else: SCREAMING_SNAKE_CASE_: Dict =val[:dim] SCREAMING_SNAKE_CASE_: List[str] =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Union[str, Any] =val return orig_state_dict def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =[ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Union[str, Any] =get_audio_spectrogram_transformer_config(lowercase ) SCREAMING_SNAKE_CASE_: int ={ """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict SCREAMING_SNAKE_CASE_: List[Any] =model_name_to_url[model_name] SCREAMING_SNAKE_CASE_: str =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" ) # remove some keys remove_keys(lowercase ) # rename some keys SCREAMING_SNAKE_CASE_: Any =convert_state_dict(lowercase , lowercase ) # load 🤗 model SCREAMING_SNAKE_CASE_: List[str] =ASTForAudioClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE_: Optional[Any] =-4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 SCREAMING_SNAKE_CASE_: Dict =4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 SCREAMING_SNAKE_CASE_: Any =1024 if """speech-commands""" not in model_name else 128 SCREAMING_SNAKE_CASE_: Optional[Any] =ASTFeatureExtractor(mean=lowercase , std=lowercase , max_length=lowercase ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE_: Dict =load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) SCREAMING_SNAKE_CASE_: Optional[int] =dataset[0]["""audio"""]["""array"""] else: SCREAMING_SNAKE_CASE_: Optional[Any] =hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =torchaudio.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =waveform.squeeze().numpy() SCREAMING_SNAKE_CASE_: Tuple =feature_extractor(lowercase , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass SCREAMING_SNAKE_CASE_: Tuple =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE_: Any =torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE_: Tuple =torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE_: int =torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(lowercase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
409
1
__UpperCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _snake_case ( ) -> None: """simple docstring""" _lowerCAmelCase : List[Any] = input("Enter message: " ) _lowerCAmelCase : Optional[Any] = input("Enter key [alphanumeric]: " ) _lowerCAmelCase : Dict = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): _lowerCAmelCase : str = "encrypt" _lowerCAmelCase : List[str] = encrypt_message(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif mode.lower().startswith("d" ): _lowerCAmelCase : Any = "decrypt" _lowerCAmelCase : List[str] = decrypt_message(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''\n{mode.title()}ed message:''' ) print(SCREAMING_SNAKE_CASE ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return translate_message(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "encrypt" ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return translate_message(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "decrypt" ) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : List[str] = key.upper() for symbol in message: _lowerCAmelCase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase : Tuple = 0 else: translated.append(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
503
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class A__ ( A ): """simple docstring""" _lowercase : List[str] = '''''' _lowercase : Optional[Any] = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : Dict , A_ : Optional[DatasetInfo] = None , A_ : Optional[str] = None , **A_ : int , ): '''simple docstring''' super().__init__(self , **A_ ) _lowerCAmelCase : Union[str, Any] = repo_info _lowerCAmelCase : Optional[int] = token _lowerCAmelCase : str = None def __magic_name__ ( self : Tuple ): '''simple docstring''' if self.dir_cache is None: _lowerCAmelCase : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _lowerCAmelCase : Optional[int] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(A_ ): {"name": str(A_ ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __magic_name__ ( self : Dict , A_ : str , A_ : str = "rb" , **A_ : Optional[int] , ): '''simple docstring''' if not isinstance(self.repo_info , A_ ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) _lowerCAmelCase : str = hf_hub_url(self.repo_info.id , A_ , revision=self.repo_info.sha ) return fsspec.open( A_ , mode=A_ , headers=get_authentication_headers_for_url(A_ , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def __magic_name__ ( self : Union[str, Any] , A_ : List[Any] , **A_ : str ): '''simple docstring''' self._get_dirs() _lowerCAmelCase : Optional[int] = self._strip_protocol(A_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A_ ) def __magic_name__ ( self : Any , A_ : str , A_ : Any=False , **A_ : Dict ): '''simple docstring''' self._get_dirs() _lowerCAmelCase : Dict = PurePosixPath(path.strip("/" ) ) _lowerCAmelCase : str = {} for p, f in self.dir_cache.items(): _lowerCAmelCase : List[str] = PurePosixPath(p.strip("/" ) ) _lowerCAmelCase : Tuple = p.parent if root == path: _lowerCAmelCase : Union[str, Any] = f _lowerCAmelCase : List[str] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
503
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=None ) -> Optional[int]: __lowerCamelCase : Tuple = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser __lowerCamelCase : List[Any] = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to __lowerCamelCase : List[Any] = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def SCREAMING_SNAKE_CASE__ ( ) -> Dict: __lowerCamelCase : int = get_config_parser() __lowerCamelCase : Any = config_parser.parse_args() if not hasattr(lowerCamelCase__ , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
652
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Optional[Any] = KandinskyVaaControlnetPipeline _UpperCAmelCase : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCAmelCase : int = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCAmelCase : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Tuple = False @property def lowerCAmelCase ( self : Tuple): return 3_2 @property def lowerCAmelCase ( self : List[Any]): return 3_2 @property def lowerCAmelCase ( self : str): return self.time_input_dim @property def lowerCAmelCase ( self : List[str]): return self.time_input_dim * 4 @property def lowerCAmelCase ( self : List[str]): return 1_0_0 @property def lowerCAmelCase ( self : Dict): torch.manual_seed(0) __lowerCamelCase : Optional[Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowerCamelCase : Union[str, Any] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__) return model @property def lowerCAmelCase ( self : Union[str, Any]): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[Any]): torch.manual_seed(0) __lowerCamelCase : int = VQModel(**self.dummy_movq_kwargs) return model def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = self.dummy_unet __lowerCamelCase : List[Any] = self.dummy_movq __lowerCamelCase : str = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule='linear' ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Dict = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[int]=0): __lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1)).to( SCREAMING_SNAKE_CASE__) # create hint __lowerCamelCase : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) if str(SCREAMING_SNAKE_CASE__).startswith('mps'): __lowerCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Dict = 'cpu' __lowerCamelCase : Tuple = self.get_dummy_components() __lowerCamelCase : Any = self.pipeline_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : int = output.images __lowerCamelCase : Tuple = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) ,return_dict=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : Dict = image[0, -3:, -3:, -1] __lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCamelCase : List[str] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy') __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png') __lowerCamelCase : Tuple = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE__)).float() / 255.0 __lowerCamelCase : str = hint.permute(2 ,0 ,1).unsqueeze(0) __lowerCamelCase : Tuple = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa) pipe_prior.to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' ,torch_dtype=torch.floataa) __lowerCamelCase : int = pipeline.to(SCREAMING_SNAKE_CASE__) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 'A robot, 4k photo' __lowerCamelCase : List[str] = torch.Generator(device='cuda').manual_seed(0) __lowerCamelCase , __lowerCamelCase : Optional[Any] = pipe_prior( SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() __lowerCamelCase : Optional[Any] = torch.Generator(device='cuda').manual_seed(0) __lowerCamelCase : Any = pipeline( image_embeds=SCREAMING_SNAKE_CASE__ ,negative_image_embeds=SCREAMING_SNAKE_CASE__ ,hint=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,output_type='np' ,) __lowerCamelCase : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
652
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowerCamelCase ( __A : Any , __A : Optional[int] , __A : List[Any] , __A : Union[str, Any] , __A : Optional[int] ) -> List[str]: for attribute in key.split('''.''' ): _UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: _UpperCAmelCase : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: _UpperCAmelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": _UpperCAmelCase : List[str] = value elif weight_type == "weight_v": _UpperCAmelCase : Optional[Any] = value elif weight_type == "bias": _UpperCAmelCase : Dict = value else: _UpperCAmelCase : List[Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCamelCase ( __A : int , __A : List[str] ) -> Union[str, Any]: _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Union[str, Any] = fairseq_model.state_dict() _UpperCAmelCase : Dict = hf_model.feature_extractor _UpperCAmelCase : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCAmelCase : int = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCAmelCase : List[Any] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCAmelCase : Optional[int] = True if "*" in mapped_key: _UpperCAmelCase : int = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _UpperCAmelCase : Union[str, Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: _UpperCAmelCase : List[str] = '''weight_g''' elif "weight_v" in name: _UpperCAmelCase : Optional[Any] = '''weight_v''' elif "bias" in name: _UpperCAmelCase : List[Any] = '''bias''' elif "weight" in name: _UpperCAmelCase : Dict = '''weight''' else: _UpperCAmelCase : List[str] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( __A : Tuple , __A : Optional[Any] , __A : Optional[int] , __A : Dict , __A : str ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = full_name.split('''conv_layers.''' )[-1] _UpperCAmelCase : str = name.split('''.''' ) _UpperCAmelCase : Optional[int] = int(items[0] ) _UpperCAmelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCAmelCase : str = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCAmelCase : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCAmelCase : Dict = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) def _lowerCamelCase ( __A : Optional[Any] , __A : Any , __A : Tuple , __A : str ) -> str: _UpperCAmelCase : Optional[int] = full_name.split('''adaptor.''' )[-1] _UpperCAmelCase : Any = name.split('''.''' ) if items[1].isdigit(): _UpperCAmelCase : List[Any] = int(items[1] ) else: _UpperCAmelCase : Optional[int] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCAmelCase : List[str] = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCAmelCase : List[str] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCAmelCase : List[Any] = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCAmelCase : str = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCAmelCase : Any = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCAmelCase : Dict = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) def _lowerCamelCase ( __A : Optional[int] ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = emb.weight.shape _UpperCAmelCase : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _UpperCAmelCase : Dict = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase ( __A : Optional[Any] , __A : Any , __A : Union[str, Any] , __A : Optional[Any] , __A : int , __A : List[str] , __A : Optional[int] , __A : Tuple , __A : Optional[Any] , __A : List[Any] , __A : List[str] , ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained( _lowerCAmelCase , add_adapter=_lowerCAmelCase , adapter_stride=_lowerCAmelCase , adapter_kernel_size=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , output_hidden_size=_lowerCAmelCase , ) _UpperCAmelCase : List[Any] = MBartConfig.from_pretrained(_lowerCAmelCase ) # load model _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) _UpperCAmelCase : Optional[int] = model[0].eval() # load feature extractor _UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase , use_auth_token=_lowerCAmelCase ) # set weights for wav2vec2 encoder _UpperCAmelCase : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) # load decoder weights _UpperCAmelCase : List[str] = MBartForCausalLM(_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCAmelCase : Optional[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : Union[str, Any] = MBartaaTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = hf_wavavec.config.to_dict() _UpperCAmelCase : List[str] = tokenizer.pad_token_id _UpperCAmelCase : List[Any] = tokenizer.bos_token_id _UpperCAmelCase : Optional[int] = tokenizer.eos_token_id _UpperCAmelCase : str = '''mbart50''' _UpperCAmelCase : Optional[Any] = '''wav2vec2''' _UpperCAmelCase : int = tokenizer.eos_token_id _UpperCAmelCase : Any = 250_004 _UpperCAmelCase : Optional[int] = tokenizer.eos_token_id _UpperCAmelCase : int = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250004, type=int, help='`decoder_start_token_id` of model config') SCREAMING_SNAKE_CASE = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
701
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( __A : int , __A : Optional[Any] , __A : int ) -> int: # Initialise PyTorch model _UpperCAmelCase : Dict = RemBertConfig.from_json_file(__A ) print('''Building PyTorch model from configuration: {}'''.format(str(__A ) ) ) _UpperCAmelCase : int = RemBertModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__A , __A , __A ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__A ) ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
186
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _lowercase: """simple docstring""" def __init__( self: Dict ): __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 def snake_case ( self: Tuple ): return self.head == self.tail def snake_case ( self: Dict ,a: Any ): self.data.append(a ) __UpperCAmelCase = self.tail + 1 def snake_case ( self: int ): __UpperCAmelCase = self.data[self.head] __UpperCAmelCase = self.head + 1 return ret def snake_case ( self: Optional[Any] ): return self.tail - self.head def snake_case ( self: Any ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class _lowercase: """simple docstring""" def __init__( self: Any ,a: Any ): __UpperCAmelCase = data __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = 1 def snake_case ( self: int ): return self.data def snake_case ( self: Optional[int] ): return self.left def snake_case ( self: int ): return self.right def snake_case ( self: str ): return self.height def snake_case ( self: List[str] ,a: Any ): __UpperCAmelCase = data def snake_case ( self: Union[str, Any] ,a: MyNode | None ): __UpperCAmelCase = node def snake_case ( self: str ,a: MyNode | None ): __UpperCAmelCase = node def snake_case ( self: List[str] ,a: int ): __UpperCAmelCase = height def __snake_case ( lowerCAmelCase : MyNode | None ): if node is None: return 0 return node.get_height() def __snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): if a > b: return a return b def __snake_case ( lowerCAmelCase : MyNode ): print('left rotation node:' , node.get_data() ) __UpperCAmelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase ) __UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase ) __UpperCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase ) return ret def __snake_case ( lowerCAmelCase : MyNode ): print('right rotation node:' , node.get_data() ) __UpperCAmelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase ) __UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase ) __UpperCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase ) return ret def __snake_case ( lowerCAmelCase : MyNode ): __UpperCAmelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase ) ) return right_rotation(lowerCAmelCase ) def __snake_case ( lowerCAmelCase : MyNode ): __UpperCAmelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase ) ) return left_rotation(lowerCAmelCase ) def __snake_case ( lowerCAmelCase : MyNode | None , lowerCAmelCase : Any ): if node is None: return MyNode(lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCAmelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCAmelCase = right_rotation(lowerCAmelCase ) else: __UpperCAmelCase = lr_rotation(lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCAmelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCAmelCase = rl_rotation(lowerCAmelCase ) else: __UpperCAmelCase = left_rotation(lowerCAmelCase ) __UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase ) return node def __snake_case ( lowerCAmelCase : MyNode ): while True: __UpperCAmelCase = root.get_right() if right_child is None: break __UpperCAmelCase = right_child return root.get_data() def __snake_case ( lowerCAmelCase : MyNode ): while True: __UpperCAmelCase = root.get_left() if left_child is None: break __UpperCAmelCase = left_child return root.get_data() def __snake_case ( lowerCAmelCase : MyNode , lowerCAmelCase : Any ): __UpperCAmelCase = root.get_left() __UpperCAmelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCAmelCase = get_left_most(lowerCAmelCase ) root.set_data(lowerCAmelCase ) root.set_right(del_node(lowerCAmelCase , lowerCAmelCase ) ) elif left_child is not None: __UpperCAmelCase = left_child elif right_child is not None: __UpperCAmelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(lowerCAmelCase , lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase , lowerCAmelCase ) ) if get_height(lowerCAmelCase ) - get_height(lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCAmelCase = left_rotation(lowerCAmelCase ) else: __UpperCAmelCase = rl_rotation(lowerCAmelCase ) elif get_height(lowerCAmelCase ) - get_height(lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCAmelCase = right_rotation(lowerCAmelCase ) else: __UpperCAmelCase = lr_rotation(lowerCAmelCase ) __UpperCAmelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase ) return root class _lowercase: """simple docstring""" def __init__( self: Optional[Any] ): __UpperCAmelCase = None def snake_case ( self: Optional[Any] ): return get_height(self.root ) def snake_case ( self: Optional[Any] ,a: Any ): print('insert:' + str(a ) ) __UpperCAmelCase = insert_node(self.root ,a ) def snake_case ( self: Union[str, Any] ,a: Any ): print('delete:' + str(a ) ) if self.root is None: print('Tree is empty!' ) return __UpperCAmelCase = del_node(self.root ,a ) def __str__( self: Optional[Any] ,): # a level traversale, gives a more intuitive look on the tree __UpperCAmelCase = '' __UpperCAmelCase = MyQueue() q.push(self.root ) __UpperCAmelCase = self.get_height() if layer == 0: return output __UpperCAmelCase = 0 while not q.is_empty(): __UpperCAmelCase = q.pop() __UpperCAmelCase = ' ' * int(math.pow(2 ,layer - 1 ) ) output += space if node is None: output += "*" q.push(a ) q.push(a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCAmelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 ,a ) - 1: __UpperCAmelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __snake_case ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCamelCase : Tuple = AVLtree() _UpperCamelCase : List[str] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
396
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase : List[str] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowercase( unittest.TestCase ): """simple docstring""" __lowerCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case ( self: Optional[Any] ,a: Optional[int] ,a: Tuple ,a: Tuple ): __UpperCAmelCase = ZeroShotClassificationPipeline( model=a ,tokenizer=a ,candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case ( self: int ,a: Union[str, Any] ,a: List[str] ): __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels='politics' ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) # No kwarg __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,['politics'] ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels=['politics'] ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels='politics, public health' ) self.assertEqual( a ,{'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) ,1.0 ) __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health'] ) self.assertEqual( a ,{'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) ,1.0 ) __UpperCAmelCase = classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template='This text is about {}' ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) # https://github.com/huggingface/transformers/issues/13846 __UpperCAmelCase = classifier(['I am happy'] ,['positive', 'negative'] ) self.assertEqual( a ,[ {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} for i in range(1 ) ] ,) __UpperCAmelCase = classifier(['I am happy', 'I am sad'] ,['positive', 'negative'] ) self.assertEqual( a ,[ {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} for i in range(2 ) ] ,) with self.assertRaises(a ): classifier('' ,candidate_labels='politics' ) with self.assertRaises(a ): classifier(a ,candidate_labels='politics' ) with self.assertRaises(a ): classifier('Who are you voting for in 2020?' ,candidate_labels='' ) with self.assertRaises(a ): classifier('Who are you voting for in 2020?' ,candidate_labels=a ) with self.assertRaises(a ): classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template='Not formatting template' ,) with self.assertRaises(a ): classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template=a ,) self.run_entailment_id(a ) def snake_case ( self: int ,a: Pipeline ): __UpperCAmelCase = zero_shot_classifier.model.config __UpperCAmelCase = config.labelaid __UpperCAmelCase = zero_shot_classifier.entailment_id __UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) __UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) __UpperCAmelCase = original_labelaid self.assertEqual(a ,zero_shot_classifier.entailment_id ) @require_torch def snake_case ( self: List[Any] ): __UpperCAmelCase = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='pt' ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 ,candidate_labels=['politics', 'public health', 'science'] ) @require_torch def snake_case ( self: Tuple ): __UpperCAmelCase = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='pt' ,) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } ,) @require_tf def snake_case ( self: int ): __UpperCAmelCase = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='tf' ,) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } ,) @slow @require_torch def snake_case ( self: int ): __UpperCAmelCase = pipeline('zero-shot-classification' ,model='roberta-large-mnli' ,framework='pt' ) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } ,) __UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' ,candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] ,multi_label=a ,) self.assertEqual( nested_simplify(a ) ,{ 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } ,) @slow @require_tf def snake_case ( self: str ): __UpperCAmelCase = pipeline('zero-shot-classification' ,model='roberta-large-mnli' ,framework='tf' ) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } ,) __UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' ,candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] ,multi_label=a ,) self.assertEqual( nested_simplify(a ) ,{ 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } ,)
396
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class SCREAMING_SNAKE_CASE_ (nn.Module ): '''simple docstring''' def __init__( self : Any ) ->int: super().__init__() lowerCamelCase_ : int = nn.Linear(3 , 4 ) lowerCamelCase_ : int = nn.BatchNormad(4 ) lowerCamelCase_ : Any = nn.Linear(4 , 5 ) def _lowerCAmelCase ( self : int , __a : int ) ->Any: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : List[Any] ) ->Any: lowerCamelCase_ : Dict = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , model.state_dict() ) lowerCamelCase_ : Optional[int] = os.path.join(__a , """index.json""" ) self.assertTrue(os.path.isfile(__a ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowerCamelCase_ : Tuple = os.path.join(__a , F'''{key}.dat''' ) self.assertTrue(os.path.isfile(__a ) ) # TODO: add tests on the fact weights are properly loaded def _lowerCAmelCase ( self : Optional[int] ) ->Any: lowerCamelCase_ : Tuple = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowerCamelCase_ : int = torch.randn(2 , 3 , dtype=__a ) with TemporaryDirectory() as tmp_dir: lowerCamelCase_ : int = offload_weight(__a , """weight""" , __a , {} ) lowerCamelCase_ : Optional[int] = os.path.join(__a , """weight.dat""" ) self.assertTrue(os.path.isfile(__a ) ) self.assertDictEqual(__a , {"""weight""": {"""shape""": [2, 3], """dtype""": str(__a ).split(""".""" )[1]}} ) lowerCamelCase_ : Dict = load_offloaded_weight(__a , index["""weight"""] ) self.assertTrue(torch.equal(__a , __a ) ) def _lowerCAmelCase ( self : Optional[int] ) ->Dict: lowerCamelCase_ : List[Any] = ModelForTest() lowerCamelCase_ : Optional[Any] = model.state_dict() lowerCamelCase_ : Optional[Any] = {k: v for k, v in state_dict.items() if """linear2""" not in k} lowerCamelCase_ : List[str] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , __a ) lowerCamelCase_ : int = OffloadedWeightsLoader(state_dict=__a , save_folder=__a ) # Every key is there with the right value self.assertEqual(sorted(__a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__a , weight_map[key] ) ) lowerCamelCase_ : Union[str, Any] = {k: v for k, v in state_dict.items() if """weight""" in k} lowerCamelCase_ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , __a ) lowerCamelCase_ : Tuple = OffloadedWeightsLoader(state_dict=__a , save_folder=__a ) # Every key is there with the right value self.assertEqual(sorted(__a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__a , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , __a ) # Duplicates are removed lowerCamelCase_ : Optional[int] = OffloadedWeightsLoader(state_dict=__a , save_folder=__a ) # Every key is there with the right value self.assertEqual(sorted(__a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__a , weight_map[key] ) ) def _lowerCAmelCase ( self : Dict ) ->Tuple: lowerCamelCase_ : Union[str, Any] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} lowerCamelCase_ : int = extract_submodules_state_dict(__a , ["""a.1""", """a.2"""] ) self.assertDictEqual(__a , {"""a.1""": 0, """a.2""": 2} ) lowerCamelCase_ : str = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} lowerCamelCase_ : Tuple = extract_submodules_state_dict(__a , ["""a.1""", """a.2"""] ) self.assertDictEqual(__a , {"""a.1.a""": 0, """a.2.a""": 2} )
171
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[str] = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "van" def __init__( self : int , __a : List[Any]=224 , __a : Dict=3 , __a : List[str]=[7, 3, 3, 3] , __a : Any=[4, 2, 2, 2] , __a : str=[64, 128, 320, 512] , __a : Dict=[3, 3, 12, 3] , __a : List[str]=[8, 8, 4, 4] , __a : List[str]="gelu" , __a : Optional[Any]=0.02 , __a : Dict=1e-6 , __a : List[str]=1e-2 , __a : Optional[int]=0.0 , __a : str=0.0 , **__a : Optional[Any] , ) ->str: super().__init__(**__a ) lowerCamelCase_ : Optional[Any] = image_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Union[str, Any] = patch_sizes lowerCamelCase_ : List[Any] = strides lowerCamelCase_ : Union[str, Any] = hidden_sizes lowerCamelCase_ : Tuple = depths lowerCamelCase_ : str = mlp_ratios lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : Union[str, Any] = initializer_range lowerCamelCase_ : Union[str, Any] = layer_norm_eps lowerCamelCase_ : Union[str, Any] = layer_scale_init_value lowerCamelCase_ : List[str] = drop_path_rate lowerCamelCase_ : str = dropout_rate
171
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = StableDiffusionPanoramaPipeline __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self) -> str: torch.manual_seed(0) _lowerCamelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _lowerCamelCase : Optional[Any] = DDIMScheduler() torch.manual_seed(0) _lowerCamelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0) _lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowerCamelCase : Any = CLIPTextModel(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") _lowerCamelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> Tuple: _lowerCamelCase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Optional[int] = self.get_dummy_components() _lowerCamelCase : Dict = StableDiffusionPanoramaPipeline(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = sd_pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Any = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase_ ( self) -> Tuple: super().test_inference_batch_consistent(batch_sizes=[1, 2]) def UpperCamelCase_ ( self) -> int: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : int = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = sd_pipe.to(SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = """french fries""" _lowerCamelCase : List[str] = sd_pipe(**SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = output.images _lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Optional[int] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : Tuple = StableDiffusionPanoramaPipeline(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = sd_pipe(**SCREAMING_SNAKE_CASE , view_batch_size=2) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[str] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase_ ( self) -> int: _lowerCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""") _lowerCamelCase : str = StableDiffusionPanoramaPipeline(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = sd_pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Dict = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase_ ( self) -> int: _lowerCamelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Any = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , skip_prk_steps=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = StableDiffusionPanoramaPipeline(**SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = sd_pipe.to(SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = sd_pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Union[str, Any] = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE=0) -> str: _lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Tuple = """stabilityai/stable-diffusion-2-base""" _lowerCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE , subfolder="""scheduler""") _lowerCamelCase : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) pipe.enable_attention_slicing() _lowerCamelCase : int = self.get_inputs() _lowerCamelCase : Dict = pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCamelCase : Union[str, Any] = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ]) assert np.abs(expected_slice - image_slice).max() < 1e-2 def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : int = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) pipe.enable_attention_slicing() _lowerCamelCase : Optional[int] = self.get_inputs() _lowerCamelCase : str = pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCamelCase : int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : List[str] = 0 def callback_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCamelCase : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCamelCase : Dict = latents[0, -3:, -3:, -1] _lowerCamelCase : Tuple = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: _lowerCamelCase : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCamelCase : int = latents[0, -3:, -3:, -1] _lowerCamelCase : Tuple = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 _lowerCamelCase : Any = False _lowerCamelCase : Optional[Any] = """stabilityai/stable-diffusion-2-base""" _lowerCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE , subfolder="""scheduler""") _lowerCamelCase : int = StableDiffusionPanoramaPipeline.from_pretrained(SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE) _lowerCamelCase : str = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) pipe.enable_attention_slicing() _lowerCamelCase : Dict = self.get_inputs() pipe(**SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase_ ( self) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : Tuple = """stabilityai/stable-diffusion-2-base""" _lowerCamelCase : List[str] = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE , subfolder="""scheduler""") _lowerCamelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _lowerCamelCase : int = self.get_inputs() _lowerCamelCase : int = pipe(**SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
88
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__a, __a, repo_type='''dataset''' ), '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(__a ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_ = BitConfig( conv_layer=__a, num_labels=1_000, idalabel=__a, labelaid=__a, ) return config def _lowerCamelCase ( __a ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''stem.conv''', '''bit.embedder.convolution''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('''blocks''', '''layers''' ) if "head.fc" in name: SCREAMING_SNAKE_CASE_ = name.replace('''head.fc''', '''classifier.1''' ) if name.startswith('''norm''' ): SCREAMING_SNAKE_CASE_ = '''bit.''' + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_ = '''bit.encoder.''' + name return name def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__a, stream=__a ).raw ) return im @torch.no_grad() def _lowerCamelCase ( __a, __a, __a=False ): SCREAMING_SNAKE_CASE_ = get_config(__a ) # load original model from timm SCREAMING_SNAKE_CASE_ = create_model(__a, pretrained=__a ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_ = timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = state_dict.pop(__a ) SCREAMING_SNAKE_CASE_ = val.squeeze() if '''head''' in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_ = BitForImageClassification(__a ) model.eval() model.load_state_dict(__a ) # create image processor SCREAMING_SNAKE_CASE_ = create_transform(**resolve_data_config({}, model=__a ) ) SCREAMING_SNAKE_CASE_ = transform.transforms SCREAMING_SNAKE_CASE_ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_ = BitImageProcessor( do_resize=__a, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=__a, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=__a, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = transform(__a ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = processor(__a, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__a, __a ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__a ) SCREAMING_SNAKE_CASE_ = outputs.logits print('''Logits:''', logits[0, :3] ) print('''Predicted class:''', model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_ = timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a, outputs.logits, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__a ).mkdir(exist_ok=__a ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
626
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCamelCase (a_ :int) -> List[Any]: lowercase :Tuple = {} lowercase :List[Any] = job['''started_at'''] lowercase :Dict = job['''completed_at'''] lowercase :List[str] = date_parser.parse(a_) lowercase :str = date_parser.parse(a_) lowercase :Any = round((end_datetime - start_datetime).total_seconds() / 60.0) lowercase :str = start lowercase :Any = end lowercase :int = duration_in_min return job_info def lowerCamelCase (a_ :Optional[int] , a_ :Any=None) -> str: lowercase :Union[str, Any] = None if token is not None: lowercase :Dict = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} lowercase :Union[str, Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowercase :Optional[int] = requests.get(a_ , headers=a_).json() lowercase :Tuple = {} try: job_time.update({job['''name''']: extract_time_from_single_job(a_) for job in result['''jobs''']}) lowercase :Optional[Any] = math.ceil((result['''total_count'''] - 100) / 100) for i in range(a_): lowercase :List[str] = requests.get(url + F"""&page={i + 2}""" , headers=a_).json() job_time.update({job['''name''']: extract_time_from_single_job(a_) for job in result['''jobs''']}) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""") return {} if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') UpperCAmelCase = parser.parse_args() UpperCAmelCase = get_job_time(args.workflow_run_id) UpperCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v["duration"]}""")
713
"""simple docstring""" UpperCAmelCase = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase (a_ :int) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_)) def lowerCamelCase () -> int: return sum( number for number in range(1000 , 100_0000) if number == digits_fifth_powers_sum(a_)) if __name__ == "__main__": print(solution())
475
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : Optional[int] = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __snake_case ( _snake_case ): _a = '''beit''' def __init__( self : str , A_ : Optional[int]=8_1_9_2 , A_ : Optional[int]=7_6_8 , A_ : Tuple=1_2 , A_ : List[Any]=1_2 , A_ : Dict=3_0_7_2 , A_ : Union[str, Any]="gelu" , A_ : Optional[Any]=0.0 , A_ : Tuple=0.0 , A_ : Dict=0.02 , A_ : Union[str, Any]=1e-12 , A_ : int=2_2_4 , A_ : Optional[Any]=1_6 , A_ : List[str]=3 , A_ : Optional[int]=False , A_ : Dict=False , A_ : Union[str, Any]=False , A_ : Dict=False , A_ : List[Any]=0.1 , A_ : str=0.1 , A_ : str=True , A_ : List[Any]=[3, 5, 7, 1_1] , A_ : str=[1, 2, 3, 6] , A_ : int=True , A_ : Union[str, Any]=0.4 , A_ : Dict=2_5_6 , A_ : List[str]=1 , A_ : Dict=False , A_ : int=2_5_5 , **A_ : Any , ): super().__init__(**_UpperCamelCase) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : str = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : List[Any] = use_mask_token lowerCAmelCase_ : Optional[int] = use_absolute_position_embeddings lowerCAmelCase_ : Tuple = use_relative_position_bias lowerCAmelCase_ : List[str] = use_shared_relative_position_bias lowerCAmelCase_ : List[str] = layer_scale_init_value lowerCAmelCase_ : List[str] = drop_path_rate lowerCAmelCase_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ : Union[str, Any] = out_indices lowerCAmelCase_ : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ : Optional[Any] = use_auxiliary_head lowerCAmelCase_ : Any = auxiliary_loss_weight lowerCAmelCase_ : List[str] = auxiliary_channels lowerCAmelCase_ : str = auxiliary_num_convs lowerCAmelCase_ : Optional[Any] = auxiliary_concat_input lowerCAmelCase_ : Any = semantic_loss_ignore_index class __snake_case ( _snake_case ): _a = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : Tuple): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self : Optional[Any]): return 1e-4
171
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Any = OmegaConf.load(__snake_case ) UpperCAmelCase_ : List[Any] = torch.load(__snake_case , map_location='cpu' )['model'] UpperCAmelCase_ : Any = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : List[Any] = 'first_stage_model.' for key in keys: if key.startswith(__snake_case ): UpperCAmelCase_ : Any = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : int = 'model.diffusion_model.' for key in keys: if key.startswith(__snake_case ): UpperCAmelCase_ : int = state_dict[key] UpperCAmelCase_ : Tuple = config.model.params.first_stage_config.params UpperCAmelCase_ : Optional[Any] = config.model.params.unet_config.params UpperCAmelCase_ : Any = VQModel(**__snake_case ).eval() vqvae.load_state_dict(__snake_case ) UpperCAmelCase_ : Optional[int] = UNetLDMModel(**__snake_case ).eval() unet.load_state_dict(__snake_case ) UpperCAmelCase_ : Tuple = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , ) UpperCAmelCase_ : Union[str, Any] = LDMPipeline(__snake_case , __snake_case , __snake_case ) pipeline.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __UpperCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
406
0
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "Salesforce/blip-image-captioning-base" _lowerCamelCase = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) _lowerCamelCase = "image_captioner" _lowerCamelCase = AutoModelForVisionaSeq _lowerCamelCase = ["image"] _lowerCamelCase = ["text"] def __init__( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.pre_processor(images=UpperCamelCase , return_tensors="pt" ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.model.generate(**UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.pre_processor.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )[0].strip()
706
'''simple docstring''' from collections.abc import Sequence def __snake_case ( UpperCAmelCase_ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) lowerCamelCase_ = nums[0] for i in range(1 , len(UpperCAmelCase_ ) ): lowerCamelCase_ = nums[i] lowerCamelCase_ = max(UpperCAmelCase_ , ans + num , UpperCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user a_ : Any = int(input("""Enter number of elements : """).strip()) a_ : Union[str, Any] = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
445
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
104
def __A ( _lowercase = 2_00 ): '''simple docstring''' _A = [1, 2, 5, 10, 20, 50, 1_00, 2_00] _A = [0] * (pence + 1) _A = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
484
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> int: for attribute in key.split(""".""" ): __UpperCamelCase : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: __UpperCamelCase : Union[str, Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: __UpperCamelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __UpperCamelCase : Tuple = value elif weight_type == "weight_g": __UpperCamelCase : Optional[Any] = value elif weight_type == "weight_v": __UpperCamelCase : int = value elif weight_type == "bias": __UpperCamelCase : Tuple = value elif weight_type == "running_mean": __UpperCamelCase : Dict = value elif weight_type == "running_var": __UpperCamelCase : Dict = value elif weight_type == "num_batches_tracked": __UpperCamelCase : Any = value elif weight_type == "inv_freq": __UpperCamelCase : Any = value else: __UpperCamelCase : Optional[Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ) -> Optional[int]: __UpperCamelCase : str = [] __UpperCamelCase : Tuple = fairseq_model.state_dict() __UpperCamelCase : Any = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __UpperCamelCase : str = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase : List[str] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase : Optional[int] = True if "*" in mapped_key: __UpperCamelCase : Dict = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] __UpperCamelCase : Any = mapped_key.replace("""*""" , __lowerCAmelCase ) if "pos_bias_u" in name: __UpperCamelCase : List[str] = None elif "pos_bias_v" in name: __UpperCamelCase : Any = None elif "weight_g" in name: __UpperCamelCase : Optional[int] = """weight_g""" elif "weight_v" in name: __UpperCamelCase : Optional[int] = """weight_v""" elif "bias" in name: __UpperCamelCase : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase : Dict = """weight""" elif "running_mean" in name: __UpperCamelCase : str = """running_mean""" elif "inv_freq" in name: __UpperCamelCase : Any = """inv_freq""" elif "running_var" in name: __UpperCamelCase : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __UpperCamelCase : int = """num_batches_tracked""" else: __UpperCamelCase : int = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: __UpperCamelCase : List[str] = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase : Optional[int] = name.split(""".""" ) __UpperCamelCase : str = int(items[0] ) __UpperCamelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __UpperCamelCase : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __UpperCamelCase : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __UpperCamelCase : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __UpperCamelCase : Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Any=True ) -> Optional[Any]: if config_path is not None: __UpperCamelCase : Optional[Any] = WavaVecaConformerConfig.from_pretrained(__lowerCAmelCase , hidden_act="""swish""" ) else: __UpperCamelCase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __UpperCamelCase : Tuple = """rotary""" if is_finetuned: if dict_path: __UpperCamelCase : Union[str, Any] = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase : Any = target_dict.pad_index __UpperCamelCase : Optional[int] = target_dict.bos_index __UpperCamelCase : str = target_dict.eos_index __UpperCamelCase : Optional[Any] = len(target_dict.symbols ) __UpperCamelCase : Tuple = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __UpperCamelCase : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : Optional[int] = 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : Optional[int] = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) __UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) __UpperCamelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) __UpperCamelCase : List[Any] = WavaVecaConformerForCTC(__lowerCAmelCase ) else: __UpperCamelCase : str = WavaVecaConformerForPreTraining(__lowerCAmelCase ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase : int = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase : Tuple = fairseq.tasks.setup_task(__lowerCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
515
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCamelCase = imread(r'digital_image_processing/image_data/lena_small.jpg') UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) def __lowerCamelCase ( ) -> int: __UpperCamelCase : int = cn.convert_to_negative(__lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def __lowerCamelCase ( ) -> Optional[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowerCAmelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __lowerCamelCase ( ) -> Dict: __UpperCamelCase : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowerCamelCase ( ) -> str: __UpperCamelCase : List[Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCamelCase : Optional[int] = canny.canny(__lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def __lowerCamelCase ( ) -> Optional[int]: assert gg.gaussian_filter(__lowerCAmelCase , 5 , sigma=0.9 ).all() def __lowerCamelCase ( ) -> Tuple: # laplace diagonals __UpperCamelCase : List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCamelCase : Any = conv.img_convolve(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) assert res.any() def __lowerCamelCase ( ) -> List[str]: assert med.median_filter(__lowerCAmelCase , 3 ).any() def __lowerCamelCase ( ) -> int: __UpperCamelCase , __UpperCamelCase : List[Any] = sob.sobel_filter(__lowerCAmelCase ) assert grad.any() and theta.any() def __lowerCamelCase ( ) -> Optional[int]: __UpperCamelCase : int = sp.make_sepia(__lowerCAmelCase , 20 ) assert sepia.all() def __lowerCamelCase ( __lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Union[str, Any]: __UpperCamelCase : str = bs.Burkes(imread(__lowerCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowerCamelCase ( __lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> str: __UpperCamelCase : Dict = rs.NearestNeighbour(imread(__lowerCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowerCamelCase ( ) -> Union[str, Any]: __UpperCamelCase : Any = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __UpperCamelCase : int = imread(__lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCamelCase : Dict = 0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : str = image[x_coordinate][y_coordinate] __UpperCamelCase : Tuple = lbp.get_neighbors_pixel( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCamelCase : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCamelCase : str = lbp.local_binary_value(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert lbp_image.any()
515
1
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = ["""image_processor""", """tokenizer"""] lowercase = """FlavaImageProcessor""" lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop("feature_extractor" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCamelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if images is not None: UpperCamelCase = self.image_processor( SCREAMING_SNAKE_CASE , return_image_mask=SCREAMING_SNAKE_CASE , return_codebook_pixels=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if text is not None and images is not None: encoding.update(SCREAMING_SNAKE_CASE ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE ) , tensor_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor
606
0
'''simple docstring''' from collections import defaultdict def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = first_str.lower().strip() lowerCamelCase__ = second_str.lower().strip() # Remove whitespace lowerCamelCase__ = first_str.replace(""" """ , """""" ) lowerCamelCase__ = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): return False # Default values for count should be 0 lowerCamelCase__ = defaultdict(__lowerCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : List[Any] = input('Enter the first string ').strip() UpperCamelCase : List[str] = input('Enter the second string ').strip() UpperCamelCase : Union[str, Any] = check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
705
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
0